1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
57 static struct workqueue_struct
*target_completion_wq
;
58 static struct kmem_cache
*se_sess_cache
;
59 struct kmem_cache
*se_ua_cache
;
60 struct kmem_cache
*t10_pr_reg_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_cache
;
62 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
63 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
64 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
65 struct kmem_cache
*t10_alua_lba_map_cache
;
66 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
68 static void transport_complete_task_attr(struct se_cmd
*cmd
);
69 static void transport_handle_queue_full(struct se_cmd
*cmd
,
70 struct se_device
*dev
);
71 static int transport_put_cmd(struct se_cmd
*cmd
);
72 static void target_complete_ok_work(struct work_struct
*work
);
74 int init_se_kmem_caches(void)
76 se_sess_cache
= kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session
), __alignof__(struct se_session
),
80 pr_err("kmem_cache_create() for struct se_session"
84 se_ua_cache
= kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua
), __alignof__(struct se_ua
),
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache
;
91 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration
),
93 __alignof__(struct t10_pr_registration
), 0, NULL
);
94 if (!t10_pr_reg_cache
) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
97 goto out_free_ua_cache
;
99 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
102 if (!t10_alua_lu_gp_cache
) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
105 goto out_free_pr_reg_cache
;
107 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member
),
109 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
110 if (!t10_alua_lu_gp_mem_cache
) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
113 goto out_free_lu_gp_cache
;
115 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp
),
117 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
118 if (!t10_alua_tg_pt_gp_cache
) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
121 goto out_free_lu_gp_mem_cache
;
123 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member
),
126 __alignof__(struct t10_alua_tg_pt_gp_member
),
128 if (!t10_alua_tg_pt_gp_mem_cache
) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
131 goto out_free_tg_pt_gp_cache
;
133 t10_alua_lba_map_cache
= kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map
),
136 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
137 if (!t10_alua_lba_map_cache
) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
140 goto out_free_tg_pt_gp_mem_cache
;
142 t10_alua_lba_map_mem_cache
= kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member
),
145 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
146 if (!t10_alua_lba_map_mem_cache
) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
149 goto out_free_lba_map_cache
;
152 target_completion_wq
= alloc_workqueue("target_completion",
154 if (!target_completion_wq
)
155 goto out_free_lba_map_mem_cache
;
159 out_free_lba_map_mem_cache
:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
161 out_free_lba_map_cache
:
162 kmem_cache_destroy(t10_alua_lba_map_cache
);
163 out_free_tg_pt_gp_mem_cache
:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
165 out_free_tg_pt_gp_cache
:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
167 out_free_lu_gp_mem_cache
:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
169 out_free_lu_gp_cache
:
170 kmem_cache_destroy(t10_alua_lu_gp_cache
);
171 out_free_pr_reg_cache
:
172 kmem_cache_destroy(t10_pr_reg_cache
);
174 kmem_cache_destroy(se_ua_cache
);
176 kmem_cache_destroy(se_sess_cache
);
181 void release_se_kmem_caches(void)
183 destroy_workqueue(target_completion_wq
);
184 kmem_cache_destroy(se_sess_cache
);
185 kmem_cache_destroy(se_ua_cache
);
186 kmem_cache_destroy(t10_pr_reg_cache
);
187 kmem_cache_destroy(t10_alua_lu_gp_cache
);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
191 kmem_cache_destroy(t10_alua_lba_map_cache
);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
197 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
200 * Allocate a new row index for the entry type specified
202 u32
scsi_get_new_index(scsi_index_t type
)
206 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
208 spin_lock(&scsi_mib_index_lock
);
209 new_index
= ++scsi_mib_index
[type
];
210 spin_unlock(&scsi_mib_index_lock
);
215 void transport_subsystem_check_init(void)
218 static int sub_api_initialized
;
220 if (sub_api_initialized
)
223 ret
= request_module("target_core_iblock");
225 pr_err("Unable to load target_core_iblock\n");
227 ret
= request_module("target_core_file");
229 pr_err("Unable to load target_core_file\n");
231 ret
= request_module("target_core_pscsi");
233 pr_err("Unable to load target_core_pscsi\n");
235 sub_api_initialized
= 1;
238 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
240 struct se_session
*se_sess
;
242 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
244 pr_err("Unable to allocate struct se_session from"
246 return ERR_PTR(-ENOMEM
);
248 INIT_LIST_HEAD(&se_sess
->sess_list
);
249 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
250 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
251 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
252 spin_lock_init(&se_sess
->sess_cmd_lock
);
253 kref_init(&se_sess
->sess_kref
);
254 se_sess
->sup_prot_ops
= sup_prot_ops
;
258 EXPORT_SYMBOL(transport_init_session
);
260 int transport_alloc_session_tags(struct se_session
*se_sess
,
261 unsigned int tag_num
, unsigned int tag_size
)
265 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
266 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
267 if (!se_sess
->sess_cmd_map
) {
268 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
269 if (!se_sess
->sess_cmd_map
) {
270 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
275 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
277 pr_err("Unable to init se_sess->sess_tag_pool,"
278 " tag_num: %u\n", tag_num
);
279 if (is_vmalloc_addr(se_sess
->sess_cmd_map
))
280 vfree(se_sess
->sess_cmd_map
);
282 kfree(se_sess
->sess_cmd_map
);
283 se_sess
->sess_cmd_map
= NULL
;
289 EXPORT_SYMBOL(transport_alloc_session_tags
);
291 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
292 unsigned int tag_size
,
293 enum target_prot_op sup_prot_ops
)
295 struct se_session
*se_sess
;
298 se_sess
= transport_init_session(sup_prot_ops
);
302 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
304 transport_free_session(se_sess
);
305 return ERR_PTR(-ENOMEM
);
310 EXPORT_SYMBOL(transport_init_session_tags
);
313 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
315 void __transport_register_session(
316 struct se_portal_group
*se_tpg
,
317 struct se_node_acl
*se_nacl
,
318 struct se_session
*se_sess
,
319 void *fabric_sess_ptr
)
321 unsigned char buf
[PR_REG_ISID_LEN
];
323 se_sess
->se_tpg
= se_tpg
;
324 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
326 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
328 * Only set for struct se_session's that will actually be moving I/O.
329 * eg: *NOT* discovery sessions.
333 * If the fabric module supports an ISID based TransportID,
334 * save this value in binary from the fabric I_T Nexus now.
336 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
337 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
338 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
339 &buf
[0], PR_REG_ISID_LEN
);
340 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
342 kref_get(&se_nacl
->acl_kref
);
344 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
346 * The se_nacl->nacl_sess pointer will be set to the
347 * last active I_T Nexus for each struct se_node_acl.
349 se_nacl
->nacl_sess
= se_sess
;
351 list_add_tail(&se_sess
->sess_acl_list
,
352 &se_nacl
->acl_sess_list
);
353 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
355 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
357 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
358 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
360 EXPORT_SYMBOL(__transport_register_session
);
362 void transport_register_session(
363 struct se_portal_group
*se_tpg
,
364 struct se_node_acl
*se_nacl
,
365 struct se_session
*se_sess
,
366 void *fabric_sess_ptr
)
370 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
371 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
372 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
374 EXPORT_SYMBOL(transport_register_session
);
376 static void target_release_session(struct kref
*kref
)
378 struct se_session
*se_sess
= container_of(kref
,
379 struct se_session
, sess_kref
);
380 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
382 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
385 void target_get_session(struct se_session
*se_sess
)
387 kref_get(&se_sess
->sess_kref
);
389 EXPORT_SYMBOL(target_get_session
);
391 void target_put_session(struct se_session
*se_sess
)
393 struct se_portal_group
*tpg
= se_sess
->se_tpg
;
395 if (tpg
->se_tpg_tfo
->put_session
!= NULL
) {
396 tpg
->se_tpg_tfo
->put_session(se_sess
);
399 kref_put(&se_sess
->sess_kref
, target_release_session
);
401 EXPORT_SYMBOL(target_put_session
);
403 static void target_complete_nacl(struct kref
*kref
)
405 struct se_node_acl
*nacl
= container_of(kref
,
406 struct se_node_acl
, acl_kref
);
408 complete(&nacl
->acl_free_comp
);
411 void target_put_nacl(struct se_node_acl
*nacl
)
413 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
416 void transport_deregister_session_configfs(struct se_session
*se_sess
)
418 struct se_node_acl
*se_nacl
;
421 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
423 se_nacl
= se_sess
->se_node_acl
;
425 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
426 if (se_nacl
->acl_stop
== 0)
427 list_del(&se_sess
->sess_acl_list
);
429 * If the session list is empty, then clear the pointer.
430 * Otherwise, set the struct se_session pointer from the tail
431 * element of the per struct se_node_acl active session list.
433 if (list_empty(&se_nacl
->acl_sess_list
))
434 se_nacl
->nacl_sess
= NULL
;
436 se_nacl
->nacl_sess
= container_of(
437 se_nacl
->acl_sess_list
.prev
,
438 struct se_session
, sess_acl_list
);
440 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
443 EXPORT_SYMBOL(transport_deregister_session_configfs
);
445 void transport_free_session(struct se_session
*se_sess
)
447 if (se_sess
->sess_cmd_map
) {
448 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
449 if (is_vmalloc_addr(se_sess
->sess_cmd_map
))
450 vfree(se_sess
->sess_cmd_map
);
452 kfree(se_sess
->sess_cmd_map
);
454 kmem_cache_free(se_sess_cache
, se_sess
);
456 EXPORT_SYMBOL(transport_free_session
);
458 void transport_deregister_session(struct se_session
*se_sess
)
460 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
461 struct target_core_fabric_ops
*se_tfo
;
462 struct se_node_acl
*se_nacl
;
464 bool comp_nacl
= true;
467 transport_free_session(se_sess
);
470 se_tfo
= se_tpg
->se_tpg_tfo
;
472 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
473 list_del(&se_sess
->sess_list
);
474 se_sess
->se_tpg
= NULL
;
475 se_sess
->fabric_sess_ptr
= NULL
;
476 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
479 * Determine if we need to do extra work for this initiator node's
480 * struct se_node_acl if it had been previously dynamically generated.
482 se_nacl
= se_sess
->se_node_acl
;
484 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
485 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
486 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
487 list_del(&se_nacl
->acl_list
);
488 se_tpg
->num_node_acls
--;
489 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
490 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
491 core_free_device_list_for_node(se_nacl
, se_tpg
);
492 se_tfo
->tpg_release_fabric_acl(se_tpg
, se_nacl
);
495 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
498 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
500 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
501 se_tpg
->se_tpg_tfo
->get_fabric_name());
503 * If last kref is dropping now for an explicit NodeACL, awake sleeping
504 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
507 if (se_nacl
&& comp_nacl
== true)
508 target_put_nacl(se_nacl
);
510 transport_free_session(se_sess
);
512 EXPORT_SYMBOL(transport_deregister_session
);
515 * Called with cmd->t_state_lock held.
517 static void target_remove_from_state_list(struct se_cmd
*cmd
)
519 struct se_device
*dev
= cmd
->se_dev
;
525 if (cmd
->transport_state
& CMD_T_BUSY
)
528 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
529 if (cmd
->state_active
) {
530 list_del(&cmd
->state_list
);
531 cmd
->state_active
= false;
533 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
536 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
541 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
543 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
545 if (remove_from_lists
) {
546 target_remove_from_state_list(cmd
);
549 * Clear struct se_cmd->se_lun before the handoff to FE.
555 * Determine if frontend context caller is requesting the stopping of
556 * this command for frontend exceptions.
558 if (cmd
->transport_state
& CMD_T_STOP
) {
559 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
561 cmd
->se_tfo
->get_task_tag(cmd
));
563 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
565 complete(&cmd
->t_transport_stop_comp
);
569 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
570 if (remove_from_lists
) {
572 * Some fabric modules like tcm_loop can release
573 * their internally allocated I/O reference now and
576 * Fabric modules are expected to return '1' here if the
577 * se_cmd being passed is released at this point,
578 * or zero if not being released.
580 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
581 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
582 return cmd
->se_tfo
->check_stop_free(cmd
);
586 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
590 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
592 return transport_cmd_check_stop(cmd
, true, false);
595 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
597 struct se_lun
*lun
= cmd
->se_lun
;
602 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
603 percpu_ref_put(&lun
->lun_ref
);
606 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
608 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
609 transport_lun_remove_cmd(cmd
);
611 * Allow the fabric driver to unmap any resources before
612 * releasing the descriptor via TFO->release_cmd()
615 cmd
->se_tfo
->aborted_task(cmd
);
617 if (transport_cmd_check_stop_to_fabric(cmd
))
620 transport_put_cmd(cmd
);
623 static void target_complete_failure_work(struct work_struct
*work
)
625 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
627 transport_generic_request_failure(cmd
,
628 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
632 * Used when asking transport to copy Sense Data from the underlying
633 * Linux/SCSI struct scsi_cmnd
635 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
637 struct se_device
*dev
= cmd
->se_dev
;
639 WARN_ON(!cmd
->se_lun
);
644 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
647 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
649 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
650 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
651 return cmd
->sense_buffer
;
654 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
656 struct se_device
*dev
= cmd
->se_dev
;
657 int success
= scsi_status
== GOOD
;
660 cmd
->scsi_status
= scsi_status
;
663 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
664 cmd
->transport_state
&= ~CMD_T_BUSY
;
666 if (dev
&& dev
->transport
->transport_complete
) {
667 dev
->transport
->transport_complete(cmd
,
669 transport_get_sense_buffer(cmd
));
670 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
675 * See if we are waiting to complete for an exception condition.
677 if (cmd
->transport_state
& CMD_T_REQUEST_STOP
) {
678 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
679 complete(&cmd
->task_stop_comp
);
684 * Check for case where an explicit ABORT_TASK has been received
685 * and transport_wait_for_tasks() will be waiting for completion..
687 if (cmd
->transport_state
& CMD_T_ABORTED
&&
688 cmd
->transport_state
& CMD_T_STOP
) {
689 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
690 complete(&cmd
->t_transport_stop_comp
);
692 } else if (!success
) {
693 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
695 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
698 cmd
->t_state
= TRANSPORT_COMPLETE
;
699 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
700 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
702 queue_work(target_completion_wq
, &cmd
->work
);
704 EXPORT_SYMBOL(target_complete_cmd
);
706 static void target_add_to_state_list(struct se_cmd
*cmd
)
708 struct se_device
*dev
= cmd
->se_dev
;
711 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
712 if (!cmd
->state_active
) {
713 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
714 cmd
->state_active
= true;
716 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
720 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
722 static void transport_write_pending_qf(struct se_cmd
*cmd
);
723 static void transport_complete_qf(struct se_cmd
*cmd
);
725 void target_qf_do_work(struct work_struct
*work
)
727 struct se_device
*dev
= container_of(work
, struct se_device
,
729 LIST_HEAD(qf_cmd_list
);
730 struct se_cmd
*cmd
, *cmd_tmp
;
732 spin_lock_irq(&dev
->qf_cmd_lock
);
733 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
734 spin_unlock_irq(&dev
->qf_cmd_lock
);
736 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
737 list_del(&cmd
->se_qf_node
);
738 atomic_dec(&dev
->dev_qf_count
);
739 smp_mb__after_atomic_dec();
741 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
742 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
743 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
744 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
747 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
748 transport_write_pending_qf(cmd
);
749 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
750 transport_complete_qf(cmd
);
754 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
756 switch (cmd
->data_direction
) {
759 case DMA_FROM_DEVICE
:
763 case DMA_BIDIRECTIONAL
:
772 void transport_dump_dev_state(
773 struct se_device
*dev
,
777 *bl
+= sprintf(b
+ *bl
, "Status: ");
778 if (dev
->export_count
)
779 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
781 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
783 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
784 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
785 dev
->dev_attrib
.block_size
,
786 dev
->dev_attrib
.hw_max_sectors
);
787 *bl
+= sprintf(b
+ *bl
, " ");
790 void transport_dump_vpd_proto_id(
792 unsigned char *p_buf
,
795 unsigned char buf
[VPD_TMP_BUF_SIZE
];
798 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
799 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
801 switch (vpd
->protocol_identifier
) {
803 sprintf(buf
+len
, "Fibre Channel\n");
806 sprintf(buf
+len
, "Parallel SCSI\n");
809 sprintf(buf
+len
, "SSA\n");
812 sprintf(buf
+len
, "IEEE 1394\n");
815 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
819 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
822 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
825 sprintf(buf
+len
, "Automation/Drive Interface Transport"
829 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
832 sprintf(buf
+len
, "Unknown 0x%02x\n",
833 vpd
->protocol_identifier
);
838 strncpy(p_buf
, buf
, p_buf_len
);
844 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
847 * Check if the Protocol Identifier Valid (PIV) bit is set..
849 * from spc3r23.pdf section 7.5.1
851 if (page_83
[1] & 0x80) {
852 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
853 vpd
->protocol_identifier_set
= 1;
854 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
857 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
859 int transport_dump_vpd_assoc(
861 unsigned char *p_buf
,
864 unsigned char buf
[VPD_TMP_BUF_SIZE
];
868 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
869 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
871 switch (vpd
->association
) {
873 sprintf(buf
+len
, "addressed logical unit\n");
876 sprintf(buf
+len
, "target port\n");
879 sprintf(buf
+len
, "SCSI target device\n");
882 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
888 strncpy(p_buf
, buf
, p_buf_len
);
895 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
898 * The VPD identification association..
900 * from spc3r23.pdf Section 7.6.3.1 Table 297
902 vpd
->association
= (page_83
[1] & 0x30);
903 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
905 EXPORT_SYMBOL(transport_set_vpd_assoc
);
907 int transport_dump_vpd_ident_type(
909 unsigned char *p_buf
,
912 unsigned char buf
[VPD_TMP_BUF_SIZE
];
916 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
917 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
919 switch (vpd
->device_identifier_type
) {
921 sprintf(buf
+len
, "Vendor specific\n");
924 sprintf(buf
+len
, "T10 Vendor ID based\n");
927 sprintf(buf
+len
, "EUI-64 based\n");
930 sprintf(buf
+len
, "NAA\n");
933 sprintf(buf
+len
, "Relative target port identifier\n");
936 sprintf(buf
+len
, "SCSI name string\n");
939 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
940 vpd
->device_identifier_type
);
946 if (p_buf_len
< strlen(buf
)+1)
948 strncpy(p_buf
, buf
, p_buf_len
);
956 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
959 * The VPD identifier type..
961 * from spc3r23.pdf Section 7.6.3.1 Table 298
963 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
964 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
966 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
968 int transport_dump_vpd_ident(
970 unsigned char *p_buf
,
973 unsigned char buf
[VPD_TMP_BUF_SIZE
];
976 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
978 switch (vpd
->device_identifier_code_set
) {
979 case 0x01: /* Binary */
980 snprintf(buf
, sizeof(buf
),
981 "T10 VPD Binary Device Identifier: %s\n",
982 &vpd
->device_identifier
[0]);
984 case 0x02: /* ASCII */
985 snprintf(buf
, sizeof(buf
),
986 "T10 VPD ASCII Device Identifier: %s\n",
987 &vpd
->device_identifier
[0]);
989 case 0x03: /* UTF-8 */
990 snprintf(buf
, sizeof(buf
),
991 "T10 VPD UTF-8 Device Identifier: %s\n",
992 &vpd
->device_identifier
[0]);
995 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
996 " 0x%02x", vpd
->device_identifier_code_set
);
1002 strncpy(p_buf
, buf
, p_buf_len
);
1004 pr_debug("%s", buf
);
1010 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1012 static const char hex_str
[] = "0123456789abcdef";
1013 int j
= 0, i
= 4; /* offset to start of the identifier */
1016 * The VPD Code Set (encoding)
1018 * from spc3r23.pdf Section 7.6.3.1 Table 296
1020 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1021 switch (vpd
->device_identifier_code_set
) {
1022 case 0x01: /* Binary */
1023 vpd
->device_identifier
[j
++] =
1024 hex_str
[vpd
->device_identifier_type
];
1025 while (i
< (4 + page_83
[3])) {
1026 vpd
->device_identifier
[j
++] =
1027 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1028 vpd
->device_identifier
[j
++] =
1029 hex_str
[page_83
[i
] & 0x0f];
1033 case 0x02: /* ASCII */
1034 case 0x03: /* UTF-8 */
1035 while (i
< (4 + page_83
[3]))
1036 vpd
->device_identifier
[j
++] = page_83
[i
++];
1042 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1044 EXPORT_SYMBOL(transport_set_vpd_ident
);
1047 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1049 struct se_device
*dev
= cmd
->se_dev
;
1051 if (cmd
->unknown_data_length
) {
1052 cmd
->data_length
= size
;
1053 } else if (size
!= cmd
->data_length
) {
1054 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1055 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1056 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1057 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1059 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1060 pr_err("Rejecting underflow/overflow"
1062 return TCM_INVALID_CDB_FIELD
;
1065 * Reject READ_* or WRITE_* with overflow/underflow for
1066 * type SCF_SCSI_DATA_CDB.
1068 if (dev
->dev_attrib
.block_size
!= 512) {
1069 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1070 " CDB on non 512-byte sector setup subsystem"
1071 " plugin: %s\n", dev
->transport
->name
);
1072 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1073 return TCM_INVALID_CDB_FIELD
;
1076 * For the overflow case keep the existing fabric provided
1077 * ->data_length. Otherwise for the underflow case, reset
1078 * ->data_length to the smaller SCSI expected data transfer
1081 if (size
> cmd
->data_length
) {
1082 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1083 cmd
->residual_count
= (size
- cmd
->data_length
);
1085 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1086 cmd
->residual_count
= (cmd
->data_length
- size
);
1087 cmd
->data_length
= size
;
1096 * Used by fabric modules containing a local struct se_cmd within their
1097 * fabric dependent per I/O descriptor.
1099 void transport_init_se_cmd(
1101 struct target_core_fabric_ops
*tfo
,
1102 struct se_session
*se_sess
,
1106 unsigned char *sense_buffer
)
1108 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1109 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1110 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1111 INIT_LIST_HEAD(&cmd
->state_list
);
1112 init_completion(&cmd
->t_transport_stop_comp
);
1113 init_completion(&cmd
->cmd_wait_comp
);
1114 init_completion(&cmd
->task_stop_comp
);
1115 spin_lock_init(&cmd
->t_state_lock
);
1116 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1119 cmd
->se_sess
= se_sess
;
1120 cmd
->data_length
= data_length
;
1121 cmd
->data_direction
= data_direction
;
1122 cmd
->sam_task_attr
= task_attr
;
1123 cmd
->sense_buffer
= sense_buffer
;
1125 cmd
->state_active
= false;
1127 EXPORT_SYMBOL(transport_init_se_cmd
);
1129 static sense_reason_t
1130 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1132 struct se_device
*dev
= cmd
->se_dev
;
1135 * Check if SAM Task Attribute emulation is enabled for this
1136 * struct se_device storage object
1138 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1141 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1142 pr_debug("SAM Task Attribute ACA"
1143 " emulation is not supported\n");
1144 return TCM_INVALID_CDB_FIELD
;
1147 * Used to determine when ORDERED commands should go from
1148 * Dormant to Active status.
1150 cmd
->se_ordered_id
= atomic_inc_return(&dev
->dev_ordered_id
);
1151 smp_mb__after_atomic_inc();
1152 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1153 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1154 dev
->transport
->name
);
1159 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1161 struct se_device
*dev
= cmd
->se_dev
;
1165 * Ensure that the received CDB is less than the max (252 + 8) bytes
1166 * for VARIABLE_LENGTH_CMD
1168 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1169 pr_err("Received SCSI CDB with command_size: %d that"
1170 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1171 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1172 return TCM_INVALID_CDB_FIELD
;
1175 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1176 * allocate the additional extended CDB buffer now.. Otherwise
1177 * setup the pointer from __t_task_cdb to t_task_cdb.
1179 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1180 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1182 if (!cmd
->t_task_cdb
) {
1183 pr_err("Unable to allocate cmd->t_task_cdb"
1184 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1185 scsi_command_size(cdb
),
1186 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1187 return TCM_OUT_OF_RESOURCES
;
1190 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1192 * Copy the original CDB into cmd->
1194 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1196 trace_target_sequencer_start(cmd
);
1199 * Check for an existing UNIT ATTENTION condition
1201 ret
= target_scsi3_ua_check(cmd
);
1205 ret
= target_alua_state_check(cmd
);
1209 ret
= target_check_reservation(cmd
);
1211 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1215 ret
= dev
->transport
->parse_cdb(cmd
);
1219 ret
= transport_check_alloc_task_attr(cmd
);
1223 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1225 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1226 if (cmd
->se_lun
->lun_sep
)
1227 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1228 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1231 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1234 * Used by fabric module frontends to queue tasks directly.
1235 * Many only be used from process context only
1237 int transport_handle_cdb_direct(
1244 pr_err("cmd->se_lun is NULL\n");
1247 if (in_interrupt()) {
1249 pr_err("transport_generic_handle_cdb cannot be called"
1250 " from interrupt context\n");
1254 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1255 * outstanding descriptors are handled correctly during shutdown via
1256 * transport_wait_for_tasks()
1258 * Also, we don't take cmd->t_state_lock here as we only expect
1259 * this to be called for initial descriptor submission.
1261 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1262 cmd
->transport_state
|= CMD_T_ACTIVE
;
1265 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1266 * so follow TRANSPORT_NEW_CMD processing thread context usage
1267 * and call transport_generic_request_failure() if necessary..
1269 ret
= transport_generic_new_cmd(cmd
);
1271 transport_generic_request_failure(cmd
, ret
);
1274 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1277 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1278 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1280 if (!sgl
|| !sgl_count
)
1284 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1285 * scatterlists already have been set to follow what the fabric
1286 * passes for the original expected data transfer length.
1288 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1289 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1290 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1291 return TCM_INVALID_CDB_FIELD
;
1294 cmd
->t_data_sg
= sgl
;
1295 cmd
->t_data_nents
= sgl_count
;
1297 if (sgl_bidi
&& sgl_bidi_count
) {
1298 cmd
->t_bidi_data_sg
= sgl_bidi
;
1299 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1301 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1306 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1307 * se_cmd + use pre-allocated SGL memory.
1309 * @se_cmd: command descriptor to submit
1310 * @se_sess: associated se_sess for endpoint
1311 * @cdb: pointer to SCSI CDB
1312 * @sense: pointer to SCSI sense buffer
1313 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1314 * @data_length: fabric expected data transfer length
1315 * @task_addr: SAM task attribute
1316 * @data_dir: DMA data direction
1317 * @flags: flags for command submission from target_sc_flags_tables
1318 * @sgl: struct scatterlist memory for unidirectional mapping
1319 * @sgl_count: scatterlist count for unidirectional mapping
1320 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1321 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1322 * @sgl_prot: struct scatterlist memory protection information
1323 * @sgl_prot_count: scatterlist count for protection information
1325 * Returns non zero to signal active I/O shutdown failure. All other
1326 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1327 * but still return zero here.
1329 * This may only be called from process context, and also currently
1330 * assumes internal allocation of fabric payload buffer by target-core.
1332 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1333 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1334 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1335 struct scatterlist
*sgl
, u32 sgl_count
,
1336 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1337 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1339 struct se_portal_group
*se_tpg
;
1343 se_tpg
= se_sess
->se_tpg
;
1345 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1346 BUG_ON(in_interrupt());
1348 * Initialize se_cmd for target operation. From this point
1349 * exceptions are handled by sending exception status via
1350 * target_core_fabric_ops->queue_status() callback
1352 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1353 data_length
, data_dir
, task_attr
, sense
);
1354 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1355 se_cmd
->unknown_data_length
= 1;
1357 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1358 * se_sess->sess_cmd_list. A second kref_get here is necessary
1359 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1360 * kref_put() to happen during fabric packet acknowledgement.
1362 ret
= target_get_sess_cmd(se_sess
, se_cmd
, (flags
& TARGET_SCF_ACK_KREF
));
1366 * Signal bidirectional data payloads to target-core
1368 if (flags
& TARGET_SCF_BIDI_OP
)
1369 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1371 * Locate se_lun pointer and attach it to struct se_cmd
1373 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1375 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1376 target_put_sess_cmd(se_sess
, se_cmd
);
1380 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1382 transport_generic_request_failure(se_cmd
, rc
);
1387 * Save pointers for SGLs containing protection information,
1390 if (sgl_prot_count
) {
1391 se_cmd
->t_prot_sg
= sgl_prot
;
1392 se_cmd
->t_prot_nents
= sgl_prot_count
;
1396 * When a non zero sgl_count has been passed perform SGL passthrough
1397 * mapping for pre-allocated fabric memory instead of having target
1398 * core perform an internal SGL allocation..
1400 if (sgl_count
!= 0) {
1404 * A work-around for tcm_loop as some userspace code via
1405 * scsi-generic do not memset their associated read buffers,
1406 * so go ahead and do that here for type non-data CDBs. Also
1407 * note that this is currently guaranteed to be a single SGL
1408 * for this case by target core in target_setup_cmd_from_cdb()
1409 * -> transport_generic_cmd_sequencer().
1411 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1412 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1413 unsigned char *buf
= NULL
;
1416 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1419 memset(buf
, 0, sgl
->length
);
1420 kunmap(sg_page(sgl
));
1424 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1425 sgl_bidi
, sgl_bidi_count
);
1427 transport_generic_request_failure(se_cmd
, rc
);
1433 * Check if we need to delay processing because of ALUA
1434 * Active/NonOptimized primary access state..
1436 core_alua_check_nonop_delay(se_cmd
);
1438 transport_handle_cdb_direct(se_cmd
);
1441 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1444 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1446 * @se_cmd: command descriptor to submit
1447 * @se_sess: associated se_sess for endpoint
1448 * @cdb: pointer to SCSI CDB
1449 * @sense: pointer to SCSI sense buffer
1450 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1451 * @data_length: fabric expected data transfer length
1452 * @task_addr: SAM task attribute
1453 * @data_dir: DMA data direction
1454 * @flags: flags for command submission from target_sc_flags_tables
1456 * Returns non zero to signal active I/O shutdown failure. All other
1457 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1458 * but still return zero here.
1460 * This may only be called from process context, and also currently
1461 * assumes internal allocation of fabric payload buffer by target-core.
1463 * It also assumes interal target core SGL memory allocation.
1465 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1466 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1467 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1469 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1470 unpacked_lun
, data_length
, task_attr
, data_dir
,
1471 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1473 EXPORT_SYMBOL(target_submit_cmd
);
1475 static void target_complete_tmr_failure(struct work_struct
*work
)
1477 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1479 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1480 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1482 transport_cmd_check_stop_to_fabric(se_cmd
);
1486 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1489 * @se_cmd: command descriptor to submit
1490 * @se_sess: associated se_sess for endpoint
1491 * @sense: pointer to SCSI sense buffer
1492 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1493 * @fabric_context: fabric context for TMR req
1494 * @tm_type: Type of TM request
1495 * @gfp: gfp type for caller
1496 * @tag: referenced task tag for TMR_ABORT_TASK
1497 * @flags: submit cmd flags
1499 * Callable from all contexts.
1502 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1503 unsigned char *sense
, u32 unpacked_lun
,
1504 void *fabric_tmr_ptr
, unsigned char tm_type
,
1505 gfp_t gfp
, unsigned int tag
, int flags
)
1507 struct se_portal_group
*se_tpg
;
1510 se_tpg
= se_sess
->se_tpg
;
1513 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1514 0, DMA_NONE
, MSG_SIMPLE_TAG
, sense
);
1516 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1517 * allocation failure.
1519 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1523 if (tm_type
== TMR_ABORT_TASK
)
1524 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1526 /* See target_submit_cmd for commentary */
1527 ret
= target_get_sess_cmd(se_sess
, se_cmd
, (flags
& TARGET_SCF_ACK_KREF
));
1529 core_tmr_release_req(se_cmd
->se_tmr_req
);
1533 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1536 * For callback during failure handling, push this work off
1537 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1539 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1540 schedule_work(&se_cmd
->work
);
1543 transport_generic_handle_tmr(se_cmd
);
1546 EXPORT_SYMBOL(target_submit_tmr
);
1549 * If the cmd is active, request it to be stopped and sleep until it
1552 bool target_stop_cmd(struct se_cmd
*cmd
, unsigned long *flags
)
1554 bool was_active
= false;
1556 if (cmd
->transport_state
& CMD_T_BUSY
) {
1557 cmd
->transport_state
|= CMD_T_REQUEST_STOP
;
1558 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1560 pr_debug("cmd %p waiting to complete\n", cmd
);
1561 wait_for_completion(&cmd
->task_stop_comp
);
1562 pr_debug("cmd %p stopped successfully\n", cmd
);
1564 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1565 cmd
->transport_state
&= ~CMD_T_REQUEST_STOP
;
1566 cmd
->transport_state
&= ~CMD_T_BUSY
;
1574 * Handle SAM-esque emulation for generic transport request failures.
1576 void transport_generic_request_failure(struct se_cmd
*cmd
,
1577 sense_reason_t sense_reason
)
1581 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1582 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1583 cmd
->t_task_cdb
[0]);
1584 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1585 cmd
->se_tfo
->get_cmd_state(cmd
),
1586 cmd
->t_state
, sense_reason
);
1587 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1588 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1589 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1590 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1593 * For SAM Task Attribute emulation for failed struct se_cmd
1595 transport_complete_task_attr(cmd
);
1597 * Handle special case for COMPARE_AND_WRITE failure, where the
1598 * callback is expected to drop the per device ->caw_mutex.
1600 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1601 cmd
->transport_complete_callback
)
1602 cmd
->transport_complete_callback(cmd
);
1604 switch (sense_reason
) {
1605 case TCM_NON_EXISTENT_LUN
:
1606 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1607 case TCM_INVALID_CDB_FIELD
:
1608 case TCM_INVALID_PARAMETER_LIST
:
1609 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1610 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1611 case TCM_UNKNOWN_MODE_PAGE
:
1612 case TCM_WRITE_PROTECTED
:
1613 case TCM_ADDRESS_OUT_OF_RANGE
:
1614 case TCM_CHECK_CONDITION_ABORT_CMD
:
1615 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1616 case TCM_CHECK_CONDITION_NOT_READY
:
1617 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1618 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1619 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1621 case TCM_OUT_OF_RESOURCES
:
1622 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1624 case TCM_RESERVATION_CONFLICT
:
1626 * No SENSE Data payload for this case, set SCSI Status
1627 * and queue the response to $FABRIC_MOD.
1629 * Uses linux/include/scsi/scsi.h SAM status codes defs
1631 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1633 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1634 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1637 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1640 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2)
1641 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
1642 cmd
->orig_fe_lun
, 0x2C,
1643 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1645 trace_target_cmd_complete(cmd
);
1646 ret
= cmd
->se_tfo
-> queue_status(cmd
);
1647 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1651 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1652 cmd
->t_task_cdb
[0], sense_reason
);
1653 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1657 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1658 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1662 transport_lun_remove_cmd(cmd
);
1663 if (!transport_cmd_check_stop_to_fabric(cmd
))
1668 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1669 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1671 EXPORT_SYMBOL(transport_generic_request_failure
);
1673 void __target_execute_cmd(struct se_cmd
*cmd
)
1677 if (cmd
->execute_cmd
) {
1678 ret
= cmd
->execute_cmd(cmd
);
1680 spin_lock_irq(&cmd
->t_state_lock
);
1681 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1682 spin_unlock_irq(&cmd
->t_state_lock
);
1684 transport_generic_request_failure(cmd
, ret
);
1689 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1691 struct se_device
*dev
= cmd
->se_dev
;
1693 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1697 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1698 * to allow the passed struct se_cmd list of tasks to the front of the list.
1700 switch (cmd
->sam_task_attr
) {
1702 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1703 "se_ordered_id: %u\n",
1704 cmd
->t_task_cdb
[0], cmd
->se_ordered_id
);
1706 case MSG_ORDERED_TAG
:
1707 atomic_inc(&dev
->dev_ordered_sync
);
1708 smp_mb__after_atomic_inc();
1710 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1711 " se_ordered_id: %u\n",
1712 cmd
->t_task_cdb
[0], cmd
->se_ordered_id
);
1715 * Execute an ORDERED command if no other older commands
1716 * exist that need to be completed first.
1718 if (!atomic_read(&dev
->simple_cmds
))
1723 * For SIMPLE and UNTAGGED Task Attribute commands
1725 atomic_inc(&dev
->simple_cmds
);
1726 smp_mb__after_atomic_inc();
1730 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1733 spin_lock(&dev
->delayed_cmd_lock
);
1734 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1735 spin_unlock(&dev
->delayed_cmd_lock
);
1737 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1738 " delayed CMD list, se_ordered_id: %u\n",
1739 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
1740 cmd
->se_ordered_id
);
1744 void target_execute_cmd(struct se_cmd
*cmd
)
1747 * If the received CDB has aleady been aborted stop processing it here.
1749 if (transport_check_aborted_status(cmd
, 1))
1753 * Determine if frontend context caller is requesting the stopping of
1754 * this command for frontend exceptions.
1756 spin_lock_irq(&cmd
->t_state_lock
);
1757 if (cmd
->transport_state
& CMD_T_STOP
) {
1758 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1760 cmd
->se_tfo
->get_task_tag(cmd
));
1762 spin_unlock_irq(&cmd
->t_state_lock
);
1763 complete(&cmd
->t_transport_stop_comp
);
1767 cmd
->t_state
= TRANSPORT_PROCESSING
;
1768 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1769 spin_unlock_irq(&cmd
->t_state_lock
);
1771 * Perform WRITE_INSERT of PI using software emulation when backend
1772 * device has PI enabled, if the transport has not already generated
1773 * PI using hardware WRITE_INSERT offload.
1775 if (cmd
->prot_op
== TARGET_PROT_DOUT_INSERT
) {
1776 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1777 sbc_dif_generate(cmd
);
1780 if (target_handle_task_attr(cmd
)) {
1781 spin_lock_irq(&cmd
->t_state_lock
);
1782 cmd
->transport_state
&= ~CMD_T_BUSY
|CMD_T_SENT
;
1783 spin_unlock_irq(&cmd
->t_state_lock
);
1787 __target_execute_cmd(cmd
);
1789 EXPORT_SYMBOL(target_execute_cmd
);
1792 * Process all commands up to the last received ORDERED task attribute which
1793 * requires another blocking boundary
1795 static void target_restart_delayed_cmds(struct se_device
*dev
)
1800 spin_lock(&dev
->delayed_cmd_lock
);
1801 if (list_empty(&dev
->delayed_cmd_list
)) {
1802 spin_unlock(&dev
->delayed_cmd_lock
);
1806 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1807 struct se_cmd
, se_delayed_node
);
1808 list_del(&cmd
->se_delayed_node
);
1809 spin_unlock(&dev
->delayed_cmd_lock
);
1811 __target_execute_cmd(cmd
);
1813 if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
)
1819 * Called from I/O completion to determine which dormant/delayed
1820 * and ordered cmds need to have their tasks added to the execution queue.
1822 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1824 struct se_device
*dev
= cmd
->se_dev
;
1826 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1829 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
1830 atomic_dec(&dev
->simple_cmds
);
1831 smp_mb__after_atomic_dec();
1832 dev
->dev_cur_ordered_id
++;
1833 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1834 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
1835 cmd
->se_ordered_id
);
1836 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
1837 dev
->dev_cur_ordered_id
++;
1838 pr_debug("Incremented dev_cur_ordered_id: %u for"
1839 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
1840 cmd
->se_ordered_id
);
1841 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
1842 atomic_dec(&dev
->dev_ordered_sync
);
1843 smp_mb__after_atomic_dec();
1845 dev
->dev_cur_ordered_id
++;
1846 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1847 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
1850 target_restart_delayed_cmds(dev
);
1853 static void transport_complete_qf(struct se_cmd
*cmd
)
1857 transport_complete_task_attr(cmd
);
1859 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1860 trace_target_cmd_complete(cmd
);
1861 ret
= cmd
->se_tfo
->queue_status(cmd
);
1866 switch (cmd
->data_direction
) {
1867 case DMA_FROM_DEVICE
:
1868 trace_target_cmd_complete(cmd
);
1869 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1872 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1873 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1877 /* Fall through for DMA_TO_DEVICE */
1879 trace_target_cmd_complete(cmd
);
1880 ret
= cmd
->se_tfo
->queue_status(cmd
);
1888 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1891 transport_lun_remove_cmd(cmd
);
1892 transport_cmd_check_stop_to_fabric(cmd
);
1895 static void transport_handle_queue_full(
1897 struct se_device
*dev
)
1899 spin_lock_irq(&dev
->qf_cmd_lock
);
1900 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
1901 atomic_inc(&dev
->dev_qf_count
);
1902 smp_mb__after_atomic_inc();
1903 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
1905 schedule_work(&cmd
->se_dev
->qf_work_queue
);
1908 static void target_complete_ok_work(struct work_struct
*work
)
1910 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
1914 * Check if we need to move delayed/dormant tasks from cmds on the
1915 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1918 transport_complete_task_attr(cmd
);
1921 * Check to schedule QUEUE_FULL work, or execute an existing
1922 * cmd->transport_qf_callback()
1924 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
1925 schedule_work(&cmd
->se_dev
->qf_work_queue
);
1928 * Check if we need to send a sense buffer from
1929 * the struct se_cmd in question.
1931 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1932 WARN_ON(!cmd
->scsi_status
);
1933 ret
= transport_send_check_condition_and_sense(
1935 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1938 transport_lun_remove_cmd(cmd
);
1939 transport_cmd_check_stop_to_fabric(cmd
);
1943 * Check for a callback, used by amongst other things
1944 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1946 if (cmd
->transport_complete_callback
) {
1949 rc
= cmd
->transport_complete_callback(cmd
);
1950 if (!rc
&& !(cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE_POST
)) {
1953 ret
= transport_send_check_condition_and_sense(cmd
,
1955 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1958 transport_lun_remove_cmd(cmd
);
1959 transport_cmd_check_stop_to_fabric(cmd
);
1964 switch (cmd
->data_direction
) {
1965 case DMA_FROM_DEVICE
:
1966 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1967 if (cmd
->se_lun
->lun_sep
) {
1968 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
1971 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1973 trace_target_cmd_complete(cmd
);
1974 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1975 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1979 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1980 if (cmd
->se_lun
->lun_sep
) {
1981 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
1984 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1986 * Check if we need to send READ payload for BIDI-COMMAND
1988 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1989 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1990 if (cmd
->se_lun
->lun_sep
) {
1991 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
1994 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1995 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1996 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2000 /* Fall through for DMA_TO_DEVICE */
2002 trace_target_cmd_complete(cmd
);
2003 ret
= cmd
->se_tfo
->queue_status(cmd
);
2004 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2011 transport_lun_remove_cmd(cmd
);
2012 transport_cmd_check_stop_to_fabric(cmd
);
2016 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2017 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2018 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2019 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2022 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
2024 struct scatterlist
*sg
;
2027 for_each_sg(sgl
, sg
, nents
, count
)
2028 __free_page(sg_page(sg
));
2033 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2036 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2037 * emulation, and free + reset pointers if necessary..
2039 if (!cmd
->t_data_sg_orig
)
2042 kfree(cmd
->t_data_sg
);
2043 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2044 cmd
->t_data_sg_orig
= NULL
;
2045 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2046 cmd
->t_data_nents_orig
= 0;
2049 static inline void transport_free_pages(struct se_cmd
*cmd
)
2051 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2052 transport_reset_sgl_orig(cmd
);
2055 transport_reset_sgl_orig(cmd
);
2057 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2058 cmd
->t_data_sg
= NULL
;
2059 cmd
->t_data_nents
= 0;
2061 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2062 cmd
->t_bidi_data_sg
= NULL
;
2063 cmd
->t_bidi_data_nents
= 0;
2065 transport_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2066 cmd
->t_prot_sg
= NULL
;
2067 cmd
->t_prot_nents
= 0;
2071 * transport_release_cmd - free a command
2072 * @cmd: command to free
2074 * This routine unconditionally frees a command, and reference counting
2075 * or list removal must be done in the caller.
2077 static int transport_release_cmd(struct se_cmd
*cmd
)
2079 BUG_ON(!cmd
->se_tfo
);
2081 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2082 core_tmr_release_req(cmd
->se_tmr_req
);
2083 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2084 kfree(cmd
->t_task_cdb
);
2086 * If this cmd has been setup with target_get_sess_cmd(), drop
2087 * the kref and call ->release_cmd() in kref callback.
2089 return target_put_sess_cmd(cmd
->se_sess
, cmd
);
2093 * transport_put_cmd - release a reference to a command
2094 * @cmd: command to release
2096 * This routine releases our reference to the command and frees it if possible.
2098 static int transport_put_cmd(struct se_cmd
*cmd
)
2100 transport_free_pages(cmd
);
2101 return transport_release_cmd(cmd
);
2104 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2106 struct scatterlist
*sg
= cmd
->t_data_sg
;
2107 struct page
**pages
;
2111 * We need to take into account a possible offset here for fabrics like
2112 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2113 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2115 if (!cmd
->t_data_nents
)
2119 if (cmd
->t_data_nents
== 1)
2120 return kmap(sg_page(sg
)) + sg
->offset
;
2122 /* >1 page. use vmap */
2123 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2127 /* convert sg[] to pages[] */
2128 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2129 pages
[i
] = sg_page(sg
);
2132 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2134 if (!cmd
->t_data_vmap
)
2137 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2139 EXPORT_SYMBOL(transport_kmap_data_sg
);
2141 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2143 if (!cmd
->t_data_nents
) {
2145 } else if (cmd
->t_data_nents
== 1) {
2146 kunmap(sg_page(cmd
->t_data_sg
));
2150 vunmap(cmd
->t_data_vmap
);
2151 cmd
->t_data_vmap
= NULL
;
2153 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2156 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2159 struct scatterlist
*sg
;
2161 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2165 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2166 sg
= kmalloc(sizeof(struct scatterlist
) * nent
, GFP_KERNEL
);
2170 sg_init_table(sg
, nent
);
2173 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2174 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2178 sg_set_page(&sg
[i
], page
, page_len
, 0);
2189 __free_page(sg_page(&sg
[i
]));
2196 * Allocate any required resources to execute the command. For writes we
2197 * might not have the payload yet, so notify the fabric via a call to
2198 * ->write_pending instead. Otherwise place it on the execution queue.
2201 transport_generic_new_cmd(struct se_cmd
*cmd
)
2206 * Determine is the TCM fabric module has already allocated physical
2207 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2210 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2212 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2214 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2215 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2218 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2219 bidi_length
= cmd
->t_task_nolb
*
2220 cmd
->se_dev
->dev_attrib
.block_size
;
2222 bidi_length
= cmd
->data_length
;
2224 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2225 &cmd
->t_bidi_data_nents
,
2226 bidi_length
, zero_flag
);
2228 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2231 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
) {
2232 ret
= target_alloc_sgl(&cmd
->t_prot_sg
,
2234 cmd
->prot_length
, true);
2236 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2239 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2240 cmd
->data_length
, zero_flag
);
2242 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2245 * If this command is not a write we can execute it right here,
2246 * for write buffers we need to notify the fabric driver first
2247 * and let it call back once the write buffers are ready.
2249 target_add_to_state_list(cmd
);
2250 if (cmd
->data_direction
!= DMA_TO_DEVICE
) {
2251 target_execute_cmd(cmd
);
2254 transport_cmd_check_stop(cmd
, false, true);
2256 ret
= cmd
->se_tfo
->write_pending(cmd
);
2257 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2260 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2263 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2266 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2267 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2268 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2271 EXPORT_SYMBOL(transport_generic_new_cmd
);
2273 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2277 ret
= cmd
->se_tfo
->write_pending(cmd
);
2278 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2279 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2281 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2285 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2287 unsigned long flags
;
2290 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2291 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2292 transport_wait_for_tasks(cmd
);
2294 ret
= transport_release_cmd(cmd
);
2297 transport_wait_for_tasks(cmd
);
2299 * Handle WRITE failure case where transport_generic_new_cmd()
2300 * has already added se_cmd to state_list, but fabric has
2301 * failed command before I/O submission.
2303 if (cmd
->state_active
) {
2304 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2305 target_remove_from_state_list(cmd
);
2306 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2310 transport_lun_remove_cmd(cmd
);
2312 ret
= transport_put_cmd(cmd
);
2316 EXPORT_SYMBOL(transport_generic_free_cmd
);
2318 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2319 * @se_sess: session to reference
2320 * @se_cmd: command descriptor to add
2321 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2323 int target_get_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
,
2326 unsigned long flags
;
2329 kref_init(&se_cmd
->cmd_kref
);
2331 * Add a second kref if the fabric caller is expecting to handle
2332 * fabric acknowledgement that requires two target_put_sess_cmd()
2333 * invocations before se_cmd descriptor release.
2335 if (ack_kref
== true) {
2336 kref_get(&se_cmd
->cmd_kref
);
2337 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2340 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2341 if (se_sess
->sess_tearing_down
) {
2345 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2347 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2350 EXPORT_SYMBOL(target_get_sess_cmd
);
2352 static void target_release_cmd_kref(struct kref
*kref
)
2354 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2355 struct se_session
*se_sess
= se_cmd
->se_sess
;
2357 if (list_empty(&se_cmd
->se_cmd_list
)) {
2358 spin_unlock(&se_sess
->sess_cmd_lock
);
2359 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2362 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
2363 spin_unlock(&se_sess
->sess_cmd_lock
);
2364 complete(&se_cmd
->cmd_wait_comp
);
2367 list_del(&se_cmd
->se_cmd_list
);
2368 spin_unlock(&se_sess
->sess_cmd_lock
);
2370 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2373 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2374 * @se_sess: session to reference
2375 * @se_cmd: command descriptor to drop
2377 int target_put_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
2379 return kref_put_spinlock_irqsave(&se_cmd
->cmd_kref
, target_release_cmd_kref
,
2380 &se_sess
->sess_cmd_lock
);
2382 EXPORT_SYMBOL(target_put_sess_cmd
);
2384 /* target_sess_cmd_list_set_waiting - Flag all commands in
2385 * sess_cmd_list to complete cmd_wait_comp. Set
2386 * sess_tearing_down so no more commands are queued.
2387 * @se_sess: session to flag
2389 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2391 struct se_cmd
*se_cmd
;
2392 unsigned long flags
;
2394 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2395 if (se_sess
->sess_tearing_down
) {
2396 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2399 se_sess
->sess_tearing_down
= 1;
2400 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2402 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
2403 se_cmd
->cmd_wait_set
= 1;
2405 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2407 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2409 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2410 * @se_sess: session to wait for active I/O
2412 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2414 struct se_cmd
*se_cmd
, *tmp_cmd
;
2415 unsigned long flags
;
2417 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2418 &se_sess
->sess_wait_list
, se_cmd_list
) {
2419 list_del(&se_cmd
->se_cmd_list
);
2421 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2422 " %d\n", se_cmd
, se_cmd
->t_state
,
2423 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2425 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2426 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2427 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2428 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2430 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2433 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2434 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2435 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2438 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2440 static int transport_clear_lun_ref_thread(void *p
)
2442 struct se_lun
*lun
= p
;
2444 percpu_ref_kill(&lun
->lun_ref
);
2446 wait_for_completion(&lun
->lun_ref_comp
);
2447 complete(&lun
->lun_shutdown_comp
);
2452 int transport_clear_lun_ref(struct se_lun
*lun
)
2454 struct task_struct
*kt
;
2456 kt
= kthread_run(transport_clear_lun_ref_thread
, lun
,
2457 "tcm_cl_%u", lun
->unpacked_lun
);
2459 pr_err("Unable to start clear_lun thread\n");
2462 wait_for_completion(&lun
->lun_shutdown_comp
);
2468 * transport_wait_for_tasks - wait for completion to occur
2469 * @cmd: command to wait
2471 * Called from frontend fabric context to wait for storage engine
2472 * to pause and/or release frontend generated struct se_cmd.
2474 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2476 unsigned long flags
;
2478 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2479 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2480 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2481 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2485 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2486 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2487 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2491 if (!(cmd
->transport_state
& CMD_T_ACTIVE
)) {
2492 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2496 cmd
->transport_state
|= CMD_T_STOP
;
2498 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2499 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2500 cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
2501 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2503 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2505 wait_for_completion(&cmd
->t_transport_stop_comp
);
2507 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2508 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2510 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2511 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2512 cmd
->se_tfo
->get_task_tag(cmd
));
2514 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2518 EXPORT_SYMBOL(transport_wait_for_tasks
);
2520 static int transport_get_sense_codes(
2525 *asc
= cmd
->scsi_asc
;
2526 *ascq
= cmd
->scsi_ascq
;
2532 void transport_err_sector_info(unsigned char *buffer
, sector_t bad_sector
)
2534 /* Place failed LBA in sense data information descriptor 0. */
2535 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 0xc;
2536 buffer
[SPC_DESC_TYPE_OFFSET
] = 0; /* Information */
2537 buffer
[SPC_ADDITIONAL_DESC_LEN_OFFSET
] = 0xa;
2538 buffer
[SPC_VALIDITY_OFFSET
] = 0x80;
2540 /* Descriptor Information: failing sector */
2541 put_unaligned_be64(bad_sector
, &buffer
[12]);
2545 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2546 sense_reason_t reason
, int from_transport
)
2548 unsigned char *buffer
= cmd
->sense_buffer
;
2549 unsigned long flags
;
2550 u8 asc
= 0, ascq
= 0;
2552 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2553 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2554 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2557 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2558 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2560 if (!reason
&& from_transport
)
2563 if (!from_transport
)
2564 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2567 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2568 * SENSE KEY values from include/scsi/scsi.h
2574 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2576 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2577 /* NO ADDITIONAL SENSE INFORMATION */
2578 buffer
[SPC_ASC_KEY_OFFSET
] = 0;
2579 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0;
2581 case TCM_NON_EXISTENT_LUN
:
2584 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2585 /* ILLEGAL REQUEST */
2586 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2587 /* LOGICAL UNIT NOT SUPPORTED */
2588 buffer
[SPC_ASC_KEY_OFFSET
] = 0x25;
2590 case TCM_UNSUPPORTED_SCSI_OPCODE
:
2591 case TCM_SECTOR_COUNT_TOO_MANY
:
2594 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2595 /* ILLEGAL REQUEST */
2596 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2597 /* INVALID COMMAND OPERATION CODE */
2598 buffer
[SPC_ASC_KEY_OFFSET
] = 0x20;
2600 case TCM_UNKNOWN_MODE_PAGE
:
2603 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2604 /* ILLEGAL REQUEST */
2605 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2606 /* INVALID FIELD IN CDB */
2607 buffer
[SPC_ASC_KEY_OFFSET
] = 0x24;
2609 case TCM_CHECK_CONDITION_ABORT_CMD
:
2612 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2613 /* ABORTED COMMAND */
2614 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2615 /* BUS DEVICE RESET FUNCTION OCCURRED */
2616 buffer
[SPC_ASC_KEY_OFFSET
] = 0x29;
2617 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x03;
2619 case TCM_INCORRECT_AMOUNT_OF_DATA
:
2622 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2623 /* ABORTED COMMAND */
2624 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2626 buffer
[SPC_ASC_KEY_OFFSET
] = 0x0c;
2627 /* NOT ENOUGH UNSOLICITED DATA */
2628 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x0d;
2630 case TCM_INVALID_CDB_FIELD
:
2633 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2634 /* ILLEGAL REQUEST */
2635 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2636 /* INVALID FIELD IN CDB */
2637 buffer
[SPC_ASC_KEY_OFFSET
] = 0x24;
2639 case TCM_INVALID_PARAMETER_LIST
:
2642 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2643 /* ILLEGAL REQUEST */
2644 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2645 /* INVALID FIELD IN PARAMETER LIST */
2646 buffer
[SPC_ASC_KEY_OFFSET
] = 0x26;
2648 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
2651 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2652 /* ILLEGAL REQUEST */
2653 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2654 /* PARAMETER LIST LENGTH ERROR */
2655 buffer
[SPC_ASC_KEY_OFFSET
] = 0x1a;
2657 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
2660 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2661 /* ABORTED COMMAND */
2662 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2664 buffer
[SPC_ASC_KEY_OFFSET
] = 0x0c;
2665 /* UNEXPECTED_UNSOLICITED_DATA */
2666 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x0c;
2668 case TCM_SERVICE_CRC_ERROR
:
2671 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2672 /* ABORTED COMMAND */
2673 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2674 /* PROTOCOL SERVICE CRC ERROR */
2675 buffer
[SPC_ASC_KEY_OFFSET
] = 0x47;
2677 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x05;
2679 case TCM_SNACK_REJECTED
:
2682 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2683 /* ABORTED COMMAND */
2684 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2686 buffer
[SPC_ASC_KEY_OFFSET
] = 0x11;
2687 /* FAILED RETRANSMISSION REQUEST */
2688 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x13;
2690 case TCM_WRITE_PROTECTED
:
2693 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2695 buffer
[SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
2696 /* WRITE PROTECTED */
2697 buffer
[SPC_ASC_KEY_OFFSET
] = 0x27;
2699 case TCM_ADDRESS_OUT_OF_RANGE
:
2702 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2703 /* ILLEGAL REQUEST */
2704 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2705 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2706 buffer
[SPC_ASC_KEY_OFFSET
] = 0x21;
2708 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
2711 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2712 /* UNIT ATTENTION */
2713 buffer
[SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
2714 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2715 buffer
[SPC_ASC_KEY_OFFSET
] = asc
;
2716 buffer
[SPC_ASCQ_KEY_OFFSET
] = ascq
;
2718 case TCM_CHECK_CONDITION_NOT_READY
:
2721 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2723 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2724 transport_get_sense_codes(cmd
, &asc
, &ascq
);
2725 buffer
[SPC_ASC_KEY_OFFSET
] = asc
;
2726 buffer
[SPC_ASCQ_KEY_OFFSET
] = ascq
;
2728 case TCM_MISCOMPARE_VERIFY
:
2731 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2732 buffer
[SPC_SENSE_KEY_OFFSET
] = MISCOMPARE
;
2733 /* MISCOMPARE DURING VERIFY OPERATION */
2734 buffer
[SPC_ASC_KEY_OFFSET
] = 0x1d;
2735 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x00;
2737 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
2740 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2741 /* ILLEGAL REQUEST */
2742 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2743 /* LOGICAL BLOCK GUARD CHECK FAILED */
2744 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2745 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x01;
2746 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2748 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
2751 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2752 /* ILLEGAL REQUEST */
2753 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2754 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2755 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2756 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x02;
2757 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2759 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
2762 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2763 /* ILLEGAL REQUEST */
2764 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2765 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2766 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2767 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x03;
2768 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2770 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
2774 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2776 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2777 * Solaris initiators. Returning NOT READY instead means the
2778 * operations will be retried a finite number of times and we
2779 * can survive intermittent errors.
2781 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2782 /* LOGICAL UNIT COMMUNICATION FAILURE */
2783 buffer
[SPC_ASC_KEY_OFFSET
] = 0x08;
2787 * This code uses linux/include/scsi/scsi.h SAM status codes!
2789 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2791 * Automatically padded, this value is encoded in the fabric's
2792 * data_length response PDU containing the SCSI defined sense data.
2794 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2797 trace_target_cmd_complete(cmd
);
2798 return cmd
->se_tfo
->queue_status(cmd
);
2800 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2802 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2804 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2808 * If cmd has been aborted but either no status is to be sent or it has
2809 * already been sent, just return
2811 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
))
2814 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2815 cmd
->t_task_cdb
[0], cmd
->se_tfo
->get_task_tag(cmd
));
2817 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
2818 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2819 trace_target_cmd_complete(cmd
);
2820 cmd
->se_tfo
->queue_status(cmd
);
2824 EXPORT_SYMBOL(transport_check_aborted_status
);
2826 void transport_send_task_abort(struct se_cmd
*cmd
)
2828 unsigned long flags
;
2830 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2831 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
2832 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2835 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2838 * If there are still expected incoming fabric WRITEs, we wait
2839 * until until they have completed before sending a TASK_ABORTED
2840 * response. This response with TASK_ABORTED status will be
2841 * queued back to fabric module by transport_check_aborted_status().
2843 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
2844 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
2845 cmd
->transport_state
|= CMD_T_ABORTED
;
2846 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
2847 smp_mb__after_atomic_inc();
2851 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2853 transport_lun_remove_cmd(cmd
);
2855 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2856 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
2857 cmd
->se_tfo
->get_task_tag(cmd
));
2859 trace_target_cmd_complete(cmd
);
2860 cmd
->se_tfo
->queue_status(cmd
);
2863 static void target_tmr_work(struct work_struct
*work
)
2865 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2866 struct se_device
*dev
= cmd
->se_dev
;
2867 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
2870 switch (tmr
->function
) {
2871 case TMR_ABORT_TASK
:
2872 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
2874 case TMR_ABORT_TASK_SET
:
2876 case TMR_CLEAR_TASK_SET
:
2877 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
2880 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
2881 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
2882 TMR_FUNCTION_REJECTED
;
2884 case TMR_TARGET_WARM_RESET
:
2885 tmr
->response
= TMR_FUNCTION_REJECTED
;
2887 case TMR_TARGET_COLD_RESET
:
2888 tmr
->response
= TMR_FUNCTION_REJECTED
;
2891 pr_err("Uknown TMR function: 0x%02x.\n",
2893 tmr
->response
= TMR_FUNCTION_REJECTED
;
2897 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
2898 cmd
->se_tfo
->queue_tm_rsp(cmd
);
2900 transport_cmd_check_stop_to_fabric(cmd
);
2903 int transport_generic_handle_tmr(
2906 INIT_WORK(&cmd
->work
, target_tmr_work
);
2907 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
2910 EXPORT_SYMBOL(transport_generic_handle_tmr
);