mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
[linux/fpc-iii.git] / arch / ia64 / kernel / perfmon.c
blob60e02f7747ff054e4edcce16daa454df8224ed84
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
49 #include <asm/page.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
56 #ifdef CONFIG_PERFMON
58 * perfmon context state
60 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
61 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
62 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
65 #define PFM_INVALID_ACTIVATION (~0UL)
67 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71 * depth of message queue
73 #define PFM_MAX_MSGS 32
74 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77 * type of a PMU register (bitmask).
78 * bitmask structure:
79 * bit0 : register implemented
80 * bit1 : end marker
81 * bit2-3 : reserved
82 * bit4 : pmc has pmc.pm
83 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * bit6-7 : register type
85 * bit8-31: reserved
87 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
88 #define PFM_REG_IMPL 0x1 /* register implemented */
89 #define PFM_REG_END 0x2 /* end marker */
90 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
96 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
99 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
111 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
116 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
119 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h) (h)->ctx_task
123 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
131 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR 0 /* requesting code range restriction */
135 #define PFM_DATA_RR 1 /* requestion data range restriction */
137 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
141 #define RDEP(x) (1UL<<(x))
144 * context protection macros
145 * in SMP:
146 * - we need to protect against CPU concurrency (spin_lock)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
148 * in UP:
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * in SMP: local_irq_disable + spin_lock
153 * in UP : local_irq_disable
155 * spin_lock()/spin_lock():
156 * in UP : removed automatically
157 * in SMP: protect against context accesses from other CPU. interrupts
158 * are not masked. This is useful for the PMU interrupt handler
159 * because we know we will not get PMU concurrency in that code.
161 #define PROTECT_CTX(c, f) \
162 do { \
163 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 spin_lock_irqsave(&(c)->ctx_lock, f); \
165 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
166 } while(0)
168 #define UNPROTECT_CTX(c, f) \
169 do { \
170 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 } while(0)
174 #define PROTECT_CTX_NOPRINT(c, f) \
175 do { \
176 spin_lock_irqsave(&(c)->ctx_lock, f); \
177 } while(0)
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 do { \
182 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 } while(0)
186 #define PROTECT_CTX_NOIRQ(c) \
187 do { \
188 spin_lock(&(c)->ctx_lock); \
189 } while(0)
191 #define UNPROTECT_CTX_NOIRQ(c) \
192 do { \
193 spin_unlock(&(c)->ctx_lock); \
194 } while(0)
197 #ifdef CONFIG_SMP
199 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) do {} while(0)
205 #define GET_ACTIVATION(t) do {} while(0)
206 #define INC_ACTIVATION(t) do {} while(0)
207 #endif /* CONFIG_SMP */
209 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
213 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
216 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219 * cmp0 must be the value of pmc0
221 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
223 #define PFMFS_MAGIC 0xa0b4d889
226 * debugging
228 #define PFM_DEBUGGING 1
229 #ifdef PFM_DEBUGGING
230 #define DPRINT(a) \
231 do { \
232 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 } while (0)
235 #define DPRINT_ovfl(a) \
236 do { \
237 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 } while (0)
239 #endif
242 * 64-bit software counter structure
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
246 typedef struct {
247 unsigned long val; /* virtual 64bit counter value */
248 unsigned long lval; /* last reset value */
249 unsigned long long_reset; /* reset value on sampling overflow */
250 unsigned long short_reset; /* reset value on overflow */
251 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
252 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
253 unsigned long seed; /* seed for random-number generator */
254 unsigned long mask; /* mask for random-number generator */
255 unsigned int flags; /* notify/do not notify */
256 unsigned long eventid; /* overflow event identifier */
257 } pfm_counter_t;
260 * context flags
262 typedef struct {
263 unsigned int block:1; /* when 1, task will blocked on user notifications */
264 unsigned int system:1; /* do system wide monitoring */
265 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
266 unsigned int is_sampling:1; /* true if using a custom format */
267 unsigned int excl_idle:1; /* exclude idle task in system wide session */
268 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
269 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
270 unsigned int no_msg:1; /* no message sent on overflow */
271 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
272 unsigned int reserved:22;
273 } pfm_context_flags_t;
275 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
276 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
281 * perfmon context: encapsulates all the state of a monitoring session
284 typedef struct pfm_context {
285 spinlock_t ctx_lock; /* context protection */
287 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
288 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
290 struct task_struct *ctx_task; /* task to which context is attached */
292 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
294 struct completion ctx_restart_done; /* use for blocking notification mode */
296 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
297 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
298 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
300 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
301 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
302 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
304 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
306 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
307 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
308 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
309 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
311 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
313 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
314 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
316 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
318 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
319 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
320 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
322 int ctx_fd; /* file descriptor used my this context */
323 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
325 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
326 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
327 unsigned long ctx_smpl_size; /* size of sampling buffer */
328 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
330 wait_queue_head_t ctx_msgq_wait;
331 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
332 int ctx_msgq_head;
333 int ctx_msgq_tail;
334 struct fasync_struct *ctx_async_queue;
336 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
337 } pfm_context_t;
340 * magic number used to verify that structure is really
341 * a perfmon context
343 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
345 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
347 #ifdef CONFIG_SMP
348 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
350 #else
351 #define SET_LAST_CPU(ctx, v) do {} while(0)
352 #define GET_LAST_CPU(ctx) do {} while(0)
353 #endif
356 #define ctx_fl_block ctx_flags.block
357 #define ctx_fl_system ctx_flags.system
358 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling ctx_flags.is_sampling
360 #define ctx_fl_excl_idle ctx_flags.excl_idle
361 #define ctx_fl_going_zombie ctx_flags.going_zombie
362 #define ctx_fl_trap_reason ctx_flags.trap_reason
363 #define ctx_fl_no_msg ctx_flags.no_msg
364 #define ctx_fl_can_restart ctx_flags.can_restart
366 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
373 typedef struct {
374 spinlock_t pfs_lock; /* lock the structure */
376 unsigned int pfs_task_sessions; /* number of per task sessions */
377 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
378 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
379 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
380 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381 } pfm_session_t;
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
388 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389 typedef struct {
390 unsigned int type;
391 int pm_pos;
392 unsigned long default_value; /* power-on default value */
393 unsigned long reserved_mask; /* bitmask of reserved bits */
394 pfm_reg_check_t read_check;
395 pfm_reg_check_t write_check;
396 unsigned long dep_pmd[4];
397 unsigned long dep_pmc[4];
398 } pfm_reg_desc_t;
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * - 0 means recognized PMU
410 * - anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * - cpu->family & config->pmu_family != 0
415 typedef struct {
416 unsigned long ovfl_val; /* overflow value for counters */
418 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
419 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
421 unsigned int num_pmcs; /* number of PMCS: computed at init time */
422 unsigned int num_pmds; /* number of PMDS: computed at init time */
423 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
424 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
426 char *pmu_name; /* PMU family name */
427 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
428 unsigned int flags; /* pmu specific flags */
429 unsigned int num_ibrs; /* number of IBRS: computed at init time */
430 unsigned int num_dbrs; /* number of DBRS: computed at init time */
431 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
432 int (*probe)(void); /* customized probe routine */
433 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
434 } pmu_config_t;
436 * PMU specific flags
438 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441 * debug register related type definitions
443 typedef struct {
444 unsigned long ibr_mask:56;
445 unsigned long ibr_plm:4;
446 unsigned long ibr_ig:3;
447 unsigned long ibr_x:1;
448 } ibr_mask_reg_t;
450 typedef struct {
451 unsigned long dbr_mask:56;
452 unsigned long dbr_plm:4;
453 unsigned long dbr_ig:2;
454 unsigned long dbr_w:1;
455 unsigned long dbr_r:1;
456 } dbr_mask_reg_t;
458 typedef union {
459 unsigned long val;
460 ibr_mask_reg_t ibr;
461 dbr_mask_reg_t dbr;
462 } dbreg_t;
466 * perfmon command descriptions
468 typedef struct {
469 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 char *cmd_name;
471 int cmd_flags;
472 unsigned int cmd_narg;
473 size_t cmd_argsize;
474 int (*cmd_getsize)(void *arg, size_t *sz);
475 } pfm_cmd_desc_t;
477 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
479 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
480 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
489 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
491 typedef struct {
492 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
493 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
494 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
498 unsigned long pfm_smpl_handler_calls;
499 unsigned long pfm_smpl_handler_cycles;
500 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501 } pfm_stats_t;
504 * perfmon internal variables
506 static pfm_stats_t pfm_stats[NR_CPUS];
507 static pfm_session_t pfm_sessions; /* global sessions information */
509 static DEFINE_SPINLOCK(pfm_alt_install_check);
510 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
512 static struct proc_dir_entry *perfmon_dir;
513 static pfm_uuid_t pfm_null_uuid = {0,};
515 static spinlock_t pfm_buffer_fmt_lock;
516 static LIST_HEAD(pfm_buffer_fmt_list);
518 static pmu_config_t *pmu_conf;
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl;
522 EXPORT_SYMBOL(pfm_sysctl);
524 static struct ctl_table pfm_ctl_table[] = {
526 .procname = "debug",
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
529 .mode = 0666,
530 .proc_handler = proc_dointvec,
533 .procname = "debug_ovfl",
534 .data = &pfm_sysctl.debug_ovfl,
535 .maxlen = sizeof(int),
536 .mode = 0666,
537 .proc_handler = proc_dointvec,
540 .procname = "fastctxsw",
541 .data = &pfm_sysctl.fastctxsw,
542 .maxlen = sizeof(int),
543 .mode = 0600,
544 .proc_handler = proc_dointvec,
547 .procname = "expert_mode",
548 .data = &pfm_sysctl.expert_mode,
549 .maxlen = sizeof(int),
550 .mode = 0600,
551 .proc_handler = proc_dointvec,
555 static struct ctl_table pfm_sysctl_dir[] = {
557 .procname = "perfmon",
558 .mode = 0555,
559 .child = pfm_ctl_table,
563 static struct ctl_table pfm_sysctl_root[] = {
565 .procname = "kernel",
566 .mode = 0555,
567 .child = pfm_sysctl_dir,
571 static struct ctl_table_header *pfm_sysctl_header;
573 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
575 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
578 static inline void
579 pfm_put_task(struct task_struct *task)
581 if (task != current) put_task_struct(task);
584 static inline void
585 pfm_reserve_page(unsigned long a)
587 SetPageReserved(vmalloc_to_page((void *)a));
589 static inline void
590 pfm_unreserve_page(unsigned long a)
592 ClearPageReserved(vmalloc_to_page((void*)a));
595 static inline unsigned long
596 pfm_protect_ctx_ctxsw(pfm_context_t *x)
598 spin_lock(&(x)->ctx_lock);
599 return 0UL;
602 static inline void
603 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
605 spin_unlock(&(x)->ctx_lock);
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations;
611 static struct dentry *
612 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
614 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615 PFMFS_MAGIC);
618 static struct file_system_type pfm_fs_type = {
619 .name = "pfmfs",
620 .mount = pfmfs_mount,
621 .kill_sb = kill_anon_super,
623 MODULE_ALIAS_FS("pfmfs");
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops;
636 * forward declarations
638 #ifndef CONFIG_SMP
639 static void pfm_lazy_save_regs (struct task_struct *ta);
640 #endif
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
650 static pmu_config_t *pmu_confs[]={
651 &pmu_conf_mont,
652 &pmu_conf_mck,
653 &pmu_conf_ita,
654 &pmu_conf_gen, /* must be last */
655 NULL
659 static int pfm_end_notify_user(pfm_context_t *ctx);
661 static inline void
662 pfm_clear_psr_pp(void)
664 ia64_rsm(IA64_PSR_PP);
665 ia64_srlz_i();
668 static inline void
669 pfm_set_psr_pp(void)
671 ia64_ssm(IA64_PSR_PP);
672 ia64_srlz_i();
675 static inline void
676 pfm_clear_psr_up(void)
678 ia64_rsm(IA64_PSR_UP);
679 ia64_srlz_i();
682 static inline void
683 pfm_set_psr_up(void)
685 ia64_ssm(IA64_PSR_UP);
686 ia64_srlz_i();
689 static inline unsigned long
690 pfm_get_psr(void)
692 unsigned long tmp;
693 tmp = ia64_getreg(_IA64_REG_PSR);
694 ia64_srlz_i();
695 return tmp;
698 static inline void
699 pfm_set_psr_l(unsigned long val)
701 ia64_setreg(_IA64_REG_PSR_L, val);
702 ia64_srlz_i();
705 static inline void
706 pfm_freeze_pmu(void)
708 ia64_set_pmc(0,1UL);
709 ia64_srlz_d();
712 static inline void
713 pfm_unfreeze_pmu(void)
715 ia64_set_pmc(0,0UL);
716 ia64_srlz_d();
719 static inline void
720 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
722 int i;
724 for (i=0; i < nibrs; i++) {
725 ia64_set_ibr(i, ibrs[i]);
726 ia64_dv_serialize_instruction();
728 ia64_srlz_i();
731 static inline void
732 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
734 int i;
736 for (i=0; i < ndbrs; i++) {
737 ia64_set_dbr(i, dbrs[i]);
738 ia64_dv_serialize_data();
740 ia64_srlz_d();
744 * PMD[i] must be a counter. no check is made
746 static inline unsigned long
747 pfm_read_soft_counter(pfm_context_t *ctx, int i)
749 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
753 * PMD[i] must be a counter. no check is made
755 static inline void
756 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
758 unsigned long ovfl_val = pmu_conf->ovfl_val;
760 ctx->ctx_pmds[i].val = val & ~ovfl_val;
762 * writing to unimplemented part is ignore, so we do not need to
763 * mask off top part
765 ia64_set_pmd(i, val & ovfl_val);
768 static pfm_msg_t *
769 pfm_get_new_msg(pfm_context_t *ctx)
771 int idx, next;
773 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
775 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776 if (next == ctx->ctx_msgq_head) return NULL;
778 idx = ctx->ctx_msgq_tail;
779 ctx->ctx_msgq_tail = next;
781 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
783 return ctx->ctx_msgq+idx;
786 static pfm_msg_t *
787 pfm_get_next_msg(pfm_context_t *ctx)
789 pfm_msg_t *msg;
791 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
793 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
796 * get oldest message
798 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
801 * and move forward
803 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
805 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
807 return msg;
810 static void
811 pfm_reset_msgq(pfm_context_t *ctx)
813 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814 DPRINT(("ctx=%p msgq reset\n", ctx));
817 static void *
818 pfm_rvmalloc(unsigned long size)
820 void *mem;
821 unsigned long addr;
823 size = PAGE_ALIGN(size);
824 mem = vzalloc(size);
825 if (mem) {
826 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 addr = (unsigned long)mem;
828 while (size > 0) {
829 pfm_reserve_page(addr);
830 addr+=PAGE_SIZE;
831 size-=PAGE_SIZE;
834 return mem;
837 static void
838 pfm_rvfree(void *mem, unsigned long size)
840 unsigned long addr;
842 if (mem) {
843 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844 addr = (unsigned long) mem;
845 while ((long) size > 0) {
846 pfm_unreserve_page(addr);
847 addr+=PAGE_SIZE;
848 size-=PAGE_SIZE;
850 vfree(mem);
852 return;
855 static pfm_context_t *
856 pfm_context_alloc(int ctx_flags)
858 pfm_context_t *ctx;
861 * allocate context descriptor
862 * must be able to free with interrupts disabled
864 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865 if (ctx) {
866 DPRINT(("alloc ctx @%p\n", ctx));
869 * init context protection lock
871 spin_lock_init(&ctx->ctx_lock);
874 * context is unloaded
876 ctx->ctx_state = PFM_CTX_UNLOADED;
879 * initialization of context's flags
881 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
885 * will move to set properties
886 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
890 * init restart semaphore to locked
892 init_completion(&ctx->ctx_restart_done);
895 * activation is used in SMP only
897 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898 SET_LAST_CPU(ctx, -1);
901 * initialize notification message queue
903 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904 init_waitqueue_head(&ctx->ctx_msgq_wait);
905 init_waitqueue_head(&ctx->ctx_zombieq);
908 return ctx;
911 static void
912 pfm_context_free(pfm_context_t *ctx)
914 if (ctx) {
915 DPRINT(("free ctx @%p\n", ctx));
916 kfree(ctx);
920 static void
921 pfm_mask_monitoring(struct task_struct *task)
923 pfm_context_t *ctx = PFM_GET_CTX(task);
924 unsigned long mask, val, ovfl_mask;
925 int i;
927 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
929 ovfl_mask = pmu_conf->ovfl_val;
931 * monitoring can only be masked as a result of a valid
932 * counter overflow. In UP, it means that the PMU still
933 * has an owner. Note that the owner can be different
934 * from the current task. However the PMU state belongs
935 * to the owner.
936 * In SMP, a valid overflow only happens when task is
937 * current. Therefore if we come here, we know that
938 * the PMU state belongs to the current task, therefore
939 * we can access the live registers.
941 * So in both cases, the live register contains the owner's
942 * state. We can ONLY touch the PMU registers and NOT the PSR.
944 * As a consequence to this call, the ctx->th_pmds[] array
945 * contains stale information which must be ignored
946 * when context is reloaded AND monitoring is active (see
947 * pfm_restart).
949 mask = ctx->ctx_used_pmds[0];
950 for (i = 0; mask; i++, mask>>=1) {
951 /* skip non used pmds */
952 if ((mask & 0x1) == 0) continue;
953 val = ia64_get_pmd(i);
955 if (PMD_IS_COUNTING(i)) {
957 * we rebuild the full 64 bit value of the counter
959 ctx->ctx_pmds[i].val += (val & ovfl_mask);
960 } else {
961 ctx->ctx_pmds[i].val = val;
963 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
965 ctx->ctx_pmds[i].val,
966 val & ovfl_mask));
969 * mask monitoring by setting the privilege level to 0
970 * we cannot use psr.pp/psr.up for this, it is controlled by
971 * the user
973 * if task is current, modify actual registers, otherwise modify
974 * thread save state, i.e., what will be restored in pfm_load_regs()
976 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978 if ((mask & 0x1) == 0UL) continue;
979 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980 ctx->th_pmcs[i] &= ~0xfUL;
981 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
984 * make all of this visible
986 ia64_srlz_d();
990 * must always be done with task == current
992 * context must be in MASKED state when calling
994 static void
995 pfm_restore_monitoring(struct task_struct *task)
997 pfm_context_t *ctx = PFM_GET_CTX(task);
998 unsigned long mask, ovfl_mask;
999 unsigned long psr, val;
1000 int i, is_system;
1002 is_system = ctx->ctx_fl_system;
1003 ovfl_mask = pmu_conf->ovfl_val;
1005 if (task != current) {
1006 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007 return;
1009 if (ctx->ctx_state != PFM_CTX_MASKED) {
1010 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012 return;
1014 psr = pfm_get_psr();
1016 * monitoring is masked via the PMC.
1017 * As we restore their value, we do not want each counter to
1018 * restart right away. We stop monitoring using the PSR,
1019 * restore the PMC (and PMD) and then re-establish the psr
1020 * as it was. Note that there can be no pending overflow at
1021 * this point, because monitoring was MASKED.
1023 * system-wide session are pinned and self-monitoring
1025 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 /* disable dcr pp */
1027 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028 pfm_clear_psr_pp();
1029 } else {
1030 pfm_clear_psr_up();
1033 * first, we restore the PMD
1035 mask = ctx->ctx_used_pmds[0];
1036 for (i = 0; mask; i++, mask>>=1) {
1037 /* skip non used pmds */
1038 if ((mask & 0x1) == 0) continue;
1040 if (PMD_IS_COUNTING(i)) {
1042 * we split the 64bit value according to
1043 * counter width
1045 val = ctx->ctx_pmds[i].val & ovfl_mask;
1046 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047 } else {
1048 val = ctx->ctx_pmds[i].val;
1050 ia64_set_pmd(i, val);
1052 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1054 ctx->ctx_pmds[i].val,
1055 val));
1058 * restore the PMCs
1060 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062 if ((mask & 0x1) == 0UL) continue;
1063 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064 ia64_set_pmc(i, ctx->th_pmcs[i]);
1065 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 task_pid_nr(task), i, ctx->th_pmcs[i]));
1068 ia64_srlz_d();
1071 * must restore DBR/IBR because could be modified while masked
1072 * XXX: need to optimize
1074 if (ctx->ctx_fl_using_dbreg) {
1075 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1080 * now restore PSR
1082 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083 /* enable dcr pp */
1084 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085 ia64_srlz_i();
1087 pfm_set_psr_l(psr);
1090 static inline void
1091 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1093 int i;
1095 ia64_srlz_d();
1097 for (i=0; mask; i++, mask>>=1) {
1098 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1103 * reload from thread state (used for ctxw only)
1105 static inline void
1106 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1108 int i;
1109 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1111 for (i=0; mask; i++, mask>>=1) {
1112 if ((mask & 0x1) == 0) continue;
1113 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114 ia64_set_pmd(i, val);
1116 ia64_srlz_d();
1120 * propagate PMD from context to thread-state
1122 static inline void
1123 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1125 unsigned long ovfl_val = pmu_conf->ovfl_val;
1126 unsigned long mask = ctx->ctx_all_pmds[0];
1127 unsigned long val;
1128 int i;
1130 DPRINT(("mask=0x%lx\n", mask));
1132 for (i=0; mask; i++, mask>>=1) {
1134 val = ctx->ctx_pmds[i].val;
1137 * We break up the 64 bit value into 2 pieces
1138 * the lower bits go to the machine state in the
1139 * thread (will be reloaded on ctxsw in).
1140 * The upper part stays in the soft-counter.
1142 if (PMD_IS_COUNTING(i)) {
1143 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144 val &= ovfl_val;
1146 ctx->th_pmds[i] = val;
1148 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1150 ctx->th_pmds[i],
1151 ctx->ctx_pmds[i].val));
1156 * propagate PMC from context to thread-state
1158 static inline void
1159 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1161 unsigned long mask = ctx->ctx_all_pmcs[0];
1162 int i;
1164 DPRINT(("mask=0x%lx\n", mask));
1166 for (i=0; mask; i++, mask>>=1) {
1167 /* masking 0 with ovfl_val yields 0 */
1168 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1175 static inline void
1176 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1178 int i;
1180 for (i=0; mask; i++, mask>>=1) {
1181 if ((mask & 0x1) == 0) continue;
1182 ia64_set_pmc(i, pmcs[i]);
1184 ia64_srlz_d();
1187 static inline int
1188 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1190 return memcmp(a, b, sizeof(pfm_uuid_t));
1193 static inline int
1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1196 int ret = 0;
1197 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198 return ret;
1201 static inline int
1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1204 int ret = 0;
1205 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206 return ret;
1210 static inline int
1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212 int cpu, void *arg)
1214 int ret = 0;
1215 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216 return ret;
1219 static inline int
1220 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221 int cpu, void *arg)
1223 int ret = 0;
1224 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225 return ret;
1228 static inline int
1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1231 int ret = 0;
1232 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233 return ret;
1236 static inline int
1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1239 int ret = 0;
1240 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241 return ret;
1244 static pfm_buffer_fmt_t *
1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1247 struct list_head * pos;
1248 pfm_buffer_fmt_t * entry;
1250 list_for_each(pos, &pfm_buffer_fmt_list) {
1251 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253 return entry;
1255 return NULL;
1259 * find a buffer format based on its uuid
1261 static pfm_buffer_fmt_t *
1262 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1264 pfm_buffer_fmt_t * fmt;
1265 spin_lock(&pfm_buffer_fmt_lock);
1266 fmt = __pfm_find_buffer_fmt(uuid);
1267 spin_unlock(&pfm_buffer_fmt_lock);
1268 return fmt;
1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1274 int ret = 0;
1276 /* some sanity checks */
1277 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1279 /* we need at least a handler */
1280 if (fmt->fmt_handler == NULL) return -EINVAL;
1283 * XXX: need check validity of fmt_arg_size
1286 spin_lock(&pfm_buffer_fmt_lock);
1288 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290 ret = -EBUSY;
1291 goto out;
1293 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1296 out:
1297 spin_unlock(&pfm_buffer_fmt_lock);
1298 return ret;
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1305 pfm_buffer_fmt_t *fmt;
1306 int ret = 0;
1308 spin_lock(&pfm_buffer_fmt_lock);
1310 fmt = __pfm_find_buffer_fmt(uuid);
1311 if (!fmt) {
1312 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313 ret = -EINVAL;
1314 goto out;
1316 list_del_init(&fmt->fmt_list);
1317 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1319 out:
1320 spin_unlock(&pfm_buffer_fmt_lock);
1321 return ret;
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1326 static int
1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1329 unsigned long flags;
1331 * validity checks on cpu_mask have been done upstream
1333 LOCK_PFS(flags);
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions.pfs_sys_sessions,
1337 pfm_sessions.pfs_task_sessions,
1338 pfm_sessions.pfs_sys_use_dbregs,
1339 is_syswide,
1340 cpu));
1342 if (is_syswide) {
1344 * cannot mix system wide and per-task sessions
1346 if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions.pfs_task_sessions));
1349 goto abort;
1352 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1356 pfm_sessions.pfs_sys_session[cpu] = task;
1358 pfm_sessions.pfs_sys_sessions++ ;
1360 } else {
1361 if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 pfm_sessions.pfs_task_sessions++;
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions.pfs_sys_sessions,
1367 pfm_sessions.pfs_task_sessions,
1368 pfm_sessions.pfs_sys_use_dbregs,
1369 is_syswide,
1370 cpu));
1373 * Force idle() into poll mode
1375 cpu_idle_poll_ctrl(true);
1377 UNLOCK_PFS(flags);
1379 return 0;
1381 error_conflict:
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 cpu));
1385 abort:
1386 UNLOCK_PFS(flags);
1388 return -EBUSY;
1392 static int
1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1395 unsigned long flags;
1397 * validity checks on cpu_mask have been done upstream
1399 LOCK_PFS(flags);
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions.pfs_sys_sessions,
1403 pfm_sessions.pfs_task_sessions,
1404 pfm_sessions.pfs_sys_use_dbregs,
1405 is_syswide,
1406 cpu));
1409 if (is_syswide) {
1410 pfm_sessions.pfs_sys_session[cpu] = NULL;
1412 * would not work with perfmon+more than one bit in cpu_mask
1414 if (ctx && ctx->ctx_fl_using_dbreg) {
1415 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 } else {
1418 pfm_sessions.pfs_sys_use_dbregs--;
1421 pfm_sessions.pfs_sys_sessions--;
1422 } else {
1423 pfm_sessions.pfs_task_sessions--;
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions.pfs_sys_sessions,
1427 pfm_sessions.pfs_task_sessions,
1428 pfm_sessions.pfs_sys_use_dbregs,
1429 is_syswide,
1430 cpu));
1432 /* Undo forced polling. Last session reenables pal_halt */
1433 cpu_idle_poll_ctrl(false);
1435 UNLOCK_PFS(flags);
1437 return 0;
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1445 static int
1446 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1448 struct task_struct *task = current;
1449 int r;
1451 /* sanity checks */
1452 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454 return -EINVAL;
1457 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460 * does the actual unmapping
1462 r = vm_munmap((unsigned long)vaddr, size);
1464 if (r !=0) {
1465 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1470 return 0;
1474 * free actual physical storage used by sampling buffer
1476 #if 0
1477 static int
1478 pfm_free_smpl_buffer(pfm_context_t *ctx)
1480 pfm_buffer_fmt_t *fmt;
1482 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485 * we won't use the buffer format anymore
1487 fmt = ctx->ctx_buf_fmt;
1489 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 ctx->ctx_smpl_hdr,
1491 ctx->ctx_smpl_size,
1492 ctx->ctx_smpl_vaddr));
1494 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497 * free the buffer
1499 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1501 ctx->ctx_smpl_hdr = NULL;
1502 ctx->ctx_smpl_size = 0UL;
1504 return 0;
1506 invalid_free:
1507 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508 return -EINVAL;
1510 #endif
1512 static inline void
1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1515 if (fmt == NULL) return;
1517 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1527 static struct vfsmount *pfmfs_mnt __read_mostly;
1529 static int __init
1530 init_pfm_fs(void)
1532 int err = register_filesystem(&pfm_fs_type);
1533 if (!err) {
1534 pfmfs_mnt = kern_mount(&pfm_fs_type);
1535 err = PTR_ERR(pfmfs_mnt);
1536 if (IS_ERR(pfmfs_mnt))
1537 unregister_filesystem(&pfm_fs_type);
1538 else
1539 err = 0;
1541 return err;
1544 static ssize_t
1545 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1547 pfm_context_t *ctx;
1548 pfm_msg_t *msg;
1549 ssize_t ret;
1550 unsigned long flags;
1551 DECLARE_WAITQUEUE(wait, current);
1552 if (PFM_IS_FILE(filp) == 0) {
1553 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554 return -EINVAL;
1557 ctx = filp->private_data;
1558 if (ctx == NULL) {
1559 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560 return -EINVAL;
1564 * check even when there is no message
1566 if (size < sizeof(pfm_msg_t)) {
1567 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 return -EINVAL;
1571 PROTECT_CTX(ctx, flags);
1574 * put ourselves on the wait queue
1576 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579 for(;;) {
1581 * check wait queue
1584 set_current_state(TASK_INTERRUPTIBLE);
1586 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1588 ret = 0;
1589 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1591 UNPROTECT_CTX(ctx, flags);
1594 * check non-blocking read
1596 ret = -EAGAIN;
1597 if(filp->f_flags & O_NONBLOCK) break;
1600 * check pending signals
1602 if(signal_pending(current)) {
1603 ret = -EINTR;
1604 break;
1607 * no message, so wait
1609 schedule();
1611 PROTECT_CTX(ctx, flags);
1613 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614 set_current_state(TASK_RUNNING);
1615 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1617 if (ret < 0) goto abort;
1619 ret = -EINVAL;
1620 msg = pfm_get_next_msg(ctx);
1621 if (msg == NULL) {
1622 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623 goto abort_locked;
1626 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1628 ret = -EFAULT;
1629 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1631 abort_locked:
1632 UNPROTECT_CTX(ctx, flags);
1633 abort:
1634 return ret;
1637 static ssize_t
1638 pfm_write(struct file *file, const char __user *ubuf,
1639 size_t size, loff_t *ppos)
1641 DPRINT(("pfm_write called\n"));
1642 return -EINVAL;
1645 static unsigned int
1646 pfm_poll(struct file *filp, poll_table * wait)
1648 pfm_context_t *ctx;
1649 unsigned long flags;
1650 unsigned int mask = 0;
1652 if (PFM_IS_FILE(filp) == 0) {
1653 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654 return 0;
1657 ctx = filp->private_data;
1658 if (ctx == NULL) {
1659 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660 return 0;
1664 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1666 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1668 PROTECT_CTX(ctx, flags);
1670 if (PFM_CTXQ_EMPTY(ctx) == 0)
1671 mask = POLLIN | POLLRDNORM;
1673 UNPROTECT_CTX(ctx, flags);
1675 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1677 return mask;
1680 static long
1681 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1683 DPRINT(("pfm_ioctl called\n"));
1684 return -EINVAL;
1688 * interrupt cannot be masked when coming here
1690 static inline int
1691 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1693 int ret;
1695 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1697 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 task_pid_nr(current),
1701 ctx->ctx_async_queue, ret));
1703 return ret;
1706 static int
1707 pfm_fasync(int fd, struct file *filp, int on)
1709 pfm_context_t *ctx;
1710 int ret;
1712 if (PFM_IS_FILE(filp) == 0) {
1713 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714 return -EBADF;
1717 ctx = filp->private_data;
1718 if (ctx == NULL) {
1719 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720 return -EBADF;
1723 * we cannot mask interrupts during this call because this may
1724 * may go to sleep if memory is not readily avalaible.
1726 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 * done in caller. Serialization of this function is ensured by caller.
1729 ret = pfm_do_fasync(fd, filp, ctx, on);
1732 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 ctx->ctx_async_queue, ret));
1737 return ret;
1740 #ifdef CONFIG_SMP
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1746 static void
1747 pfm_syswide_force_stop(void *info)
1749 pfm_context_t *ctx = (pfm_context_t *)info;
1750 struct pt_regs *regs = task_pt_regs(current);
1751 struct task_struct *owner;
1752 unsigned long flags;
1753 int ret;
1755 if (ctx->ctx_cpu != smp_processor_id()) {
1756 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1757 ctx->ctx_cpu,
1758 smp_processor_id());
1759 return;
1761 owner = GET_PMU_OWNER();
1762 if (owner != ctx->ctx_task) {
1763 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764 smp_processor_id(),
1765 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766 return;
1768 if (GET_PMU_CTX() != ctx) {
1769 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770 smp_processor_id(),
1771 GET_PMU_CTX(), ctx);
1772 return;
1775 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1777 * the context is already protected in pfm_close(), we simply
1778 * need to mask interrupts to avoid a PMU interrupt race on
1779 * this CPU
1781 local_irq_save(flags);
1783 ret = pfm_context_unload(ctx, NULL, 0, regs);
1784 if (ret) {
1785 DPRINT(("context_unload returned %d\n", ret));
1789 * unmask interrupts, PMU interrupts are now spurious here
1791 local_irq_restore(flags);
1794 static void
1795 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1797 int ret;
1799 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1803 #endif /* CONFIG_SMP */
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1809 static int
1810 pfm_flush(struct file *filp, fl_owner_t id)
1812 pfm_context_t *ctx;
1813 struct task_struct *task;
1814 struct pt_regs *regs;
1815 unsigned long flags;
1816 unsigned long smpl_buf_size = 0UL;
1817 void *smpl_buf_vaddr = NULL;
1818 int state, is_system;
1820 if (PFM_IS_FILE(filp) == 0) {
1821 DPRINT(("bad magic for\n"));
1822 return -EBADF;
1825 ctx = filp->private_data;
1826 if (ctx == NULL) {
1827 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828 return -EBADF;
1832 * remove our file from the async queue, if we use this mode.
1833 * This can be done without the context being protected. We come
1834 * here when the context has become unreachable by other tasks.
1836 * We may still have active monitoring at this point and we may
1837 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 * operates with interrupts disabled and it cleans up the
1839 * queue. If the PMU handler is called prior to entering
1840 * fasync_helper() then it will send a signal. If it is
1841 * invoked after, it will find an empty queue and no
1842 * signal will be sent. In both case, we are safe
1844 PROTECT_CTX(ctx, flags);
1846 state = ctx->ctx_state;
1847 is_system = ctx->ctx_fl_system;
1849 task = PFM_CTX_TASK(ctx);
1850 regs = task_pt_regs(task);
1852 DPRINT(("ctx_state=%d is_current=%d\n",
1853 state,
1854 task == current ? 1 : 0));
1857 * if state == UNLOADED, then task is NULL
1861 * we must stop and unload because we are losing access to the context.
1863 if (task == current) {
1864 #ifdef CONFIG_SMP
1866 * the task IS the owner but it migrated to another CPU: that's bad
1867 * but we must handle this cleanly. Unfortunately, the kernel does
1868 * not provide a mechanism to block migration (while the context is loaded).
1870 * We need to release the resource on the ORIGINAL cpu.
1872 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1874 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1876 * keep context protected but unmask interrupt for IPI
1878 local_irq_restore(flags);
1880 pfm_syswide_cleanup_other_cpu(ctx);
1883 * restore interrupt masking
1885 local_irq_save(flags);
1888 * context is unloaded at this point
1890 } else
1891 #endif /* CONFIG_SMP */
1894 DPRINT(("forcing unload\n"));
1896 * stop and unload, returning with state UNLOADED
1897 * and session unreserved.
1899 pfm_context_unload(ctx, NULL, 0, regs);
1901 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1906 * remove virtual mapping, if any, for the calling task.
1907 * cannot reset ctx field until last user is calling close().
1909 * ctx_smpl_vaddr must never be cleared because it is needed
1910 * by every task with access to the context
1912 * When called from do_exit(), the mm context is gone already, therefore
1913 * mm is NULL, i.e., the VMA is already gone and we do not have to
1914 * do anything here
1916 if (ctx->ctx_smpl_vaddr && current->mm) {
1917 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918 smpl_buf_size = ctx->ctx_smpl_size;
1921 UNPROTECT_CTX(ctx, flags);
1924 * if there was a mapping, then we systematically remove it
1925 * at this point. Cannot be done inside critical section
1926 * because some VM function reenables interrupts.
1929 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1931 return 0;
1934 * called either on explicit close() or from exit_files().
1935 * Only the LAST user of the file gets to this point, i.e., it is
1936 * called only ONCE.
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939 * (fput()),i.e, last task to access the file. Nobody else can access the
1940 * file at this point.
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context.
1948 static int
1949 pfm_close(struct inode *inode, struct file *filp)
1951 pfm_context_t *ctx;
1952 struct task_struct *task;
1953 struct pt_regs *regs;
1954 DECLARE_WAITQUEUE(wait, current);
1955 unsigned long flags;
1956 unsigned long smpl_buf_size = 0UL;
1957 void *smpl_buf_addr = NULL;
1958 int free_possible = 1;
1959 int state, is_system;
1961 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1963 if (PFM_IS_FILE(filp) == 0) {
1964 DPRINT(("bad magic\n"));
1965 return -EBADF;
1968 ctx = filp->private_data;
1969 if (ctx == NULL) {
1970 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971 return -EBADF;
1974 PROTECT_CTX(ctx, flags);
1976 state = ctx->ctx_state;
1977 is_system = ctx->ctx_fl_system;
1979 task = PFM_CTX_TASK(ctx);
1980 regs = task_pt_regs(task);
1982 DPRINT(("ctx_state=%d is_current=%d\n",
1983 state,
1984 task == current ? 1 : 0));
1987 * if task == current, then pfm_flush() unloaded the context
1989 if (state == PFM_CTX_UNLOADED) goto doit;
1992 * context is loaded/masked and task != current, we need to
1993 * either force an unload or go zombie
1997 * The task is currently blocked or will block after an overflow.
1998 * we must force it to wakeup to get out of the
1999 * MASKED state and transition to the unloaded state by itself.
2001 * This situation is only possible for per-task mode
2003 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006 * set a "partial" zombie state to be checked
2007 * upon return from down() in pfm_handle_work().
2009 * We cannot use the ZOMBIE state, because it is checked
2010 * by pfm_load_regs() which is called upon wakeup from down().
2011 * In such case, it would free the context and then we would
2012 * return to pfm_handle_work() which would access the
2013 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 * but visible to pfm_handle_work().
2016 * For some window of time, we have a zombie context with
2017 * ctx_state = MASKED and not ZOMBIE
2019 ctx->ctx_fl_going_zombie = 1;
2022 * force task to wake up from MASKED state
2024 complete(&ctx->ctx_restart_done);
2026 DPRINT(("waking up ctx_state=%d\n", state));
2029 * put ourself to sleep waiting for the other
2030 * task to report completion
2032 * the context is protected by mutex, therefore there
2033 * is no risk of being notified of completion before
2034 * begin actually on the waitq.
2036 set_current_state(TASK_INTERRUPTIBLE);
2037 add_wait_queue(&ctx->ctx_zombieq, &wait);
2039 UNPROTECT_CTX(ctx, flags);
2042 * XXX: check for signals :
2043 * - ok for explicit close
2044 * - not ok when coming from exit_files()
2046 schedule();
2049 PROTECT_CTX(ctx, flags);
2052 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053 set_current_state(TASK_RUNNING);
2056 * context is unloaded at this point
2058 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2060 else if (task != current) {
2061 #ifdef CONFIG_SMP
2063 * switch context to zombie state
2065 ctx->ctx_state = PFM_CTX_ZOMBIE;
2067 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2069 * cannot free the context on the spot. deferred until
2070 * the task notices the ZOMBIE state
2072 free_possible = 0;
2073 #else
2074 pfm_context_unload(ctx, NULL, 0, regs);
2075 #endif
2078 doit:
2079 /* reload state, may have changed during opening of critical section */
2080 state = ctx->ctx_state;
2083 * the context is still attached to a task (possibly current)
2084 * we cannot destroy it right now
2088 * we must free the sampling buffer right here because
2089 * we cannot rely on it being cleaned up later by the
2090 * monitored task. It is not possible to free vmalloc'ed
2091 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 * now. should there be subsequent PMU overflow originally
2093 * meant for sampling, the will be converted to spurious
2094 * and that's fine because the monitoring tools is gone anyway.
2096 if (ctx->ctx_smpl_hdr) {
2097 smpl_buf_addr = ctx->ctx_smpl_hdr;
2098 smpl_buf_size = ctx->ctx_smpl_size;
2099 /* no more sampling */
2100 ctx->ctx_smpl_hdr = NULL;
2101 ctx->ctx_fl_is_sampling = 0;
2104 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105 state,
2106 free_possible,
2107 smpl_buf_addr,
2108 smpl_buf_size));
2110 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113 * UNLOADED that the session has already been unreserved.
2115 if (state == PFM_CTX_ZOMBIE) {
2116 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2120 * disconnect file descriptor from context must be done
2121 * before we unlock.
2123 filp->private_data = NULL;
2126 * if we free on the spot, the context is now completely unreachable
2127 * from the callers side. The monitored task side is also cut, so we
2128 * can freely cut.
2130 * If we have a deferred free, only the caller side is disconnected.
2132 UNPROTECT_CTX(ctx, flags);
2135 * All memory free operations (especially for vmalloc'ed memory)
2136 * MUST be done with interrupts ENABLED.
2138 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141 * return the memory used by the context
2143 if (free_possible) pfm_context_free(ctx);
2145 return 0;
2148 static const struct file_operations pfm_file_ops = {
2149 .llseek = no_llseek,
2150 .read = pfm_read,
2151 .write = pfm_write,
2152 .poll = pfm_poll,
2153 .unlocked_ioctl = pfm_ioctl,
2154 .fasync = pfm_fasync,
2155 .release = pfm_close,
2156 .flush = pfm_flush
2159 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2161 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2162 d_inode(dentry)->i_ino);
2165 static const struct dentry_operations pfmfs_dentry_operations = {
2166 .d_delete = always_delete_dentry,
2167 .d_dname = pfmfs_dname,
2171 static struct file *
2172 pfm_alloc_file(pfm_context_t *ctx)
2174 struct file *file;
2175 struct inode *inode;
2176 struct path path;
2177 struct qstr this = { .name = "" };
2180 * allocate a new inode
2182 inode = new_inode(pfmfs_mnt->mnt_sb);
2183 if (!inode)
2184 return ERR_PTR(-ENOMEM);
2186 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2188 inode->i_mode = S_IFCHR|S_IRUGO;
2189 inode->i_uid = current_fsuid();
2190 inode->i_gid = current_fsgid();
2193 * allocate a new dcache entry
2195 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2196 if (!path.dentry) {
2197 iput(inode);
2198 return ERR_PTR(-ENOMEM);
2200 path.mnt = mntget(pfmfs_mnt);
2202 d_add(path.dentry, inode);
2204 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2205 if (IS_ERR(file)) {
2206 path_put(&path);
2207 return file;
2210 file->f_flags = O_RDONLY;
2211 file->private_data = ctx;
2213 return file;
2216 static int
2217 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2219 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2221 while (size > 0) {
2222 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2226 return -ENOMEM;
2228 addr += PAGE_SIZE;
2229 buf += PAGE_SIZE;
2230 size -= PAGE_SIZE;
2232 return 0;
2236 * allocate a sampling buffer and remaps it into the user address space of the task
2238 static int
2239 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2241 struct mm_struct *mm = task->mm;
2242 struct vm_area_struct *vma = NULL;
2243 unsigned long size;
2244 void *smpl_buf;
2248 * the fixed header + requested size and align to page boundary
2250 size = PAGE_ALIGN(rsize);
2252 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255 * check requested size to avoid Denial-of-service attacks
2256 * XXX: may have to refine this test
2257 * Check against address space limit.
2259 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2260 * return -ENOMEM;
2262 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2263 return -ENOMEM;
2266 * We do the easy to undo allocations first.
2268 * pfm_rvmalloc(), clears the buffer, so there is no leak
2270 smpl_buf = pfm_rvmalloc(size);
2271 if (smpl_buf == NULL) {
2272 DPRINT(("Can't allocate sampling buffer\n"));
2273 return -ENOMEM;
2276 DPRINT(("smpl_buf @%p\n", smpl_buf));
2278 /* allocate vma */
2279 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2280 if (!vma) {
2281 DPRINT(("Cannot allocate vma\n"));
2282 goto error_kmem;
2284 INIT_LIST_HEAD(&vma->anon_vma_chain);
2287 * partially initialize the vma for the sampling buffer
2289 vma->vm_mm = mm;
2290 vma->vm_file = get_file(filp);
2291 vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2292 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2295 * Now we have everything we need and we can initialize
2296 * and connect all the data structures
2299 ctx->ctx_smpl_hdr = smpl_buf;
2300 ctx->ctx_smpl_size = size; /* aligned size */
2303 * Let's do the difficult operations next.
2305 * now we atomically find some area in the address space and
2306 * remap the buffer in it.
2308 down_write(&task->mm->mmap_sem);
2310 /* find some free area in address space, must have mmap sem held */
2311 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2312 if (IS_ERR_VALUE(vma->vm_start)) {
2313 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2314 up_write(&task->mm->mmap_sem);
2315 goto error;
2317 vma->vm_end = vma->vm_start + size;
2318 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2320 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2322 /* can only be applied to current task, need to have the mm semaphore held when called */
2323 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2324 DPRINT(("Can't remap buffer\n"));
2325 up_write(&task->mm->mmap_sem);
2326 goto error;
2330 * now insert the vma in the vm list for the process, must be
2331 * done with mmap lock held
2333 insert_vm_struct(mm, vma);
2335 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2336 vma_pages(vma));
2337 up_write(&task->mm->mmap_sem);
2340 * keep track of user level virtual address
2342 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2343 *(unsigned long *)user_vaddr = vma->vm_start;
2345 return 0;
2347 error:
2348 kmem_cache_free(vm_area_cachep, vma);
2349 error_kmem:
2350 pfm_rvfree(smpl_buf, size);
2352 return -ENOMEM;
2356 * XXX: do something better here
2358 static int
2359 pfm_bad_permissions(struct task_struct *task)
2361 const struct cred *tcred;
2362 kuid_t uid = current_uid();
2363 kgid_t gid = current_gid();
2364 int ret;
2366 rcu_read_lock();
2367 tcred = __task_cred(task);
2369 /* inspired by ptrace_attach() */
2370 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2371 from_kuid(&init_user_ns, uid),
2372 from_kgid(&init_user_ns, gid),
2373 from_kuid(&init_user_ns, tcred->euid),
2374 from_kuid(&init_user_ns, tcred->suid),
2375 from_kuid(&init_user_ns, tcred->uid),
2376 from_kgid(&init_user_ns, tcred->egid),
2377 from_kgid(&init_user_ns, tcred->sgid)));
2379 ret = ((!uid_eq(uid, tcred->euid))
2380 || (!uid_eq(uid, tcred->suid))
2381 || (!uid_eq(uid, tcred->uid))
2382 || (!gid_eq(gid, tcred->egid))
2383 || (!gid_eq(gid, tcred->sgid))
2384 || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2386 rcu_read_unlock();
2387 return ret;
2390 static int
2391 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2393 int ctx_flags;
2395 /* valid signal */
2397 ctx_flags = pfx->ctx_flags;
2399 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2402 * cannot block in this mode
2404 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2405 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2406 return -EINVAL;
2408 } else {
2410 /* probably more to add here */
2412 return 0;
2415 static int
2416 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2417 unsigned int cpu, pfarg_context_t *arg)
2419 pfm_buffer_fmt_t *fmt = NULL;
2420 unsigned long size = 0UL;
2421 void *uaddr = NULL;
2422 void *fmt_arg = NULL;
2423 int ret = 0;
2424 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2426 /* invoke and lock buffer format, if found */
2427 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2428 if (fmt == NULL) {
2429 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2430 return -EINVAL;
2434 * buffer argument MUST be contiguous to pfarg_context_t
2436 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2438 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2440 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2442 if (ret) goto error;
2444 /* link buffer format and context */
2445 ctx->ctx_buf_fmt = fmt;
2446 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2449 * check if buffer format wants to use perfmon buffer allocation/mapping service
2451 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2452 if (ret) goto error;
2454 if (size) {
2456 * buffer is always remapped into the caller's address space
2458 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2459 if (ret) goto error;
2461 /* keep track of user address of buffer */
2462 arg->ctx_smpl_vaddr = uaddr;
2464 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2466 error:
2467 return ret;
2470 static void
2471 pfm_reset_pmu_state(pfm_context_t *ctx)
2473 int i;
2476 * install reset values for PMC.
2478 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2479 if (PMC_IS_IMPL(i) == 0) continue;
2480 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2481 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2484 * PMD registers are set to 0UL when the context in memset()
2488 * On context switched restore, we must restore ALL pmc and ALL pmd even
2489 * when they are not actively used by the task. In UP, the incoming process
2490 * may otherwise pick up left over PMC, PMD state from the previous process.
2491 * As opposed to PMD, stale PMC can cause harm to the incoming
2492 * process because they may change what is being measured.
2493 * Therefore, we must systematically reinstall the entire
2494 * PMC state. In SMP, the same thing is possible on the
2495 * same CPU but also on between 2 CPUs.
2497 * The problem with PMD is information leaking especially
2498 * to user level when psr.sp=0
2500 * There is unfortunately no easy way to avoid this problem
2501 * on either UP or SMP. This definitively slows down the
2502 * pfm_load_regs() function.
2506 * bitmask of all PMCs accessible to this context
2508 * PMC0 is treated differently.
2510 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2513 * bitmask of all PMDs that are accessible to this context
2515 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2517 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2520 * useful in case of re-enable after disable
2522 ctx->ctx_used_ibrs[0] = 0UL;
2523 ctx->ctx_used_dbrs[0] = 0UL;
2526 static int
2527 pfm_ctx_getsize(void *arg, size_t *sz)
2529 pfarg_context_t *req = (pfarg_context_t *)arg;
2530 pfm_buffer_fmt_t *fmt;
2532 *sz = 0;
2534 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2536 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2537 if (fmt == NULL) {
2538 DPRINT(("cannot find buffer format\n"));
2539 return -EINVAL;
2541 /* get just enough to copy in user parameters */
2542 *sz = fmt->fmt_arg_size;
2543 DPRINT(("arg_size=%lu\n", *sz));
2545 return 0;
2551 * cannot attach if :
2552 * - kernel task
2553 * - task not owned by caller
2554 * - task incompatible with context mode
2556 static int
2557 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2560 * no kernel task or task not owner by caller
2562 if (task->mm == NULL) {
2563 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2564 return -EPERM;
2566 if (pfm_bad_permissions(task)) {
2567 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2568 return -EPERM;
2571 * cannot block in self-monitoring mode
2573 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2574 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2575 return -EINVAL;
2578 if (task->exit_state == EXIT_ZOMBIE) {
2579 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2580 return -EBUSY;
2584 * always ok for self
2586 if (task == current) return 0;
2588 if (!task_is_stopped_or_traced(task)) {
2589 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2590 return -EBUSY;
2593 * make sure the task is off any CPU
2595 wait_task_inactive(task, 0);
2597 /* more to come... */
2599 return 0;
2602 static int
2603 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2605 struct task_struct *p = current;
2606 int ret;
2608 /* XXX: need to add more checks here */
2609 if (pid < 2) return -EPERM;
2611 if (pid != task_pid_vnr(current)) {
2613 read_lock(&tasklist_lock);
2615 p = find_task_by_vpid(pid);
2617 /* make sure task cannot go away while we operate on it */
2618 if (p) get_task_struct(p);
2620 read_unlock(&tasklist_lock);
2622 if (p == NULL) return -ESRCH;
2625 ret = pfm_task_incompatible(ctx, p);
2626 if (ret == 0) {
2627 *task = p;
2628 } else if (p != current) {
2629 pfm_put_task(p);
2631 return ret;
2636 static int
2637 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2639 pfarg_context_t *req = (pfarg_context_t *)arg;
2640 struct file *filp;
2641 struct path path;
2642 int ctx_flags;
2643 int fd;
2644 int ret;
2646 /* let's check the arguments first */
2647 ret = pfarg_is_sane(current, req);
2648 if (ret < 0)
2649 return ret;
2651 ctx_flags = req->ctx_flags;
2653 ret = -ENOMEM;
2655 fd = get_unused_fd_flags(0);
2656 if (fd < 0)
2657 return fd;
2659 ctx = pfm_context_alloc(ctx_flags);
2660 if (!ctx)
2661 goto error;
2663 filp = pfm_alloc_file(ctx);
2664 if (IS_ERR(filp)) {
2665 ret = PTR_ERR(filp);
2666 goto error_file;
2669 req->ctx_fd = ctx->ctx_fd = fd;
2672 * does the user want to sample?
2674 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2675 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2676 if (ret)
2677 goto buffer_error;
2680 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2681 ctx,
2682 ctx_flags,
2683 ctx->ctx_fl_system,
2684 ctx->ctx_fl_block,
2685 ctx->ctx_fl_excl_idle,
2686 ctx->ctx_fl_no_msg,
2687 ctx->ctx_fd));
2690 * initialize soft PMU state
2692 pfm_reset_pmu_state(ctx);
2694 fd_install(fd, filp);
2696 return 0;
2698 buffer_error:
2699 path = filp->f_path;
2700 put_filp(filp);
2701 path_put(&path);
2703 if (ctx->ctx_buf_fmt) {
2704 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2706 error_file:
2707 pfm_context_free(ctx);
2709 error:
2710 put_unused_fd(fd);
2711 return ret;
2714 static inline unsigned long
2715 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2717 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2718 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2719 extern unsigned long carta_random32 (unsigned long seed);
2721 if (reg->flags & PFM_REGFL_RANDOM) {
2722 new_seed = carta_random32(old_seed);
2723 val -= (old_seed & mask); /* counter values are negative numbers! */
2724 if ((mask >> 32) != 0)
2725 /* construct a full 64-bit random value: */
2726 new_seed |= carta_random32(old_seed >> 32) << 32;
2727 reg->seed = new_seed;
2729 reg->lval = val;
2730 return val;
2733 static void
2734 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2736 unsigned long mask = ovfl_regs[0];
2737 unsigned long reset_others = 0UL;
2738 unsigned long val;
2739 int i;
2742 * now restore reset value on sampling overflowed counters
2744 mask >>= PMU_FIRST_COUNTER;
2745 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2747 if ((mask & 0x1UL) == 0UL) continue;
2749 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2750 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2752 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2756 * Now take care of resetting the other registers
2758 for(i = 0; reset_others; i++, reset_others >>= 1) {
2760 if ((reset_others & 0x1) == 0) continue;
2762 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2764 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2765 is_long_reset ? "long" : "short", i, val));
2769 static void
2770 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2772 unsigned long mask = ovfl_regs[0];
2773 unsigned long reset_others = 0UL;
2774 unsigned long val;
2775 int i;
2777 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2779 if (ctx->ctx_state == PFM_CTX_MASKED) {
2780 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2781 return;
2785 * now restore reset value on sampling overflowed counters
2787 mask >>= PMU_FIRST_COUNTER;
2788 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2790 if ((mask & 0x1UL) == 0UL) continue;
2792 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2793 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2795 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2797 pfm_write_soft_counter(ctx, i, val);
2801 * Now take care of resetting the other registers
2803 for(i = 0; reset_others; i++, reset_others >>= 1) {
2805 if ((reset_others & 0x1) == 0) continue;
2807 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2809 if (PMD_IS_COUNTING(i)) {
2810 pfm_write_soft_counter(ctx, i, val);
2811 } else {
2812 ia64_set_pmd(i, val);
2814 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2815 is_long_reset ? "long" : "short", i, val));
2817 ia64_srlz_d();
2820 static int
2821 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2823 struct task_struct *task;
2824 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2825 unsigned long value, pmc_pm;
2826 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2827 unsigned int cnum, reg_flags, flags, pmc_type;
2828 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2829 int is_monitor, is_counting, state;
2830 int ret = -EINVAL;
2831 pfm_reg_check_t wr_func;
2832 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2834 state = ctx->ctx_state;
2835 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2836 is_system = ctx->ctx_fl_system;
2837 task = ctx->ctx_task;
2838 impl_pmds = pmu_conf->impl_pmds[0];
2840 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2842 if (is_loaded) {
2844 * In system wide and when the context is loaded, access can only happen
2845 * when the caller is running on the CPU being monitored by the session.
2846 * It does not have to be the owner (ctx_task) of the context per se.
2848 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2849 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2850 return -EBUSY;
2852 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2854 expert_mode = pfm_sysctl.expert_mode;
2856 for (i = 0; i < count; i++, req++) {
2858 cnum = req->reg_num;
2859 reg_flags = req->reg_flags;
2860 value = req->reg_value;
2861 smpl_pmds = req->reg_smpl_pmds[0];
2862 reset_pmds = req->reg_reset_pmds[0];
2863 flags = 0;
2866 if (cnum >= PMU_MAX_PMCS) {
2867 DPRINT(("pmc%u is invalid\n", cnum));
2868 goto error;
2871 pmc_type = pmu_conf->pmc_desc[cnum].type;
2872 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2873 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2874 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2877 * we reject all non implemented PMC as well
2878 * as attempts to modify PMC[0-3] which are used
2879 * as status registers by the PMU
2881 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2882 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2883 goto error;
2885 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2887 * If the PMC is a monitor, then if the value is not the default:
2888 * - system-wide session: PMCx.pm=1 (privileged monitor)
2889 * - per-task : PMCx.pm=0 (user monitor)
2891 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2892 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2893 cnum,
2894 pmc_pm,
2895 is_system));
2896 goto error;
2899 if (is_counting) {
2901 * enforce generation of overflow interrupt. Necessary on all
2902 * CPUs.
2904 value |= 1 << PMU_PMC_OI;
2906 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2907 flags |= PFM_REGFL_OVFL_NOTIFY;
2910 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2912 /* verify validity of smpl_pmds */
2913 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2914 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2915 goto error;
2918 /* verify validity of reset_pmds */
2919 if ((reset_pmds & impl_pmds) != reset_pmds) {
2920 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2921 goto error;
2923 } else {
2924 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2925 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2926 goto error;
2928 /* eventid on non-counting monitors are ignored */
2932 * execute write checker, if any
2934 if (likely(expert_mode == 0 && wr_func)) {
2935 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2936 if (ret) goto error;
2937 ret = -EINVAL;
2941 * no error on this register
2943 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2946 * Now we commit the changes to the software state
2950 * update overflow information
2952 if (is_counting) {
2954 * full flag update each time a register is programmed
2956 ctx->ctx_pmds[cnum].flags = flags;
2958 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2959 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2960 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2963 * Mark all PMDS to be accessed as used.
2965 * We do not keep track of PMC because we have to
2966 * systematically restore ALL of them.
2968 * We do not update the used_monitors mask, because
2969 * if we have not programmed them, then will be in
2970 * a quiescent state, therefore we will not need to
2971 * mask/restore then when context is MASKED.
2973 CTX_USED_PMD(ctx, reset_pmds);
2974 CTX_USED_PMD(ctx, smpl_pmds);
2976 * make sure we do not try to reset on
2977 * restart because we have established new values
2979 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2982 * Needed in case the user does not initialize the equivalent
2983 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2984 * possible leak here.
2986 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2989 * keep track of the monitor PMC that we are using.
2990 * we save the value of the pmc in ctx_pmcs[] and if
2991 * the monitoring is not stopped for the context we also
2992 * place it in the saved state area so that it will be
2993 * picked up later by the context switch code.
2995 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2997 * The value in th_pmcs[] may be modified on overflow, i.e., when
2998 * monitoring needs to be stopped.
3000 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3003 * update context state
3005 ctx->ctx_pmcs[cnum] = value;
3007 if (is_loaded) {
3009 * write thread state
3011 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3014 * write hardware register if we can
3016 if (can_access_pmu) {
3017 ia64_set_pmc(cnum, value);
3019 #ifdef CONFIG_SMP
3020 else {
3022 * per-task SMP only here
3024 * we are guaranteed that the task is not running on the other CPU,
3025 * we indicate that this PMD will need to be reloaded if the task
3026 * is rescheduled on the CPU it ran last on.
3028 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3030 #endif
3033 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3034 cnum,
3035 value,
3036 is_loaded,
3037 can_access_pmu,
3038 flags,
3039 ctx->ctx_all_pmcs[0],
3040 ctx->ctx_used_pmds[0],
3041 ctx->ctx_pmds[cnum].eventid,
3042 smpl_pmds,
3043 reset_pmds,
3044 ctx->ctx_reload_pmcs[0],
3045 ctx->ctx_used_monitors[0],
3046 ctx->ctx_ovfl_regs[0]));
3050 * make sure the changes are visible
3052 if (can_access_pmu) ia64_srlz_d();
3054 return 0;
3055 error:
3056 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3057 return ret;
3060 static int
3061 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3063 struct task_struct *task;
3064 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3065 unsigned long value, hw_value, ovfl_mask;
3066 unsigned int cnum;
3067 int i, can_access_pmu = 0, state;
3068 int is_counting, is_loaded, is_system, expert_mode;
3069 int ret = -EINVAL;
3070 pfm_reg_check_t wr_func;
3073 state = ctx->ctx_state;
3074 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3075 is_system = ctx->ctx_fl_system;
3076 ovfl_mask = pmu_conf->ovfl_val;
3077 task = ctx->ctx_task;
3079 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3082 * on both UP and SMP, we can only write to the PMC when the task is
3083 * the owner of the local PMU.
3085 if (likely(is_loaded)) {
3087 * In system wide and when the context is loaded, access can only happen
3088 * when the caller is running on the CPU being monitored by the session.
3089 * It does not have to be the owner (ctx_task) of the context per se.
3091 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3092 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3093 return -EBUSY;
3095 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3097 expert_mode = pfm_sysctl.expert_mode;
3099 for (i = 0; i < count; i++, req++) {
3101 cnum = req->reg_num;
3102 value = req->reg_value;
3104 if (!PMD_IS_IMPL(cnum)) {
3105 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3106 goto abort_mission;
3108 is_counting = PMD_IS_COUNTING(cnum);
3109 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3112 * execute write checker, if any
3114 if (unlikely(expert_mode == 0 && wr_func)) {
3115 unsigned long v = value;
3117 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3118 if (ret) goto abort_mission;
3120 value = v;
3121 ret = -EINVAL;
3125 * no error on this register
3127 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3130 * now commit changes to software state
3132 hw_value = value;
3135 * update virtualized (64bits) counter
3137 if (is_counting) {
3139 * write context state
3141 ctx->ctx_pmds[cnum].lval = value;
3144 * when context is load we use the split value
3146 if (is_loaded) {
3147 hw_value = value & ovfl_mask;
3148 value = value & ~ovfl_mask;
3152 * update reset values (not just for counters)
3154 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3155 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3158 * update randomization parameters (not just for counters)
3160 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3161 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3164 * update context value
3166 ctx->ctx_pmds[cnum].val = value;
3169 * Keep track of what we use
3171 * We do not keep track of PMC because we have to
3172 * systematically restore ALL of them.
3174 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3177 * mark this PMD register used as well
3179 CTX_USED_PMD(ctx, RDEP(cnum));
3182 * make sure we do not try to reset on
3183 * restart because we have established new values
3185 if (is_counting && state == PFM_CTX_MASKED) {
3186 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3189 if (is_loaded) {
3191 * write thread state
3193 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3196 * write hardware register if we can
3198 if (can_access_pmu) {
3199 ia64_set_pmd(cnum, hw_value);
3200 } else {
3201 #ifdef CONFIG_SMP
3203 * we are guaranteed that the task is not running on the other CPU,
3204 * we indicate that this PMD will need to be reloaded if the task
3205 * is rescheduled on the CPU it ran last on.
3207 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3208 #endif
3212 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3213 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3214 cnum,
3215 value,
3216 is_loaded,
3217 can_access_pmu,
3218 hw_value,
3219 ctx->ctx_pmds[cnum].val,
3220 ctx->ctx_pmds[cnum].short_reset,
3221 ctx->ctx_pmds[cnum].long_reset,
3222 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3223 ctx->ctx_pmds[cnum].seed,
3224 ctx->ctx_pmds[cnum].mask,
3225 ctx->ctx_used_pmds[0],
3226 ctx->ctx_pmds[cnum].reset_pmds[0],
3227 ctx->ctx_reload_pmds[0],
3228 ctx->ctx_all_pmds[0],
3229 ctx->ctx_ovfl_regs[0]));
3233 * make changes visible
3235 if (can_access_pmu) ia64_srlz_d();
3237 return 0;
3239 abort_mission:
3241 * for now, we have only one possibility for error
3243 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3244 return ret;
3248 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3249 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3250 * interrupt is delivered during the call, it will be kept pending until we leave, making
3251 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3252 * guaranteed to return consistent data to the user, it may simply be old. It is not
3253 * trivial to treat the overflow while inside the call because you may end up in
3254 * some module sampling buffer code causing deadlocks.
3256 static int
3257 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3259 struct task_struct *task;
3260 unsigned long val = 0UL, lval, ovfl_mask, sval;
3261 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3262 unsigned int cnum, reg_flags = 0;
3263 int i, can_access_pmu = 0, state;
3264 int is_loaded, is_system, is_counting, expert_mode;
3265 int ret = -EINVAL;
3266 pfm_reg_check_t rd_func;
3269 * access is possible when loaded only for
3270 * self-monitoring tasks or in UP mode
3273 state = ctx->ctx_state;
3274 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3275 is_system = ctx->ctx_fl_system;
3276 ovfl_mask = pmu_conf->ovfl_val;
3277 task = ctx->ctx_task;
3279 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3281 if (likely(is_loaded)) {
3283 * In system wide and when the context is loaded, access can only happen
3284 * when the caller is running on the CPU being monitored by the session.
3285 * It does not have to be the owner (ctx_task) of the context per se.
3287 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3288 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3289 return -EBUSY;
3292 * this can be true when not self-monitoring only in UP
3294 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3296 if (can_access_pmu) ia64_srlz_d();
3298 expert_mode = pfm_sysctl.expert_mode;
3300 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3301 is_loaded,
3302 can_access_pmu,
3303 state));
3306 * on both UP and SMP, we can only read the PMD from the hardware register when
3307 * the task is the owner of the local PMU.
3310 for (i = 0; i < count; i++, req++) {
3312 cnum = req->reg_num;
3313 reg_flags = req->reg_flags;
3315 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3317 * we can only read the register that we use. That includes
3318 * the one we explicitly initialize AND the one we want included
3319 * in the sampling buffer (smpl_regs).
3321 * Having this restriction allows optimization in the ctxsw routine
3322 * without compromising security (leaks)
3324 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3326 sval = ctx->ctx_pmds[cnum].val;
3327 lval = ctx->ctx_pmds[cnum].lval;
3328 is_counting = PMD_IS_COUNTING(cnum);
3331 * If the task is not the current one, then we check if the
3332 * PMU state is still in the local live register due to lazy ctxsw.
3333 * If true, then we read directly from the registers.
3335 if (can_access_pmu){
3336 val = ia64_get_pmd(cnum);
3337 } else {
3339 * context has been saved
3340 * if context is zombie, then task does not exist anymore.
3341 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3343 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3345 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3347 if (is_counting) {
3349 * XXX: need to check for overflow when loaded
3351 val &= ovfl_mask;
3352 val += sval;
3356 * execute read checker, if any
3358 if (unlikely(expert_mode == 0 && rd_func)) {
3359 unsigned long v = val;
3360 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3361 if (ret) goto error;
3362 val = v;
3363 ret = -EINVAL;
3366 PFM_REG_RETFLAG_SET(reg_flags, 0);
3368 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3371 * update register return value, abort all if problem during copy.
3372 * we only modify the reg_flags field. no check mode is fine because
3373 * access has been verified upfront in sys_perfmonctl().
3375 req->reg_value = val;
3376 req->reg_flags = reg_flags;
3377 req->reg_last_reset_val = lval;
3380 return 0;
3382 error:
3383 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3384 return ret;
3388 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3390 pfm_context_t *ctx;
3392 if (req == NULL) return -EINVAL;
3394 ctx = GET_PMU_CTX();
3396 if (ctx == NULL) return -EINVAL;
3399 * for now limit to current task, which is enough when calling
3400 * from overflow handler
3402 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3404 return pfm_write_pmcs(ctx, req, nreq, regs);
3406 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3409 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3411 pfm_context_t *ctx;
3413 if (req == NULL) return -EINVAL;
3415 ctx = GET_PMU_CTX();
3417 if (ctx == NULL) return -EINVAL;
3420 * for now limit to current task, which is enough when calling
3421 * from overflow handler
3423 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3425 return pfm_read_pmds(ctx, req, nreq, regs);
3427 EXPORT_SYMBOL(pfm_mod_read_pmds);
3430 * Only call this function when a process it trying to
3431 * write the debug registers (reading is always allowed)
3434 pfm_use_debug_registers(struct task_struct *task)
3436 pfm_context_t *ctx = task->thread.pfm_context;
3437 unsigned long flags;
3438 int ret = 0;
3440 if (pmu_conf->use_rr_dbregs == 0) return 0;
3442 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3445 * do it only once
3447 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3450 * Even on SMP, we do not need to use an atomic here because
3451 * the only way in is via ptrace() and this is possible only when the
3452 * process is stopped. Even in the case where the ctxsw out is not totally
3453 * completed by the time we come here, there is no way the 'stopped' process
3454 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3455 * So this is always safe.
3457 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3459 LOCK_PFS(flags);
3462 * We cannot allow setting breakpoints when system wide monitoring
3463 * sessions are using the debug registers.
3465 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3466 ret = -1;
3467 else
3468 pfm_sessions.pfs_ptrace_use_dbregs++;
3470 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3471 pfm_sessions.pfs_ptrace_use_dbregs,
3472 pfm_sessions.pfs_sys_use_dbregs,
3473 task_pid_nr(task), ret));
3475 UNLOCK_PFS(flags);
3477 return ret;
3481 * This function is called for every task that exits with the
3482 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3483 * able to use the debug registers for debugging purposes via
3484 * ptrace(). Therefore we know it was not using them for
3485 * performance monitoring, so we only decrement the number
3486 * of "ptraced" debug register users to keep the count up to date
3489 pfm_release_debug_registers(struct task_struct *task)
3491 unsigned long flags;
3492 int ret;
3494 if (pmu_conf->use_rr_dbregs == 0) return 0;
3496 LOCK_PFS(flags);
3497 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3498 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3499 ret = -1;
3500 } else {
3501 pfm_sessions.pfs_ptrace_use_dbregs--;
3502 ret = 0;
3504 UNLOCK_PFS(flags);
3506 return ret;
3509 static int
3510 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3512 struct task_struct *task;
3513 pfm_buffer_fmt_t *fmt;
3514 pfm_ovfl_ctrl_t rst_ctrl;
3515 int state, is_system;
3516 int ret = 0;
3518 state = ctx->ctx_state;
3519 fmt = ctx->ctx_buf_fmt;
3520 is_system = ctx->ctx_fl_system;
3521 task = PFM_CTX_TASK(ctx);
3523 switch(state) {
3524 case PFM_CTX_MASKED:
3525 break;
3526 case PFM_CTX_LOADED:
3527 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3528 /* fall through */
3529 case PFM_CTX_UNLOADED:
3530 case PFM_CTX_ZOMBIE:
3531 DPRINT(("invalid state=%d\n", state));
3532 return -EBUSY;
3533 default:
3534 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3535 return -EINVAL;
3539 * In system wide and when the context is loaded, access can only happen
3540 * when the caller is running on the CPU being monitored by the session.
3541 * It does not have to be the owner (ctx_task) of the context per se.
3543 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3544 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3545 return -EBUSY;
3548 /* sanity check */
3549 if (unlikely(task == NULL)) {
3550 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3551 return -EINVAL;
3554 if (task == current || is_system) {
3556 fmt = ctx->ctx_buf_fmt;
3558 DPRINT(("restarting self %d ovfl=0x%lx\n",
3559 task_pid_nr(task),
3560 ctx->ctx_ovfl_regs[0]));
3562 if (CTX_HAS_SMPL(ctx)) {
3564 prefetch(ctx->ctx_smpl_hdr);
3566 rst_ctrl.bits.mask_monitoring = 0;
3567 rst_ctrl.bits.reset_ovfl_pmds = 0;
3569 if (state == PFM_CTX_LOADED)
3570 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3571 else
3572 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3573 } else {
3574 rst_ctrl.bits.mask_monitoring = 0;
3575 rst_ctrl.bits.reset_ovfl_pmds = 1;
3578 if (ret == 0) {
3579 if (rst_ctrl.bits.reset_ovfl_pmds)
3580 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3582 if (rst_ctrl.bits.mask_monitoring == 0) {
3583 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3585 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3586 } else {
3587 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3589 // cannot use pfm_stop_monitoring(task, regs);
3593 * clear overflowed PMD mask to remove any stale information
3595 ctx->ctx_ovfl_regs[0] = 0UL;
3598 * back to LOADED state
3600 ctx->ctx_state = PFM_CTX_LOADED;
3603 * XXX: not really useful for self monitoring
3605 ctx->ctx_fl_can_restart = 0;
3607 return 0;
3611 * restart another task
3615 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3616 * one is seen by the task.
3618 if (state == PFM_CTX_MASKED) {
3619 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3621 * will prevent subsequent restart before this one is
3622 * seen by other task
3624 ctx->ctx_fl_can_restart = 0;
3628 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3629 * the task is blocked or on its way to block. That's the normal
3630 * restart path. If the monitoring is not masked, then the task
3631 * can be actively monitoring and we cannot directly intervene.
3632 * Therefore we use the trap mechanism to catch the task and
3633 * force it to reset the buffer/reset PMDs.
3635 * if non-blocking, then we ensure that the task will go into
3636 * pfm_handle_work() before returning to user mode.
3638 * We cannot explicitly reset another task, it MUST always
3639 * be done by the task itself. This works for system wide because
3640 * the tool that is controlling the session is logically doing
3641 * "self-monitoring".
3643 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3644 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3645 complete(&ctx->ctx_restart_done);
3646 } else {
3647 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3649 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3651 PFM_SET_WORK_PENDING(task, 1);
3653 set_notify_resume(task);
3656 * XXX: send reschedule if task runs on another CPU
3659 return 0;
3662 static int
3663 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3665 unsigned int m = *(unsigned int *)arg;
3667 pfm_sysctl.debug = m == 0 ? 0 : 1;
3669 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3671 if (m == 0) {
3672 memset(pfm_stats, 0, sizeof(pfm_stats));
3673 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3675 return 0;
3679 * arg can be NULL and count can be zero for this function
3681 static int
3682 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3684 struct thread_struct *thread = NULL;
3685 struct task_struct *task;
3686 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3687 unsigned long flags;
3688 dbreg_t dbreg;
3689 unsigned int rnum;
3690 int first_time;
3691 int ret = 0, state;
3692 int i, can_access_pmu = 0;
3693 int is_system, is_loaded;
3695 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3697 state = ctx->ctx_state;
3698 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3699 is_system = ctx->ctx_fl_system;
3700 task = ctx->ctx_task;
3702 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3705 * on both UP and SMP, we can only write to the PMC when the task is
3706 * the owner of the local PMU.
3708 if (is_loaded) {
3709 thread = &task->thread;
3711 * In system wide and when the context is loaded, access can only happen
3712 * when the caller is running on the CPU being monitored by the session.
3713 * It does not have to be the owner (ctx_task) of the context per se.
3715 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3716 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3717 return -EBUSY;
3719 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3723 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3724 * ensuring that no real breakpoint can be installed via this call.
3726 * IMPORTANT: regs can be NULL in this function
3729 first_time = ctx->ctx_fl_using_dbreg == 0;
3732 * don't bother if we are loaded and task is being debugged
3734 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3735 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3736 return -EBUSY;
3740 * check for debug registers in system wide mode
3742 * If though a check is done in pfm_context_load(),
3743 * we must repeat it here, in case the registers are
3744 * written after the context is loaded
3746 if (is_loaded) {
3747 LOCK_PFS(flags);
3749 if (first_time && is_system) {
3750 if (pfm_sessions.pfs_ptrace_use_dbregs)
3751 ret = -EBUSY;
3752 else
3753 pfm_sessions.pfs_sys_use_dbregs++;
3755 UNLOCK_PFS(flags);
3758 if (ret != 0) return ret;
3761 * mark ourself as user of the debug registers for
3762 * perfmon purposes.
3764 ctx->ctx_fl_using_dbreg = 1;
3767 * clear hardware registers to make sure we don't
3768 * pick up stale state.
3770 * for a system wide session, we do not use
3771 * thread.dbr, thread.ibr because this process
3772 * never leaves the current CPU and the state
3773 * is shared by all processes running on it
3775 if (first_time && can_access_pmu) {
3776 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3777 for (i=0; i < pmu_conf->num_ibrs; i++) {
3778 ia64_set_ibr(i, 0UL);
3779 ia64_dv_serialize_instruction();
3781 ia64_srlz_i();
3782 for (i=0; i < pmu_conf->num_dbrs; i++) {
3783 ia64_set_dbr(i, 0UL);
3784 ia64_dv_serialize_data();
3786 ia64_srlz_d();
3790 * Now install the values into the registers
3792 for (i = 0; i < count; i++, req++) {
3794 rnum = req->dbreg_num;
3795 dbreg.val = req->dbreg_value;
3797 ret = -EINVAL;
3799 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3800 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3801 rnum, dbreg.val, mode, i, count));
3803 goto abort_mission;
3807 * make sure we do not install enabled breakpoint
3809 if (rnum & 0x1) {
3810 if (mode == PFM_CODE_RR)
3811 dbreg.ibr.ibr_x = 0;
3812 else
3813 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3816 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3819 * Debug registers, just like PMC, can only be modified
3820 * by a kernel call. Moreover, perfmon() access to those
3821 * registers are centralized in this routine. The hardware
3822 * does not modify the value of these registers, therefore,
3823 * if we save them as they are written, we can avoid having
3824 * to save them on context switch out. This is made possible
3825 * by the fact that when perfmon uses debug registers, ptrace()
3826 * won't be able to modify them concurrently.
3828 if (mode == PFM_CODE_RR) {
3829 CTX_USED_IBR(ctx, rnum);
3831 if (can_access_pmu) {
3832 ia64_set_ibr(rnum, dbreg.val);
3833 ia64_dv_serialize_instruction();
3836 ctx->ctx_ibrs[rnum] = dbreg.val;
3838 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3839 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3840 } else {
3841 CTX_USED_DBR(ctx, rnum);
3843 if (can_access_pmu) {
3844 ia64_set_dbr(rnum, dbreg.val);
3845 ia64_dv_serialize_data();
3847 ctx->ctx_dbrs[rnum] = dbreg.val;
3849 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3850 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3854 return 0;
3856 abort_mission:
3858 * in case it was our first attempt, we undo the global modifications
3860 if (first_time) {
3861 LOCK_PFS(flags);
3862 if (ctx->ctx_fl_system) {
3863 pfm_sessions.pfs_sys_use_dbregs--;
3865 UNLOCK_PFS(flags);
3866 ctx->ctx_fl_using_dbreg = 0;
3869 * install error return flag
3871 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3873 return ret;
3876 static int
3877 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3879 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3882 static int
3883 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3885 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3889 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3891 pfm_context_t *ctx;
3893 if (req == NULL) return -EINVAL;
3895 ctx = GET_PMU_CTX();
3897 if (ctx == NULL) return -EINVAL;
3900 * for now limit to current task, which is enough when calling
3901 * from overflow handler
3903 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3905 return pfm_write_ibrs(ctx, req, nreq, regs);
3907 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3910 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3912 pfm_context_t *ctx;
3914 if (req == NULL) return -EINVAL;
3916 ctx = GET_PMU_CTX();
3918 if (ctx == NULL) return -EINVAL;
3921 * for now limit to current task, which is enough when calling
3922 * from overflow handler
3924 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3926 return pfm_write_dbrs(ctx, req, nreq, regs);
3928 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3931 static int
3932 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3934 pfarg_features_t *req = (pfarg_features_t *)arg;
3936 req->ft_version = PFM_VERSION;
3937 return 0;
3940 static int
3941 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3943 struct pt_regs *tregs;
3944 struct task_struct *task = PFM_CTX_TASK(ctx);
3945 int state, is_system;
3947 state = ctx->ctx_state;
3948 is_system = ctx->ctx_fl_system;
3951 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3953 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3956 * In system wide and when the context is loaded, access can only happen
3957 * when the caller is running on the CPU being monitored by the session.
3958 * It does not have to be the owner (ctx_task) of the context per se.
3960 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3961 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3962 return -EBUSY;
3964 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3965 task_pid_nr(PFM_CTX_TASK(ctx)),
3966 state,
3967 is_system));
3969 * in system mode, we need to update the PMU directly
3970 * and the user level state of the caller, which may not
3971 * necessarily be the creator of the context.
3973 if (is_system) {
3975 * Update local PMU first
3977 * disable dcr pp
3979 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3980 ia64_srlz_i();
3983 * update local cpuinfo
3985 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3988 * stop monitoring, does srlz.i
3990 pfm_clear_psr_pp();
3993 * stop monitoring in the caller
3995 ia64_psr(regs)->pp = 0;
3997 return 0;
4000 * per-task mode
4003 if (task == current) {
4004 /* stop monitoring at kernel level */
4005 pfm_clear_psr_up();
4008 * stop monitoring at the user level
4010 ia64_psr(regs)->up = 0;
4011 } else {
4012 tregs = task_pt_regs(task);
4015 * stop monitoring at the user level
4017 ia64_psr(tregs)->up = 0;
4020 * monitoring disabled in kernel at next reschedule
4022 ctx->ctx_saved_psr_up = 0;
4023 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4025 return 0;
4029 static int
4030 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4032 struct pt_regs *tregs;
4033 int state, is_system;
4035 state = ctx->ctx_state;
4036 is_system = ctx->ctx_fl_system;
4038 if (state != PFM_CTX_LOADED) return -EINVAL;
4041 * In system wide and when the context is loaded, access can only happen
4042 * when the caller is running on the CPU being monitored by the session.
4043 * It does not have to be the owner (ctx_task) of the context per se.
4045 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4046 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4047 return -EBUSY;
4051 * in system mode, we need to update the PMU directly
4052 * and the user level state of the caller, which may not
4053 * necessarily be the creator of the context.
4055 if (is_system) {
4058 * set user level psr.pp for the caller
4060 ia64_psr(regs)->pp = 1;
4063 * now update the local PMU and cpuinfo
4065 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4068 * start monitoring at kernel level
4070 pfm_set_psr_pp();
4072 /* enable dcr pp */
4073 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4074 ia64_srlz_i();
4076 return 0;
4080 * per-process mode
4083 if (ctx->ctx_task == current) {
4085 /* start monitoring at kernel level */
4086 pfm_set_psr_up();
4089 * activate monitoring at user level
4091 ia64_psr(regs)->up = 1;
4093 } else {
4094 tregs = task_pt_regs(ctx->ctx_task);
4097 * start monitoring at the kernel level the next
4098 * time the task is scheduled
4100 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4103 * activate monitoring at user level
4105 ia64_psr(tregs)->up = 1;
4107 return 0;
4110 static int
4111 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4113 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4114 unsigned int cnum;
4115 int i;
4116 int ret = -EINVAL;
4118 for (i = 0; i < count; i++, req++) {
4120 cnum = req->reg_num;
4122 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4124 req->reg_value = PMC_DFL_VAL(cnum);
4126 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4128 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4130 return 0;
4132 abort_mission:
4133 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4134 return ret;
4137 static int
4138 pfm_check_task_exist(pfm_context_t *ctx)
4140 struct task_struct *g, *t;
4141 int ret = -ESRCH;
4143 read_lock(&tasklist_lock);
4145 do_each_thread (g, t) {
4146 if (t->thread.pfm_context == ctx) {
4147 ret = 0;
4148 goto out;
4150 } while_each_thread (g, t);
4151 out:
4152 read_unlock(&tasklist_lock);
4154 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4156 return ret;
4159 static int
4160 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4162 struct task_struct *task;
4163 struct thread_struct *thread;
4164 struct pfm_context_t *old;
4165 unsigned long flags;
4166 #ifndef CONFIG_SMP
4167 struct task_struct *owner_task = NULL;
4168 #endif
4169 pfarg_load_t *req = (pfarg_load_t *)arg;
4170 unsigned long *pmcs_source, *pmds_source;
4171 int the_cpu;
4172 int ret = 0;
4173 int state, is_system, set_dbregs = 0;
4175 state = ctx->ctx_state;
4176 is_system = ctx->ctx_fl_system;
4178 * can only load from unloaded or terminated state
4180 if (state != PFM_CTX_UNLOADED) {
4181 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4182 req->load_pid,
4183 ctx->ctx_state));
4184 return -EBUSY;
4187 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4189 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4190 DPRINT(("cannot use blocking mode on self\n"));
4191 return -EINVAL;
4194 ret = pfm_get_task(ctx, req->load_pid, &task);
4195 if (ret) {
4196 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4197 return ret;
4200 ret = -EINVAL;
4203 * system wide is self monitoring only
4205 if (is_system && task != current) {
4206 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4207 req->load_pid));
4208 goto error;
4211 thread = &task->thread;
4213 ret = 0;
4215 * cannot load a context which is using range restrictions,
4216 * into a task that is being debugged.
4218 if (ctx->ctx_fl_using_dbreg) {
4219 if (thread->flags & IA64_THREAD_DBG_VALID) {
4220 ret = -EBUSY;
4221 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4222 goto error;
4224 LOCK_PFS(flags);
4226 if (is_system) {
4227 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4228 DPRINT(("cannot load [%d] dbregs in use\n",
4229 task_pid_nr(task)));
4230 ret = -EBUSY;
4231 } else {
4232 pfm_sessions.pfs_sys_use_dbregs++;
4233 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4234 set_dbregs = 1;
4238 UNLOCK_PFS(flags);
4240 if (ret) goto error;
4244 * SMP system-wide monitoring implies self-monitoring.
4246 * The programming model expects the task to
4247 * be pinned on a CPU throughout the session.
4248 * Here we take note of the current CPU at the
4249 * time the context is loaded. No call from
4250 * another CPU will be allowed.
4252 * The pinning via shed_setaffinity()
4253 * must be done by the calling task prior
4254 * to this call.
4256 * systemwide: keep track of CPU this session is supposed to run on
4258 the_cpu = ctx->ctx_cpu = smp_processor_id();
4260 ret = -EBUSY;
4262 * now reserve the session
4264 ret = pfm_reserve_session(current, is_system, the_cpu);
4265 if (ret) goto error;
4268 * task is necessarily stopped at this point.
4270 * If the previous context was zombie, then it got removed in
4271 * pfm_save_regs(). Therefore we should not see it here.
4272 * If we see a context, then this is an active context
4274 * XXX: needs to be atomic
4276 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4277 thread->pfm_context, ctx));
4279 ret = -EBUSY;
4280 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4281 if (old != NULL) {
4282 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4283 goto error_unres;
4286 pfm_reset_msgq(ctx);
4288 ctx->ctx_state = PFM_CTX_LOADED;
4291 * link context to task
4293 ctx->ctx_task = task;
4295 if (is_system) {
4297 * we load as stopped
4299 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4300 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4302 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4303 } else {
4304 thread->flags |= IA64_THREAD_PM_VALID;
4308 * propagate into thread-state
4310 pfm_copy_pmds(task, ctx);
4311 pfm_copy_pmcs(task, ctx);
4313 pmcs_source = ctx->th_pmcs;
4314 pmds_source = ctx->th_pmds;
4317 * always the case for system-wide
4319 if (task == current) {
4321 if (is_system == 0) {
4323 /* allow user level control */
4324 ia64_psr(regs)->sp = 0;
4325 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4327 SET_LAST_CPU(ctx, smp_processor_id());
4328 INC_ACTIVATION();
4329 SET_ACTIVATION(ctx);
4330 #ifndef CONFIG_SMP
4332 * push the other task out, if any
4334 owner_task = GET_PMU_OWNER();
4335 if (owner_task) pfm_lazy_save_regs(owner_task);
4336 #endif
4339 * load all PMD from ctx to PMU (as opposed to thread state)
4340 * restore all PMC from ctx to PMU
4342 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4343 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4345 ctx->ctx_reload_pmcs[0] = 0UL;
4346 ctx->ctx_reload_pmds[0] = 0UL;
4349 * guaranteed safe by earlier check against DBG_VALID
4351 if (ctx->ctx_fl_using_dbreg) {
4352 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4353 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4356 * set new ownership
4358 SET_PMU_OWNER(task, ctx);
4360 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4361 } else {
4363 * when not current, task MUST be stopped, so this is safe
4365 regs = task_pt_regs(task);
4367 /* force a full reload */
4368 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4369 SET_LAST_CPU(ctx, -1);
4371 /* initial saved psr (stopped) */
4372 ctx->ctx_saved_psr_up = 0UL;
4373 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4376 ret = 0;
4378 error_unres:
4379 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4380 error:
4382 * we must undo the dbregs setting (for system-wide)
4384 if (ret && set_dbregs) {
4385 LOCK_PFS(flags);
4386 pfm_sessions.pfs_sys_use_dbregs--;
4387 UNLOCK_PFS(flags);
4390 * release task, there is now a link with the context
4392 if (is_system == 0 && task != current) {
4393 pfm_put_task(task);
4395 if (ret == 0) {
4396 ret = pfm_check_task_exist(ctx);
4397 if (ret) {
4398 ctx->ctx_state = PFM_CTX_UNLOADED;
4399 ctx->ctx_task = NULL;
4403 return ret;
4407 * in this function, we do not need to increase the use count
4408 * for the task via get_task_struct(), because we hold the
4409 * context lock. If the task were to disappear while having
4410 * a context attached, it would go through pfm_exit_thread()
4411 * which also grabs the context lock and would therefore be blocked
4412 * until we are here.
4414 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4416 static int
4417 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4419 struct task_struct *task = PFM_CTX_TASK(ctx);
4420 struct pt_regs *tregs;
4421 int prev_state, is_system;
4422 int ret;
4424 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4426 prev_state = ctx->ctx_state;
4427 is_system = ctx->ctx_fl_system;
4430 * unload only when necessary
4432 if (prev_state == PFM_CTX_UNLOADED) {
4433 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4434 return 0;
4438 * clear psr and dcr bits
4440 ret = pfm_stop(ctx, NULL, 0, regs);
4441 if (ret) return ret;
4443 ctx->ctx_state = PFM_CTX_UNLOADED;
4446 * in system mode, we need to update the PMU directly
4447 * and the user level state of the caller, which may not
4448 * necessarily be the creator of the context.
4450 if (is_system) {
4453 * Update cpuinfo
4455 * local PMU is taken care of in pfm_stop()
4457 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4458 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4461 * save PMDs in context
4462 * release ownership
4464 pfm_flush_pmds(current, ctx);
4467 * at this point we are done with the PMU
4468 * so we can unreserve the resource.
4470 if (prev_state != PFM_CTX_ZOMBIE)
4471 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4474 * disconnect context from task
4476 task->thread.pfm_context = NULL;
4478 * disconnect task from context
4480 ctx->ctx_task = NULL;
4483 * There is nothing more to cleanup here.
4485 return 0;
4489 * per-task mode
4491 tregs = task == current ? regs : task_pt_regs(task);
4493 if (task == current) {
4495 * cancel user level control
4497 ia64_psr(regs)->sp = 1;
4499 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4502 * save PMDs to context
4503 * release ownership
4505 pfm_flush_pmds(task, ctx);
4508 * at this point we are done with the PMU
4509 * so we can unreserve the resource.
4511 * when state was ZOMBIE, we have already unreserved.
4513 if (prev_state != PFM_CTX_ZOMBIE)
4514 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4517 * reset activation counter and psr
4519 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4520 SET_LAST_CPU(ctx, -1);
4523 * PMU state will not be restored
4525 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4528 * break links between context and task
4530 task->thread.pfm_context = NULL;
4531 ctx->ctx_task = NULL;
4533 PFM_SET_WORK_PENDING(task, 0);
4535 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4536 ctx->ctx_fl_can_restart = 0;
4537 ctx->ctx_fl_going_zombie = 0;
4539 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4541 return 0;
4546 * called only from exit_thread(): task == current
4547 * we come here only if current has a context attached (loaded or masked)
4549 void
4550 pfm_exit_thread(struct task_struct *task)
4552 pfm_context_t *ctx;
4553 unsigned long flags;
4554 struct pt_regs *regs = task_pt_regs(task);
4555 int ret, state;
4556 int free_ok = 0;
4558 ctx = PFM_GET_CTX(task);
4560 PROTECT_CTX(ctx, flags);
4562 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4564 state = ctx->ctx_state;
4565 switch(state) {
4566 case PFM_CTX_UNLOADED:
4568 * only comes to this function if pfm_context is not NULL, i.e., cannot
4569 * be in unloaded state
4571 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4572 break;
4573 case PFM_CTX_LOADED:
4574 case PFM_CTX_MASKED:
4575 ret = pfm_context_unload(ctx, NULL, 0, regs);
4576 if (ret) {
4577 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4579 DPRINT(("ctx unloaded for current state was %d\n", state));
4581 pfm_end_notify_user(ctx);
4582 break;
4583 case PFM_CTX_ZOMBIE:
4584 ret = pfm_context_unload(ctx, NULL, 0, regs);
4585 if (ret) {
4586 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4588 free_ok = 1;
4589 break;
4590 default:
4591 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4592 break;
4594 UNPROTECT_CTX(ctx, flags);
4596 { u64 psr = pfm_get_psr();
4597 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4598 BUG_ON(GET_PMU_OWNER());
4599 BUG_ON(ia64_psr(regs)->up);
4600 BUG_ON(ia64_psr(regs)->pp);
4604 * All memory free operations (especially for vmalloc'ed memory)
4605 * MUST be done with interrupts ENABLED.
4607 if (free_ok) pfm_context_free(ctx);
4611 * functions MUST be listed in the increasing order of their index (see permfon.h)
4613 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4614 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4615 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4616 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4617 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4619 static pfm_cmd_desc_t pfm_cmd_tab[]={
4620 /* 0 */PFM_CMD_NONE,
4621 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4622 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4624 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4625 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4626 /* 6 */PFM_CMD_NONE,
4627 /* 7 */PFM_CMD_NONE,
4628 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4629 /* 9 */PFM_CMD_NONE,
4630 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4631 /* 11 */PFM_CMD_NONE,
4632 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4633 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4634 /* 14 */PFM_CMD_NONE,
4635 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4636 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4637 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4638 /* 18 */PFM_CMD_NONE,
4639 /* 19 */PFM_CMD_NONE,
4640 /* 20 */PFM_CMD_NONE,
4641 /* 21 */PFM_CMD_NONE,
4642 /* 22 */PFM_CMD_NONE,
4643 /* 23 */PFM_CMD_NONE,
4644 /* 24 */PFM_CMD_NONE,
4645 /* 25 */PFM_CMD_NONE,
4646 /* 26 */PFM_CMD_NONE,
4647 /* 27 */PFM_CMD_NONE,
4648 /* 28 */PFM_CMD_NONE,
4649 /* 29 */PFM_CMD_NONE,
4650 /* 30 */PFM_CMD_NONE,
4651 /* 31 */PFM_CMD_NONE,
4652 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4653 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4655 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4657 static int
4658 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4660 struct task_struct *task;
4661 int state, old_state;
4663 recheck:
4664 state = ctx->ctx_state;
4665 task = ctx->ctx_task;
4667 if (task == NULL) {
4668 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4669 return 0;
4672 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4673 ctx->ctx_fd,
4674 state,
4675 task_pid_nr(task),
4676 task->state, PFM_CMD_STOPPED(cmd)));
4679 * self-monitoring always ok.
4681 * for system-wide the caller can either be the creator of the
4682 * context (to one to which the context is attached to) OR
4683 * a task running on the same CPU as the session.
4685 if (task == current || ctx->ctx_fl_system) return 0;
4688 * we are monitoring another thread
4690 switch(state) {
4691 case PFM_CTX_UNLOADED:
4693 * if context is UNLOADED we are safe to go
4695 return 0;
4696 case PFM_CTX_ZOMBIE:
4698 * no command can operate on a zombie context
4700 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4701 return -EINVAL;
4702 case PFM_CTX_MASKED:
4704 * PMU state has been saved to software even though
4705 * the thread may still be running.
4707 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4711 * context is LOADED or MASKED. Some commands may need to have
4712 * the task stopped.
4714 * We could lift this restriction for UP but it would mean that
4715 * the user has no guarantee the task would not run between
4716 * two successive calls to perfmonctl(). That's probably OK.
4717 * If this user wants to ensure the task does not run, then
4718 * the task must be stopped.
4720 if (PFM_CMD_STOPPED(cmd)) {
4721 if (!task_is_stopped_or_traced(task)) {
4722 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4723 return -EBUSY;
4726 * task is now stopped, wait for ctxsw out
4728 * This is an interesting point in the code.
4729 * We need to unprotect the context because
4730 * the pfm_save_regs() routines needs to grab
4731 * the same lock. There are danger in doing
4732 * this because it leaves a window open for
4733 * another task to get access to the context
4734 * and possibly change its state. The one thing
4735 * that is not possible is for the context to disappear
4736 * because we are protected by the VFS layer, i.e.,
4737 * get_fd()/put_fd().
4739 old_state = state;
4741 UNPROTECT_CTX(ctx, flags);
4743 wait_task_inactive(task, 0);
4745 PROTECT_CTX(ctx, flags);
4748 * we must recheck to verify if state has changed
4750 if (ctx->ctx_state != old_state) {
4751 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4752 goto recheck;
4755 return 0;
4759 * system-call entry point (must return long)
4761 asmlinkage long
4762 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4764 struct fd f = {NULL, 0};
4765 pfm_context_t *ctx = NULL;
4766 unsigned long flags = 0UL;
4767 void *args_k = NULL;
4768 long ret; /* will expand int return types */
4769 size_t base_sz, sz, xtra_sz = 0;
4770 int narg, completed_args = 0, call_made = 0, cmd_flags;
4771 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4772 int (*getsize)(void *arg, size_t *sz);
4773 #define PFM_MAX_ARGSIZE 4096
4776 * reject any call if perfmon was disabled at initialization
4778 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4780 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4781 DPRINT(("invalid cmd=%d\n", cmd));
4782 return -EINVAL;
4785 func = pfm_cmd_tab[cmd].cmd_func;
4786 narg = pfm_cmd_tab[cmd].cmd_narg;
4787 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4788 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4789 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4791 if (unlikely(func == NULL)) {
4792 DPRINT(("invalid cmd=%d\n", cmd));
4793 return -EINVAL;
4796 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4797 PFM_CMD_NAME(cmd),
4798 cmd,
4799 narg,
4800 base_sz,
4801 count));
4804 * check if number of arguments matches what the command expects
4806 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4807 return -EINVAL;
4809 restart_args:
4810 sz = xtra_sz + base_sz*count;
4812 * limit abuse to min page size
4814 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4815 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4816 return -E2BIG;
4820 * allocate default-sized argument buffer
4822 if (likely(count && args_k == NULL)) {
4823 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4824 if (args_k == NULL) return -ENOMEM;
4827 ret = -EFAULT;
4830 * copy arguments
4832 * assume sz = 0 for command without parameters
4834 if (sz && copy_from_user(args_k, arg, sz)) {
4835 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4836 goto error_args;
4840 * check if command supports extra parameters
4842 if (completed_args == 0 && getsize) {
4844 * get extra parameters size (based on main argument)
4846 ret = (*getsize)(args_k, &xtra_sz);
4847 if (ret) goto error_args;
4849 completed_args = 1;
4851 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4853 /* retry if necessary */
4854 if (likely(xtra_sz)) goto restart_args;
4857 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4859 ret = -EBADF;
4861 f = fdget(fd);
4862 if (unlikely(f.file == NULL)) {
4863 DPRINT(("invalid fd %d\n", fd));
4864 goto error_args;
4866 if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4867 DPRINT(("fd %d not related to perfmon\n", fd));
4868 goto error_args;
4871 ctx = f.file->private_data;
4872 if (unlikely(ctx == NULL)) {
4873 DPRINT(("no context for fd %d\n", fd));
4874 goto error_args;
4876 prefetch(&ctx->ctx_state);
4878 PROTECT_CTX(ctx, flags);
4881 * check task is stopped
4883 ret = pfm_check_task_state(ctx, cmd, flags);
4884 if (unlikely(ret)) goto abort_locked;
4886 skip_fd:
4887 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4889 call_made = 1;
4891 abort_locked:
4892 if (likely(ctx)) {
4893 DPRINT(("context unlocked\n"));
4894 UNPROTECT_CTX(ctx, flags);
4897 /* copy argument back to user, if needed */
4898 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4900 error_args:
4901 if (f.file)
4902 fdput(f);
4904 kfree(args_k);
4906 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4908 return ret;
4911 static void
4912 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4914 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4915 pfm_ovfl_ctrl_t rst_ctrl;
4916 int state;
4917 int ret = 0;
4919 state = ctx->ctx_state;
4921 * Unlock sampling buffer and reset index atomically
4922 * XXX: not really needed when blocking
4924 if (CTX_HAS_SMPL(ctx)) {
4926 rst_ctrl.bits.mask_monitoring = 0;
4927 rst_ctrl.bits.reset_ovfl_pmds = 0;
4929 if (state == PFM_CTX_LOADED)
4930 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4931 else
4932 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4933 } else {
4934 rst_ctrl.bits.mask_monitoring = 0;
4935 rst_ctrl.bits.reset_ovfl_pmds = 1;
4938 if (ret == 0) {
4939 if (rst_ctrl.bits.reset_ovfl_pmds) {
4940 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4942 if (rst_ctrl.bits.mask_monitoring == 0) {
4943 DPRINT(("resuming monitoring\n"));
4944 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4945 } else {
4946 DPRINT(("stopping monitoring\n"));
4947 //pfm_stop_monitoring(current, regs);
4949 ctx->ctx_state = PFM_CTX_LOADED;
4954 * context MUST BE LOCKED when calling
4955 * can only be called for current
4957 static void
4958 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4960 int ret;
4962 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4964 ret = pfm_context_unload(ctx, NULL, 0, regs);
4965 if (ret) {
4966 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4970 * and wakeup controlling task, indicating we are now disconnected
4972 wake_up_interruptible(&ctx->ctx_zombieq);
4975 * given that context is still locked, the controlling
4976 * task will only get access when we return from
4977 * pfm_handle_work().
4981 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4984 * pfm_handle_work() can be called with interrupts enabled
4985 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4986 * call may sleep, therefore we must re-enable interrupts
4987 * to avoid deadlocks. It is safe to do so because this function
4988 * is called ONLY when returning to user level (pUStk=1), in which case
4989 * there is no risk of kernel stack overflow due to deep
4990 * interrupt nesting.
4992 void
4993 pfm_handle_work(void)
4995 pfm_context_t *ctx;
4996 struct pt_regs *regs;
4997 unsigned long flags, dummy_flags;
4998 unsigned long ovfl_regs;
4999 unsigned int reason;
5000 int ret;
5002 ctx = PFM_GET_CTX(current);
5003 if (ctx == NULL) {
5004 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5005 task_pid_nr(current));
5006 return;
5009 PROTECT_CTX(ctx, flags);
5011 PFM_SET_WORK_PENDING(current, 0);
5013 regs = task_pt_regs(current);
5016 * extract reason for being here and clear
5018 reason = ctx->ctx_fl_trap_reason;
5019 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5020 ovfl_regs = ctx->ctx_ovfl_regs[0];
5022 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5025 * must be done before we check for simple-reset mode
5027 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5028 goto do_zombie;
5030 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5031 if (reason == PFM_TRAP_REASON_RESET)
5032 goto skip_blocking;
5035 * restore interrupt mask to what it was on entry.
5036 * Could be enabled/diasbled.
5038 UNPROTECT_CTX(ctx, flags);
5041 * force interrupt enable because of down_interruptible()
5043 local_irq_enable();
5045 DPRINT(("before block sleeping\n"));
5048 * may go through without blocking on SMP systems
5049 * if restart has been received already by the time we call down()
5051 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5053 DPRINT(("after block sleeping ret=%d\n", ret));
5056 * lock context and mask interrupts again
5057 * We save flags into a dummy because we may have
5058 * altered interrupts mask compared to entry in this
5059 * function.
5061 PROTECT_CTX(ctx, dummy_flags);
5064 * we need to read the ovfl_regs only after wake-up
5065 * because we may have had pfm_write_pmds() in between
5066 * and that can changed PMD values and therefore
5067 * ovfl_regs is reset for these new PMD values.
5069 ovfl_regs = ctx->ctx_ovfl_regs[0];
5071 if (ctx->ctx_fl_going_zombie) {
5072 do_zombie:
5073 DPRINT(("context is zombie, bailing out\n"));
5074 pfm_context_force_terminate(ctx, regs);
5075 goto nothing_to_do;
5078 * in case of interruption of down() we don't restart anything
5080 if (ret < 0)
5081 goto nothing_to_do;
5083 skip_blocking:
5084 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5085 ctx->ctx_ovfl_regs[0] = 0UL;
5087 nothing_to_do:
5089 * restore flags as they were upon entry
5091 UNPROTECT_CTX(ctx, flags);
5094 static int
5095 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5097 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5098 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5099 return 0;
5102 DPRINT(("waking up somebody\n"));
5104 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5107 * safe, we are not in intr handler, nor in ctxsw when
5108 * we come here
5110 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5112 return 0;
5115 static int
5116 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5118 pfm_msg_t *msg = NULL;
5120 if (ctx->ctx_fl_no_msg == 0) {
5121 msg = pfm_get_new_msg(ctx);
5122 if (msg == NULL) {
5123 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5124 return -1;
5127 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5128 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5129 msg->pfm_ovfl_msg.msg_active_set = 0;
5130 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5131 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5132 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5133 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5134 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5137 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5138 msg,
5139 ctx->ctx_fl_no_msg,
5140 ctx->ctx_fd,
5141 ovfl_pmds));
5143 return pfm_notify_user(ctx, msg);
5146 static int
5147 pfm_end_notify_user(pfm_context_t *ctx)
5149 pfm_msg_t *msg;
5151 msg = pfm_get_new_msg(ctx);
5152 if (msg == NULL) {
5153 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5154 return -1;
5156 /* no leak */
5157 memset(msg, 0, sizeof(*msg));
5159 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5160 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5161 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5163 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5164 msg,
5165 ctx->ctx_fl_no_msg,
5166 ctx->ctx_fd));
5168 return pfm_notify_user(ctx, msg);
5172 * main overflow processing routine.
5173 * it can be called from the interrupt path or explicitly during the context switch code
5175 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5176 unsigned long pmc0, struct pt_regs *regs)
5178 pfm_ovfl_arg_t *ovfl_arg;
5179 unsigned long mask;
5180 unsigned long old_val, ovfl_val, new_val;
5181 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5182 unsigned long tstamp;
5183 pfm_ovfl_ctrl_t ovfl_ctrl;
5184 unsigned int i, has_smpl;
5185 int must_notify = 0;
5187 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5190 * sanity test. Should never happen
5192 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5194 tstamp = ia64_get_itc();
5195 mask = pmc0 >> PMU_FIRST_COUNTER;
5196 ovfl_val = pmu_conf->ovfl_val;
5197 has_smpl = CTX_HAS_SMPL(ctx);
5199 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5200 "used_pmds=0x%lx\n",
5201 pmc0,
5202 task ? task_pid_nr(task): -1,
5203 (regs ? regs->cr_iip : 0),
5204 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5205 ctx->ctx_used_pmds[0]));
5209 * first we update the virtual counters
5210 * assume there was a prior ia64_srlz_d() issued
5212 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5214 /* skip pmd which did not overflow */
5215 if ((mask & 0x1) == 0) continue;
5218 * Note that the pmd is not necessarily 0 at this point as qualified events
5219 * may have happened before the PMU was frozen. The residual count is not
5220 * taken into consideration here but will be with any read of the pmd via
5221 * pfm_read_pmds().
5223 old_val = new_val = ctx->ctx_pmds[i].val;
5224 new_val += 1 + ovfl_val;
5225 ctx->ctx_pmds[i].val = new_val;
5228 * check for overflow condition
5230 if (likely(old_val > new_val)) {
5231 ovfl_pmds |= 1UL << i;
5232 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5235 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5237 new_val,
5238 old_val,
5239 ia64_get_pmd(i) & ovfl_val,
5240 ovfl_pmds,
5241 ovfl_notify));
5245 * there was no 64-bit overflow, nothing else to do
5247 if (ovfl_pmds == 0UL) return;
5250 * reset all control bits
5252 ovfl_ctrl.val = 0;
5253 reset_pmds = 0UL;
5256 * if a sampling format module exists, then we "cache" the overflow by
5257 * calling the module's handler() routine.
5259 if (has_smpl) {
5260 unsigned long start_cycles, end_cycles;
5261 unsigned long pmd_mask;
5262 int j, k, ret = 0;
5263 int this_cpu = smp_processor_id();
5265 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5266 ovfl_arg = &ctx->ctx_ovfl_arg;
5268 prefetch(ctx->ctx_smpl_hdr);
5270 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5272 mask = 1UL << i;
5274 if ((pmd_mask & 0x1) == 0) continue;
5276 ovfl_arg->ovfl_pmd = (unsigned char )i;
5277 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5278 ovfl_arg->active_set = 0;
5279 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5280 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5282 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5283 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5284 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5287 * copy values of pmds of interest. Sampling format may copy them
5288 * into sampling buffer.
5290 if (smpl_pmds) {
5291 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5292 if ((smpl_pmds & 0x1) == 0) continue;
5293 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5294 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5298 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5300 start_cycles = ia64_get_itc();
5303 * call custom buffer format record (handler) routine
5305 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5307 end_cycles = ia64_get_itc();
5310 * For those controls, we take the union because they have
5311 * an all or nothing behavior.
5313 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5314 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5315 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5317 * build the bitmask of pmds to reset now
5319 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5321 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5324 * when the module cannot handle the rest of the overflows, we abort right here
5326 if (ret && pmd_mask) {
5327 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5328 pmd_mask<<PMU_FIRST_COUNTER));
5331 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5333 ovfl_pmds &= ~reset_pmds;
5334 } else {
5336 * when no sampling module is used, then the default
5337 * is to notify on overflow if requested by user
5339 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5340 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5341 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5342 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5344 * if needed, we reset all overflowed pmds
5346 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5349 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5352 * reset the requested PMD registers using the short reset values
5354 if (reset_pmds) {
5355 unsigned long bm = reset_pmds;
5356 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5359 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5361 * keep track of what to reset when unblocking
5363 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5366 * check for blocking context
5368 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5370 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5373 * set the perfmon specific checking pending work for the task
5375 PFM_SET_WORK_PENDING(task, 1);
5378 * when coming from ctxsw, current still points to the
5379 * previous task, therefore we must work with task and not current.
5381 set_notify_resume(task);
5384 * defer until state is changed (shorten spin window). the context is locked
5385 * anyway, so the signal receiver would come spin for nothing.
5387 must_notify = 1;
5390 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5391 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5392 PFM_GET_WORK_PENDING(task),
5393 ctx->ctx_fl_trap_reason,
5394 ovfl_pmds,
5395 ovfl_notify,
5396 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5398 * in case monitoring must be stopped, we toggle the psr bits
5400 if (ovfl_ctrl.bits.mask_monitoring) {
5401 pfm_mask_monitoring(task);
5402 ctx->ctx_state = PFM_CTX_MASKED;
5403 ctx->ctx_fl_can_restart = 1;
5407 * send notification now
5409 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5411 return;
5413 sanity_check:
5414 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5415 smp_processor_id(),
5416 task ? task_pid_nr(task) : -1,
5417 pmc0);
5418 return;
5420 stop_monitoring:
5422 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5423 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5424 * come here as zombie only if the task is the current task. In which case, we
5425 * can access the PMU hardware directly.
5427 * Note that zombies do have PM_VALID set. So here we do the minimal.
5429 * In case the context was zombified it could not be reclaimed at the time
5430 * the monitoring program exited. At this point, the PMU reservation has been
5431 * returned, the sampiing buffer has been freed. We must convert this call
5432 * into a spurious interrupt. However, we must also avoid infinite overflows
5433 * by stopping monitoring for this task. We can only come here for a per-task
5434 * context. All we need to do is to stop monitoring using the psr bits which
5435 * are always task private. By re-enabling secure montioring, we ensure that
5436 * the monitored task will not be able to re-activate monitoring.
5437 * The task will eventually be context switched out, at which point the context
5438 * will be reclaimed (that includes releasing ownership of the PMU).
5440 * So there might be a window of time where the number of per-task session is zero
5441 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5442 * context. This is safe because if a per-task session comes in, it will push this one
5443 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5444 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5445 * also push our zombie context out.
5447 * Overall pretty hairy stuff....
5449 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5450 pfm_clear_psr_up();
5451 ia64_psr(regs)->up = 0;
5452 ia64_psr(regs)->sp = 1;
5453 return;
5456 static int
5457 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5459 struct task_struct *task;
5460 pfm_context_t *ctx;
5461 unsigned long flags;
5462 u64 pmc0;
5463 int this_cpu = smp_processor_id();
5464 int retval = 0;
5466 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5469 * srlz.d done before arriving here
5471 pmc0 = ia64_get_pmc(0);
5473 task = GET_PMU_OWNER();
5474 ctx = GET_PMU_CTX();
5477 * if we have some pending bits set
5478 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5480 if (PMC0_HAS_OVFL(pmc0) && task) {
5482 * we assume that pmc0.fr is always set here
5485 /* sanity check */
5486 if (!ctx) goto report_spurious1;
5488 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5489 goto report_spurious2;
5491 PROTECT_CTX_NOPRINT(ctx, flags);
5493 pfm_overflow_handler(task, ctx, pmc0, regs);
5495 UNPROTECT_CTX_NOPRINT(ctx, flags);
5497 } else {
5498 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5499 retval = -1;
5502 * keep it unfrozen at all times
5504 pfm_unfreeze_pmu();
5506 return retval;
5508 report_spurious1:
5509 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5510 this_cpu, task_pid_nr(task));
5511 pfm_unfreeze_pmu();
5512 return -1;
5513 report_spurious2:
5514 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5515 this_cpu,
5516 task_pid_nr(task));
5517 pfm_unfreeze_pmu();
5518 return -1;
5521 static irqreturn_t
5522 pfm_interrupt_handler(int irq, void *arg)
5524 unsigned long start_cycles, total_cycles;
5525 unsigned long min, max;
5526 int this_cpu;
5527 int ret;
5528 struct pt_regs *regs = get_irq_regs();
5530 this_cpu = get_cpu();
5531 if (likely(!pfm_alt_intr_handler)) {
5532 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5533 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5535 start_cycles = ia64_get_itc();
5537 ret = pfm_do_interrupt_handler(arg, regs);
5539 total_cycles = ia64_get_itc();
5542 * don't measure spurious interrupts
5544 if (likely(ret == 0)) {
5545 total_cycles -= start_cycles;
5547 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5548 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5550 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5553 else {
5554 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5557 put_cpu();
5558 return IRQ_HANDLED;
5562 * /proc/perfmon interface, for debug only
5565 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5567 static void *
5568 pfm_proc_start(struct seq_file *m, loff_t *pos)
5570 if (*pos == 0) {
5571 return PFM_PROC_SHOW_HEADER;
5574 while (*pos <= nr_cpu_ids) {
5575 if (cpu_online(*pos - 1)) {
5576 return (void *)*pos;
5578 ++*pos;
5580 return NULL;
5583 static void *
5584 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5586 ++*pos;
5587 return pfm_proc_start(m, pos);
5590 static void
5591 pfm_proc_stop(struct seq_file *m, void *v)
5595 static void
5596 pfm_proc_show_header(struct seq_file *m)
5598 struct list_head * pos;
5599 pfm_buffer_fmt_t * entry;
5600 unsigned long flags;
5602 seq_printf(m,
5603 "perfmon version : %u.%u\n"
5604 "model : %s\n"
5605 "fastctxsw : %s\n"
5606 "expert mode : %s\n"
5607 "ovfl_mask : 0x%lx\n"
5608 "PMU flags : 0x%x\n",
5609 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5610 pmu_conf->pmu_name,
5611 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5612 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5613 pmu_conf->ovfl_val,
5614 pmu_conf->flags);
5616 LOCK_PFS(flags);
5618 seq_printf(m,
5619 "proc_sessions : %u\n"
5620 "sys_sessions : %u\n"
5621 "sys_use_dbregs : %u\n"
5622 "ptrace_use_dbregs : %u\n",
5623 pfm_sessions.pfs_task_sessions,
5624 pfm_sessions.pfs_sys_sessions,
5625 pfm_sessions.pfs_sys_use_dbregs,
5626 pfm_sessions.pfs_ptrace_use_dbregs);
5628 UNLOCK_PFS(flags);
5630 spin_lock(&pfm_buffer_fmt_lock);
5632 list_for_each(pos, &pfm_buffer_fmt_list) {
5633 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5634 seq_printf(m, "format : %16phD %s\n",
5635 entry->fmt_uuid, entry->fmt_name);
5637 spin_unlock(&pfm_buffer_fmt_lock);
5641 static int
5642 pfm_proc_show(struct seq_file *m, void *v)
5644 unsigned long psr;
5645 unsigned int i;
5646 int cpu;
5648 if (v == PFM_PROC_SHOW_HEADER) {
5649 pfm_proc_show_header(m);
5650 return 0;
5653 /* show info for CPU (v - 1) */
5655 cpu = (long)v - 1;
5656 seq_printf(m,
5657 "CPU%-2d overflow intrs : %lu\n"
5658 "CPU%-2d overflow cycles : %lu\n"
5659 "CPU%-2d overflow min : %lu\n"
5660 "CPU%-2d overflow max : %lu\n"
5661 "CPU%-2d smpl handler calls : %lu\n"
5662 "CPU%-2d smpl handler cycles : %lu\n"
5663 "CPU%-2d spurious intrs : %lu\n"
5664 "CPU%-2d replay intrs : %lu\n"
5665 "CPU%-2d syst_wide : %d\n"
5666 "CPU%-2d dcr_pp : %d\n"
5667 "CPU%-2d exclude idle : %d\n"
5668 "CPU%-2d owner : %d\n"
5669 "CPU%-2d context : %p\n"
5670 "CPU%-2d activations : %lu\n",
5671 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5672 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5673 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5674 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5675 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5676 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5677 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5678 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5679 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5680 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5681 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5682 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5683 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5684 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5686 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5688 psr = pfm_get_psr();
5690 ia64_srlz_d();
5692 seq_printf(m,
5693 "CPU%-2d psr : 0x%lx\n"
5694 "CPU%-2d pmc0 : 0x%lx\n",
5695 cpu, psr,
5696 cpu, ia64_get_pmc(0));
5698 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5699 if (PMC_IS_COUNTING(i) == 0) continue;
5700 seq_printf(m,
5701 "CPU%-2d pmc%u : 0x%lx\n"
5702 "CPU%-2d pmd%u : 0x%lx\n",
5703 cpu, i, ia64_get_pmc(i),
5704 cpu, i, ia64_get_pmd(i));
5707 return 0;
5710 const struct seq_operations pfm_seq_ops = {
5711 .start = pfm_proc_start,
5712 .next = pfm_proc_next,
5713 .stop = pfm_proc_stop,
5714 .show = pfm_proc_show
5717 static int
5718 pfm_proc_open(struct inode *inode, struct file *file)
5720 return seq_open(file, &pfm_seq_ops);
5725 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5726 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5727 * is active or inactive based on mode. We must rely on the value in
5728 * local_cpu_data->pfm_syst_info
5730 void
5731 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5733 struct pt_regs *regs;
5734 unsigned long dcr;
5735 unsigned long dcr_pp;
5737 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5740 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5741 * on every CPU, so we can rely on the pid to identify the idle task.
5743 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5744 regs = task_pt_regs(task);
5745 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5746 return;
5749 * if monitoring has started
5751 if (dcr_pp) {
5752 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5754 * context switching in?
5756 if (is_ctxswin) {
5757 /* mask monitoring for the idle task */
5758 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5759 pfm_clear_psr_pp();
5760 ia64_srlz_i();
5761 return;
5764 * context switching out
5765 * restore monitoring for next task
5767 * Due to inlining this odd if-then-else construction generates
5768 * better code.
5770 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5771 pfm_set_psr_pp();
5772 ia64_srlz_i();
5776 #ifdef CONFIG_SMP
5778 static void
5779 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5781 struct task_struct *task = ctx->ctx_task;
5783 ia64_psr(regs)->up = 0;
5784 ia64_psr(regs)->sp = 1;
5786 if (GET_PMU_OWNER() == task) {
5787 DPRINT(("cleared ownership for [%d]\n",
5788 task_pid_nr(ctx->ctx_task)));
5789 SET_PMU_OWNER(NULL, NULL);
5793 * disconnect the task from the context and vice-versa
5795 PFM_SET_WORK_PENDING(task, 0);
5797 task->thread.pfm_context = NULL;
5798 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5800 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5805 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5807 void
5808 pfm_save_regs(struct task_struct *task)
5810 pfm_context_t *ctx;
5811 unsigned long flags;
5812 u64 psr;
5815 ctx = PFM_GET_CTX(task);
5816 if (ctx == NULL) return;
5819 * we always come here with interrupts ALREADY disabled by
5820 * the scheduler. So we simply need to protect against concurrent
5821 * access, not CPU concurrency.
5823 flags = pfm_protect_ctx_ctxsw(ctx);
5825 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5826 struct pt_regs *regs = task_pt_regs(task);
5828 pfm_clear_psr_up();
5830 pfm_force_cleanup(ctx, regs);
5832 BUG_ON(ctx->ctx_smpl_hdr);
5834 pfm_unprotect_ctx_ctxsw(ctx, flags);
5836 pfm_context_free(ctx);
5837 return;
5841 * save current PSR: needed because we modify it
5843 ia64_srlz_d();
5844 psr = pfm_get_psr();
5846 BUG_ON(psr & (IA64_PSR_I));
5849 * stop monitoring:
5850 * This is the last instruction which may generate an overflow
5852 * We do not need to set psr.sp because, it is irrelevant in kernel.
5853 * It will be restored from ipsr when going back to user level
5855 pfm_clear_psr_up();
5858 * keep a copy of psr.up (for reload)
5860 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5863 * release ownership of this PMU.
5864 * PM interrupts are masked, so nothing
5865 * can happen.
5867 SET_PMU_OWNER(NULL, NULL);
5870 * we systematically save the PMD as we have no
5871 * guarantee we will be schedule at that same
5872 * CPU again.
5874 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5877 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5878 * we will need it on the restore path to check
5879 * for pending overflow.
5881 ctx->th_pmcs[0] = ia64_get_pmc(0);
5884 * unfreeze PMU if had pending overflows
5886 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5889 * finally, allow context access.
5890 * interrupts will still be masked after this call.
5892 pfm_unprotect_ctx_ctxsw(ctx, flags);
5895 #else /* !CONFIG_SMP */
5896 void
5897 pfm_save_regs(struct task_struct *task)
5899 pfm_context_t *ctx;
5900 u64 psr;
5902 ctx = PFM_GET_CTX(task);
5903 if (ctx == NULL) return;
5906 * save current PSR: needed because we modify it
5908 psr = pfm_get_psr();
5910 BUG_ON(psr & (IA64_PSR_I));
5913 * stop monitoring:
5914 * This is the last instruction which may generate an overflow
5916 * We do not need to set psr.sp because, it is irrelevant in kernel.
5917 * It will be restored from ipsr when going back to user level
5919 pfm_clear_psr_up();
5922 * keep a copy of psr.up (for reload)
5924 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5927 static void
5928 pfm_lazy_save_regs (struct task_struct *task)
5930 pfm_context_t *ctx;
5931 unsigned long flags;
5933 { u64 psr = pfm_get_psr();
5934 BUG_ON(psr & IA64_PSR_UP);
5937 ctx = PFM_GET_CTX(task);
5940 * we need to mask PMU overflow here to
5941 * make sure that we maintain pmc0 until
5942 * we save it. overflow interrupts are
5943 * treated as spurious if there is no
5944 * owner.
5946 * XXX: I don't think this is necessary
5948 PROTECT_CTX(ctx,flags);
5951 * release ownership of this PMU.
5952 * must be done before we save the registers.
5954 * after this call any PMU interrupt is treated
5955 * as spurious.
5957 SET_PMU_OWNER(NULL, NULL);
5960 * save all the pmds we use
5962 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5965 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5966 * it is needed to check for pended overflow
5967 * on the restore path
5969 ctx->th_pmcs[0] = ia64_get_pmc(0);
5972 * unfreeze PMU if had pending overflows
5974 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5977 * now get can unmask PMU interrupts, they will
5978 * be treated as purely spurious and we will not
5979 * lose any information
5981 UNPROTECT_CTX(ctx,flags);
5983 #endif /* CONFIG_SMP */
5985 #ifdef CONFIG_SMP
5987 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5989 void
5990 pfm_load_regs (struct task_struct *task)
5992 pfm_context_t *ctx;
5993 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5994 unsigned long flags;
5995 u64 psr, psr_up;
5996 int need_irq_resend;
5998 ctx = PFM_GET_CTX(task);
5999 if (unlikely(ctx == NULL)) return;
6001 BUG_ON(GET_PMU_OWNER());
6004 * possible on unload
6006 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6009 * we always come here with interrupts ALREADY disabled by
6010 * the scheduler. So we simply need to protect against concurrent
6011 * access, not CPU concurrency.
6013 flags = pfm_protect_ctx_ctxsw(ctx);
6014 psr = pfm_get_psr();
6016 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6018 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6019 BUG_ON(psr & IA64_PSR_I);
6021 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6022 struct pt_regs *regs = task_pt_regs(task);
6024 BUG_ON(ctx->ctx_smpl_hdr);
6026 pfm_force_cleanup(ctx, regs);
6028 pfm_unprotect_ctx_ctxsw(ctx, flags);
6031 * this one (kmalloc'ed) is fine with interrupts disabled
6033 pfm_context_free(ctx);
6035 return;
6039 * we restore ALL the debug registers to avoid picking up
6040 * stale state.
6042 if (ctx->ctx_fl_using_dbreg) {
6043 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6044 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6047 * retrieve saved psr.up
6049 psr_up = ctx->ctx_saved_psr_up;
6052 * if we were the last user of the PMU on that CPU,
6053 * then nothing to do except restore psr
6055 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6058 * retrieve partial reload masks (due to user modifications)
6060 pmc_mask = ctx->ctx_reload_pmcs[0];
6061 pmd_mask = ctx->ctx_reload_pmds[0];
6063 } else {
6065 * To avoid leaking information to the user level when psr.sp=0,
6066 * we must reload ALL implemented pmds (even the ones we don't use).
6067 * In the kernel we only allow PFM_READ_PMDS on registers which
6068 * we initialized or requested (sampling) so there is no risk there.
6070 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6073 * ALL accessible PMCs are systematically reloaded, unused registers
6074 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6075 * up stale configuration.
6077 * PMC0 is never in the mask. It is always restored separately.
6079 pmc_mask = ctx->ctx_all_pmcs[0];
6082 * when context is MASKED, we will restore PMC with plm=0
6083 * and PMD with stale information, but that's ok, nothing
6084 * will be captured.
6086 * XXX: optimize here
6088 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6089 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6092 * check for pending overflow at the time the state
6093 * was saved.
6095 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6097 * reload pmc0 with the overflow information
6098 * On McKinley PMU, this will trigger a PMU interrupt
6100 ia64_set_pmc(0, ctx->th_pmcs[0]);
6101 ia64_srlz_d();
6102 ctx->th_pmcs[0] = 0UL;
6105 * will replay the PMU interrupt
6107 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6109 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6113 * we just did a reload, so we reset the partial reload fields
6115 ctx->ctx_reload_pmcs[0] = 0UL;
6116 ctx->ctx_reload_pmds[0] = 0UL;
6118 SET_LAST_CPU(ctx, smp_processor_id());
6121 * dump activation value for this PMU
6123 INC_ACTIVATION();
6125 * record current activation for this context
6127 SET_ACTIVATION(ctx);
6130 * establish new ownership.
6132 SET_PMU_OWNER(task, ctx);
6135 * restore the psr.up bit. measurement
6136 * is active again.
6137 * no PMU interrupt can happen at this point
6138 * because we still have interrupts disabled.
6140 if (likely(psr_up)) pfm_set_psr_up();
6143 * allow concurrent access to context
6145 pfm_unprotect_ctx_ctxsw(ctx, flags);
6147 #else /* !CONFIG_SMP */
6149 * reload PMU state for UP kernels
6150 * in 2.5 we come here with interrupts disabled
6152 void
6153 pfm_load_regs (struct task_struct *task)
6155 pfm_context_t *ctx;
6156 struct task_struct *owner;
6157 unsigned long pmd_mask, pmc_mask;
6158 u64 psr, psr_up;
6159 int need_irq_resend;
6161 owner = GET_PMU_OWNER();
6162 ctx = PFM_GET_CTX(task);
6163 psr = pfm_get_psr();
6165 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6166 BUG_ON(psr & IA64_PSR_I);
6169 * we restore ALL the debug registers to avoid picking up
6170 * stale state.
6172 * This must be done even when the task is still the owner
6173 * as the registers may have been modified via ptrace()
6174 * (not perfmon) by the previous task.
6176 if (ctx->ctx_fl_using_dbreg) {
6177 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6178 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6182 * retrieved saved psr.up
6184 psr_up = ctx->ctx_saved_psr_up;
6185 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6188 * short path, our state is still there, just
6189 * need to restore psr and we go
6191 * we do not touch either PMC nor PMD. the psr is not touched
6192 * by the overflow_handler. So we are safe w.r.t. to interrupt
6193 * concurrency even without interrupt masking.
6195 if (likely(owner == task)) {
6196 if (likely(psr_up)) pfm_set_psr_up();
6197 return;
6201 * someone else is still using the PMU, first push it out and
6202 * then we'll be able to install our stuff !
6204 * Upon return, there will be no owner for the current PMU
6206 if (owner) pfm_lazy_save_regs(owner);
6209 * To avoid leaking information to the user level when psr.sp=0,
6210 * we must reload ALL implemented pmds (even the ones we don't use).
6211 * In the kernel we only allow PFM_READ_PMDS on registers which
6212 * we initialized or requested (sampling) so there is no risk there.
6214 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6217 * ALL accessible PMCs are systematically reloaded, unused registers
6218 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6219 * up stale configuration.
6221 * PMC0 is never in the mask. It is always restored separately
6223 pmc_mask = ctx->ctx_all_pmcs[0];
6225 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6226 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6229 * check for pending overflow at the time the state
6230 * was saved.
6232 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6234 * reload pmc0 with the overflow information
6235 * On McKinley PMU, this will trigger a PMU interrupt
6237 ia64_set_pmc(0, ctx->th_pmcs[0]);
6238 ia64_srlz_d();
6240 ctx->th_pmcs[0] = 0UL;
6243 * will replay the PMU interrupt
6245 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6247 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6251 * establish new ownership.
6253 SET_PMU_OWNER(task, ctx);
6256 * restore the psr.up bit. measurement
6257 * is active again.
6258 * no PMU interrupt can happen at this point
6259 * because we still have interrupts disabled.
6261 if (likely(psr_up)) pfm_set_psr_up();
6263 #endif /* CONFIG_SMP */
6266 * this function assumes monitoring is stopped
6268 static void
6269 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6271 u64 pmc0;
6272 unsigned long mask2, val, pmd_val, ovfl_val;
6273 int i, can_access_pmu = 0;
6274 int is_self;
6277 * is the caller the task being monitored (or which initiated the
6278 * session for system wide measurements)
6280 is_self = ctx->ctx_task == task ? 1 : 0;
6283 * can access PMU is task is the owner of the PMU state on the current CPU
6284 * or if we are running on the CPU bound to the context in system-wide mode
6285 * (that is not necessarily the task the context is attached to in this mode).
6286 * In system-wide we always have can_access_pmu true because a task running on an
6287 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6289 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6290 if (can_access_pmu) {
6292 * Mark the PMU as not owned
6293 * This will cause the interrupt handler to do nothing in case an overflow
6294 * interrupt was in-flight
6295 * This also guarantees that pmc0 will contain the final state
6296 * It virtually gives us full control on overflow processing from that point
6297 * on.
6299 SET_PMU_OWNER(NULL, NULL);
6300 DPRINT(("releasing ownership\n"));
6303 * read current overflow status:
6305 * we are guaranteed to read the final stable state
6307 ia64_srlz_d();
6308 pmc0 = ia64_get_pmc(0); /* slow */
6311 * reset freeze bit, overflow status information destroyed
6313 pfm_unfreeze_pmu();
6314 } else {
6315 pmc0 = ctx->th_pmcs[0];
6317 * clear whatever overflow status bits there were
6319 ctx->th_pmcs[0] = 0;
6321 ovfl_val = pmu_conf->ovfl_val;
6323 * we save all the used pmds
6324 * we take care of overflows for counting PMDs
6326 * XXX: sampling situation is not taken into account here
6328 mask2 = ctx->ctx_used_pmds[0];
6330 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6332 for (i = 0; mask2; i++, mask2>>=1) {
6334 /* skip non used pmds */
6335 if ((mask2 & 0x1) == 0) continue;
6338 * can access PMU always true in system wide mode
6340 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6342 if (PMD_IS_COUNTING(i)) {
6343 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6344 task_pid_nr(task),
6346 ctx->ctx_pmds[i].val,
6347 val & ovfl_val));
6350 * we rebuild the full 64 bit value of the counter
6352 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6355 * now everything is in ctx_pmds[] and we need
6356 * to clear the saved context from save_regs() such that
6357 * pfm_read_pmds() gets the correct value
6359 pmd_val = 0UL;
6362 * take care of overflow inline
6364 if (pmc0 & (1UL << i)) {
6365 val += 1 + ovfl_val;
6366 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6370 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6372 if (is_self) ctx->th_pmds[i] = pmd_val;
6374 ctx->ctx_pmds[i].val = val;
6378 static struct irqaction perfmon_irqaction = {
6379 .handler = pfm_interrupt_handler,
6380 .name = "perfmon"
6383 static void
6384 pfm_alt_save_pmu_state(void *data)
6386 struct pt_regs *regs;
6388 regs = task_pt_regs(current);
6390 DPRINT(("called\n"));
6393 * should not be necessary but
6394 * let's take not risk
6396 pfm_clear_psr_up();
6397 pfm_clear_psr_pp();
6398 ia64_psr(regs)->pp = 0;
6401 * This call is required
6402 * May cause a spurious interrupt on some processors
6404 pfm_freeze_pmu();
6406 ia64_srlz_d();
6409 void
6410 pfm_alt_restore_pmu_state(void *data)
6412 struct pt_regs *regs;
6414 regs = task_pt_regs(current);
6416 DPRINT(("called\n"));
6419 * put PMU back in state expected
6420 * by perfmon
6422 pfm_clear_psr_up();
6423 pfm_clear_psr_pp();
6424 ia64_psr(regs)->pp = 0;
6427 * perfmon runs with PMU unfrozen at all times
6429 pfm_unfreeze_pmu();
6431 ia64_srlz_d();
6435 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6437 int ret, i;
6438 int reserve_cpu;
6440 /* some sanity checks */
6441 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6443 /* do the easy test first */
6444 if (pfm_alt_intr_handler) return -EBUSY;
6446 /* one at a time in the install or remove, just fail the others */
6447 if (!spin_trylock(&pfm_alt_install_check)) {
6448 return -EBUSY;
6451 /* reserve our session */
6452 for_each_online_cpu(reserve_cpu) {
6453 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6454 if (ret) goto cleanup_reserve;
6457 /* save the current system wide pmu states */
6458 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6459 if (ret) {
6460 DPRINT(("on_each_cpu() failed: %d\n", ret));
6461 goto cleanup_reserve;
6464 /* officially change to the alternate interrupt handler */
6465 pfm_alt_intr_handler = hdl;
6467 spin_unlock(&pfm_alt_install_check);
6469 return 0;
6471 cleanup_reserve:
6472 for_each_online_cpu(i) {
6473 /* don't unreserve more than we reserved */
6474 if (i >= reserve_cpu) break;
6476 pfm_unreserve_session(NULL, 1, i);
6479 spin_unlock(&pfm_alt_install_check);
6481 return ret;
6483 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6486 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6488 int i;
6489 int ret;
6491 if (hdl == NULL) return -EINVAL;
6493 /* cannot remove someone else's handler! */
6494 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6496 /* one at a time in the install or remove, just fail the others */
6497 if (!spin_trylock(&pfm_alt_install_check)) {
6498 return -EBUSY;
6501 pfm_alt_intr_handler = NULL;
6503 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6504 if (ret) {
6505 DPRINT(("on_each_cpu() failed: %d\n", ret));
6508 for_each_online_cpu(i) {
6509 pfm_unreserve_session(NULL, 1, i);
6512 spin_unlock(&pfm_alt_install_check);
6514 return 0;
6516 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6519 * perfmon initialization routine, called from the initcall() table
6521 static int init_pfm_fs(void);
6523 static int __init
6524 pfm_probe_pmu(void)
6526 pmu_config_t **p;
6527 int family;
6529 family = local_cpu_data->family;
6530 p = pmu_confs;
6532 while(*p) {
6533 if ((*p)->probe) {
6534 if ((*p)->probe() == 0) goto found;
6535 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6536 goto found;
6538 p++;
6540 return -1;
6541 found:
6542 pmu_conf = *p;
6543 return 0;
6546 static const struct file_operations pfm_proc_fops = {
6547 .open = pfm_proc_open,
6548 .read = seq_read,
6549 .llseek = seq_lseek,
6550 .release = seq_release,
6553 int __init
6554 pfm_init(void)
6556 unsigned int n, n_counters, i;
6558 printk("perfmon: version %u.%u IRQ %u\n",
6559 PFM_VERSION_MAJ,
6560 PFM_VERSION_MIN,
6561 IA64_PERFMON_VECTOR);
6563 if (pfm_probe_pmu()) {
6564 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6565 local_cpu_data->family);
6566 return -ENODEV;
6570 * compute the number of implemented PMD/PMC from the
6571 * description tables
6573 n = 0;
6574 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6575 if (PMC_IS_IMPL(i) == 0) continue;
6576 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6577 n++;
6579 pmu_conf->num_pmcs = n;
6581 n = 0; n_counters = 0;
6582 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6583 if (PMD_IS_IMPL(i) == 0) continue;
6584 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6585 n++;
6586 if (PMD_IS_COUNTING(i)) n_counters++;
6588 pmu_conf->num_pmds = n;
6589 pmu_conf->num_counters = n_counters;
6592 * sanity checks on the number of debug registers
6594 if (pmu_conf->use_rr_dbregs) {
6595 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6596 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6597 pmu_conf = NULL;
6598 return -1;
6600 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6601 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6602 pmu_conf = NULL;
6603 return -1;
6607 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6608 pmu_conf->pmu_name,
6609 pmu_conf->num_pmcs,
6610 pmu_conf->num_pmds,
6611 pmu_conf->num_counters,
6612 ffz(pmu_conf->ovfl_val));
6614 /* sanity check */
6615 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6616 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6617 pmu_conf = NULL;
6618 return -1;
6622 * create /proc/perfmon (mostly for debugging purposes)
6624 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6625 if (perfmon_dir == NULL) {
6626 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6627 pmu_conf = NULL;
6628 return -1;
6632 * create /proc/sys/kernel/perfmon (for debugging purposes)
6634 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6637 * initialize all our spinlocks
6639 spin_lock_init(&pfm_sessions.pfs_lock);
6640 spin_lock_init(&pfm_buffer_fmt_lock);
6642 init_pfm_fs();
6644 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6646 return 0;
6649 __initcall(pfm_init);
6652 * this function is called before pfm_init()
6654 void
6655 pfm_init_percpu (void)
6657 static int first_time=1;
6659 * make sure no measurement is active
6660 * (may inherit programmed PMCs from EFI).
6662 pfm_clear_psr_pp();
6663 pfm_clear_psr_up();
6666 * we run with the PMU not frozen at all times
6668 pfm_unfreeze_pmu();
6670 if (first_time) {
6671 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6672 first_time=0;
6675 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6676 ia64_srlz_d();
6680 * used for debug purposes only
6682 void
6683 dump_pmu_state(const char *from)
6685 struct task_struct *task;
6686 struct pt_regs *regs;
6687 pfm_context_t *ctx;
6688 unsigned long psr, dcr, info, flags;
6689 int i, this_cpu;
6691 local_irq_save(flags);
6693 this_cpu = smp_processor_id();
6694 regs = task_pt_regs(current);
6695 info = PFM_CPUINFO_GET();
6696 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6698 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6699 local_irq_restore(flags);
6700 return;
6703 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6704 this_cpu,
6705 from,
6706 task_pid_nr(current),
6707 regs->cr_iip,
6708 current->comm);
6710 task = GET_PMU_OWNER();
6711 ctx = GET_PMU_CTX();
6713 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6715 psr = pfm_get_psr();
6717 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6718 this_cpu,
6719 ia64_get_pmc(0),
6720 psr & IA64_PSR_PP ? 1 : 0,
6721 psr & IA64_PSR_UP ? 1 : 0,
6722 dcr & IA64_DCR_PP ? 1 : 0,
6723 info,
6724 ia64_psr(regs)->up,
6725 ia64_psr(regs)->pp);
6727 ia64_psr(regs)->up = 0;
6728 ia64_psr(regs)->pp = 0;
6730 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6731 if (PMC_IS_IMPL(i) == 0) continue;
6732 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6735 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6736 if (PMD_IS_IMPL(i) == 0) continue;
6737 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6740 if (ctx) {
6741 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6742 this_cpu,
6743 ctx->ctx_state,
6744 ctx->ctx_smpl_vaddr,
6745 ctx->ctx_smpl_hdr,
6746 ctx->ctx_msgq_head,
6747 ctx->ctx_msgq_tail,
6748 ctx->ctx_saved_psr_up);
6750 local_irq_restore(flags);
6754 * called from process.c:copy_thread(). task is new child.
6756 void
6757 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6759 struct thread_struct *thread;
6761 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6763 thread = &task->thread;
6766 * cut links inherited from parent (current)
6768 thread->pfm_context = NULL;
6770 PFM_SET_WORK_PENDING(task, 0);
6773 * the psr bits are already set properly in copy_threads()
6776 #else /* !CONFIG_PERFMON */
6777 asmlinkage long
6778 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6780 return -ENOSYS;
6782 #endif /* CONFIG_PERFMON */