mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
[linux/fpc-iii.git] / arch / arm / common / mcpm_entry.c
bloba923524d1040734d1f5b94b4a6e2f5d59cab99d1
1 /*
2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
4 * Created by: Nicolas Pitre, March 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/irqflags.h>
15 #include <linux/cpu_pm.h>
17 #include <asm/mcpm.h>
18 #include <asm/cacheflush.h>
19 #include <asm/idmap.h>
20 #include <asm/cputype.h>
21 #include <asm/suspend.h>
24 * The public API for this code is documented in arch/arm/include/asm/mcpm.h.
25 * For a comprehensive description of the main algorithm used here, please
26 * see Documentation/arm/cluster-pm-race-avoidance.txt.
29 struct sync_struct mcpm_sync;
32 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
33 * This must be called at the point of committing to teardown of a CPU.
34 * The CPU cache (SCTRL.C bit) is expected to still be active.
36 static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
38 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
39 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
43 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
44 * cluster can be torn down without disrupting this CPU.
45 * To avoid deadlocks, this must be called before a CPU is powered down.
46 * The CPU cache (SCTRL.C bit) is expected to be off.
47 * However L2 cache might or might not be active.
49 static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
51 dmb();
52 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
53 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
54 sev();
58 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
59 * @state: the final state of the cluster:
60 * CLUSTER_UP: no destructive teardown was done and the cluster has been
61 * restored to the previous state (CPU cache still active); or
62 * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
63 * (CPU cache disabled, L2 cache either enabled or disabled).
65 static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
67 dmb();
68 mcpm_sync.clusters[cluster].cluster = state;
69 sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
70 sev();
74 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
75 * This function should be called by the last man, after local CPU teardown
76 * is complete. CPU cache expected to be active.
78 * Returns:
79 * false: the critical section was not entered because an inbound CPU was
80 * observed, or the cluster is already being set up;
81 * true: the critical section was entered: it is now safe to tear down the
82 * cluster.
84 static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
86 unsigned int i;
87 struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
89 /* Warn inbound CPUs that the cluster is being torn down: */
90 c->cluster = CLUSTER_GOING_DOWN;
91 sync_cache_w(&c->cluster);
93 /* Back out if the inbound cluster is already in the critical region: */
94 sync_cache_r(&c->inbound);
95 if (c->inbound == INBOUND_COMING_UP)
96 goto abort;
99 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
100 * teardown is complete on each CPU before tearing down the cluster.
102 * If any CPU has been woken up again from the DOWN state, then we
103 * shouldn't be taking the cluster down at all: abort in that case.
105 sync_cache_r(&c->cpus);
106 for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
107 int cpustate;
109 if (i == cpu)
110 continue;
112 while (1) {
113 cpustate = c->cpus[i].cpu;
114 if (cpustate != CPU_GOING_DOWN)
115 break;
117 wfe();
118 sync_cache_r(&c->cpus[i].cpu);
121 switch (cpustate) {
122 case CPU_DOWN:
123 continue;
125 default:
126 goto abort;
130 return true;
132 abort:
133 __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
134 return false;
137 static int __mcpm_cluster_state(unsigned int cluster)
139 sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
140 return mcpm_sync.clusters[cluster].cluster;
143 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
145 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
147 unsigned long val = ptr ? virt_to_phys(ptr) : 0;
148 mcpm_entry_vectors[cluster][cpu] = val;
149 sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
152 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
154 void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
155 unsigned long poke_phys_addr, unsigned long poke_val)
157 unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
158 poke[0] = poke_phys_addr;
159 poke[1] = poke_val;
160 __sync_cache_range_w(poke, 2 * sizeof(*poke));
163 static const struct mcpm_platform_ops *platform_ops;
165 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
167 if (platform_ops)
168 return -EBUSY;
169 platform_ops = ops;
170 return 0;
173 bool mcpm_is_available(void)
175 return (platform_ops) ? true : false;
179 * We can't use regular spinlocks. In the switcher case, it is possible
180 * for an outbound CPU to call power_down() after its inbound counterpart
181 * is already live using the same logical CPU number which trips lockdep
182 * debugging.
184 static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
186 static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
188 static inline bool mcpm_cluster_unused(unsigned int cluster)
190 int i, cnt;
191 for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
192 cnt |= mcpm_cpu_use_count[cluster][i];
193 return !cnt;
196 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
198 bool cpu_is_down, cluster_is_down;
199 int ret = 0;
201 pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
202 if (!platform_ops)
203 return -EUNATCH; /* try not to shadow power_up errors */
204 might_sleep();
207 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
208 * variant exists, we need to disable IRQs manually here.
210 local_irq_disable();
211 arch_spin_lock(&mcpm_lock);
213 cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
214 cluster_is_down = mcpm_cluster_unused(cluster);
216 mcpm_cpu_use_count[cluster][cpu]++;
218 * The only possible values are:
219 * 0 = CPU down
220 * 1 = CPU (still) up
221 * 2 = CPU requested to be up before it had a chance
222 * to actually make itself down.
223 * Any other value is a bug.
225 BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
226 mcpm_cpu_use_count[cluster][cpu] != 2);
228 if (cluster_is_down)
229 ret = platform_ops->cluster_powerup(cluster);
230 if (cpu_is_down && !ret)
231 ret = platform_ops->cpu_powerup(cpu, cluster);
233 arch_spin_unlock(&mcpm_lock);
234 local_irq_enable();
235 return ret;
238 typedef void (*phys_reset_t)(unsigned long);
240 void mcpm_cpu_power_down(void)
242 unsigned int mpidr, cpu, cluster;
243 bool cpu_going_down, last_man;
244 phys_reset_t phys_reset;
246 mpidr = read_cpuid_mpidr();
247 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
248 cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
249 pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
250 if (WARN_ON_ONCE(!platform_ops))
251 return;
252 BUG_ON(!irqs_disabled());
254 setup_mm_for_reboot();
256 __mcpm_cpu_going_down(cpu, cluster);
257 arch_spin_lock(&mcpm_lock);
258 BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
260 mcpm_cpu_use_count[cluster][cpu]--;
261 BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
262 mcpm_cpu_use_count[cluster][cpu] != 1);
263 cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
264 last_man = mcpm_cluster_unused(cluster);
266 if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
267 platform_ops->cpu_powerdown_prepare(cpu, cluster);
268 platform_ops->cluster_powerdown_prepare(cluster);
269 arch_spin_unlock(&mcpm_lock);
270 platform_ops->cluster_cache_disable();
271 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
272 } else {
273 if (cpu_going_down)
274 platform_ops->cpu_powerdown_prepare(cpu, cluster);
275 arch_spin_unlock(&mcpm_lock);
277 * If cpu_going_down is false here, that means a power_up
278 * request raced ahead of us. Even if we do not want to
279 * shut this CPU down, the caller still expects execution
280 * to return through the system resume entry path, like
281 * when the WFI is aborted due to a new IRQ or the like..
282 * So let's continue with cache cleaning in all cases.
284 platform_ops->cpu_cache_disable();
287 __mcpm_cpu_down(cpu, cluster);
289 /* Now we are prepared for power-down, do it: */
290 if (cpu_going_down)
291 wfi();
294 * It is possible for a power_up request to happen concurrently
295 * with a power_down request for the same CPU. In this case the
296 * CPU might not be able to actually enter a powered down state
297 * with the WFI instruction if the power_up request has removed
298 * the required reset condition. We must perform a re-entry in
299 * the kernel as if the power_up method just had deasserted reset
300 * on the CPU.
302 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
303 phys_reset(virt_to_phys(mcpm_entry_point));
305 /* should never get here */
306 BUG();
309 int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
311 int ret;
313 if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
314 return -EUNATCH;
316 ret = platform_ops->wait_for_powerdown(cpu, cluster);
317 if (ret)
318 pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
319 __func__, cpu, cluster, ret);
321 return ret;
324 void mcpm_cpu_suspend(void)
326 if (WARN_ON_ONCE(!platform_ops))
327 return;
329 /* Some platforms might have to enable special resume modes, etc. */
330 if (platform_ops->cpu_suspend_prepare) {
331 unsigned int mpidr = read_cpuid_mpidr();
332 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
333 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
334 arch_spin_lock(&mcpm_lock);
335 platform_ops->cpu_suspend_prepare(cpu, cluster);
336 arch_spin_unlock(&mcpm_lock);
338 mcpm_cpu_power_down();
341 int mcpm_cpu_powered_up(void)
343 unsigned int mpidr, cpu, cluster;
344 bool cpu_was_down, first_man;
345 unsigned long flags;
347 if (!platform_ops)
348 return -EUNATCH;
350 mpidr = read_cpuid_mpidr();
351 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
352 cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
353 local_irq_save(flags);
354 arch_spin_lock(&mcpm_lock);
356 cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
357 first_man = mcpm_cluster_unused(cluster);
359 if (first_man && platform_ops->cluster_is_up)
360 platform_ops->cluster_is_up(cluster);
361 if (cpu_was_down)
362 mcpm_cpu_use_count[cluster][cpu] = 1;
363 if (platform_ops->cpu_is_up)
364 platform_ops->cpu_is_up(cpu, cluster);
366 arch_spin_unlock(&mcpm_lock);
367 local_irq_restore(flags);
369 return 0;
372 #ifdef CONFIG_ARM_CPU_SUSPEND
374 static int __init nocache_trampoline(unsigned long _arg)
376 void (*cache_disable)(void) = (void *)_arg;
377 unsigned int mpidr = read_cpuid_mpidr();
378 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
379 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
380 phys_reset_t phys_reset;
382 mcpm_set_entry_vector(cpu, cluster, cpu_resume);
383 setup_mm_for_reboot();
385 __mcpm_cpu_going_down(cpu, cluster);
386 BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
387 cache_disable();
388 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
389 __mcpm_cpu_down(cpu, cluster);
391 phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
392 phys_reset(virt_to_phys(mcpm_entry_point));
393 BUG();
396 int __init mcpm_loopback(void (*cache_disable)(void))
398 int ret;
401 * We're going to soft-restart the current CPU through the
402 * low-level MCPM code by leveraging the suspend/resume
403 * infrastructure. Let's play it safe by using cpu_pm_enter()
404 * in case the CPU init code path resets the VFP or similar.
406 local_irq_disable();
407 local_fiq_disable();
408 ret = cpu_pm_enter();
409 if (!ret) {
410 ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
411 cpu_pm_exit();
413 local_fiq_enable();
414 local_irq_enable();
415 if (ret)
416 pr_err("%s returned %d\n", __func__, ret);
417 return ret;
420 #endif
422 extern unsigned long mcpm_power_up_setup_phys;
424 int __init mcpm_sync_init(
425 void (*power_up_setup)(unsigned int affinity_level))
427 unsigned int i, j, mpidr, this_cluster;
429 BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
430 BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
433 * Set initial CPU and cluster states.
434 * Only one cluster is assumed to be active at this point.
436 for (i = 0; i < MAX_NR_CLUSTERS; i++) {
437 mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
438 mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
439 for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
440 mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
442 mpidr = read_cpuid_mpidr();
443 this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
444 for_each_online_cpu(i) {
445 mcpm_cpu_use_count[this_cluster][i] = 1;
446 mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
448 mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
449 sync_cache_w(&mcpm_sync);
451 if (power_up_setup) {
452 mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
453 sync_cache_w(&mcpm_power_up_setup_phys);
456 return 0;