2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/timer.h>
57 #include "timekeeping.h"
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
67 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
70 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
74 .index
= HRTIMER_BASE_MONOTONIC
,
75 .clockid
= CLOCK_MONOTONIC
,
76 .get_time
= &ktime_get
,
77 .resolution
= KTIME_LOW_RES
,
80 .index
= HRTIMER_BASE_REALTIME
,
81 .clockid
= CLOCK_REALTIME
,
82 .get_time
= &ktime_get_real
,
83 .resolution
= KTIME_LOW_RES
,
86 .index
= HRTIMER_BASE_BOOTTIME
,
87 .clockid
= CLOCK_BOOTTIME
,
88 .get_time
= &ktime_get_boottime
,
89 .resolution
= KTIME_LOW_RES
,
92 .index
= HRTIMER_BASE_TAI
,
94 .get_time
= &ktime_get_clocktai
,
95 .resolution
= KTIME_LOW_RES
,
100 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
101 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
102 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
103 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
104 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
107 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
109 return hrtimer_clock_to_base_table
[clock_id
];
114 * Get the coarse grained time at the softirq based on xtime and
117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
119 ktime_t xtim
, mono
, boot
, tai
;
120 ktime_t off_real
, off_boot
, off_tai
;
122 mono
= ktime_get_update_offsets_tick(&off_real
, &off_boot
, &off_tai
);
123 boot
= ktime_add(mono
, off_boot
);
124 xtim
= ktime_add(mono
, off_real
);
125 tai
= ktime_add(xtim
, off_tai
);
127 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
128 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
129 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
130 base
->clock_base
[HRTIMER_BASE_TAI
].softirq_time
= tai
;
134 * Functions and macros which are different for UP/SMP systems are kept in a
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
152 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
153 unsigned long *flags
)
155 struct hrtimer_clock_base
*base
;
159 if (likely(base
!= NULL
)) {
160 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
161 if (likely(base
== timer
->base
))
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
175 * Called with cpu_base->lock of target cpu held.
178 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
180 #ifdef CONFIG_HIGH_RES_TIMERS
183 if (!new_base
->cpu_base
->hres_active
)
186 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
187 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
194 * Switch the timer base to the current CPU when possible.
196 static inline struct hrtimer_clock_base
*
197 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
200 struct hrtimer_clock_base
*new_base
;
201 struct hrtimer_cpu_base
*new_cpu_base
;
202 int this_cpu
= smp_processor_id();
203 int cpu
= get_nohz_timer_target(pinned
);
204 int basenum
= base
->index
;
207 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
208 new_base
= &new_cpu_base
->clock_base
[basenum
];
210 if (base
!= new_base
) {
212 * We are trying to move timer to new_base.
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
220 if (unlikely(hrtimer_callback_running(timer
)))
223 /* See the comment in lock_timer_base() */
225 raw_spin_unlock(&base
->cpu_base
->lock
);
226 raw_spin_lock(&new_base
->cpu_base
->lock
);
228 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
230 raw_spin_unlock(&new_base
->cpu_base
->lock
);
231 raw_spin_lock(&base
->cpu_base
->lock
);
235 timer
->base
= new_base
;
237 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
245 #else /* CONFIG_SMP */
247 static inline struct hrtimer_clock_base
*
248 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
250 struct hrtimer_clock_base
*base
= timer
->base
;
252 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
257 # define switch_hrtimer_base(t, b, p) (b)
259 #endif /* !CONFIG_SMP */
262 * Functions for the union type storage format of ktime_t which are
263 * too large for inlining:
265 #if BITS_PER_LONG < 64
267 * Divide a ktime value by a nanosecond value
269 u64
ktime_divns(const ktime_t kt
, s64 div
)
274 dclc
= ktime_to_ns(kt
);
275 /* Make sure the divisor is less than 2^32: */
281 do_div(dclc
, (unsigned long) div
);
285 EXPORT_SYMBOL_GPL(ktime_divns
);
286 #endif /* BITS_PER_LONG >= 64 */
289 * Add two ktime values and do a safety check for overflow:
291 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
293 ktime_t res
= ktime_add(lhs
, rhs
);
296 * We use KTIME_SEC_MAX here, the maximum timeout which we can
297 * return to user space in a timespec:
299 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
300 res
= ktime_set(KTIME_SEC_MAX
, 0);
305 EXPORT_SYMBOL_GPL(ktime_add_safe
);
307 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
309 static struct debug_obj_descr hrtimer_debug_descr
;
311 static void *hrtimer_debug_hint(void *addr
)
313 return ((struct hrtimer
*) addr
)->function
;
317 * fixup_init is called when:
318 * - an active object is initialized
320 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
322 struct hrtimer
*timer
= addr
;
325 case ODEBUG_STATE_ACTIVE
:
326 hrtimer_cancel(timer
);
327 debug_object_init(timer
, &hrtimer_debug_descr
);
335 * fixup_activate is called when:
336 * - an active object is activated
337 * - an unknown object is activated (might be a statically initialized object)
339 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
343 case ODEBUG_STATE_NOTAVAILABLE
:
347 case ODEBUG_STATE_ACTIVE
:
356 * fixup_free is called when:
357 * - an active object is freed
359 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
361 struct hrtimer
*timer
= addr
;
364 case ODEBUG_STATE_ACTIVE
:
365 hrtimer_cancel(timer
);
366 debug_object_free(timer
, &hrtimer_debug_descr
);
373 static struct debug_obj_descr hrtimer_debug_descr
= {
375 .debug_hint
= hrtimer_debug_hint
,
376 .fixup_init
= hrtimer_fixup_init
,
377 .fixup_activate
= hrtimer_fixup_activate
,
378 .fixup_free
= hrtimer_fixup_free
,
381 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
383 debug_object_init(timer
, &hrtimer_debug_descr
);
386 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
388 debug_object_activate(timer
, &hrtimer_debug_descr
);
391 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
393 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
396 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
398 debug_object_free(timer
, &hrtimer_debug_descr
);
401 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
402 enum hrtimer_mode mode
);
404 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
405 enum hrtimer_mode mode
)
407 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
408 __hrtimer_init(timer
, clock_id
, mode
);
410 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
412 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
414 debug_object_free(timer
, &hrtimer_debug_descr
);
418 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
419 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
420 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
424 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
425 enum hrtimer_mode mode
)
427 debug_hrtimer_init(timer
);
428 trace_hrtimer_init(timer
, clockid
, mode
);
431 static inline void debug_activate(struct hrtimer
*timer
)
433 debug_hrtimer_activate(timer
);
434 trace_hrtimer_start(timer
);
437 static inline void debug_deactivate(struct hrtimer
*timer
)
439 debug_hrtimer_deactivate(timer
);
440 trace_hrtimer_cancel(timer
);
443 /* High resolution timer related functions */
444 #ifdef CONFIG_HIGH_RES_TIMERS
447 * High resolution timer enabled ?
449 static int hrtimer_hres_enabled __read_mostly
= 1;
452 * Enable / Disable high resolution mode
454 static int __init
setup_hrtimer_hres(char *str
)
456 if (!strcmp(str
, "off"))
457 hrtimer_hres_enabled
= 0;
458 else if (!strcmp(str
, "on"))
459 hrtimer_hres_enabled
= 1;
465 __setup("highres=", setup_hrtimer_hres
);
468 * hrtimer_high_res_enabled - query, if the highres mode is enabled
470 static inline int hrtimer_is_hres_enabled(void)
472 return hrtimer_hres_enabled
;
476 * Is the high resolution mode active ?
478 static inline int hrtimer_hres_active(void)
480 return __this_cpu_read(hrtimer_bases
.hres_active
);
484 * Reprogram the event source with checking both queues for the
486 * Called with interrupts disabled and base->lock held
489 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
492 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
493 ktime_t expires
, expires_next
;
495 expires_next
.tv64
= KTIME_MAX
;
497 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
498 struct hrtimer
*timer
;
499 struct timerqueue_node
*next
;
501 next
= timerqueue_getnext(&base
->active
);
504 timer
= container_of(next
, struct hrtimer
, node
);
506 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
508 * clock_was_set() has changed base->offset so the
509 * result might be negative. Fix it up to prevent a
510 * false positive in clockevents_program_event()
512 if (expires
.tv64
< 0)
514 if (expires
.tv64
< expires_next
.tv64
)
515 expires_next
= expires
;
518 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
521 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
524 * If a hang was detected in the last timer interrupt then we
525 * leave the hang delay active in the hardware. We want the
526 * system to make progress. That also prevents the following
528 * T1 expires 50ms from now
529 * T2 expires 5s from now
531 * T1 is removed, so this code is called and would reprogram
532 * the hardware to 5s from now. Any hrtimer_start after that
533 * will not reprogram the hardware due to hang_detected being
534 * set. So we'd effectivly block all timers until the T2 event
537 if (cpu_base
->hang_detected
)
540 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
541 tick_program_event(cpu_base
->expires_next
, 1);
545 * Shared reprogramming for clock_realtime and clock_monotonic
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
551 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
552 * and no expiry check happens. The timer gets enqueued into the rbtree. The
553 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
556 * Called with interrupts disabled and base->cpu_base.lock held
558 static int hrtimer_reprogram(struct hrtimer
*timer
,
559 struct hrtimer_clock_base
*base
)
561 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
562 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
565 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
568 * When the callback is running, we do not reprogram the clock event
569 * device. The timer callback is either running on a different CPU or
570 * the callback is executed in the hrtimer_interrupt context. The
571 * reprogramming is handled either by the softirq, which called the
572 * callback or at the end of the hrtimer_interrupt.
574 if (hrtimer_callback_running(timer
))
578 * CLOCK_REALTIME timer might be requested with an absolute
579 * expiry time which is less than base->offset. Nothing wrong
580 * about that, just avoid to call into the tick code, which
581 * has now objections against negative expiry values.
583 if (expires
.tv64
< 0)
586 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
590 * If a hang was detected in the last timer interrupt then we
591 * do not schedule a timer which is earlier than the expiry
592 * which we enforced in the hang detection. We want the system
595 if (cpu_base
->hang_detected
)
599 * Clockevents returns -ETIME, when the event was in the past.
601 res
= tick_program_event(expires
, 0);
602 if (!IS_ERR_VALUE(res
))
603 cpu_base
->expires_next
= expires
;
608 * Initialize the high resolution related parts of cpu_base
610 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
612 base
->expires_next
.tv64
= KTIME_MAX
;
613 base
->hres_active
= 0;
616 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
618 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
619 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
620 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
622 return ktime_get_update_offsets_now(offs_real
, offs_boot
, offs_tai
);
626 * Retrigger next event is called after clock was set
628 * Called with interrupts disabled via on_each_cpu()
630 static void retrigger_next_event(void *arg
)
632 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
634 if (!hrtimer_hres_active())
637 raw_spin_lock(&base
->lock
);
638 hrtimer_update_base(base
);
639 hrtimer_force_reprogram(base
, 0);
640 raw_spin_unlock(&base
->lock
);
644 * Switch to high resolution mode
646 static int hrtimer_switch_to_hres(void)
648 int i
, cpu
= smp_processor_id();
649 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
652 if (base
->hres_active
)
655 local_irq_save(flags
);
657 if (tick_init_highres()) {
658 local_irq_restore(flags
);
659 printk(KERN_WARNING
"Could not switch to high resolution "
660 "mode on CPU %d\n", cpu
);
663 base
->hres_active
= 1;
664 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
665 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
667 tick_setup_sched_timer();
668 /* "Retrigger" the interrupt to get things going */
669 retrigger_next_event(NULL
);
670 local_irq_restore(flags
);
674 static void clock_was_set_work(struct work_struct
*work
)
679 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
682 * Called from timekeeping and resume code to reprogramm the hrtimer
683 * interrupt device on all cpus.
685 void clock_was_set_delayed(void)
687 schedule_work(&hrtimer_work
);
692 static inline int hrtimer_hres_active(void) { return 0; }
693 static inline int hrtimer_is_hres_enabled(void) { return 0; }
694 static inline int hrtimer_switch_to_hres(void) { return 0; }
696 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
697 static inline int hrtimer_reprogram(struct hrtimer
*timer
,
698 struct hrtimer_clock_base
*base
)
702 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
703 static inline void retrigger_next_event(void *arg
) { }
705 #endif /* CONFIG_HIGH_RES_TIMERS */
708 * Clock realtime was set
710 * Change the offset of the realtime clock vs. the monotonic
713 * We might have to reprogram the high resolution timer interrupt. On
714 * SMP we call the architecture specific code to retrigger _all_ high
715 * resolution timer interrupts. On UP we just disable interrupts and
716 * call the high resolution interrupt code.
718 void clock_was_set(void)
720 #ifdef CONFIG_HIGH_RES_TIMERS
721 /* Retrigger the CPU local events everywhere */
722 on_each_cpu(retrigger_next_event
, NULL
, 1);
724 timerfd_clock_was_set();
728 * During resume we might have to reprogram the high resolution timer
729 * interrupt on all online CPUs. However, all other CPUs will be
730 * stopped with IRQs interrupts disabled so the clock_was_set() call
733 void hrtimers_resume(void)
735 WARN_ONCE(!irqs_disabled(),
736 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
738 /* Retrigger on the local CPU */
739 retrigger_next_event(NULL
);
740 /* And schedule a retrigger for all others */
741 clock_was_set_delayed();
744 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
746 #ifdef CONFIG_TIMER_STATS
747 if (timer
->start_site
)
749 timer
->start_site
= __builtin_return_address(0);
750 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
751 timer
->start_pid
= current
->pid
;
755 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
757 #ifdef CONFIG_TIMER_STATS
758 timer
->start_site
= NULL
;
762 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
764 #ifdef CONFIG_TIMER_STATS
765 if (likely(!timer_stats_active
))
767 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
768 timer
->function
, timer
->start_comm
, 0);
773 * Counterpart to lock_hrtimer_base above:
776 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
778 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
782 * hrtimer_forward - forward the timer expiry
783 * @timer: hrtimer to forward
784 * @now: forward past this time
785 * @interval: the interval to forward
787 * Forward the timer expiry so it will expire in the future.
788 * Returns the number of overruns.
790 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
795 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
800 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
801 interval
.tv64
= timer
->base
->resolution
.tv64
;
803 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
804 s64 incr
= ktime_to_ns(interval
);
806 orun
= ktime_divns(delta
, incr
);
807 hrtimer_add_expires_ns(timer
, incr
* orun
);
808 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
811 * This (and the ktime_add() below) is the
812 * correction for exact:
816 hrtimer_add_expires(timer
, interval
);
820 EXPORT_SYMBOL_GPL(hrtimer_forward
);
823 * enqueue_hrtimer - internal function to (re)start a timer
825 * The timer is inserted in expiry order. Insertion into the
826 * red black tree is O(log(n)). Must hold the base lock.
828 * Returns 1 when the new timer is the leftmost timer in the tree.
830 static int enqueue_hrtimer(struct hrtimer
*timer
,
831 struct hrtimer_clock_base
*base
)
833 debug_activate(timer
);
835 timerqueue_add(&base
->active
, &timer
->node
);
836 base
->cpu_base
->active_bases
|= 1 << base
->index
;
839 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
840 * state of a possibly running callback.
842 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
844 return (&timer
->node
== base
->active
.next
);
848 * __remove_hrtimer - internal function to remove a timer
850 * Caller must hold the base lock.
852 * High resolution timer mode reprograms the clock event device when the
853 * timer is the one which expires next. The caller can disable this by setting
854 * reprogram to zero. This is useful, when the context does a reprogramming
855 * anyway (e.g. timer interrupt)
857 static void __remove_hrtimer(struct hrtimer
*timer
,
858 struct hrtimer_clock_base
*base
,
859 unsigned long newstate
, int reprogram
)
861 struct timerqueue_node
*next_timer
;
862 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
865 next_timer
= timerqueue_getnext(&base
->active
);
866 timerqueue_del(&base
->active
, &timer
->node
);
867 if (&timer
->node
== next_timer
) {
868 #ifdef CONFIG_HIGH_RES_TIMERS
869 /* Reprogram the clock event device. if enabled */
870 if (reprogram
&& hrtimer_hres_active()) {
873 expires
= ktime_sub(hrtimer_get_expires(timer
),
875 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
876 hrtimer_force_reprogram(base
->cpu_base
, 1);
880 if (!timerqueue_getnext(&base
->active
))
881 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
883 timer
->state
= newstate
;
887 * remove hrtimer, called with base lock held
890 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
892 if (hrtimer_is_queued(timer
)) {
897 * Remove the timer and force reprogramming when high
898 * resolution mode is active and the timer is on the current
899 * CPU. If we remove a timer on another CPU, reprogramming is
900 * skipped. The interrupt event on this CPU is fired and
901 * reprogramming happens in the interrupt handler. This is a
902 * rare case and less expensive than a smp call.
904 debug_deactivate(timer
);
905 timer_stats_hrtimer_clear_start_info(timer
);
906 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
908 * We must preserve the CALLBACK state flag here,
909 * otherwise we could move the timer base in
910 * switch_hrtimer_base.
912 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
913 __remove_hrtimer(timer
, base
, state
, reprogram
);
919 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
920 unsigned long delta_ns
, const enum hrtimer_mode mode
,
923 struct hrtimer_clock_base
*base
, *new_base
;
927 base
= lock_hrtimer_base(timer
, &flags
);
929 /* Remove an active timer from the queue: */
930 ret
= remove_hrtimer(timer
, base
);
932 if (mode
& HRTIMER_MODE_REL
) {
933 tim
= ktime_add_safe(tim
, base
->get_time());
935 * CONFIG_TIME_LOW_RES is a temporary way for architectures
936 * to signal that they simply return xtime in
937 * do_gettimeoffset(). In this case we want to round up by
938 * resolution when starting a relative timer, to avoid short
939 * timeouts. This will go away with the GTOD framework.
941 #ifdef CONFIG_TIME_LOW_RES
942 tim
= ktime_add_safe(tim
, base
->resolution
);
946 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
948 /* Switch the timer base, if necessary: */
949 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
951 timer_stats_hrtimer_set_start_info(timer
);
953 leftmost
= enqueue_hrtimer(timer
, new_base
);
956 unlock_hrtimer_base(timer
, &flags
);
960 if (!hrtimer_is_hres_active(timer
)) {
962 * Kick to reschedule the next tick to handle the new timer
963 * on dynticks target.
965 wake_up_nohz_cpu(new_base
->cpu_base
->cpu
);
966 } else if (new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
) &&
967 hrtimer_reprogram(timer
, new_base
)) {
969 * Only allow reprogramming if the new base is on this CPU.
970 * (it might still be on another CPU if the timer was pending)
972 * XXX send_remote_softirq() ?
976 * We need to drop cpu_base->lock to avoid a
977 * lock ordering issue vs. rq->lock.
979 raw_spin_unlock(&new_base
->cpu_base
->lock
);
980 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
981 local_irq_restore(flags
);
984 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
988 unlock_hrtimer_base(timer
, &flags
);
992 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns
);
995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
996 * @timer: the timer to be added
998 * @delta_ns: "slack" range for the timer
999 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1000 * relative (HRTIMER_MODE_REL)
1004 * 1 when the timer was active
1006 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1007 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1009 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1011 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1014 * hrtimer_start - (re)start an hrtimer on the current CPU
1015 * @timer: the timer to be added
1017 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1018 * relative (HRTIMER_MODE_REL)
1022 * 1 when the timer was active
1025 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1027 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1029 EXPORT_SYMBOL_GPL(hrtimer_start
);
1033 * hrtimer_try_to_cancel - try to deactivate a timer
1034 * @timer: hrtimer to stop
1037 * 0 when the timer was not active
1038 * 1 when the timer was active
1039 * -1 when the timer is currently excuting the callback function and
1042 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1044 struct hrtimer_clock_base
*base
;
1045 unsigned long flags
;
1048 base
= lock_hrtimer_base(timer
, &flags
);
1050 if (!hrtimer_callback_running(timer
))
1051 ret
= remove_hrtimer(timer
, base
);
1053 unlock_hrtimer_base(timer
, &flags
);
1058 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1061 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1062 * @timer: the timer to be cancelled
1065 * 0 when the timer was not active
1066 * 1 when the timer was active
1068 int hrtimer_cancel(struct hrtimer
*timer
)
1071 int ret
= hrtimer_try_to_cancel(timer
);
1078 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1081 * hrtimer_get_remaining - get remaining time for the timer
1082 * @timer: the timer to read
1084 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1086 unsigned long flags
;
1089 lock_hrtimer_base(timer
, &flags
);
1090 rem
= hrtimer_expires_remaining(timer
);
1091 unlock_hrtimer_base(timer
, &flags
);
1095 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1097 #ifdef CONFIG_NO_HZ_COMMON
1099 * hrtimer_get_next_event - get the time until next expiry event
1101 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1104 ktime_t
hrtimer_get_next_event(void)
1106 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1107 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1108 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1109 unsigned long flags
;
1112 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1114 if (!hrtimer_hres_active()) {
1115 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1116 struct hrtimer
*timer
;
1117 struct timerqueue_node
*next
;
1119 next
= timerqueue_getnext(&base
->active
);
1123 timer
= container_of(next
, struct hrtimer
, node
);
1124 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1125 delta
= ktime_sub(delta
, base
->get_time());
1126 if (delta
.tv64
< mindelta
.tv64
)
1127 mindelta
.tv64
= delta
.tv64
;
1131 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1133 if (mindelta
.tv64
< 0)
1139 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1140 enum hrtimer_mode mode
)
1142 struct hrtimer_cpu_base
*cpu_base
;
1145 memset(timer
, 0, sizeof(struct hrtimer
));
1147 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1149 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1150 clock_id
= CLOCK_MONOTONIC
;
1152 base
= hrtimer_clockid_to_base(clock_id
);
1153 timer
->base
= &cpu_base
->clock_base
[base
];
1154 timerqueue_init(&timer
->node
);
1156 #ifdef CONFIG_TIMER_STATS
1157 timer
->start_site
= NULL
;
1158 timer
->start_pid
= -1;
1159 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1164 * hrtimer_init - initialize a timer to the given clock
1165 * @timer: the timer to be initialized
1166 * @clock_id: the clock to be used
1167 * @mode: timer mode abs/rel
1169 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1170 enum hrtimer_mode mode
)
1172 debug_init(timer
, clock_id
, mode
);
1173 __hrtimer_init(timer
, clock_id
, mode
);
1175 EXPORT_SYMBOL_GPL(hrtimer_init
);
1178 * hrtimer_get_res - get the timer resolution for a clock
1179 * @which_clock: which clock to query
1180 * @tp: pointer to timespec variable to store the resolution
1182 * Store the resolution of the clock selected by @which_clock in the
1183 * variable pointed to by @tp.
1185 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1187 struct hrtimer_cpu_base
*cpu_base
;
1188 int base
= hrtimer_clockid_to_base(which_clock
);
1190 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1191 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1195 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1197 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1199 struct hrtimer_clock_base
*base
= timer
->base
;
1200 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1201 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1204 WARN_ON(!irqs_disabled());
1206 debug_deactivate(timer
);
1207 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1208 timer_stats_account_hrtimer(timer
);
1209 fn
= timer
->function
;
1212 * Because we run timers from hardirq context, there is no chance
1213 * they get migrated to another cpu, therefore its safe to unlock
1216 raw_spin_unlock(&cpu_base
->lock
);
1217 trace_hrtimer_expire_entry(timer
, now
);
1218 restart
= fn(timer
);
1219 trace_hrtimer_expire_exit(timer
);
1220 raw_spin_lock(&cpu_base
->lock
);
1223 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224 * we do not reprogramm the event hardware. Happens either in
1225 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1227 if (restart
!= HRTIMER_NORESTART
) {
1228 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1229 enqueue_hrtimer(timer
, base
);
1232 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1234 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1240 * High resolution timer interrupt
1241 * Called with interrupts disabled
1243 void hrtimer_interrupt(struct clock_event_device
*dev
)
1245 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1246 ktime_t expires_next
, now
, entry_time
, delta
;
1249 BUG_ON(!cpu_base
->hres_active
);
1250 cpu_base
->nr_events
++;
1251 dev
->next_event
.tv64
= KTIME_MAX
;
1253 raw_spin_lock(&cpu_base
->lock
);
1254 entry_time
= now
= hrtimer_update_base(cpu_base
);
1256 expires_next
.tv64
= KTIME_MAX
;
1258 * We set expires_next to KTIME_MAX here with cpu_base->lock
1259 * held to prevent that a timer is enqueued in our queue via
1260 * the migration code. This does not affect enqueueing of
1261 * timers which run their callback and need to be requeued on
1264 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1266 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1267 struct hrtimer_clock_base
*base
;
1268 struct timerqueue_node
*node
;
1271 if (!(cpu_base
->active_bases
& (1 << i
)))
1274 base
= cpu_base
->clock_base
+ i
;
1275 basenow
= ktime_add(now
, base
->offset
);
1277 while ((node
= timerqueue_getnext(&base
->active
))) {
1278 struct hrtimer
*timer
;
1280 timer
= container_of(node
, struct hrtimer
, node
);
1283 * The immediate goal for using the softexpires is
1284 * minimizing wakeups, not running timers at the
1285 * earliest interrupt after their soft expiration.
1286 * This allows us to avoid using a Priority Search
1287 * Tree, which can answer a stabbing querry for
1288 * overlapping intervals and instead use the simple
1289 * BST we already have.
1290 * We don't add extra wakeups by delaying timers that
1291 * are right-of a not yet expired timer, because that
1292 * timer will have to trigger a wakeup anyway.
1295 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1298 expires
= ktime_sub(hrtimer_get_expires(timer
),
1300 if (expires
.tv64
< 0)
1301 expires
.tv64
= KTIME_MAX
;
1302 if (expires
.tv64
< expires_next
.tv64
)
1303 expires_next
= expires
;
1307 __run_hrtimer(timer
, &basenow
);
1312 * Store the new expiry value so the migration code can verify
1315 cpu_base
->expires_next
= expires_next
;
1316 raw_spin_unlock(&cpu_base
->lock
);
1318 /* Reprogramming necessary ? */
1319 if (expires_next
.tv64
== KTIME_MAX
||
1320 !tick_program_event(expires_next
, 0)) {
1321 cpu_base
->hang_detected
= 0;
1326 * The next timer was already expired due to:
1328 * - long lasting callbacks
1329 * - being scheduled away when running in a VM
1331 * We need to prevent that we loop forever in the hrtimer
1332 * interrupt routine. We give it 3 attempts to avoid
1333 * overreacting on some spurious event.
1335 * Acquire base lock for updating the offsets and retrieving
1338 raw_spin_lock(&cpu_base
->lock
);
1339 now
= hrtimer_update_base(cpu_base
);
1340 cpu_base
->nr_retries
++;
1344 * Give the system a chance to do something else than looping
1345 * here. We stored the entry time, so we know exactly how long
1346 * we spent here. We schedule the next event this amount of
1349 cpu_base
->nr_hangs
++;
1350 cpu_base
->hang_detected
= 1;
1351 raw_spin_unlock(&cpu_base
->lock
);
1352 delta
= ktime_sub(now
, entry_time
);
1353 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1354 cpu_base
->max_hang_time
= delta
;
1356 * Limit it to a sensible value as we enforce a longer
1357 * delay. Give the CPU at least 100ms to catch up.
1359 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1360 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1362 expires_next
= ktime_add(now
, delta
);
1363 tick_program_event(expires_next
, 1);
1364 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1365 ktime_to_ns(delta
));
1369 * local version of hrtimer_peek_ahead_timers() called with interrupts
1372 static void __hrtimer_peek_ahead_timers(void)
1374 struct tick_device
*td
;
1376 if (!hrtimer_hres_active())
1379 td
= &__get_cpu_var(tick_cpu_device
);
1380 if (td
&& td
->evtdev
)
1381 hrtimer_interrupt(td
->evtdev
);
1385 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1387 * hrtimer_peek_ahead_timers will peek at the timer queue of
1388 * the current cpu and check if there are any timers for which
1389 * the soft expires time has passed. If any such timers exist,
1390 * they are run immediately and then removed from the timer queue.
1393 void hrtimer_peek_ahead_timers(void)
1395 unsigned long flags
;
1397 local_irq_save(flags
);
1398 __hrtimer_peek_ahead_timers();
1399 local_irq_restore(flags
);
1402 static void run_hrtimer_softirq(struct softirq_action
*h
)
1404 hrtimer_peek_ahead_timers();
1407 #else /* CONFIG_HIGH_RES_TIMERS */
1409 static inline void __hrtimer_peek_ahead_timers(void) { }
1411 #endif /* !CONFIG_HIGH_RES_TIMERS */
1414 * Called from timer softirq every jiffy, expire hrtimers:
1416 * For HRT its the fall back code to run the softirq in the timer
1417 * softirq context in case the hrtimer initialization failed or has
1418 * not been done yet.
1420 void hrtimer_run_pending(void)
1422 if (hrtimer_hres_active())
1426 * This _is_ ugly: We have to check in the softirq context,
1427 * whether we can switch to highres and / or nohz mode. The
1428 * clocksource switch happens in the timer interrupt with
1429 * xtime_lock held. Notification from there only sets the
1430 * check bit in the tick_oneshot code, otherwise we might
1431 * deadlock vs. xtime_lock.
1433 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1434 hrtimer_switch_to_hres();
1438 * Called from hardirq context every jiffy
1440 void hrtimer_run_queues(void)
1442 struct timerqueue_node
*node
;
1443 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1444 struct hrtimer_clock_base
*base
;
1445 int index
, gettime
= 1;
1447 if (hrtimer_hres_active())
1450 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1451 base
= &cpu_base
->clock_base
[index
];
1452 if (!timerqueue_getnext(&base
->active
))
1456 hrtimer_get_softirq_time(cpu_base
);
1460 raw_spin_lock(&cpu_base
->lock
);
1462 while ((node
= timerqueue_getnext(&base
->active
))) {
1463 struct hrtimer
*timer
;
1465 timer
= container_of(node
, struct hrtimer
, node
);
1466 if (base
->softirq_time
.tv64
<=
1467 hrtimer_get_expires_tv64(timer
))
1470 __run_hrtimer(timer
, &base
->softirq_time
);
1472 raw_spin_unlock(&cpu_base
->lock
);
1477 * Sleep related functions:
1479 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1481 struct hrtimer_sleeper
*t
=
1482 container_of(timer
, struct hrtimer_sleeper
, timer
);
1483 struct task_struct
*task
= t
->task
;
1487 wake_up_process(task
);
1489 return HRTIMER_NORESTART
;
1492 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1494 sl
->timer
.function
= hrtimer_wakeup
;
1497 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1499 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1501 hrtimer_init_sleeper(t
, current
);
1504 set_current_state(TASK_INTERRUPTIBLE
);
1505 hrtimer_start_expires(&t
->timer
, mode
);
1506 if (!hrtimer_active(&t
->timer
))
1509 if (likely(t
->task
))
1510 freezable_schedule();
1512 hrtimer_cancel(&t
->timer
);
1513 mode
= HRTIMER_MODE_ABS
;
1515 } while (t
->task
&& !signal_pending(current
));
1517 __set_current_state(TASK_RUNNING
);
1519 return t
->task
== NULL
;
1522 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1524 struct timespec rmt
;
1527 rem
= hrtimer_expires_remaining(timer
);
1530 rmt
= ktime_to_timespec(rem
);
1532 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1538 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1540 struct hrtimer_sleeper t
;
1541 struct timespec __user
*rmtp
;
1544 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1546 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1548 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1551 rmtp
= restart
->nanosleep
.rmtp
;
1553 ret
= update_rmtp(&t
.timer
, rmtp
);
1558 /* The other values in restart are already filled in */
1559 ret
= -ERESTART_RESTARTBLOCK
;
1561 destroy_hrtimer_on_stack(&t
.timer
);
1565 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1566 const enum hrtimer_mode mode
, const clockid_t clockid
)
1568 struct restart_block
*restart
;
1569 struct hrtimer_sleeper t
;
1571 unsigned long slack
;
1573 slack
= current
->timer_slack_ns
;
1574 if (dl_task(current
) || rt_task(current
))
1577 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1578 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1579 if (do_nanosleep(&t
, mode
))
1582 /* Absolute timers do not update the rmtp value and restart: */
1583 if (mode
== HRTIMER_MODE_ABS
) {
1584 ret
= -ERESTARTNOHAND
;
1589 ret
= update_rmtp(&t
.timer
, rmtp
);
1594 restart
= ¤t_thread_info()->restart_block
;
1595 restart
->fn
= hrtimer_nanosleep_restart
;
1596 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1597 restart
->nanosleep
.rmtp
= rmtp
;
1598 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1600 ret
= -ERESTART_RESTARTBLOCK
;
1602 destroy_hrtimer_on_stack(&t
.timer
);
1606 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1607 struct timespec __user
*, rmtp
)
1611 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1614 if (!timespec_valid(&tu
))
1617 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1621 * Functions related to boot-time initialization:
1623 static void init_hrtimers_cpu(int cpu
)
1625 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1628 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1629 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1630 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1633 cpu_base
->cpu
= cpu
;
1634 hrtimer_init_hres(cpu_base
);
1637 #ifdef CONFIG_HOTPLUG_CPU
1639 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1640 struct hrtimer_clock_base
*new_base
)
1642 struct hrtimer
*timer
;
1643 struct timerqueue_node
*node
;
1645 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1646 timer
= container_of(node
, struct hrtimer
, node
);
1647 BUG_ON(hrtimer_callback_running(timer
));
1648 debug_deactivate(timer
);
1651 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1652 * timer could be seen as !active and just vanish away
1653 * under us on another CPU
1655 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1656 timer
->base
= new_base
;
1658 * Enqueue the timers on the new cpu. This does not
1659 * reprogram the event device in case the timer
1660 * expires before the earliest on this CPU, but we run
1661 * hrtimer_interrupt after we migrated everything to
1662 * sort out already expired timers and reprogram the
1665 enqueue_hrtimer(timer
, new_base
);
1667 /* Clear the migration state bit */
1668 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1672 static void migrate_hrtimers(int scpu
)
1674 struct hrtimer_cpu_base
*old_base
, *new_base
;
1677 BUG_ON(cpu_online(scpu
));
1678 tick_cancel_sched_timer(scpu
);
1680 local_irq_disable();
1681 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1682 new_base
= &__get_cpu_var(hrtimer_bases
);
1684 * The caller is globally serialized and nobody else
1685 * takes two locks at once, deadlock is not possible.
1687 raw_spin_lock(&new_base
->lock
);
1688 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1690 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1691 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1692 &new_base
->clock_base
[i
]);
1695 raw_spin_unlock(&old_base
->lock
);
1696 raw_spin_unlock(&new_base
->lock
);
1698 /* Check, if we got expired work to do */
1699 __hrtimer_peek_ahead_timers();
1703 #endif /* CONFIG_HOTPLUG_CPU */
1705 static int hrtimer_cpu_notify(struct notifier_block
*self
,
1706 unsigned long action
, void *hcpu
)
1708 int scpu
= (long)hcpu
;
1712 case CPU_UP_PREPARE
:
1713 case CPU_UP_PREPARE_FROZEN
:
1714 init_hrtimers_cpu(scpu
);
1717 #ifdef CONFIG_HOTPLUG_CPU
1719 case CPU_DYING_FROZEN
:
1720 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1723 case CPU_DEAD_FROZEN
:
1725 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1726 migrate_hrtimers(scpu
);
1738 static struct notifier_block hrtimers_nb
= {
1739 .notifier_call
= hrtimer_cpu_notify
,
1742 void __init
hrtimers_init(void)
1744 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1745 (void *)(long)smp_processor_id());
1746 register_cpu_notifier(&hrtimers_nb
);
1747 #ifdef CONFIG_HIGH_RES_TIMERS
1748 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1753 * schedule_hrtimeout_range_clock - sleep until timeout
1754 * @expires: timeout value (ktime_t)
1755 * @delta: slack in expires timeout (ktime_t)
1756 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1757 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1760 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1761 const enum hrtimer_mode mode
, int clock
)
1763 struct hrtimer_sleeper t
;
1766 * Optimize when a zero timeout value is given. It does not
1767 * matter whether this is an absolute or a relative time.
1769 if (expires
&& !expires
->tv64
) {
1770 __set_current_state(TASK_RUNNING
);
1775 * A NULL parameter means "infinite"
1779 __set_current_state(TASK_RUNNING
);
1783 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1784 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1786 hrtimer_init_sleeper(&t
, current
);
1788 hrtimer_start_expires(&t
.timer
, mode
);
1789 if (!hrtimer_active(&t
.timer
))
1795 hrtimer_cancel(&t
.timer
);
1796 destroy_hrtimer_on_stack(&t
.timer
);
1798 __set_current_state(TASK_RUNNING
);
1800 return !t
.task
? 0 : -EINTR
;
1804 * schedule_hrtimeout_range - sleep until timeout
1805 * @expires: timeout value (ktime_t)
1806 * @delta: slack in expires timeout (ktime_t)
1807 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1809 * Make the current task sleep until the given expiry time has
1810 * elapsed. The routine will return immediately unless
1811 * the current task state has been set (see set_current_state()).
1813 * The @delta argument gives the kernel the freedom to schedule the
1814 * actual wakeup to a time that is both power and performance friendly.
1815 * The kernel give the normal best effort behavior for "@expires+@delta",
1816 * but may decide to fire the timer earlier, but no earlier than @expires.
1818 * You can set the task state as follows -
1820 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1821 * pass before the routine returns.
1823 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1824 * delivered to the current task.
1826 * The current task state is guaranteed to be TASK_RUNNING when this
1829 * Returns 0 when the timer has expired otherwise -EINTR
1831 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1832 const enum hrtimer_mode mode
)
1834 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1837 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1840 * schedule_hrtimeout - sleep until timeout
1841 * @expires: timeout value (ktime_t)
1842 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1844 * Make the current task sleep until the given expiry time has
1845 * elapsed. The routine will return immediately unless
1846 * the current task state has been set (see set_current_state()).
1848 * You can set the task state as follows -
1850 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1851 * pass before the routine returns.
1853 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1854 * delivered to the current task.
1856 * The current task state is guaranteed to be TASK_RUNNING when this
1859 * Returns 0 when the timer has expired otherwise -EINTR
1861 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1862 const enum hrtimer_mode mode
)
1864 return schedule_hrtimeout_range(expires
, 0, mode
);
1866 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);