mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
[linux/fpc-iii.git] / drivers / gpu / drm / amd / amdgpu / tonga_ih.c
blob743c372837aa456c2e6cdc7af4528636a5defd3c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
23 #include "drmP.h"
24 #include "amdgpu.h"
25 #include "amdgpu_ih.h"
26 #include "vid.h"
28 #include "oss/oss_3_0_d.h"
29 #include "oss/oss_3_0_sh_mask.h"
31 #include "bif/bif_5_1_d.h"
32 #include "bif/bif_5_1_sh_mask.h"
35 * Interrupts
36 * Starting with r6xx, interrupts are handled via a ring buffer.
37 * Ring buffers are areas of GPU accessible memory that the GPU
38 * writes interrupt vectors into and the host reads vectors out of.
39 * There is a rptr (read pointer) that determines where the
40 * host is currently reading, and a wptr (write pointer)
41 * which determines where the GPU has written. When the
42 * pointers are equal, the ring is idle. When the GPU
43 * writes vectors to the ring buffer, it increments the
44 * wptr. When there is an interrupt, the host then starts
45 * fetching commands and processing them until the pointers are
46 * equal again at which point it updates the rptr.
49 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev);
51 /**
52 * tonga_ih_enable_interrupts - Enable the interrupt ring buffer
54 * @adev: amdgpu_device pointer
56 * Enable the interrupt ring buffer (VI).
58 static void tonga_ih_enable_interrupts(struct amdgpu_device *adev)
60 u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
62 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1);
63 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 1);
64 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
65 adev->irq.ih.enabled = true;
68 /**
69 * tonga_ih_disable_interrupts - Disable the interrupt ring buffer
71 * @adev: amdgpu_device pointer
73 * Disable the interrupt ring buffer (VI).
75 static void tonga_ih_disable_interrupts(struct amdgpu_device *adev)
77 u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL);
79 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0);
80 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 0);
81 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
82 /* set rptr, wptr to 0 */
83 WREG32(mmIH_RB_RPTR, 0);
84 WREG32(mmIH_RB_WPTR, 0);
85 adev->irq.ih.enabled = false;
86 adev->irq.ih.rptr = 0;
89 /**
90 * tonga_ih_irq_init - init and enable the interrupt ring
92 * @adev: amdgpu_device pointer
94 * Allocate a ring buffer for the interrupt controller,
95 * enable the RLC, disable interrupts, enable the IH
96 * ring buffer and enable it (VI).
97 * Called at device load and reume.
98 * Returns 0 for success, errors for failure.
100 static int tonga_ih_irq_init(struct amdgpu_device *adev)
102 int ret = 0;
103 int rb_bufsz;
104 u32 interrupt_cntl, ih_rb_cntl, ih_doorbell_rtpr;
105 u64 wptr_off;
107 /* disable irqs */
108 tonga_ih_disable_interrupts(adev);
110 /* setup interrupt control */
111 WREG32(mmINTERRUPT_CNTL2, adev->dummy_page.addr >> 8);
112 interrupt_cntl = RREG32(mmINTERRUPT_CNTL);
113 /* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi
114 * INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN
116 interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0);
117 /* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */
118 interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0);
119 WREG32(mmINTERRUPT_CNTL, interrupt_cntl);
121 /* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
122 if (adev->irq.ih.use_bus_addr)
123 WREG32(mmIH_RB_BASE, adev->irq.ih.rb_dma_addr >> 8);
124 else
125 WREG32(mmIH_RB_BASE, adev->irq.ih.gpu_addr >> 8);
127 rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4);
128 ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
129 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz);
130 /* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */
131 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1);
132 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, MC_VMID, 0);
134 if (adev->irq.msi_enabled)
135 ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RPTR_REARM, 1);
137 WREG32(mmIH_RB_CNTL, ih_rb_cntl);
139 /* set the writeback address whether it's enabled or not */
140 if (adev->irq.ih.use_bus_addr)
141 wptr_off = adev->irq.ih.rb_dma_addr + (adev->irq.ih.wptr_offs * 4);
142 else
143 wptr_off = adev->wb.gpu_addr + (adev->irq.ih.wptr_offs * 4);
144 WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(wptr_off));
145 WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(wptr_off) & 0xFF);
147 /* set rptr, wptr to 0 */
148 WREG32(mmIH_RB_RPTR, 0);
149 WREG32(mmIH_RB_WPTR, 0);
151 ih_doorbell_rtpr = RREG32(mmIH_DOORBELL_RPTR);
152 if (adev->irq.ih.use_doorbell) {
153 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
154 OFFSET, adev->irq.ih.doorbell_index);
155 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
156 ENABLE, 1);
157 } else {
158 ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR,
159 ENABLE, 0);
161 WREG32(mmIH_DOORBELL_RPTR, ih_doorbell_rtpr);
163 pci_set_master(adev->pdev);
165 /* enable interrupts */
166 tonga_ih_enable_interrupts(adev);
168 return ret;
172 * tonga_ih_irq_disable - disable interrupts
174 * @adev: amdgpu_device pointer
176 * Disable interrupts on the hw (VI).
178 static void tonga_ih_irq_disable(struct amdgpu_device *adev)
180 tonga_ih_disable_interrupts(adev);
182 /* Wait and acknowledge irq */
183 mdelay(1);
187 * tonga_ih_get_wptr - get the IH ring buffer wptr
189 * @adev: amdgpu_device pointer
191 * Get the IH ring buffer wptr from either the register
192 * or the writeback memory buffer (VI). Also check for
193 * ring buffer overflow and deal with it.
194 * Used by cz_irq_process(VI).
195 * Returns the value of the wptr.
197 static u32 tonga_ih_get_wptr(struct amdgpu_device *adev)
199 u32 wptr, tmp;
201 if (adev->irq.ih.use_bus_addr)
202 wptr = le32_to_cpu(adev->irq.ih.ring[adev->irq.ih.wptr_offs]);
203 else
204 wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]);
206 if (REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW)) {
207 wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0);
208 /* When a ring buffer overflow happen start parsing interrupt
209 * from the last not overwritten vector (wptr + 16). Hopefully
210 * this should allow us to catchup.
212 dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
213 wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask);
214 adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask;
215 tmp = RREG32(mmIH_RB_CNTL);
216 tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1);
217 WREG32(mmIH_RB_CNTL, tmp);
219 return (wptr & adev->irq.ih.ptr_mask);
223 * tonga_ih_decode_iv - decode an interrupt vector
225 * @adev: amdgpu_device pointer
227 * Decodes the interrupt vector at the current rptr
228 * position and also advance the position.
230 static void tonga_ih_decode_iv(struct amdgpu_device *adev,
231 struct amdgpu_iv_entry *entry)
233 /* wptr/rptr are in bytes! */
234 u32 ring_index = adev->irq.ih.rptr >> 2;
235 uint32_t dw[4];
237 dw[0] = le32_to_cpu(adev->irq.ih.ring[ring_index + 0]);
238 dw[1] = le32_to_cpu(adev->irq.ih.ring[ring_index + 1]);
239 dw[2] = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]);
240 dw[3] = le32_to_cpu(adev->irq.ih.ring[ring_index + 3]);
242 entry->src_id = dw[0] & 0xff;
243 entry->src_data = dw[1] & 0xfffffff;
244 entry->ring_id = dw[2] & 0xff;
245 entry->vm_id = (dw[2] >> 8) & 0xff;
246 entry->pas_id = (dw[2] >> 16) & 0xffff;
248 /* wptr/rptr are in bytes! */
249 adev->irq.ih.rptr += 16;
253 * tonga_ih_set_rptr - set the IH ring buffer rptr
255 * @adev: amdgpu_device pointer
257 * Set the IH ring buffer rptr.
259 static void tonga_ih_set_rptr(struct amdgpu_device *adev)
261 if (adev->irq.ih.use_doorbell) {
262 /* XXX check if swapping is necessary on BE */
263 if (adev->irq.ih.use_bus_addr)
264 adev->irq.ih.ring[adev->irq.ih.rptr_offs] = adev->irq.ih.rptr;
265 else
266 adev->wb.wb[adev->irq.ih.rptr_offs] = adev->irq.ih.rptr;
267 WDOORBELL32(adev->irq.ih.doorbell_index, adev->irq.ih.rptr);
268 } else {
269 WREG32(mmIH_RB_RPTR, adev->irq.ih.rptr);
273 static int tonga_ih_early_init(void *handle)
275 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
277 tonga_ih_set_interrupt_funcs(adev);
278 return 0;
281 static int tonga_ih_sw_init(void *handle)
283 int r;
284 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
286 r = amdgpu_ih_ring_init(adev, 4 * 1024, true);
287 if (r)
288 return r;
290 adev->irq.ih.use_doorbell = true;
291 adev->irq.ih.doorbell_index = AMDGPU_DOORBELL_IH;
293 r = amdgpu_irq_init(adev);
295 return r;
298 static int tonga_ih_sw_fini(void *handle)
300 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
302 amdgpu_irq_fini(adev);
303 amdgpu_ih_ring_fini(adev);
305 return 0;
308 static int tonga_ih_hw_init(void *handle)
310 int r;
311 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
313 r = tonga_ih_irq_init(adev);
314 if (r)
315 return r;
317 return 0;
320 static int tonga_ih_hw_fini(void *handle)
322 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
324 tonga_ih_irq_disable(adev);
326 return 0;
329 static int tonga_ih_suspend(void *handle)
331 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
333 return tonga_ih_hw_fini(adev);
336 static int tonga_ih_resume(void *handle)
338 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
340 return tonga_ih_hw_init(adev);
343 static bool tonga_ih_is_idle(void *handle)
345 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
346 u32 tmp = RREG32(mmSRBM_STATUS);
348 if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
349 return false;
351 return true;
354 static int tonga_ih_wait_for_idle(void *handle)
356 unsigned i;
357 u32 tmp;
358 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
360 for (i = 0; i < adev->usec_timeout; i++) {
361 /* read MC_STATUS */
362 tmp = RREG32(mmSRBM_STATUS);
363 if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY))
364 return 0;
365 udelay(1);
367 return -ETIMEDOUT;
370 static void tonga_ih_print_status(void *handle)
372 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
374 dev_info(adev->dev, "TONGA IH registers\n");
375 dev_info(adev->dev, " SRBM_STATUS=0x%08X\n",
376 RREG32(mmSRBM_STATUS));
377 dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
378 RREG32(mmSRBM_STATUS2));
379 dev_info(adev->dev, " INTERRUPT_CNTL=0x%08X\n",
380 RREG32(mmINTERRUPT_CNTL));
381 dev_info(adev->dev, " INTERRUPT_CNTL2=0x%08X\n",
382 RREG32(mmINTERRUPT_CNTL2));
383 dev_info(adev->dev, " IH_CNTL=0x%08X\n",
384 RREG32(mmIH_CNTL));
385 dev_info(adev->dev, " IH_RB_CNTL=0x%08X\n",
386 RREG32(mmIH_RB_CNTL));
387 dev_info(adev->dev, " IH_RB_BASE=0x%08X\n",
388 RREG32(mmIH_RB_BASE));
389 dev_info(adev->dev, " IH_RB_WPTR_ADDR_LO=0x%08X\n",
390 RREG32(mmIH_RB_WPTR_ADDR_LO));
391 dev_info(adev->dev, " IH_RB_WPTR_ADDR_HI=0x%08X\n",
392 RREG32(mmIH_RB_WPTR_ADDR_HI));
393 dev_info(adev->dev, " IH_RB_RPTR=0x%08X\n",
394 RREG32(mmIH_RB_RPTR));
395 dev_info(adev->dev, " IH_RB_WPTR=0x%08X\n",
396 RREG32(mmIH_RB_WPTR));
399 static int tonga_ih_soft_reset(void *handle)
401 u32 srbm_soft_reset = 0;
402 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
403 u32 tmp = RREG32(mmSRBM_STATUS);
405 if (tmp & SRBM_STATUS__IH_BUSY_MASK)
406 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET,
407 SOFT_RESET_IH, 1);
409 if (srbm_soft_reset) {
410 tonga_ih_print_status(adev);
412 tmp = RREG32(mmSRBM_SOFT_RESET);
413 tmp |= srbm_soft_reset;
414 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
415 WREG32(mmSRBM_SOFT_RESET, tmp);
416 tmp = RREG32(mmSRBM_SOFT_RESET);
418 udelay(50);
420 tmp &= ~srbm_soft_reset;
421 WREG32(mmSRBM_SOFT_RESET, tmp);
422 tmp = RREG32(mmSRBM_SOFT_RESET);
424 /* Wait a little for things to settle down */
425 udelay(50);
427 tonga_ih_print_status(adev);
430 return 0;
433 static int tonga_ih_set_clockgating_state(void *handle,
434 enum amd_clockgating_state state)
436 return 0;
439 static int tonga_ih_set_powergating_state(void *handle,
440 enum amd_powergating_state state)
442 return 0;
445 const struct amd_ip_funcs tonga_ih_ip_funcs = {
446 .early_init = tonga_ih_early_init,
447 .late_init = NULL,
448 .sw_init = tonga_ih_sw_init,
449 .sw_fini = tonga_ih_sw_fini,
450 .hw_init = tonga_ih_hw_init,
451 .hw_fini = tonga_ih_hw_fini,
452 .suspend = tonga_ih_suspend,
453 .resume = tonga_ih_resume,
454 .is_idle = tonga_ih_is_idle,
455 .wait_for_idle = tonga_ih_wait_for_idle,
456 .soft_reset = tonga_ih_soft_reset,
457 .print_status = tonga_ih_print_status,
458 .set_clockgating_state = tonga_ih_set_clockgating_state,
459 .set_powergating_state = tonga_ih_set_powergating_state,
462 static const struct amdgpu_ih_funcs tonga_ih_funcs = {
463 .get_wptr = tonga_ih_get_wptr,
464 .decode_iv = tonga_ih_decode_iv,
465 .set_rptr = tonga_ih_set_rptr
468 static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev)
470 if (adev->irq.ih_funcs == NULL)
471 adev->irq.ih_funcs = &tonga_ih_funcs;