6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/proc_fs.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/seq_file.h>
17 #include <linux/kallsyms.h>
18 #include <linux/utsname.h>
19 #include <linux/mempolicy.h>
20 #include <linux/debugfs.h>
24 static DEFINE_SPINLOCK(sched_debug_lock
);
27 * This allows printing both to /proc/sched_debug and
30 #define SEQ_printf(m, x...) \
39 * Ease the printing of nsec fields:
41 static long long nsec_high(unsigned long long nsec
)
43 if ((long long)nsec
< 0) {
45 do_div(nsec
, 1000000);
48 do_div(nsec
, 1000000);
53 static unsigned long nsec_low(unsigned long long nsec
)
55 if ((long long)nsec
< 0)
58 return do_div(nsec
, 1000000);
61 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
63 #define SCHED_FEAT(name, enabled) \
66 static const char * const sched_feat_names
[] = {
72 static int sched_feat_show(struct seq_file
*m
, void *v
)
76 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
77 if (!(sysctl_sched_features
& (1UL << i
)))
79 seq_printf(m
, "%s ", sched_feat_names
[i
]);
86 #ifdef HAVE_JUMP_LABEL
88 #define jump_label_key__true STATIC_KEY_INIT_TRUE
89 #define jump_label_key__false STATIC_KEY_INIT_FALSE
91 #define SCHED_FEAT(name, enabled) \
92 jump_label_key__##enabled ,
94 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
100 static void sched_feat_disable(int i
)
102 static_key_disable(&sched_feat_keys
[i
]);
105 static void sched_feat_enable(int i
)
107 static_key_enable(&sched_feat_keys
[i
]);
110 static void sched_feat_disable(int i
) { };
111 static void sched_feat_enable(int i
) { };
112 #endif /* HAVE_JUMP_LABEL */
114 static int sched_feat_set(char *cmp
)
119 if (strncmp(cmp
, "NO_", 3) == 0) {
124 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
125 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
127 sysctl_sched_features
&= ~(1UL << i
);
128 sched_feat_disable(i
);
130 sysctl_sched_features
|= (1UL << i
);
131 sched_feat_enable(i
);
141 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
142 size_t cnt
, loff_t
*ppos
)
152 if (copy_from_user(&buf
, ubuf
, cnt
))
158 /* Ensure the static_key remains in a consistent state */
159 inode
= file_inode(filp
);
161 i
= sched_feat_set(cmp
);
163 if (i
== __SCHED_FEAT_NR
)
171 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
173 return single_open(filp
, sched_feat_show
, NULL
);
176 static const struct file_operations sched_feat_fops
= {
177 .open
= sched_feat_open
,
178 .write
= sched_feat_write
,
181 .release
= single_release
,
184 __read_mostly
bool sched_debug_enabled
;
186 static __init
int sched_init_debug(void)
188 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
191 debugfs_create_bool("sched_debug", 0644, NULL
,
192 &sched_debug_enabled
);
196 late_initcall(sched_init_debug
);
202 static struct ctl_table sd_ctl_dir
[] = {
204 .procname
= "sched_domain",
210 static struct ctl_table sd_ctl_root
[] = {
212 .procname
= "kernel",
219 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
221 struct ctl_table
*entry
=
222 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
227 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
229 struct ctl_table
*entry
;
232 * In the intermediate directories, both the child directory and
233 * procname are dynamically allocated and could fail but the mode
234 * will always be set. In the lowest directory the names are
235 * static strings and all have proc handlers.
237 for (entry
= *tablep
; entry
->mode
; entry
++) {
239 sd_free_ctl_entry(&entry
->child
);
240 if (entry
->proc_handler
== NULL
)
241 kfree(entry
->procname
);
248 static int min_load_idx
= 0;
249 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
252 set_table_entry(struct ctl_table
*entry
,
253 const char *procname
, void *data
, int maxlen
,
254 umode_t mode
, proc_handler
*proc_handler
,
257 entry
->procname
= procname
;
259 entry
->maxlen
= maxlen
;
261 entry
->proc_handler
= proc_handler
;
264 entry
->extra1
= &min_load_idx
;
265 entry
->extra2
= &max_load_idx
;
269 static struct ctl_table
*
270 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
272 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
277 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
278 sizeof(long), 0644, proc_doulongvec_minmax
, false);
279 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
280 sizeof(long), 0644, proc_doulongvec_minmax
, false);
281 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
282 sizeof(int), 0644, proc_dointvec_minmax
, true);
283 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
284 sizeof(int), 0644, proc_dointvec_minmax
, true);
285 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
286 sizeof(int), 0644, proc_dointvec_minmax
, true);
287 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
288 sizeof(int), 0644, proc_dointvec_minmax
, true);
289 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
290 sizeof(int), 0644, proc_dointvec_minmax
, true);
291 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
292 sizeof(int), 0644, proc_dointvec_minmax
, false);
293 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
294 sizeof(int), 0644, proc_dointvec_minmax
, false);
295 set_table_entry(&table
[9], "cache_nice_tries",
296 &sd
->cache_nice_tries
,
297 sizeof(int), 0644, proc_dointvec_minmax
, false);
298 set_table_entry(&table
[10], "flags", &sd
->flags
,
299 sizeof(int), 0644, proc_dointvec_minmax
, false);
300 set_table_entry(&table
[11], "max_newidle_lb_cost",
301 &sd
->max_newidle_lb_cost
,
302 sizeof(long), 0644, proc_doulongvec_minmax
, false);
303 set_table_entry(&table
[12], "name", sd
->name
,
304 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
305 /* &table[13] is terminator */
310 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
312 struct ctl_table
*entry
, *table
;
313 struct sched_domain
*sd
;
314 int domain_num
= 0, i
;
317 for_each_domain(cpu
, sd
)
319 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
324 for_each_domain(cpu
, sd
) {
325 snprintf(buf
, 32, "domain%d", i
);
326 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
328 entry
->child
= sd_alloc_ctl_domain_table(sd
);
335 static cpumask_var_t sd_sysctl_cpus
;
336 static struct ctl_table_header
*sd_sysctl_header
;
338 void register_sched_domain_sysctl(void)
340 static struct ctl_table
*cpu_entries
;
341 static struct ctl_table
**cpu_idx
;
346 cpu_entries
= sd_alloc_ctl_entry(num_possible_cpus() + 1);
350 WARN_ON(sd_ctl_dir
[0].child
);
351 sd_ctl_dir
[0].child
= cpu_entries
;
355 struct ctl_table
*e
= cpu_entries
;
357 cpu_idx
= kcalloc(nr_cpu_ids
, sizeof(struct ctl_table
*), GFP_KERNEL
);
361 /* deal with sparse possible map */
362 for_each_possible_cpu(i
) {
368 if (!cpumask_available(sd_sysctl_cpus
)) {
369 if (!alloc_cpumask_var(&sd_sysctl_cpus
, GFP_KERNEL
))
372 /* init to possible to not have holes in @cpu_entries */
373 cpumask_copy(sd_sysctl_cpus
, cpu_possible_mask
);
376 for_each_cpu(i
, sd_sysctl_cpus
) {
377 struct ctl_table
*e
= cpu_idx
[i
];
380 sd_free_ctl_entry(&e
->child
);
383 snprintf(buf
, 32, "cpu%d", i
);
384 e
->procname
= kstrdup(buf
, GFP_KERNEL
);
387 e
->child
= sd_alloc_ctl_cpu_table(i
);
389 __cpumask_clear_cpu(i
, sd_sysctl_cpus
);
392 WARN_ON(sd_sysctl_header
);
393 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
396 void dirty_sched_domain_sysctl(int cpu
)
398 if (cpumask_available(sd_sysctl_cpus
))
399 __cpumask_set_cpu(cpu
, sd_sysctl_cpus
);
402 /* may be called multiple times per register */
403 void unregister_sched_domain_sysctl(void)
405 unregister_sysctl_table(sd_sysctl_header
);
406 sd_sysctl_header
= NULL
;
408 #endif /* CONFIG_SYSCTL */
409 #endif /* CONFIG_SMP */
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 static void print_cfs_group_stats(struct seq_file
*m
, int cpu
, struct task_group
*tg
)
414 struct sched_entity
*se
= tg
->se
[cpu
];
417 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
418 #define P_SCHEDSTAT(F) \
419 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
421 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
422 #define PN_SCHEDSTAT(F) \
423 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
430 PN(se
->sum_exec_runtime
);
431 if (schedstat_enabled()) {
432 PN_SCHEDSTAT(se
->statistics
.wait_start
);
433 PN_SCHEDSTAT(se
->statistics
.sleep_start
);
434 PN_SCHEDSTAT(se
->statistics
.block_start
);
435 PN_SCHEDSTAT(se
->statistics
.sleep_max
);
436 PN_SCHEDSTAT(se
->statistics
.block_max
);
437 PN_SCHEDSTAT(se
->statistics
.exec_max
);
438 PN_SCHEDSTAT(se
->statistics
.slice_max
);
439 PN_SCHEDSTAT(se
->statistics
.wait_max
);
440 PN_SCHEDSTAT(se
->statistics
.wait_sum
);
441 P_SCHEDSTAT(se
->statistics
.wait_count
);
444 P(se
->runnable_weight
);
448 P(se
->avg
.runnable_load_avg
);
458 #ifdef CONFIG_CGROUP_SCHED
459 static char group_path
[PATH_MAX
];
461 static char *task_group_path(struct task_group
*tg
)
463 if (autogroup_path(tg
, group_path
, PATH_MAX
))
466 cgroup_path(tg
->css
.cgroup
, group_path
, PATH_MAX
);
472 print_task(struct seq_file
*m
, struct rq
*rq
, struct task_struct
*p
)
477 SEQ_printf(m
, " %c", task_state_to_char(p
));
479 SEQ_printf(m
, "%15s %5d %9Ld.%06ld %9Ld %5d ",
480 p
->comm
, task_pid_nr(p
),
481 SPLIT_NS(p
->se
.vruntime
),
482 (long long)(p
->nvcsw
+ p
->nivcsw
),
485 SEQ_printf(m
, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
486 SPLIT_NS(schedstat_val_or_zero(p
->se
.statistics
.wait_sum
)),
487 SPLIT_NS(p
->se
.sum_exec_runtime
),
488 SPLIT_NS(schedstat_val_or_zero(p
->se
.statistics
.sum_sleep_runtime
)));
490 #ifdef CONFIG_NUMA_BALANCING
491 SEQ_printf(m
, " %d %d", task_node(p
), task_numa_group_id(p
));
493 #ifdef CONFIG_CGROUP_SCHED
494 SEQ_printf(m
, " %s", task_group_path(task_group(p
)));
500 static void print_rq(struct seq_file
*m
, struct rq
*rq
, int rq_cpu
)
502 struct task_struct
*g
, *p
;
505 "\nrunnable tasks:\n"
506 " S task PID tree-key switches prio"
507 " wait-time sum-exec sum-sleep\n"
508 "-------------------------------------------------------"
509 "----------------------------------------------------\n");
512 for_each_process_thread(g
, p
) {
513 if (task_cpu(p
) != rq_cpu
)
516 print_task(m
, rq
, p
);
521 void print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
)
523 s64 MIN_vruntime
= -1, min_vruntime
, max_vruntime
= -1,
524 spread
, rq0_min_vruntime
, spread0
;
525 struct rq
*rq
= cpu_rq(cpu
);
526 struct sched_entity
*last
;
529 #ifdef CONFIG_FAIR_GROUP_SCHED
530 SEQ_printf(m
, "\ncfs_rq[%d]:%s\n", cpu
, task_group_path(cfs_rq
->tg
));
532 SEQ_printf(m
, "\ncfs_rq[%d]:\n", cpu
);
534 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "exec_clock",
535 SPLIT_NS(cfs_rq
->exec_clock
));
537 raw_spin_lock_irqsave(&rq
->lock
, flags
);
538 if (rb_first_cached(&cfs_rq
->tasks_timeline
))
539 MIN_vruntime
= (__pick_first_entity(cfs_rq
))->vruntime
;
540 last
= __pick_last_entity(cfs_rq
);
542 max_vruntime
= last
->vruntime
;
543 min_vruntime
= cfs_rq
->min_vruntime
;
544 rq0_min_vruntime
= cpu_rq(0)->cfs
.min_vruntime
;
545 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
546 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
547 SPLIT_NS(MIN_vruntime
));
548 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "min_vruntime",
549 SPLIT_NS(min_vruntime
));
550 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "max_vruntime",
551 SPLIT_NS(max_vruntime
));
552 spread
= max_vruntime
- MIN_vruntime
;
553 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "spread",
555 spread0
= min_vruntime
- rq0_min_vruntime
;
556 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "spread0",
558 SEQ_printf(m
, " .%-30s: %d\n", "nr_spread_over",
559 cfs_rq
->nr_spread_over
);
560 SEQ_printf(m
, " .%-30s: %d\n", "nr_running", cfs_rq
->nr_running
);
561 SEQ_printf(m
, " .%-30s: %ld\n", "load", cfs_rq
->load
.weight
);
563 SEQ_printf(m
, " .%-30s: %ld\n", "runnable_weight", cfs_rq
->runnable_weight
);
564 SEQ_printf(m
, " .%-30s: %lu\n", "load_avg",
565 cfs_rq
->avg
.load_avg
);
566 SEQ_printf(m
, " .%-30s: %lu\n", "runnable_load_avg",
567 cfs_rq
->avg
.runnable_load_avg
);
568 SEQ_printf(m
, " .%-30s: %lu\n", "util_avg",
569 cfs_rq
->avg
.util_avg
);
570 SEQ_printf(m
, " .%-30s: %ld\n", "removed.load_avg",
571 cfs_rq
->removed
.load_avg
);
572 SEQ_printf(m
, " .%-30s: %ld\n", "removed.util_avg",
573 cfs_rq
->removed
.util_avg
);
574 SEQ_printf(m
, " .%-30s: %ld\n", "removed.runnable_sum",
575 cfs_rq
->removed
.runnable_sum
);
576 #ifdef CONFIG_FAIR_GROUP_SCHED
577 SEQ_printf(m
, " .%-30s: %lu\n", "tg_load_avg_contrib",
578 cfs_rq
->tg_load_avg_contrib
);
579 SEQ_printf(m
, " .%-30s: %ld\n", "tg_load_avg",
580 atomic_long_read(&cfs_rq
->tg
->load_avg
));
583 #ifdef CONFIG_CFS_BANDWIDTH
584 SEQ_printf(m
, " .%-30s: %d\n", "throttled",
586 SEQ_printf(m
, " .%-30s: %d\n", "throttle_count",
587 cfs_rq
->throttle_count
);
590 #ifdef CONFIG_FAIR_GROUP_SCHED
591 print_cfs_group_stats(m
, cpu
, cfs_rq
->tg
);
595 void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
)
597 #ifdef CONFIG_RT_GROUP_SCHED
598 SEQ_printf(m
, "\nrt_rq[%d]:%s\n", cpu
, task_group_path(rt_rq
->tg
));
600 SEQ_printf(m
, "\nrt_rq[%d]:\n", cpu
);
604 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
606 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
623 void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
)
627 SEQ_printf(m
, "\ndl_rq[%d]:\n", cpu
);
630 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
635 dl_bw
= &cpu_rq(cpu
)->rd
->dl_bw
;
637 dl_bw
= &dl_rq
->dl_bw
;
639 SEQ_printf(m
, " .%-30s: %lld\n", "dl_bw->bw", dl_bw
->bw
);
640 SEQ_printf(m
, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw
->total_bw
);
645 extern __read_mostly
int sched_clock_running
;
647 static void print_cpu(struct seq_file
*m
, int cpu
)
649 struct rq
*rq
= cpu_rq(cpu
);
654 unsigned int freq
= cpu_khz
? : 1;
656 SEQ_printf(m
, "cpu#%d, %u.%03u MHz\n",
657 cpu
, freq
/ 1000, (freq
% 1000));
660 SEQ_printf(m
, "cpu#%d\n", cpu
);
665 if (sizeof(rq->x) == 4) \
666 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
668 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
672 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
675 SEQ_printf(m
, " .%-30s: %lu\n", "load",
679 P(nr_uninterruptible
);
681 SEQ_printf(m
, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq
->curr
)));
693 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
695 P64(max_idle_balance_cost
);
699 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
700 if (schedstat_enabled()) {
709 spin_lock_irqsave(&sched_debug_lock
, flags
);
710 print_cfs_stats(m
, cpu
);
711 print_rt_stats(m
, cpu
);
712 print_dl_stats(m
, cpu
);
714 print_rq(m
, rq
, cpu
);
715 spin_unlock_irqrestore(&sched_debug_lock
, flags
);
719 static const char *sched_tunable_scaling_names
[] = {
725 static void sched_debug_header(struct seq_file
*m
)
727 u64 ktime
, sched_clk
, cpu_clk
;
730 local_irq_save(flags
);
731 ktime
= ktime_to_ns(ktime_get());
732 sched_clk
= sched_clock();
733 cpu_clk
= local_clock();
734 local_irq_restore(flags
);
736 SEQ_printf(m
, "Sched Debug Version: v0.11, %s %.*s\n",
737 init_utsname()->release
,
738 (int)strcspn(init_utsname()->version
, " "),
739 init_utsname()->version
);
742 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
744 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
749 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
750 P(sched_clock_stable());
756 SEQ_printf(m
, "sysctl_sched\n");
759 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
761 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
762 PN(sysctl_sched_latency
);
763 PN(sysctl_sched_min_granularity
);
764 PN(sysctl_sched_wakeup_granularity
);
765 P(sysctl_sched_child_runs_first
);
766 P(sysctl_sched_features
);
770 SEQ_printf(m
, " .%-40s: %d (%s)\n",
771 "sysctl_sched_tunable_scaling",
772 sysctl_sched_tunable_scaling
,
773 sched_tunable_scaling_names
[sysctl_sched_tunable_scaling
]);
777 static int sched_debug_show(struct seq_file
*m
, void *v
)
779 int cpu
= (unsigned long)(v
- 2);
784 sched_debug_header(m
);
789 void sysrq_sched_debug_show(void)
793 sched_debug_header(NULL
);
794 for_each_online_cpu(cpu
)
795 print_cpu(NULL
, cpu
);
800 * This itererator needs some explanation.
801 * It returns 1 for the header position.
802 * This means 2 is cpu 0.
803 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
804 * to use cpumask_* to iterate over the cpus.
806 static void *sched_debug_start(struct seq_file
*file
, loff_t
*offset
)
808 unsigned long n
= *offset
;
816 n
= cpumask_next(n
- 1, cpu_online_mask
);
818 n
= cpumask_first(cpu_online_mask
);
823 return (void *)(unsigned long)(n
+ 2);
827 static void *sched_debug_next(struct seq_file
*file
, void *data
, loff_t
*offset
)
830 return sched_debug_start(file
, offset
);
833 static void sched_debug_stop(struct seq_file
*file
, void *data
)
837 static const struct seq_operations sched_debug_sops
= {
838 .start
= sched_debug_start
,
839 .next
= sched_debug_next
,
840 .stop
= sched_debug_stop
,
841 .show
= sched_debug_show
,
844 static int sched_debug_release(struct inode
*inode
, struct file
*file
)
846 seq_release(inode
, file
);
851 static int sched_debug_open(struct inode
*inode
, struct file
*filp
)
855 ret
= seq_open(filp
, &sched_debug_sops
);
860 static const struct file_operations sched_debug_fops
= {
861 .open
= sched_debug_open
,
864 .release
= sched_debug_release
,
867 static int __init
init_sched_debug_procfs(void)
869 struct proc_dir_entry
*pe
;
871 pe
= proc_create("sched_debug", 0444, NULL
, &sched_debug_fops
);
877 __initcall(init_sched_debug_procfs
);
880 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
882 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
884 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
886 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
889 #ifdef CONFIG_NUMA_BALANCING
890 void print_numa_stats(struct seq_file
*m
, int node
, unsigned long tsf
,
891 unsigned long tpf
, unsigned long gsf
, unsigned long gpf
)
893 SEQ_printf(m
, "numa_faults node=%d ", node
);
894 SEQ_printf(m
, "task_private=%lu task_shared=%lu ", tsf
, tpf
);
895 SEQ_printf(m
, "group_private=%lu group_shared=%lu\n", gsf
, gpf
);
900 static void sched_show_numa(struct task_struct
*p
, struct seq_file
*m
)
902 #ifdef CONFIG_NUMA_BALANCING
903 struct mempolicy
*pol
;
906 P(mm
->numa_scan_seq
);
910 if (pol
&& !(pol
->flags
& MPOL_F_MORON
))
915 P(numa_pages_migrated
);
916 P(numa_preferred_nid
);
917 P(total_numa_faults
);
918 SEQ_printf(m
, "current_node=%d, numa_group_id=%d\n",
919 task_node(p
), task_numa_group_id(p
));
920 show_numa_stats(p
, m
);
925 void proc_sched_show_task(struct task_struct
*p
, struct pid_namespace
*ns
,
928 unsigned long nr_switches
;
930 SEQ_printf(m
, "%s (%d, #threads: %d)\n", p
->comm
, task_pid_nr_ns(p
, ns
),
933 "---------------------------------------------------------"
936 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
938 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
939 #define P_SCHEDSTAT(F) \
940 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
942 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
944 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
945 #define PN_SCHEDSTAT(F) \
946 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
950 PN(se
.sum_exec_runtime
);
952 nr_switches
= p
->nvcsw
+ p
->nivcsw
;
956 if (schedstat_enabled()) {
957 u64 avg_atom
, avg_per_cpu
;
959 PN_SCHEDSTAT(se
.statistics
.sum_sleep_runtime
);
960 PN_SCHEDSTAT(se
.statistics
.wait_start
);
961 PN_SCHEDSTAT(se
.statistics
.sleep_start
);
962 PN_SCHEDSTAT(se
.statistics
.block_start
);
963 PN_SCHEDSTAT(se
.statistics
.sleep_max
);
964 PN_SCHEDSTAT(se
.statistics
.block_max
);
965 PN_SCHEDSTAT(se
.statistics
.exec_max
);
966 PN_SCHEDSTAT(se
.statistics
.slice_max
);
967 PN_SCHEDSTAT(se
.statistics
.wait_max
);
968 PN_SCHEDSTAT(se
.statistics
.wait_sum
);
969 P_SCHEDSTAT(se
.statistics
.wait_count
);
970 PN_SCHEDSTAT(se
.statistics
.iowait_sum
);
971 P_SCHEDSTAT(se
.statistics
.iowait_count
);
972 P_SCHEDSTAT(se
.statistics
.nr_migrations_cold
);
973 P_SCHEDSTAT(se
.statistics
.nr_failed_migrations_affine
);
974 P_SCHEDSTAT(se
.statistics
.nr_failed_migrations_running
);
975 P_SCHEDSTAT(se
.statistics
.nr_failed_migrations_hot
);
976 P_SCHEDSTAT(se
.statistics
.nr_forced_migrations
);
977 P_SCHEDSTAT(se
.statistics
.nr_wakeups
);
978 P_SCHEDSTAT(se
.statistics
.nr_wakeups_sync
);
979 P_SCHEDSTAT(se
.statistics
.nr_wakeups_migrate
);
980 P_SCHEDSTAT(se
.statistics
.nr_wakeups_local
);
981 P_SCHEDSTAT(se
.statistics
.nr_wakeups_remote
);
982 P_SCHEDSTAT(se
.statistics
.nr_wakeups_affine
);
983 P_SCHEDSTAT(se
.statistics
.nr_wakeups_affine_attempts
);
984 P_SCHEDSTAT(se
.statistics
.nr_wakeups_passive
);
985 P_SCHEDSTAT(se
.statistics
.nr_wakeups_idle
);
987 avg_atom
= p
->se
.sum_exec_runtime
;
989 avg_atom
= div64_ul(avg_atom
, nr_switches
);
993 avg_per_cpu
= p
->se
.sum_exec_runtime
;
994 if (p
->se
.nr_migrations
) {
995 avg_per_cpu
= div64_u64(avg_per_cpu
,
996 p
->se
.nr_migrations
);
1006 SEQ_printf(m
, "%-45s:%21Ld\n",
1007 "nr_voluntary_switches", (long long)p
->nvcsw
);
1008 SEQ_printf(m
, "%-45s:%21Ld\n",
1009 "nr_involuntary_switches", (long long)p
->nivcsw
);
1012 P(se
.runnable_weight
);
1015 P(se
.avg
.runnable_load_sum
);
1018 P(se
.avg
.runnable_load_avg
);
1020 P(se
.avg
.last_update_time
);
1024 if (p
->policy
== SCHED_DEADLINE
) {
1036 unsigned int this_cpu
= raw_smp_processor_id();
1039 t0
= cpu_clock(this_cpu
);
1040 t1
= cpu_clock(this_cpu
);
1041 SEQ_printf(m
, "%-45s:%21Ld\n",
1042 "clock-delta", (long long)(t1
-t0
));
1045 sched_show_numa(p
, m
);
1048 void proc_sched_set_task(struct task_struct
*p
)
1050 #ifdef CONFIG_SCHEDSTATS
1051 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));