2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/timekeeper_internal.h>
23 #include <linux/platform_device.h>
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/ptrace.h>
30 #include <asm/sections.h>
32 #include "fsyscall_gtod_data.h"
34 static cycle_t
itc_get_cycles(struct clocksource
*cs
);
36 struct fsyscall_gtod_data_t fsyscall_gtod_data
;
38 struct itc_jitter_data_t itc_jitter_data
;
40 volatile int time_keeper_id
= 0; /* smp_processor_id() of time-keeper */
42 #ifdef CONFIG_IA64_DEBUG_IRQ
44 unsigned long last_cli_ip
;
45 EXPORT_SYMBOL(last_cli_ip
);
49 static struct clocksource clocksource_itc
= {
52 .read
= itc_get_cycles
,
53 .mask
= CLOCKSOURCE_MASK(64),
54 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
56 static struct clocksource
*itc_clocksource
;
58 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
60 #include <linux/kernel_stat.h>
62 extern cputime_t
cycle_to_cputime(u64 cyc
);
64 void vtime_account_user(struct task_struct
*tsk
)
66 cputime_t delta_utime
;
67 struct thread_info
*ti
= task_thread_info(tsk
);
70 delta_utime
= cycle_to_cputime(ti
->ac_utime
);
71 account_user_time(tsk
, delta_utime
, delta_utime
);
77 * Called from the context switch with interrupts disabled, to charge all
78 * accumulated times to the current process, and to prepare accounting on
81 void arch_vtime_task_switch(struct task_struct
*prev
)
83 struct thread_info
*pi
= task_thread_info(prev
);
84 struct thread_info
*ni
= task_thread_info(current
);
86 pi
->ac_stamp
= ni
->ac_stamp
;
87 ni
->ac_stime
= ni
->ac_utime
= 0;
91 * Account time for a transition between system, hard irq or soft irq state.
92 * Note that this function is called with interrupts enabled.
94 static cputime_t
vtime_delta(struct task_struct
*tsk
)
96 struct thread_info
*ti
= task_thread_info(tsk
);
97 cputime_t delta_stime
;
100 WARN_ON_ONCE(!irqs_disabled());
102 now
= ia64_get_itc();
104 delta_stime
= cycle_to_cputime(ti
->ac_stime
+ (now
- ti
->ac_stamp
));
111 void vtime_account_system(struct task_struct
*tsk
)
113 cputime_t delta
= vtime_delta(tsk
);
115 account_system_time(tsk
, 0, delta
, delta
);
117 EXPORT_SYMBOL_GPL(vtime_account_system
);
119 void vtime_account_idle(struct task_struct
*tsk
)
121 account_idle_time(vtime_delta(tsk
));
124 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
127 timer_interrupt (int irq
, void *dev_id
)
129 unsigned long new_itm
;
131 if (cpu_is_offline(smp_processor_id())) {
135 platform_timer_interrupt(irq
, dev_id
);
137 new_itm
= local_cpu_data
->itm_next
;
139 if (!time_after(ia64_get_itc(), new_itm
))
140 printk(KERN_ERR
"Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
141 ia64_get_itc(), new_itm
);
143 profile_tick(CPU_PROFILING
);
146 update_process_times(user_mode(get_irq_regs()));
148 new_itm
+= local_cpu_data
->itm_delta
;
150 if (smp_processor_id() == time_keeper_id
)
153 local_cpu_data
->itm_next
= new_itm
;
155 if (time_after(new_itm
, ia64_get_itc()))
159 * Allow IPIs to interrupt the timer loop.
167 * If we're too close to the next clock tick for
168 * comfort, we increase the safety margin by
169 * intentionally dropping the next tick(s). We do NOT
170 * update itm.next because that would force us to call
171 * xtime_update() which in turn would let our clock run
172 * too fast (with the potentially devastating effect
173 * of losing monotony of time).
175 while (!time_after(new_itm
, ia64_get_itc() + local_cpu_data
->itm_delta
/2))
176 new_itm
+= local_cpu_data
->itm_delta
;
177 ia64_set_itm(new_itm
);
178 /* double check, in case we got hit by a (slow) PMI: */
179 } while (time_after_eq(ia64_get_itc(), new_itm
));
184 * Encapsulate access to the itm structure for SMP.
187 ia64_cpu_local_tick (void)
189 int cpu
= smp_processor_id();
190 unsigned long shift
= 0, delta
;
192 /* arrange for the cycle counter to generate a timer interrupt: */
193 ia64_set_itv(IA64_TIMER_VECTOR
);
195 delta
= local_cpu_data
->itm_delta
;
197 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
201 unsigned long hi
= 1UL << ia64_fls(cpu
);
202 shift
= (2*(cpu
- hi
) + 1) * delta
/hi
/2;
204 local_cpu_data
->itm_next
= ia64_get_itc() + delta
+ shift
;
205 ia64_set_itm(local_cpu_data
->itm_next
);
210 static int __init
nojitter_setup(char *str
)
213 printk("Jitter checking for ITC timers disabled\n");
217 __setup("nojitter", nojitter_setup
);
220 void ia64_init_itm(void)
222 unsigned long platform_base_freq
, itc_freq
;
223 struct pal_freq_ratio itc_ratio
, proc_ratio
;
224 long status
, platform_base_drift
, itc_drift
;
227 * According to SAL v2.6, we need to use a SAL call to determine the platform base
228 * frequency and then a PAL call to determine the frequency ratio between the ITC
229 * and the base frequency.
231 status
= ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM
,
232 &platform_base_freq
, &platform_base_drift
);
234 printk(KERN_ERR
"SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status
));
236 status
= ia64_pal_freq_ratios(&proc_ratio
, NULL
, &itc_ratio
);
238 printk(KERN_ERR
"PAL_FREQ_RATIOS failed with status=%ld\n", status
);
241 /* invent "random" values */
243 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
244 platform_base_freq
= 100000000;
245 platform_base_drift
= -1; /* no drift info */
249 if (platform_base_freq
< 40000000) {
250 printk(KERN_ERR
"Platform base frequency %lu bogus---resetting to 75MHz!\n",
252 platform_base_freq
= 75000000;
253 platform_base_drift
= -1;
256 proc_ratio
.den
= 1; /* avoid division by zero */
258 itc_ratio
.den
= 1; /* avoid division by zero */
260 itc_freq
= (platform_base_freq
*itc_ratio
.num
)/itc_ratio
.den
;
262 local_cpu_data
->itm_delta
= (itc_freq
+ HZ
/2) / HZ
;
263 printk(KERN_DEBUG
"CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
264 "ITC freq=%lu.%03luMHz", smp_processor_id(),
265 platform_base_freq
/ 1000000, (platform_base_freq
/ 1000) % 1000,
266 itc_ratio
.num
, itc_ratio
.den
, itc_freq
/ 1000000, (itc_freq
/ 1000) % 1000);
268 if (platform_base_drift
!= -1) {
269 itc_drift
= platform_base_drift
*itc_ratio
.num
/itc_ratio
.den
;
270 printk("+/-%ldppm\n", itc_drift
);
276 local_cpu_data
->proc_freq
= (platform_base_freq
*proc_ratio
.num
)/proc_ratio
.den
;
277 local_cpu_data
->itc_freq
= itc_freq
;
278 local_cpu_data
->cyc_per_usec
= (itc_freq
+ USEC_PER_SEC
/2) / USEC_PER_SEC
;
279 local_cpu_data
->nsec_per_cyc
= ((NSEC_PER_SEC
<<IA64_NSEC_PER_CYC_SHIFT
)
280 + itc_freq
/2)/itc_freq
;
282 if (!(sal_platform_features
& IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT
)) {
284 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
285 * Jitter compensation requires a cmpxchg which may limit
286 * the scalability of the syscalls for retrieving time.
287 * The ITC synchronization is usually successful to within a few
288 * ITC ticks but this is not a sure thing. If you need to improve
289 * timer performance in SMP situations then boot the kernel with the
290 * "nojitter" option. However, doing so may result in time fluctuating (maybe
291 * even going backward) if the ITC offsets between the individual CPUs
295 itc_jitter_data
.itc_jitter
= 1;
299 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
300 * ITC values may fluctuate significantly between processors.
301 * Clock should not be used for hrtimers. Mark itc as only
302 * useful for boot and testing.
304 * Note that jitter compensation is off! There is no point of
305 * synchronizing ITCs since they may be large differentials
306 * that change over time.
308 * The only way to fix this would be to repeatedly sync the
309 * ITCs. Until that time we have to avoid ITC.
311 clocksource_itc
.rating
= 50;
313 /* avoid softlock up message when cpu is unplug and plugged again. */
314 touch_softlockup_watchdog();
316 /* Setup the CPU local timer tick */
317 ia64_cpu_local_tick();
319 if (!itc_clocksource
) {
320 clocksource_register_hz(&clocksource_itc
,
321 local_cpu_data
->itc_freq
);
322 itc_clocksource
= &clocksource_itc
;
326 static cycle_t
itc_get_cycles(struct clocksource
*cs
)
328 unsigned long lcycle
, now
, ret
;
330 if (!itc_jitter_data
.itc_jitter
)
333 lcycle
= itc_jitter_data
.itc_lastcycle
;
335 if (lcycle
&& time_after(lcycle
, now
))
339 * Keep track of the last timer value returned.
340 * In an SMP environment, you could lose out in contention of
341 * cmpxchg. If so, your cmpxchg returns new value which the
342 * winner of contention updated to. Use the new value instead.
344 ret
= cmpxchg(&itc_jitter_data
.itc_lastcycle
, lcycle
, now
);
345 if (unlikely(ret
!= lcycle
))
352 static struct irqaction timer_irqaction
= {
353 .handler
= timer_interrupt
,
354 .flags
= IRQF_IRQPOLL
,
358 void read_persistent_clock(struct timespec
*ts
)
360 efi_gettimeofday(ts
);
366 register_percpu_irq(IA64_TIMER_VECTOR
, &timer_irqaction
);
371 * Generic udelay assumes that if preemption is allowed and the thread
372 * migrates to another CPU, that the ITC values are synchronized across
376 ia64_itc_udelay (unsigned long usecs
)
378 unsigned long start
= ia64_get_itc();
379 unsigned long end
= start
+ usecs
*local_cpu_data
->cyc_per_usec
;
381 while (time_before(ia64_get_itc(), end
))
385 void (*ia64_udelay
)(unsigned long usecs
) = &ia64_itc_udelay
;
388 udelay (unsigned long usecs
)
390 (*ia64_udelay
)(usecs
);
392 EXPORT_SYMBOL(udelay
);
394 /* IA64 doesn't cache the timezone */
395 void update_vsyscall_tz(void)
399 void update_vsyscall_old(struct timespec
*wall
, struct timespec
*wtm
,
400 struct clocksource
*c
, u32 mult
, cycle_t cycle_last
)
402 write_seqcount_begin(&fsyscall_gtod_data
.seq
);
404 /* copy fsyscall clock data */
405 fsyscall_gtod_data
.clk_mask
= c
->mask
;
406 fsyscall_gtod_data
.clk_mult
= mult
;
407 fsyscall_gtod_data
.clk_shift
= c
->shift
;
408 fsyscall_gtod_data
.clk_fsys_mmio
= c
->archdata
.fsys_mmio
;
409 fsyscall_gtod_data
.clk_cycle_last
= cycle_last
;
411 /* copy kernel time structures */
412 fsyscall_gtod_data
.wall_time
.tv_sec
= wall
->tv_sec
;
413 fsyscall_gtod_data
.wall_time
.tv_nsec
= wall
->tv_nsec
;
414 fsyscall_gtod_data
.monotonic_time
.tv_sec
= wtm
->tv_sec
416 fsyscall_gtod_data
.monotonic_time
.tv_nsec
= wtm
->tv_nsec
420 while (fsyscall_gtod_data
.monotonic_time
.tv_nsec
>= NSEC_PER_SEC
) {
421 fsyscall_gtod_data
.monotonic_time
.tv_nsec
-= NSEC_PER_SEC
;
422 fsyscall_gtod_data
.monotonic_time
.tv_sec
++;
425 write_seqcount_end(&fsyscall_gtod_data
.seq
);