mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
[linux/fpc-iii.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v7.c
blob0e1376317683e4de30803a987450dba3e01b9621
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gca/gfx_7_2_d.h"
33 #include "gca/gfx_7_2_enum.h"
34 #include "gca/gfx_7_2_sh_mask.h"
35 #include "oss/oss_2_0_d.h"
36 #include "oss/oss_2_0_sh_mask.h"
37 #include "gmc/gmc_7_1_d.h"
38 #include "gmc/gmc_7_1_sh_mask.h"
39 #include "cik_structs.h"
41 #define CIK_PIPE_PER_MEC (4)
43 enum {
44 MAX_TRAPID = 8, /* 3 bits in the bitfield. */
45 MAX_WATCH_ADDRESSES = 4
48 enum {
49 ADDRESS_WATCH_REG_ADDR_HI = 0,
50 ADDRESS_WATCH_REG_ADDR_LO,
51 ADDRESS_WATCH_REG_CNTL,
52 ADDRESS_WATCH_REG_MAX
55 /* not defined in the CI/KV reg file */
56 enum {
57 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
58 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
59 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
60 /* extend the mask to 26 bits to match the low address field */
61 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
62 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
65 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
66 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
67 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
68 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
69 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
72 union TCP_WATCH_CNTL_BITS {
73 struct {
74 uint32_t mask:24;
75 uint32_t vmid:4;
76 uint32_t atc:1;
77 uint32_t mode:2;
78 uint32_t valid:1;
79 } bitfields, bits;
80 uint32_t u32All;
81 signed int i32All;
82 float f32All;
86 * Register access functions
89 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
90 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
91 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
93 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
94 unsigned int vmid);
96 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
97 uint32_t hpd_size, uint64_t hpd_gpu_addr);
98 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
99 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
100 uint32_t queue_id, uint32_t __user *wptr);
101 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
102 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
103 uint32_t pipe_id, uint32_t queue_id);
105 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
106 unsigned int timeout, uint32_t pipe_id,
107 uint32_t queue_id);
108 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
109 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
110 unsigned int timeout);
111 static int kgd_address_watch_disable(struct kgd_dev *kgd);
112 static int kgd_address_watch_execute(struct kgd_dev *kgd,
113 unsigned int watch_point_id,
114 uint32_t cntl_val,
115 uint32_t addr_hi,
116 uint32_t addr_lo);
117 static int kgd_wave_control_execute(struct kgd_dev *kgd,
118 uint32_t gfx_index_val,
119 uint32_t sq_cmd);
120 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
121 unsigned int watch_point_id,
122 unsigned int reg_offset);
124 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
125 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
126 uint8_t vmid);
127 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
129 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
131 static const struct kfd2kgd_calls kfd2kgd = {
132 .init_gtt_mem_allocation = alloc_gtt_mem,
133 .free_gtt_mem = free_gtt_mem,
134 .get_vmem_size = get_vmem_size,
135 .get_gpu_clock_counter = get_gpu_clock_counter,
136 .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
137 .program_sh_mem_settings = kgd_program_sh_mem_settings,
138 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
139 .init_pipeline = kgd_init_pipeline,
140 .init_interrupts = kgd_init_interrupts,
141 .hqd_load = kgd_hqd_load,
142 .hqd_sdma_load = kgd_hqd_sdma_load,
143 .hqd_is_occupied = kgd_hqd_is_occupied,
144 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
145 .hqd_destroy = kgd_hqd_destroy,
146 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
147 .address_watch_disable = kgd_address_watch_disable,
148 .address_watch_execute = kgd_address_watch_execute,
149 .wave_control_execute = kgd_wave_control_execute,
150 .address_watch_get_offset = kgd_address_watch_get_offset,
151 .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
152 .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
153 .write_vmid_invalidate_request = write_vmid_invalidate_request,
154 .get_fw_version = get_fw_version
157 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions()
159 return (struct kfd2kgd_calls *)&kfd2kgd;
162 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
164 return (struct amdgpu_device *)kgd;
167 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
168 uint32_t queue, uint32_t vmid)
170 struct amdgpu_device *adev = get_amdgpu_device(kgd);
171 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
173 mutex_lock(&adev->srbm_mutex);
174 WREG32(mmSRBM_GFX_CNTL, value);
177 static void unlock_srbm(struct kgd_dev *kgd)
179 struct amdgpu_device *adev = get_amdgpu_device(kgd);
181 WREG32(mmSRBM_GFX_CNTL, 0);
182 mutex_unlock(&adev->srbm_mutex);
185 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
186 uint32_t queue_id)
188 uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
189 uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
191 lock_srbm(kgd, mec, pipe, queue_id, 0);
194 static void release_queue(struct kgd_dev *kgd)
196 unlock_srbm(kgd);
199 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
200 uint32_t sh_mem_config,
201 uint32_t sh_mem_ape1_base,
202 uint32_t sh_mem_ape1_limit,
203 uint32_t sh_mem_bases)
205 struct amdgpu_device *adev = get_amdgpu_device(kgd);
207 lock_srbm(kgd, 0, 0, 0, vmid);
209 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
210 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
211 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
212 WREG32(mmSH_MEM_BASES, sh_mem_bases);
214 unlock_srbm(kgd);
217 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
218 unsigned int vmid)
220 struct amdgpu_device *adev = get_amdgpu_device(kgd);
223 * We have to assume that there is no outstanding mapping.
224 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
225 * a mapping is in progress or because a mapping finished and the
226 * SW cleared it. So the protocol is to always wait & clear.
228 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
229 ATC_VMID0_PASID_MAPPING__VALID_MASK;
231 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
233 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
234 cpu_relax();
235 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
237 /* Mapping vmid to pasid also for IH block */
238 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
240 return 0;
243 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
244 uint32_t hpd_size, uint64_t hpd_gpu_addr)
246 struct amdgpu_device *adev = get_amdgpu_device(kgd);
248 uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
249 uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
251 lock_srbm(kgd, mec, pipe, 0, 0);
252 WREG32(mmCP_HPD_EOP_BASE_ADDR, lower_32_bits(hpd_gpu_addr >> 8));
253 WREG32(mmCP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(hpd_gpu_addr >> 8));
254 WREG32(mmCP_HPD_EOP_VMID, 0);
255 WREG32(mmCP_HPD_EOP_CONTROL, hpd_size);
256 unlock_srbm(kgd);
258 return 0;
261 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
263 struct amdgpu_device *adev = get_amdgpu_device(kgd);
264 uint32_t mec;
265 uint32_t pipe;
267 mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
268 pipe = (pipe_id % CIK_PIPE_PER_MEC);
270 lock_srbm(kgd, mec, pipe, 0, 0);
272 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
273 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
275 unlock_srbm(kgd);
277 return 0;
280 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
282 uint32_t retval;
284 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
285 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
287 pr_debug("kfd: sdma base address: 0x%x\n", retval);
289 return retval;
292 static inline struct cik_mqd *get_mqd(void *mqd)
294 return (struct cik_mqd *)mqd;
297 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
299 return (struct cik_sdma_rlc_registers *)mqd;
302 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
303 uint32_t queue_id, uint32_t __user *wptr)
305 struct amdgpu_device *adev = get_amdgpu_device(kgd);
306 uint32_t wptr_shadow, is_wptr_shadow_valid;
307 struct cik_mqd *m;
309 m = get_mqd(mqd);
311 is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
313 acquire_queue(kgd, pipe_id, queue_id);
314 WREG32(mmCP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
315 WREG32(mmCP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
316 WREG32(mmCP_MQD_CONTROL, m->cp_mqd_control);
318 WREG32(mmCP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
319 WREG32(mmCP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
320 WREG32(mmCP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
322 WREG32(mmCP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
323 WREG32(mmCP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
324 WREG32(mmCP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
326 WREG32(mmCP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
328 WREG32(mmCP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state);
329 WREG32(mmCP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
330 WREG32(mmCP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
332 WREG32(mmCP_HQD_ATOMIC0_PREOP_LO, m->cp_hqd_atomic0_preop_lo);
333 WREG32(mmCP_HQD_ATOMIC0_PREOP_HI, m->cp_hqd_atomic0_preop_hi);
334 WREG32(mmCP_HQD_ATOMIC1_PREOP_LO, m->cp_hqd_atomic1_preop_lo);
335 WREG32(mmCP_HQD_ATOMIC1_PREOP_HI, m->cp_hqd_atomic1_preop_hi);
337 WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo);
338 WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
339 m->cp_hqd_pq_rptr_report_addr_hi);
341 WREG32(mmCP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
343 WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR, m->cp_hqd_pq_wptr_poll_addr_lo);
344 WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, m->cp_hqd_pq_wptr_poll_addr_hi);
346 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control);
348 WREG32(mmCP_HQD_VMID, m->cp_hqd_vmid);
350 WREG32(mmCP_HQD_QUANTUM, m->cp_hqd_quantum);
352 WREG32(mmCP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
353 WREG32(mmCP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
355 WREG32(mmCP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
357 if (is_wptr_shadow_valid)
358 WREG32(mmCP_HQD_PQ_WPTR, wptr_shadow);
360 WREG32(mmCP_HQD_ACTIVE, m->cp_hqd_active);
361 release_queue(kgd);
363 return 0;
366 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
368 struct amdgpu_device *adev = get_amdgpu_device(kgd);
369 struct cik_sdma_rlc_registers *m;
370 uint32_t sdma_base_addr;
372 m = get_sdma_mqd(mqd);
373 sdma_base_addr = get_sdma_base_addr(m);
375 WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
376 m->sdma_rlc_virtual_addr);
378 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE,
379 m->sdma_rlc_rb_base);
381 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
382 m->sdma_rlc_rb_base_hi);
384 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
385 m->sdma_rlc_rb_rptr_addr_lo);
387 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
388 m->sdma_rlc_rb_rptr_addr_hi);
390 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
391 m->sdma_rlc_doorbell);
393 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
394 m->sdma_rlc_rb_cntl);
396 return 0;
399 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
400 uint32_t pipe_id, uint32_t queue_id)
402 struct amdgpu_device *adev = get_amdgpu_device(kgd);
403 uint32_t act;
404 bool retval = false;
405 uint32_t low, high;
407 acquire_queue(kgd, pipe_id, queue_id);
408 act = RREG32(mmCP_HQD_ACTIVE);
409 if (act) {
410 low = lower_32_bits(queue_address >> 8);
411 high = upper_32_bits(queue_address >> 8);
413 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
414 high == RREG32(mmCP_HQD_PQ_BASE_HI))
415 retval = true;
417 release_queue(kgd);
418 return retval;
421 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
423 struct amdgpu_device *adev = get_amdgpu_device(kgd);
424 struct cik_sdma_rlc_registers *m;
425 uint32_t sdma_base_addr;
426 uint32_t sdma_rlc_rb_cntl;
428 m = get_sdma_mqd(mqd);
429 sdma_base_addr = get_sdma_base_addr(m);
431 sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
433 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
434 return true;
436 return false;
439 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
440 unsigned int timeout, uint32_t pipe_id,
441 uint32_t queue_id)
443 struct amdgpu_device *adev = get_amdgpu_device(kgd);
444 uint32_t temp;
446 acquire_queue(kgd, pipe_id, queue_id);
447 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
449 WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);
451 while (true) {
452 temp = RREG32(mmCP_HQD_ACTIVE);
453 if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
454 break;
455 if (timeout == 0) {
456 pr_err("kfd: cp queue preemption time out (%dms)\n",
457 temp);
458 release_queue(kgd);
459 return -ETIME;
461 msleep(20);
462 timeout -= 20;
465 release_queue(kgd);
466 return 0;
469 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
470 unsigned int timeout)
472 struct amdgpu_device *adev = get_amdgpu_device(kgd);
473 struct cik_sdma_rlc_registers *m;
474 uint32_t sdma_base_addr;
475 uint32_t temp;
477 m = get_sdma_mqd(mqd);
478 sdma_base_addr = get_sdma_base_addr(m);
480 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
481 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
482 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
484 while (true) {
485 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
486 if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
487 break;
488 if (timeout == 0)
489 return -ETIME;
490 msleep(20);
491 timeout -= 20;
494 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
495 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
496 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
497 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
499 return 0;
502 static int kgd_address_watch_disable(struct kgd_dev *kgd)
504 struct amdgpu_device *adev = get_amdgpu_device(kgd);
505 union TCP_WATCH_CNTL_BITS cntl;
506 unsigned int i;
508 cntl.u32All = 0;
510 cntl.bitfields.valid = 0;
511 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
512 cntl.bitfields.atc = 1;
514 /* Turning off this address until we set all the registers */
515 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
516 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
517 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
519 return 0;
522 static int kgd_address_watch_execute(struct kgd_dev *kgd,
523 unsigned int watch_point_id,
524 uint32_t cntl_val,
525 uint32_t addr_hi,
526 uint32_t addr_lo)
528 struct amdgpu_device *adev = get_amdgpu_device(kgd);
529 union TCP_WATCH_CNTL_BITS cntl;
531 cntl.u32All = cntl_val;
533 /* Turning off this watch point until we set all the registers */
534 cntl.bitfields.valid = 0;
535 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
536 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
538 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
539 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
541 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
542 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
544 /* Enable the watch point */
545 cntl.bitfields.valid = 1;
547 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
548 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
550 return 0;
553 static int kgd_wave_control_execute(struct kgd_dev *kgd,
554 uint32_t gfx_index_val,
555 uint32_t sq_cmd)
557 struct amdgpu_device *adev = get_amdgpu_device(kgd);
558 uint32_t data;
560 mutex_lock(&adev->grbm_idx_mutex);
562 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
563 WREG32(mmSQ_CMD, sq_cmd);
565 /* Restore the GRBM_GFX_INDEX register */
567 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
568 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
569 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
571 WREG32(mmGRBM_GFX_INDEX, data);
573 mutex_unlock(&adev->grbm_idx_mutex);
575 return 0;
578 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
579 unsigned int watch_point_id,
580 unsigned int reg_offset)
582 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
585 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
586 uint8_t vmid)
588 uint32_t reg;
589 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
591 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
592 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
595 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
596 uint8_t vmid)
598 uint32_t reg;
599 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
601 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
602 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
605 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
607 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
609 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
612 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
614 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
615 const union amdgpu_firmware_header *hdr;
617 BUG_ON(kgd == NULL);
619 switch (type) {
620 case KGD_ENGINE_PFP:
621 hdr = (const union amdgpu_firmware_header *)
622 adev->gfx.pfp_fw->data;
623 break;
625 case KGD_ENGINE_ME:
626 hdr = (const union amdgpu_firmware_header *)
627 adev->gfx.me_fw->data;
628 break;
630 case KGD_ENGINE_CE:
631 hdr = (const union amdgpu_firmware_header *)
632 adev->gfx.ce_fw->data;
633 break;
635 case KGD_ENGINE_MEC1:
636 hdr = (const union amdgpu_firmware_header *)
637 adev->gfx.mec_fw->data;
638 break;
640 case KGD_ENGINE_MEC2:
641 hdr = (const union amdgpu_firmware_header *)
642 adev->gfx.mec2_fw->data;
643 break;
645 case KGD_ENGINE_RLC:
646 hdr = (const union amdgpu_firmware_header *)
647 adev->gfx.rlc_fw->data;
648 break;
650 case KGD_ENGINE_SDMA1:
651 hdr = (const union amdgpu_firmware_header *)
652 adev->sdma.instance[0].fw->data;
653 break;
655 case KGD_ENGINE_SDMA2:
656 hdr = (const union amdgpu_firmware_header *)
657 adev->sdma.instance[1].fw->data;
658 break;
660 default:
661 return 0;
664 if (hdr == NULL)
665 return 0;
667 /* Only 12 bit in use*/
668 return hdr->common.ucode_version;