2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <linux/seq_file.h>
28 #include <drm/i915_drm.h>
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
35 * DOC: Global GTT views
37 * Background and previous state
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
64 * Implementation and usage
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
79 * Code wanting to add or use a new GGTT view needs to:
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
96 i915_get_ggtt_vma_pages(struct i915_vma
*vma
);
98 const struct i915_ggtt_view i915_ggtt_view_normal
;
99 const struct i915_ggtt_view i915_ggtt_view_rotated
= {
100 .type
= I915_GGTT_VIEW_ROTATED
103 static int sanitize_enable_ppgtt(struct drm_device
*dev
, int enable_ppgtt
)
105 bool has_aliasing_ppgtt
;
108 has_aliasing_ppgtt
= INTEL_INFO(dev
)->gen
>= 6;
109 has_full_ppgtt
= INTEL_INFO(dev
)->gen
>= 7;
111 if (intel_vgpu_active(dev
))
112 has_full_ppgtt
= false; /* emulation is too hard */
115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 * execlists, the sole mechanism available to submit work.
118 if (INTEL_INFO(dev
)->gen
< 9 &&
119 (enable_ppgtt
== 0 || !has_aliasing_ppgtt
))
122 if (enable_ppgtt
== 1)
125 if (enable_ppgtt
== 2 && has_full_ppgtt
)
128 #ifdef CONFIG_INTEL_IOMMU
129 /* Disable ppgtt on SNB if VT-d is on. */
130 if (INTEL_INFO(dev
)->gen
== 6 && intel_iommu_gfx_mapped
) {
131 DRM_INFO("Disabling PPGTT because VT-d is on\n");
136 /* Early VLV doesn't have this */
137 if (IS_VALLEYVIEW(dev
) && !IS_CHERRYVIEW(dev
) &&
138 dev
->pdev
->revision
< 0xb) {
139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
143 if (INTEL_INFO(dev
)->gen
>= 8 && i915
.enable_execlists
)
146 return has_aliasing_ppgtt
? 1 : 0;
149 static int ppgtt_bind_vma(struct i915_vma
*vma
,
150 enum i915_cache_level cache_level
,
155 /* Currently applicable only to VLV */
157 pte_flags
|= PTE_READ_ONLY
;
159 vma
->vm
->insert_entries(vma
->vm
, vma
->obj
->pages
, vma
->node
.start
,
160 cache_level
, pte_flags
);
165 static void ppgtt_unbind_vma(struct i915_vma
*vma
)
167 vma
->vm
->clear_range(vma
->vm
,
173 static gen8_pte_t
gen8_pte_encode(dma_addr_t addr
,
174 enum i915_cache_level level
,
177 gen8_pte_t pte
= valid
? _PAGE_PRESENT
| _PAGE_RW
: 0;
181 case I915_CACHE_NONE
:
182 pte
|= PPAT_UNCACHED_INDEX
;
185 pte
|= PPAT_DISPLAY_ELLC_INDEX
;
188 pte
|= PPAT_CACHED_INDEX
;
195 static gen8_pde_t
gen8_pde_encode(const dma_addr_t addr
,
196 const enum i915_cache_level level
)
198 gen8_pde_t pde
= _PAGE_PRESENT
| _PAGE_RW
;
200 if (level
!= I915_CACHE_NONE
)
201 pde
|= PPAT_CACHED_PDE_INDEX
;
203 pde
|= PPAT_UNCACHED_INDEX
;
207 #define gen8_pdpe_encode gen8_pde_encode
208 #define gen8_pml4e_encode gen8_pde_encode
210 static gen6_pte_t
snb_pte_encode(dma_addr_t addr
,
211 enum i915_cache_level level
,
212 bool valid
, u32 unused
)
214 gen6_pte_t pte
= valid
? GEN6_PTE_VALID
: 0;
215 pte
|= GEN6_PTE_ADDR_ENCODE(addr
);
218 case I915_CACHE_L3_LLC
:
220 pte
|= GEN6_PTE_CACHE_LLC
;
222 case I915_CACHE_NONE
:
223 pte
|= GEN6_PTE_UNCACHED
;
232 static gen6_pte_t
ivb_pte_encode(dma_addr_t addr
,
233 enum i915_cache_level level
,
234 bool valid
, u32 unused
)
236 gen6_pte_t pte
= valid
? GEN6_PTE_VALID
: 0;
237 pte
|= GEN6_PTE_ADDR_ENCODE(addr
);
240 case I915_CACHE_L3_LLC
:
241 pte
|= GEN7_PTE_CACHE_L3_LLC
;
244 pte
|= GEN6_PTE_CACHE_LLC
;
246 case I915_CACHE_NONE
:
247 pte
|= GEN6_PTE_UNCACHED
;
256 static gen6_pte_t
byt_pte_encode(dma_addr_t addr
,
257 enum i915_cache_level level
,
258 bool valid
, u32 flags
)
260 gen6_pte_t pte
= valid
? GEN6_PTE_VALID
: 0;
261 pte
|= GEN6_PTE_ADDR_ENCODE(addr
);
263 if (!(flags
& PTE_READ_ONLY
))
264 pte
|= BYT_PTE_WRITEABLE
;
266 if (level
!= I915_CACHE_NONE
)
267 pte
|= BYT_PTE_SNOOPED_BY_CPU_CACHES
;
272 static gen6_pte_t
hsw_pte_encode(dma_addr_t addr
,
273 enum i915_cache_level level
,
274 bool valid
, u32 unused
)
276 gen6_pte_t pte
= valid
? GEN6_PTE_VALID
: 0;
277 pte
|= HSW_PTE_ADDR_ENCODE(addr
);
279 if (level
!= I915_CACHE_NONE
)
280 pte
|= HSW_WB_LLC_AGE3
;
285 static gen6_pte_t
iris_pte_encode(dma_addr_t addr
,
286 enum i915_cache_level level
,
287 bool valid
, u32 unused
)
289 gen6_pte_t pte
= valid
? GEN6_PTE_VALID
: 0;
290 pte
|= HSW_PTE_ADDR_ENCODE(addr
);
293 case I915_CACHE_NONE
:
296 pte
|= HSW_WT_ELLC_LLC_AGE3
;
299 pte
|= HSW_WB_ELLC_LLC_AGE3
;
306 static int __setup_page_dma(struct drm_device
*dev
,
307 struct i915_page_dma
*p
, gfp_t flags
)
309 struct device
*device
= &dev
->pdev
->dev
;
311 p
->page
= alloc_page(flags
);
315 p
->daddr
= dma_map_page(device
,
316 p
->page
, 0, 4096, PCI_DMA_BIDIRECTIONAL
);
318 if (dma_mapping_error(device
, p
->daddr
)) {
319 __free_page(p
->page
);
326 static int setup_page_dma(struct drm_device
*dev
, struct i915_page_dma
*p
)
328 return __setup_page_dma(dev
, p
, GFP_KERNEL
);
331 static void cleanup_page_dma(struct drm_device
*dev
, struct i915_page_dma
*p
)
333 if (WARN_ON(!p
->page
))
336 dma_unmap_page(&dev
->pdev
->dev
, p
->daddr
, 4096, PCI_DMA_BIDIRECTIONAL
);
337 __free_page(p
->page
);
338 memset(p
, 0, sizeof(*p
));
341 static void *kmap_page_dma(struct i915_page_dma
*p
)
343 return kmap_atomic(p
->page
);
346 /* We use the flushing unmap only with ppgtt structures:
347 * page directories, page tables and scratch pages.
349 static void kunmap_page_dma(struct drm_device
*dev
, void *vaddr
)
351 /* There are only few exceptions for gen >=6. chv and bxt.
352 * And we are not sure about the latter so play safe for now.
354 if (IS_CHERRYVIEW(dev
) || IS_BROXTON(dev
))
355 drm_clflush_virt_range(vaddr
, PAGE_SIZE
);
357 kunmap_atomic(vaddr
);
360 #define kmap_px(px) kmap_page_dma(px_base(px))
361 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
363 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
364 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
365 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
366 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
368 static void fill_page_dma(struct drm_device
*dev
, struct i915_page_dma
*p
,
372 uint64_t * const vaddr
= kmap_page_dma(p
);
374 for (i
= 0; i
< 512; i
++)
377 kunmap_page_dma(dev
, vaddr
);
380 static void fill_page_dma_32(struct drm_device
*dev
, struct i915_page_dma
*p
,
381 const uint32_t val32
)
387 fill_page_dma(dev
, p
, v
);
390 static struct i915_page_scratch
*alloc_scratch_page(struct drm_device
*dev
)
392 struct i915_page_scratch
*sp
;
395 sp
= kzalloc(sizeof(*sp
), GFP_KERNEL
);
397 return ERR_PTR(-ENOMEM
);
399 ret
= __setup_page_dma(dev
, px_base(sp
), GFP_DMA32
| __GFP_ZERO
);
405 set_pages_uc(px_page(sp
), 1);
410 static void free_scratch_page(struct drm_device
*dev
,
411 struct i915_page_scratch
*sp
)
413 set_pages_wb(px_page(sp
), 1);
419 static struct i915_page_table
*alloc_pt(struct drm_device
*dev
)
421 struct i915_page_table
*pt
;
422 const size_t count
= INTEL_INFO(dev
)->gen
>= 8 ?
423 GEN8_PTES
: GEN6_PTES
;
426 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
428 return ERR_PTR(-ENOMEM
);
430 pt
->used_ptes
= kcalloc(BITS_TO_LONGS(count
), sizeof(*pt
->used_ptes
),
436 ret
= setup_px(dev
, pt
);
443 kfree(pt
->used_ptes
);
450 static void free_pt(struct drm_device
*dev
, struct i915_page_table
*pt
)
453 kfree(pt
->used_ptes
);
457 static void gen8_initialize_pt(struct i915_address_space
*vm
,
458 struct i915_page_table
*pt
)
460 gen8_pte_t scratch_pte
;
462 scratch_pte
= gen8_pte_encode(px_dma(vm
->scratch_page
),
463 I915_CACHE_LLC
, true);
465 fill_px(vm
->dev
, pt
, scratch_pte
);
468 static void gen6_initialize_pt(struct i915_address_space
*vm
,
469 struct i915_page_table
*pt
)
471 gen6_pte_t scratch_pte
;
473 WARN_ON(px_dma(vm
->scratch_page
) == 0);
475 scratch_pte
= vm
->pte_encode(px_dma(vm
->scratch_page
),
476 I915_CACHE_LLC
, true, 0);
478 fill32_px(vm
->dev
, pt
, scratch_pte
);
481 static struct i915_page_directory
*alloc_pd(struct drm_device
*dev
)
483 struct i915_page_directory
*pd
;
486 pd
= kzalloc(sizeof(*pd
), GFP_KERNEL
);
488 return ERR_PTR(-ENOMEM
);
490 pd
->used_pdes
= kcalloc(BITS_TO_LONGS(I915_PDES
),
491 sizeof(*pd
->used_pdes
), GFP_KERNEL
);
495 ret
= setup_px(dev
, pd
);
502 kfree(pd
->used_pdes
);
509 static void free_pd(struct drm_device
*dev
, struct i915_page_directory
*pd
)
513 kfree(pd
->used_pdes
);
518 static void gen8_initialize_pd(struct i915_address_space
*vm
,
519 struct i915_page_directory
*pd
)
521 gen8_pde_t scratch_pde
;
523 scratch_pde
= gen8_pde_encode(px_dma(vm
->scratch_pt
), I915_CACHE_LLC
);
525 fill_px(vm
->dev
, pd
, scratch_pde
);
528 static int __pdp_init(struct drm_device
*dev
,
529 struct i915_page_directory_pointer
*pdp
)
531 size_t pdpes
= I915_PDPES_PER_PDP(dev
);
533 pdp
->used_pdpes
= kcalloc(BITS_TO_LONGS(pdpes
),
534 sizeof(unsigned long),
536 if (!pdp
->used_pdpes
)
539 pdp
->page_directory
= kcalloc(pdpes
, sizeof(*pdp
->page_directory
),
541 if (!pdp
->page_directory
) {
542 kfree(pdp
->used_pdpes
);
543 /* the PDP might be the statically allocated top level. Keep it
544 * as clean as possible */
545 pdp
->used_pdpes
= NULL
;
552 static void __pdp_fini(struct i915_page_directory_pointer
*pdp
)
554 kfree(pdp
->used_pdpes
);
555 kfree(pdp
->page_directory
);
556 pdp
->page_directory
= NULL
;
560 i915_page_directory_pointer
*alloc_pdp(struct drm_device
*dev
)
562 struct i915_page_directory_pointer
*pdp
;
565 WARN_ON(!USES_FULL_48BIT_PPGTT(dev
));
567 pdp
= kzalloc(sizeof(*pdp
), GFP_KERNEL
);
569 return ERR_PTR(-ENOMEM
);
571 ret
= __pdp_init(dev
, pdp
);
575 ret
= setup_px(dev
, pdp
);
589 static void free_pdp(struct drm_device
*dev
,
590 struct i915_page_directory_pointer
*pdp
)
593 if (USES_FULL_48BIT_PPGTT(dev
)) {
594 cleanup_px(dev
, pdp
);
599 static void gen8_initialize_pdp(struct i915_address_space
*vm
,
600 struct i915_page_directory_pointer
*pdp
)
602 gen8_ppgtt_pdpe_t scratch_pdpe
;
604 scratch_pdpe
= gen8_pdpe_encode(px_dma(vm
->scratch_pd
), I915_CACHE_LLC
);
606 fill_px(vm
->dev
, pdp
, scratch_pdpe
);
609 static void gen8_initialize_pml4(struct i915_address_space
*vm
,
610 struct i915_pml4
*pml4
)
612 gen8_ppgtt_pml4e_t scratch_pml4e
;
614 scratch_pml4e
= gen8_pml4e_encode(px_dma(vm
->scratch_pdp
),
617 fill_px(vm
->dev
, pml4
, scratch_pml4e
);
621 gen8_setup_page_directory(struct i915_hw_ppgtt
*ppgtt
,
622 struct i915_page_directory_pointer
*pdp
,
623 struct i915_page_directory
*pd
,
626 gen8_ppgtt_pdpe_t
*page_directorypo
;
628 if (!USES_FULL_48BIT_PPGTT(ppgtt
->base
.dev
))
631 page_directorypo
= kmap_px(pdp
);
632 page_directorypo
[index
] = gen8_pdpe_encode(px_dma(pd
), I915_CACHE_LLC
);
633 kunmap_px(ppgtt
, page_directorypo
);
637 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt
*ppgtt
,
638 struct i915_pml4
*pml4
,
639 struct i915_page_directory_pointer
*pdp
,
642 gen8_ppgtt_pml4e_t
*pagemap
= kmap_px(pml4
);
644 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt
->base
.dev
));
645 pagemap
[index
] = gen8_pml4e_encode(px_dma(pdp
), I915_CACHE_LLC
);
646 kunmap_px(ppgtt
, pagemap
);
649 /* Broadwell Page Directory Pointer Descriptors */
650 static int gen8_write_pdp(struct drm_i915_gem_request
*req
,
654 struct intel_engine_cs
*ring
= req
->ring
;
659 ret
= intel_ring_begin(req
, 6);
663 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(1));
664 intel_ring_emit(ring
, GEN8_RING_PDP_UDW(ring
, entry
));
665 intel_ring_emit(ring
, upper_32_bits(addr
));
666 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(1));
667 intel_ring_emit(ring
, GEN8_RING_PDP_LDW(ring
, entry
));
668 intel_ring_emit(ring
, lower_32_bits(addr
));
669 intel_ring_advance(ring
);
674 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt
*ppgtt
,
675 struct drm_i915_gem_request
*req
)
679 for (i
= GEN8_LEGACY_PDPES
- 1; i
>= 0; i
--) {
680 const dma_addr_t pd_daddr
= i915_page_dir_dma_addr(ppgtt
, i
);
682 ret
= gen8_write_pdp(req
, i
, pd_daddr
);
690 static int gen8_48b_mm_switch(struct i915_hw_ppgtt
*ppgtt
,
691 struct drm_i915_gem_request
*req
)
693 return gen8_write_pdp(req
, 0, px_dma(&ppgtt
->pml4
));
696 static void gen8_ppgtt_clear_pte_range(struct i915_address_space
*vm
,
697 struct i915_page_directory_pointer
*pdp
,
700 gen8_pte_t scratch_pte
)
702 struct i915_hw_ppgtt
*ppgtt
=
703 container_of(vm
, struct i915_hw_ppgtt
, base
);
704 gen8_pte_t
*pt_vaddr
;
705 unsigned pdpe
= gen8_pdpe_index(start
);
706 unsigned pde
= gen8_pde_index(start
);
707 unsigned pte
= gen8_pte_index(start
);
708 unsigned num_entries
= length
>> PAGE_SHIFT
;
709 unsigned last_pte
, i
;
714 while (num_entries
) {
715 struct i915_page_directory
*pd
;
716 struct i915_page_table
*pt
;
718 if (WARN_ON(!pdp
->page_directory
[pdpe
]))
721 pd
= pdp
->page_directory
[pdpe
];
723 if (WARN_ON(!pd
->page_table
[pde
]))
726 pt
= pd
->page_table
[pde
];
728 if (WARN_ON(!px_page(pt
)))
731 last_pte
= pte
+ num_entries
;
732 if (last_pte
> GEN8_PTES
)
733 last_pte
= GEN8_PTES
;
735 pt_vaddr
= kmap_px(pt
);
737 for (i
= pte
; i
< last_pte
; i
++) {
738 pt_vaddr
[i
] = scratch_pte
;
742 kunmap_px(ppgtt
, pt
);
745 if (++pde
== I915_PDES
) {
746 if (++pdpe
== I915_PDPES_PER_PDP(vm
->dev
))
753 static void gen8_ppgtt_clear_range(struct i915_address_space
*vm
,
758 struct i915_hw_ppgtt
*ppgtt
=
759 container_of(vm
, struct i915_hw_ppgtt
, base
);
760 gen8_pte_t scratch_pte
= gen8_pte_encode(px_dma(vm
->scratch_page
),
761 I915_CACHE_LLC
, use_scratch
);
763 if (!USES_FULL_48BIT_PPGTT(vm
->dev
)) {
764 gen8_ppgtt_clear_pte_range(vm
, &ppgtt
->pdp
, start
, length
,
767 uint64_t templ4
, pml4e
;
768 struct i915_page_directory_pointer
*pdp
;
770 gen8_for_each_pml4e(pdp
, &ppgtt
->pml4
, start
, length
, templ4
, pml4e
) {
771 gen8_ppgtt_clear_pte_range(vm
, pdp
, start
, length
,
778 gen8_ppgtt_insert_pte_entries(struct i915_address_space
*vm
,
779 struct i915_page_directory_pointer
*pdp
,
780 struct sg_page_iter
*sg_iter
,
782 enum i915_cache_level cache_level
)
784 struct i915_hw_ppgtt
*ppgtt
=
785 container_of(vm
, struct i915_hw_ppgtt
, base
);
786 gen8_pte_t
*pt_vaddr
;
787 unsigned pdpe
= gen8_pdpe_index(start
);
788 unsigned pde
= gen8_pde_index(start
);
789 unsigned pte
= gen8_pte_index(start
);
793 while (__sg_page_iter_next(sg_iter
)) {
794 if (pt_vaddr
== NULL
) {
795 struct i915_page_directory
*pd
= pdp
->page_directory
[pdpe
];
796 struct i915_page_table
*pt
= pd
->page_table
[pde
];
797 pt_vaddr
= kmap_px(pt
);
801 gen8_pte_encode(sg_page_iter_dma_address(sg_iter
),
803 if (++pte
== GEN8_PTES
) {
804 kunmap_px(ppgtt
, pt_vaddr
);
806 if (++pde
== I915_PDES
) {
807 if (++pdpe
== I915_PDPES_PER_PDP(vm
->dev
))
816 kunmap_px(ppgtt
, pt_vaddr
);
819 static void gen8_ppgtt_insert_entries(struct i915_address_space
*vm
,
820 struct sg_table
*pages
,
822 enum i915_cache_level cache_level
,
825 struct i915_hw_ppgtt
*ppgtt
=
826 container_of(vm
, struct i915_hw_ppgtt
, base
);
827 struct sg_page_iter sg_iter
;
829 __sg_page_iter_start(&sg_iter
, pages
->sgl
, sg_nents(pages
->sgl
), 0);
831 if (!USES_FULL_48BIT_PPGTT(vm
->dev
)) {
832 gen8_ppgtt_insert_pte_entries(vm
, &ppgtt
->pdp
, &sg_iter
, start
,
835 struct i915_page_directory_pointer
*pdp
;
836 uint64_t templ4
, pml4e
;
837 uint64_t length
= (uint64_t)pages
->orig_nents
<< PAGE_SHIFT
;
839 gen8_for_each_pml4e(pdp
, &ppgtt
->pml4
, start
, length
, templ4
, pml4e
) {
840 gen8_ppgtt_insert_pte_entries(vm
, pdp
, &sg_iter
,
846 static void gen8_free_page_tables(struct drm_device
*dev
,
847 struct i915_page_directory
*pd
)
854 for_each_set_bit(i
, pd
->used_pdes
, I915_PDES
) {
855 if (WARN_ON(!pd
->page_table
[i
]))
858 free_pt(dev
, pd
->page_table
[i
]);
859 pd
->page_table
[i
] = NULL
;
863 static int gen8_init_scratch(struct i915_address_space
*vm
)
865 struct drm_device
*dev
= vm
->dev
;
867 vm
->scratch_page
= alloc_scratch_page(dev
);
868 if (IS_ERR(vm
->scratch_page
))
869 return PTR_ERR(vm
->scratch_page
);
871 vm
->scratch_pt
= alloc_pt(dev
);
872 if (IS_ERR(vm
->scratch_pt
)) {
873 free_scratch_page(dev
, vm
->scratch_page
);
874 return PTR_ERR(vm
->scratch_pt
);
877 vm
->scratch_pd
= alloc_pd(dev
);
878 if (IS_ERR(vm
->scratch_pd
)) {
879 free_pt(dev
, vm
->scratch_pt
);
880 free_scratch_page(dev
, vm
->scratch_page
);
881 return PTR_ERR(vm
->scratch_pd
);
884 if (USES_FULL_48BIT_PPGTT(dev
)) {
885 vm
->scratch_pdp
= alloc_pdp(dev
);
886 if (IS_ERR(vm
->scratch_pdp
)) {
887 free_pd(dev
, vm
->scratch_pd
);
888 free_pt(dev
, vm
->scratch_pt
);
889 free_scratch_page(dev
, vm
->scratch_page
);
890 return PTR_ERR(vm
->scratch_pdp
);
894 gen8_initialize_pt(vm
, vm
->scratch_pt
);
895 gen8_initialize_pd(vm
, vm
->scratch_pd
);
896 if (USES_FULL_48BIT_PPGTT(dev
))
897 gen8_initialize_pdp(vm
, vm
->scratch_pdp
);
902 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt
*ppgtt
, bool create
)
904 enum vgt_g2v_type msg
;
905 struct drm_device
*dev
= ppgtt
->base
.dev
;
906 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
907 unsigned int offset
= vgtif_reg(pdp0_lo
);
910 if (USES_FULL_48BIT_PPGTT(dev
)) {
911 u64 daddr
= px_dma(&ppgtt
->pml4
);
913 I915_WRITE(offset
, lower_32_bits(daddr
));
914 I915_WRITE(offset
+ 4, upper_32_bits(daddr
));
916 msg
= (create
? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE
:
917 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY
);
919 for (i
= 0; i
< GEN8_LEGACY_PDPES
; i
++) {
920 u64 daddr
= i915_page_dir_dma_addr(ppgtt
, i
);
922 I915_WRITE(offset
, lower_32_bits(daddr
));
923 I915_WRITE(offset
+ 4, upper_32_bits(daddr
));
928 msg
= (create
? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE
:
929 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY
);
932 I915_WRITE(vgtif_reg(g2v_notify
), msg
);
937 static void gen8_free_scratch(struct i915_address_space
*vm
)
939 struct drm_device
*dev
= vm
->dev
;
941 if (USES_FULL_48BIT_PPGTT(dev
))
942 free_pdp(dev
, vm
->scratch_pdp
);
943 free_pd(dev
, vm
->scratch_pd
);
944 free_pt(dev
, vm
->scratch_pt
);
945 free_scratch_page(dev
, vm
->scratch_page
);
948 static void gen8_ppgtt_cleanup_3lvl(struct drm_device
*dev
,
949 struct i915_page_directory_pointer
*pdp
)
953 for_each_set_bit(i
, pdp
->used_pdpes
, I915_PDPES_PER_PDP(dev
)) {
954 if (WARN_ON(!pdp
->page_directory
[i
]))
957 gen8_free_page_tables(dev
, pdp
->page_directory
[i
]);
958 free_pd(dev
, pdp
->page_directory
[i
]);
964 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt
*ppgtt
)
968 for_each_set_bit(i
, ppgtt
->pml4
.used_pml4es
, GEN8_PML4ES_PER_PML4
) {
969 if (WARN_ON(!ppgtt
->pml4
.pdps
[i
]))
972 gen8_ppgtt_cleanup_3lvl(ppgtt
->base
.dev
, ppgtt
->pml4
.pdps
[i
]);
975 cleanup_px(ppgtt
->base
.dev
, &ppgtt
->pml4
);
978 static void gen8_ppgtt_cleanup(struct i915_address_space
*vm
)
980 struct i915_hw_ppgtt
*ppgtt
=
981 container_of(vm
, struct i915_hw_ppgtt
, base
);
983 if (intel_vgpu_active(vm
->dev
))
984 gen8_ppgtt_notify_vgt(ppgtt
, false);
986 if (!USES_FULL_48BIT_PPGTT(ppgtt
->base
.dev
))
987 gen8_ppgtt_cleanup_3lvl(ppgtt
->base
.dev
, &ppgtt
->pdp
);
989 gen8_ppgtt_cleanup_4lvl(ppgtt
);
991 gen8_free_scratch(vm
);
995 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
996 * @vm: Master vm structure.
997 * @pd: Page directory for this address range.
998 * @start: Starting virtual address to begin allocations.
999 * @length: Size of the allocations.
1000 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1001 * caller to free on error.
1003 * Allocate the required number of page tables. Extremely similar to
1004 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1005 * the page directory boundary (instead of the page directory pointer). That
1006 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1007 * possible, and likely that the caller will need to use multiple calls of this
1008 * function to achieve the appropriate allocation.
1010 * Return: 0 if success; negative error code otherwise.
1012 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space
*vm
,
1013 struct i915_page_directory
*pd
,
1016 unsigned long *new_pts
)
1018 struct drm_device
*dev
= vm
->dev
;
1019 struct i915_page_table
*pt
;
1023 gen8_for_each_pde(pt
, pd
, start
, length
, temp
, pde
) {
1024 /* Don't reallocate page tables */
1025 if (test_bit(pde
, pd
->used_pdes
)) {
1026 /* Scratch is never allocated this way */
1027 WARN_ON(pt
== vm
->scratch_pt
);
1035 gen8_initialize_pt(vm
, pt
);
1036 pd
->page_table
[pde
] = pt
;
1037 __set_bit(pde
, new_pts
);
1038 trace_i915_page_table_entry_alloc(vm
, pde
, start
, GEN8_PDE_SHIFT
);
1044 for_each_set_bit(pde
, new_pts
, I915_PDES
)
1045 free_pt(dev
, pd
->page_table
[pde
]);
1051 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1052 * @vm: Master vm structure.
1053 * @pdp: Page directory pointer for this address range.
1054 * @start: Starting virtual address to begin allocations.
1055 * @length: Size of the allocations.
1056 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1057 * caller to free on error.
1059 * Allocate the required number of page directories starting at the pde index of
1060 * @start, and ending at the pde index @start + @length. This function will skip
1061 * over already allocated page directories within the range, and only allocate
1062 * new ones, setting the appropriate pointer within the pdp as well as the
1063 * correct position in the bitmap @new_pds.
1065 * The function will only allocate the pages within the range for a give page
1066 * directory pointer. In other words, if @start + @length straddles a virtually
1067 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1068 * required by the caller, This is not currently possible, and the BUG in the
1069 * code will prevent it.
1071 * Return: 0 if success; negative error code otherwise.
1074 gen8_ppgtt_alloc_page_directories(struct i915_address_space
*vm
,
1075 struct i915_page_directory_pointer
*pdp
,
1078 unsigned long *new_pds
)
1080 struct drm_device
*dev
= vm
->dev
;
1081 struct i915_page_directory
*pd
;
1084 uint32_t pdpes
= I915_PDPES_PER_PDP(dev
);
1086 WARN_ON(!bitmap_empty(new_pds
, pdpes
));
1088 gen8_for_each_pdpe(pd
, pdp
, start
, length
, temp
, pdpe
) {
1089 if (test_bit(pdpe
, pdp
->used_pdpes
))
1096 gen8_initialize_pd(vm
, pd
);
1097 pdp
->page_directory
[pdpe
] = pd
;
1098 __set_bit(pdpe
, new_pds
);
1099 trace_i915_page_directory_entry_alloc(vm
, pdpe
, start
, GEN8_PDPE_SHIFT
);
1105 for_each_set_bit(pdpe
, new_pds
, pdpes
)
1106 free_pd(dev
, pdp
->page_directory
[pdpe
]);
1112 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1113 * @vm: Master vm structure.
1114 * @pml4: Page map level 4 for this address range.
1115 * @start: Starting virtual address to begin allocations.
1116 * @length: Size of the allocations.
1117 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1118 * caller to free on error.
1120 * Allocate the required number of page directory pointers. Extremely similar to
1121 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1122 * The main difference is here we are limited by the pml4 boundary (instead of
1123 * the page directory pointer).
1125 * Return: 0 if success; negative error code otherwise.
1128 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space
*vm
,
1129 struct i915_pml4
*pml4
,
1132 unsigned long *new_pdps
)
1134 struct drm_device
*dev
= vm
->dev
;
1135 struct i915_page_directory_pointer
*pdp
;
1139 WARN_ON(!bitmap_empty(new_pdps
, GEN8_PML4ES_PER_PML4
));
1141 gen8_for_each_pml4e(pdp
, pml4
, start
, length
, temp
, pml4e
) {
1142 if (!test_bit(pml4e
, pml4
->used_pml4es
)) {
1143 pdp
= alloc_pdp(dev
);
1147 gen8_initialize_pdp(vm
, pdp
);
1148 pml4
->pdps
[pml4e
] = pdp
;
1149 __set_bit(pml4e
, new_pdps
);
1150 trace_i915_page_directory_pointer_entry_alloc(vm
,
1160 for_each_set_bit(pml4e
, new_pdps
, GEN8_PML4ES_PER_PML4
)
1161 free_pdp(dev
, pml4
->pdps
[pml4e
]);
1167 free_gen8_temp_bitmaps(unsigned long *new_pds
, unsigned long *new_pts
)
1173 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1174 * of these are based on the number of PDPEs in the system.
1177 int __must_check
alloc_gen8_temp_bitmaps(unsigned long **new_pds
,
1178 unsigned long **new_pts
,
1184 pds
= kcalloc(BITS_TO_LONGS(pdpes
), sizeof(unsigned long), GFP_TEMPORARY
);
1188 pts
= kcalloc(pdpes
, BITS_TO_LONGS(I915_PDES
) * sizeof(unsigned long),
1199 free_gen8_temp_bitmaps(pds
, pts
);
1203 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1204 * the page table structures, we mark them dirty so that
1205 * context switching/execlist queuing code takes extra steps
1206 * to ensure that tlbs are flushed.
1208 static void mark_tlbs_dirty(struct i915_hw_ppgtt
*ppgtt
)
1210 ppgtt
->pd_dirty_rings
= INTEL_INFO(ppgtt
->base
.dev
)->ring_mask
;
1213 static int gen8_alloc_va_range_3lvl(struct i915_address_space
*vm
,
1214 struct i915_page_directory_pointer
*pdp
,
1218 struct i915_hw_ppgtt
*ppgtt
=
1219 container_of(vm
, struct i915_hw_ppgtt
, base
);
1220 unsigned long *new_page_dirs
, *new_page_tables
;
1221 struct drm_device
*dev
= vm
->dev
;
1222 struct i915_page_directory
*pd
;
1223 const uint64_t orig_start
= start
;
1224 const uint64_t orig_length
= length
;
1227 uint32_t pdpes
= I915_PDPES_PER_PDP(dev
);
1230 /* Wrap is never okay since we can only represent 48b, and we don't
1231 * actually use the other side of the canonical address space.
1233 if (WARN_ON(start
+ length
< start
))
1236 if (WARN_ON(start
+ length
> vm
->total
))
1239 ret
= alloc_gen8_temp_bitmaps(&new_page_dirs
, &new_page_tables
, pdpes
);
1243 /* Do the allocations first so we can easily bail out */
1244 ret
= gen8_ppgtt_alloc_page_directories(vm
, pdp
, start
, length
,
1247 free_gen8_temp_bitmaps(new_page_dirs
, new_page_tables
);
1251 /* For every page directory referenced, allocate page tables */
1252 gen8_for_each_pdpe(pd
, pdp
, start
, length
, temp
, pdpe
) {
1253 ret
= gen8_ppgtt_alloc_pagetabs(vm
, pd
, start
, length
,
1254 new_page_tables
+ pdpe
* BITS_TO_LONGS(I915_PDES
));
1260 length
= orig_length
;
1262 /* Allocations have completed successfully, so set the bitmaps, and do
1264 gen8_for_each_pdpe(pd
, pdp
, start
, length
, temp
, pdpe
) {
1265 gen8_pde_t
*const page_directory
= kmap_px(pd
);
1266 struct i915_page_table
*pt
;
1267 uint64_t pd_len
= length
;
1268 uint64_t pd_start
= start
;
1271 /* Every pd should be allocated, we just did that above. */
1274 gen8_for_each_pde(pt
, pd
, pd_start
, pd_len
, temp
, pde
) {
1275 /* Same reasoning as pd */
1278 WARN_ON(!gen8_pte_count(pd_start
, pd_len
));
1280 /* Set our used ptes within the page table */
1281 bitmap_set(pt
->used_ptes
,
1282 gen8_pte_index(pd_start
),
1283 gen8_pte_count(pd_start
, pd_len
));
1285 /* Our pde is now pointing to the pagetable, pt */
1286 __set_bit(pde
, pd
->used_pdes
);
1288 /* Map the PDE to the page table */
1289 page_directory
[pde
] = gen8_pde_encode(px_dma(pt
),
1291 trace_i915_page_table_entry_map(&ppgtt
->base
, pde
, pt
,
1292 gen8_pte_index(start
),
1293 gen8_pte_count(start
, length
),
1296 /* NB: We haven't yet mapped ptes to pages. At this
1297 * point we're still relying on insert_entries() */
1300 kunmap_px(ppgtt
, page_directory
);
1301 __set_bit(pdpe
, pdp
->used_pdpes
);
1302 gen8_setup_page_directory(ppgtt
, pdp
, pd
, pdpe
);
1305 free_gen8_temp_bitmaps(new_page_dirs
, new_page_tables
);
1306 mark_tlbs_dirty(ppgtt
);
1311 for_each_set_bit(temp
, new_page_tables
+ pdpe
*
1312 BITS_TO_LONGS(I915_PDES
), I915_PDES
)
1313 free_pt(dev
, pdp
->page_directory
[pdpe
]->page_table
[temp
]);
1316 for_each_set_bit(pdpe
, new_page_dirs
, pdpes
)
1317 free_pd(dev
, pdp
->page_directory
[pdpe
]);
1319 free_gen8_temp_bitmaps(new_page_dirs
, new_page_tables
);
1320 mark_tlbs_dirty(ppgtt
);
1324 static int gen8_alloc_va_range_4lvl(struct i915_address_space
*vm
,
1325 struct i915_pml4
*pml4
,
1329 DECLARE_BITMAP(new_pdps
, GEN8_PML4ES_PER_PML4
);
1330 struct i915_hw_ppgtt
*ppgtt
=
1331 container_of(vm
, struct i915_hw_ppgtt
, base
);
1332 struct i915_page_directory_pointer
*pdp
;
1333 uint64_t temp
, pml4e
;
1336 /* Do the pml4 allocations first, so we don't need to track the newly
1337 * allocated tables below the pdp */
1338 bitmap_zero(new_pdps
, GEN8_PML4ES_PER_PML4
);
1340 /* The pagedirectory and pagetable allocations are done in the shared 3
1341 * and 4 level code. Just allocate the pdps.
1343 ret
= gen8_ppgtt_alloc_page_dirpointers(vm
, pml4
, start
, length
,
1348 WARN(bitmap_weight(new_pdps
, GEN8_PML4ES_PER_PML4
) > 2,
1349 "The allocation has spanned more than 512GB. "
1350 "It is highly likely this is incorrect.");
1352 gen8_for_each_pml4e(pdp
, pml4
, start
, length
, temp
, pml4e
) {
1355 ret
= gen8_alloc_va_range_3lvl(vm
, pdp
, start
, length
);
1359 gen8_setup_page_directory_pointer(ppgtt
, pml4
, pdp
, pml4e
);
1362 bitmap_or(pml4
->used_pml4es
, new_pdps
, pml4
->used_pml4es
,
1363 GEN8_PML4ES_PER_PML4
);
1368 for_each_set_bit(pml4e
, new_pdps
, GEN8_PML4ES_PER_PML4
)
1369 gen8_ppgtt_cleanup_3lvl(vm
->dev
, pml4
->pdps
[pml4e
]);
1374 static int gen8_alloc_va_range(struct i915_address_space
*vm
,
1375 uint64_t start
, uint64_t length
)
1377 struct i915_hw_ppgtt
*ppgtt
=
1378 container_of(vm
, struct i915_hw_ppgtt
, base
);
1380 if (USES_FULL_48BIT_PPGTT(vm
->dev
))
1381 return gen8_alloc_va_range_4lvl(vm
, &ppgtt
->pml4
, start
, length
);
1383 return gen8_alloc_va_range_3lvl(vm
, &ppgtt
->pdp
, start
, length
);
1386 static void gen8_dump_pdp(struct i915_page_directory_pointer
*pdp
,
1387 uint64_t start
, uint64_t length
,
1388 gen8_pte_t scratch_pte
,
1391 struct i915_page_directory
*pd
;
1395 gen8_for_each_pdpe(pd
, pdp
, start
, length
, temp
, pdpe
) {
1396 struct i915_page_table
*pt
;
1397 uint64_t pd_len
= length
;
1398 uint64_t pd_start
= start
;
1401 if (!test_bit(pdpe
, pdp
->used_pdpes
))
1404 seq_printf(m
, "\tPDPE #%d\n", pdpe
);
1405 gen8_for_each_pde(pt
, pd
, pd_start
, pd_len
, temp
, pde
) {
1407 gen8_pte_t
*pt_vaddr
;
1409 if (!test_bit(pde
, pd
->used_pdes
))
1412 pt_vaddr
= kmap_px(pt
);
1413 for (pte
= 0; pte
< GEN8_PTES
; pte
+= 4) {
1415 (pdpe
<< GEN8_PDPE_SHIFT
) |
1416 (pde
<< GEN8_PDE_SHIFT
) |
1417 (pte
<< GEN8_PTE_SHIFT
);
1421 for (i
= 0; i
< 4; i
++)
1422 if (pt_vaddr
[pte
+ i
] != scratch_pte
)
1427 seq_printf(m
, "\t\t0x%llx [%03d,%03d,%04d]: =", va
, pdpe
, pde
, pte
);
1428 for (i
= 0; i
< 4; i
++) {
1429 if (pt_vaddr
[pte
+ i
] != scratch_pte
)
1430 seq_printf(m
, " %llx", pt_vaddr
[pte
+ i
]);
1432 seq_puts(m
, " SCRATCH ");
1436 /* don't use kunmap_px, it could trigger
1437 * an unnecessary flush.
1439 kunmap_atomic(pt_vaddr
);
1444 static void gen8_dump_ppgtt(struct i915_hw_ppgtt
*ppgtt
, struct seq_file
*m
)
1446 struct i915_address_space
*vm
= &ppgtt
->base
;
1447 uint64_t start
= ppgtt
->base
.start
;
1448 uint64_t length
= ppgtt
->base
.total
;
1449 gen8_pte_t scratch_pte
= gen8_pte_encode(px_dma(vm
->scratch_page
),
1450 I915_CACHE_LLC
, true);
1452 if (!USES_FULL_48BIT_PPGTT(vm
->dev
)) {
1453 gen8_dump_pdp(&ppgtt
->pdp
, start
, length
, scratch_pte
, m
);
1455 uint64_t templ4
, pml4e
;
1456 struct i915_pml4
*pml4
= &ppgtt
->pml4
;
1457 struct i915_page_directory_pointer
*pdp
;
1459 gen8_for_each_pml4e(pdp
, pml4
, start
, length
, templ4
, pml4e
) {
1460 if (!test_bit(pml4e
, pml4
->used_pml4es
))
1463 seq_printf(m
, " PML4E #%llu\n", pml4e
);
1464 gen8_dump_pdp(pdp
, start
, length
, scratch_pte
, m
);
1469 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt
*ppgtt
)
1471 unsigned long *new_page_dirs
, *new_page_tables
;
1472 uint32_t pdpes
= I915_PDPES_PER_PDP(dev
);
1475 /* We allocate temp bitmap for page tables for no gain
1476 * but as this is for init only, lets keep the things simple
1478 ret
= alloc_gen8_temp_bitmaps(&new_page_dirs
, &new_page_tables
, pdpes
);
1482 /* Allocate for all pdps regardless of how the ppgtt
1485 ret
= gen8_ppgtt_alloc_page_directories(&ppgtt
->base
, &ppgtt
->pdp
,
1489 *ppgtt
->pdp
.used_pdpes
= *new_page_dirs
;
1491 free_gen8_temp_bitmaps(new_page_dirs
, new_page_tables
);
1497 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1498 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1499 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1503 static int gen8_ppgtt_init(struct i915_hw_ppgtt
*ppgtt
)
1507 ret
= gen8_init_scratch(&ppgtt
->base
);
1511 ppgtt
->base
.start
= 0;
1512 ppgtt
->base
.cleanup
= gen8_ppgtt_cleanup
;
1513 ppgtt
->base
.allocate_va_range
= gen8_alloc_va_range
;
1514 ppgtt
->base
.insert_entries
= gen8_ppgtt_insert_entries
;
1515 ppgtt
->base
.clear_range
= gen8_ppgtt_clear_range
;
1516 ppgtt
->base
.unbind_vma
= ppgtt_unbind_vma
;
1517 ppgtt
->base
.bind_vma
= ppgtt_bind_vma
;
1518 ppgtt
->debug_dump
= gen8_dump_ppgtt
;
1520 if (USES_FULL_48BIT_PPGTT(ppgtt
->base
.dev
)) {
1521 ret
= setup_px(ppgtt
->base
.dev
, &ppgtt
->pml4
);
1525 gen8_initialize_pml4(&ppgtt
->base
, &ppgtt
->pml4
);
1527 ppgtt
->base
.total
= 1ULL << 48;
1528 ppgtt
->switch_mm
= gen8_48b_mm_switch
;
1530 ret
= __pdp_init(ppgtt
->base
.dev
, &ppgtt
->pdp
);
1534 ppgtt
->base
.total
= 1ULL << 32;
1535 ppgtt
->switch_mm
= gen8_legacy_mm_switch
;
1536 trace_i915_page_directory_pointer_entry_alloc(&ppgtt
->base
,
1540 if (intel_vgpu_active(ppgtt
->base
.dev
)) {
1541 ret
= gen8_preallocate_top_level_pdps(ppgtt
);
1547 if (intel_vgpu_active(ppgtt
->base
.dev
))
1548 gen8_ppgtt_notify_vgt(ppgtt
, true);
1553 gen8_free_scratch(&ppgtt
->base
);
1557 static void gen6_dump_ppgtt(struct i915_hw_ppgtt
*ppgtt
, struct seq_file
*m
)
1559 struct i915_address_space
*vm
= &ppgtt
->base
;
1560 struct i915_page_table
*unused
;
1561 gen6_pte_t scratch_pte
;
1563 uint32_t pte
, pde
, temp
;
1564 uint32_t start
= ppgtt
->base
.start
, length
= ppgtt
->base
.total
;
1566 scratch_pte
= vm
->pte_encode(px_dma(vm
->scratch_page
),
1567 I915_CACHE_LLC
, true, 0);
1569 gen6_for_each_pde(unused
, &ppgtt
->pd
, start
, length
, temp
, pde
) {
1571 gen6_pte_t
*pt_vaddr
;
1572 const dma_addr_t pt_addr
= px_dma(ppgtt
->pd
.page_table
[pde
]);
1573 pd_entry
= readl(ppgtt
->pd_addr
+ pde
);
1574 expected
= (GEN6_PDE_ADDR_ENCODE(pt_addr
) | GEN6_PDE_VALID
);
1576 if (pd_entry
!= expected
)
1577 seq_printf(m
, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1581 seq_printf(m
, "\tPDE: %x\n", pd_entry
);
1583 pt_vaddr
= kmap_px(ppgtt
->pd
.page_table
[pde
]);
1585 for (pte
= 0; pte
< GEN6_PTES
; pte
+=4) {
1587 (pde
* PAGE_SIZE
* GEN6_PTES
) +
1591 for (i
= 0; i
< 4; i
++)
1592 if (pt_vaddr
[pte
+ i
] != scratch_pte
)
1597 seq_printf(m
, "\t\t0x%lx [%03d,%04d]: =", va
, pde
, pte
);
1598 for (i
= 0; i
< 4; i
++) {
1599 if (pt_vaddr
[pte
+ i
] != scratch_pte
)
1600 seq_printf(m
, " %08x", pt_vaddr
[pte
+ i
]);
1602 seq_puts(m
, " SCRATCH ");
1606 kunmap_px(ppgtt
, pt_vaddr
);
1610 /* Write pde (index) from the page directory @pd to the page table @pt */
1611 static void gen6_write_pde(struct i915_page_directory
*pd
,
1612 const int pde
, struct i915_page_table
*pt
)
1614 /* Caller needs to make sure the write completes if necessary */
1615 struct i915_hw_ppgtt
*ppgtt
=
1616 container_of(pd
, struct i915_hw_ppgtt
, pd
);
1619 pd_entry
= GEN6_PDE_ADDR_ENCODE(px_dma(pt
));
1620 pd_entry
|= GEN6_PDE_VALID
;
1622 writel(pd_entry
, ppgtt
->pd_addr
+ pde
);
1625 /* Write all the page tables found in the ppgtt structure to incrementing page
1627 static void gen6_write_page_range(struct drm_i915_private
*dev_priv
,
1628 struct i915_page_directory
*pd
,
1629 uint32_t start
, uint32_t length
)
1631 struct i915_page_table
*pt
;
1634 gen6_for_each_pde(pt
, pd
, start
, length
, temp
, pde
)
1635 gen6_write_pde(pd
, pde
, pt
);
1637 /* Make sure write is complete before other code can use this page
1638 * table. Also require for WC mapped PTEs */
1639 readl(dev_priv
->gtt
.gsm
);
1642 static uint32_t get_pd_offset(struct i915_hw_ppgtt
*ppgtt
)
1644 BUG_ON(ppgtt
->pd
.base
.ggtt_offset
& 0x3f);
1646 return (ppgtt
->pd
.base
.ggtt_offset
/ 64) << 16;
1649 static int hsw_mm_switch(struct i915_hw_ppgtt
*ppgtt
,
1650 struct drm_i915_gem_request
*req
)
1652 struct intel_engine_cs
*ring
= req
->ring
;
1655 /* NB: TLBs must be flushed and invalidated before a switch */
1656 ret
= ring
->flush(req
, I915_GEM_GPU_DOMAINS
, I915_GEM_GPU_DOMAINS
);
1660 ret
= intel_ring_begin(req
, 6);
1664 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(2));
1665 intel_ring_emit(ring
, RING_PP_DIR_DCLV(ring
));
1666 intel_ring_emit(ring
, PP_DIR_DCLV_2G
);
1667 intel_ring_emit(ring
, RING_PP_DIR_BASE(ring
));
1668 intel_ring_emit(ring
, get_pd_offset(ppgtt
));
1669 intel_ring_emit(ring
, MI_NOOP
);
1670 intel_ring_advance(ring
);
1675 static int vgpu_mm_switch(struct i915_hw_ppgtt
*ppgtt
,
1676 struct drm_i915_gem_request
*req
)
1678 struct intel_engine_cs
*ring
= req
->ring
;
1679 struct drm_i915_private
*dev_priv
= to_i915(ppgtt
->base
.dev
);
1681 I915_WRITE(RING_PP_DIR_DCLV(ring
), PP_DIR_DCLV_2G
);
1682 I915_WRITE(RING_PP_DIR_BASE(ring
), get_pd_offset(ppgtt
));
1686 static int gen7_mm_switch(struct i915_hw_ppgtt
*ppgtt
,
1687 struct drm_i915_gem_request
*req
)
1689 struct intel_engine_cs
*ring
= req
->ring
;
1692 /* NB: TLBs must be flushed and invalidated before a switch */
1693 ret
= ring
->flush(req
, I915_GEM_GPU_DOMAINS
, I915_GEM_GPU_DOMAINS
);
1697 ret
= intel_ring_begin(req
, 6);
1701 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(2));
1702 intel_ring_emit(ring
, RING_PP_DIR_DCLV(ring
));
1703 intel_ring_emit(ring
, PP_DIR_DCLV_2G
);
1704 intel_ring_emit(ring
, RING_PP_DIR_BASE(ring
));
1705 intel_ring_emit(ring
, get_pd_offset(ppgtt
));
1706 intel_ring_emit(ring
, MI_NOOP
);
1707 intel_ring_advance(ring
);
1709 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1710 if (ring
->id
!= RCS
) {
1711 ret
= ring
->flush(req
, I915_GEM_GPU_DOMAINS
, I915_GEM_GPU_DOMAINS
);
1719 static int gen6_mm_switch(struct i915_hw_ppgtt
*ppgtt
,
1720 struct drm_i915_gem_request
*req
)
1722 struct intel_engine_cs
*ring
= req
->ring
;
1723 struct drm_device
*dev
= ppgtt
->base
.dev
;
1724 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1727 I915_WRITE(RING_PP_DIR_DCLV(ring
), PP_DIR_DCLV_2G
);
1728 I915_WRITE(RING_PP_DIR_BASE(ring
), get_pd_offset(ppgtt
));
1730 POSTING_READ(RING_PP_DIR_DCLV(ring
));
1735 static void gen8_ppgtt_enable(struct drm_device
*dev
)
1737 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1738 struct intel_engine_cs
*ring
;
1741 for_each_ring(ring
, dev_priv
, j
) {
1742 u32 four_level
= USES_FULL_48BIT_PPGTT(dev
) ? GEN8_GFX_PPGTT_48B
: 0;
1743 I915_WRITE(RING_MODE_GEN7(ring
),
1744 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE
| four_level
));
1748 static void gen7_ppgtt_enable(struct drm_device
*dev
)
1750 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1751 struct intel_engine_cs
*ring
;
1752 uint32_t ecochk
, ecobits
;
1755 ecobits
= I915_READ(GAC_ECO_BITS
);
1756 I915_WRITE(GAC_ECO_BITS
, ecobits
| ECOBITS_PPGTT_CACHE64B
);
1758 ecochk
= I915_READ(GAM_ECOCHK
);
1759 if (IS_HASWELL(dev
)) {
1760 ecochk
|= ECOCHK_PPGTT_WB_HSW
;
1762 ecochk
|= ECOCHK_PPGTT_LLC_IVB
;
1763 ecochk
&= ~ECOCHK_PPGTT_GFDT_IVB
;
1765 I915_WRITE(GAM_ECOCHK
, ecochk
);
1767 for_each_ring(ring
, dev_priv
, i
) {
1768 /* GFX_MODE is per-ring on gen7+ */
1769 I915_WRITE(RING_MODE_GEN7(ring
),
1770 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE
));
1774 static void gen6_ppgtt_enable(struct drm_device
*dev
)
1776 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1777 uint32_t ecochk
, gab_ctl
, ecobits
;
1779 ecobits
= I915_READ(GAC_ECO_BITS
);
1780 I915_WRITE(GAC_ECO_BITS
, ecobits
| ECOBITS_SNB_BIT
|
1781 ECOBITS_PPGTT_CACHE64B
);
1783 gab_ctl
= I915_READ(GAB_CTL
);
1784 I915_WRITE(GAB_CTL
, gab_ctl
| GAB_CTL_CONT_AFTER_PAGEFAULT
);
1786 ecochk
= I915_READ(GAM_ECOCHK
);
1787 I915_WRITE(GAM_ECOCHK
, ecochk
| ECOCHK_SNB_BIT
| ECOCHK_PPGTT_CACHE64B
);
1789 I915_WRITE(GFX_MODE
, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE
));
1792 /* PPGTT support for Sandybdrige/Gen6 and later */
1793 static void gen6_ppgtt_clear_range(struct i915_address_space
*vm
,
1798 struct i915_hw_ppgtt
*ppgtt
=
1799 container_of(vm
, struct i915_hw_ppgtt
, base
);
1800 gen6_pte_t
*pt_vaddr
, scratch_pte
;
1801 unsigned first_entry
= start
>> PAGE_SHIFT
;
1802 unsigned num_entries
= length
>> PAGE_SHIFT
;
1803 unsigned act_pt
= first_entry
/ GEN6_PTES
;
1804 unsigned first_pte
= first_entry
% GEN6_PTES
;
1805 unsigned last_pte
, i
;
1807 scratch_pte
= vm
->pte_encode(px_dma(vm
->scratch_page
),
1808 I915_CACHE_LLC
, true, 0);
1810 while (num_entries
) {
1811 last_pte
= first_pte
+ num_entries
;
1812 if (last_pte
> GEN6_PTES
)
1813 last_pte
= GEN6_PTES
;
1815 pt_vaddr
= kmap_px(ppgtt
->pd
.page_table
[act_pt
]);
1817 for (i
= first_pte
; i
< last_pte
; i
++)
1818 pt_vaddr
[i
] = scratch_pte
;
1820 kunmap_px(ppgtt
, pt_vaddr
);
1822 num_entries
-= last_pte
- first_pte
;
1828 static void gen6_ppgtt_insert_entries(struct i915_address_space
*vm
,
1829 struct sg_table
*pages
,
1831 enum i915_cache_level cache_level
, u32 flags
)
1833 struct i915_hw_ppgtt
*ppgtt
=
1834 container_of(vm
, struct i915_hw_ppgtt
, base
);
1835 gen6_pte_t
*pt_vaddr
;
1836 unsigned first_entry
= start
>> PAGE_SHIFT
;
1837 unsigned act_pt
= first_entry
/ GEN6_PTES
;
1838 unsigned act_pte
= first_entry
% GEN6_PTES
;
1839 struct sg_page_iter sg_iter
;
1842 for_each_sg_page(pages
->sgl
, &sg_iter
, pages
->nents
, 0) {
1843 if (pt_vaddr
== NULL
)
1844 pt_vaddr
= kmap_px(ppgtt
->pd
.page_table
[act_pt
]);
1847 vm
->pte_encode(sg_page_iter_dma_address(&sg_iter
),
1848 cache_level
, true, flags
);
1850 if (++act_pte
== GEN6_PTES
) {
1851 kunmap_px(ppgtt
, pt_vaddr
);
1858 kunmap_px(ppgtt
, pt_vaddr
);
1861 static int gen6_alloc_va_range(struct i915_address_space
*vm
,
1862 uint64_t start_in
, uint64_t length_in
)
1864 DECLARE_BITMAP(new_page_tables
, I915_PDES
);
1865 struct drm_device
*dev
= vm
->dev
;
1866 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1867 struct i915_hw_ppgtt
*ppgtt
=
1868 container_of(vm
, struct i915_hw_ppgtt
, base
);
1869 struct i915_page_table
*pt
;
1870 uint32_t start
, length
, start_save
, length_save
;
1874 if (WARN_ON(start_in
+ length_in
> ppgtt
->base
.total
))
1877 start
= start_save
= start_in
;
1878 length
= length_save
= length_in
;
1880 bitmap_zero(new_page_tables
, I915_PDES
);
1882 /* The allocation is done in two stages so that we can bail out with
1883 * minimal amount of pain. The first stage finds new page tables that
1884 * need allocation. The second stage marks use ptes within the page
1887 gen6_for_each_pde(pt
, &ppgtt
->pd
, start
, length
, temp
, pde
) {
1888 if (pt
!= vm
->scratch_pt
) {
1889 WARN_ON(bitmap_empty(pt
->used_ptes
, GEN6_PTES
));
1893 /* We've already allocated a page table */
1894 WARN_ON(!bitmap_empty(pt
->used_ptes
, GEN6_PTES
));
1902 gen6_initialize_pt(vm
, pt
);
1904 ppgtt
->pd
.page_table
[pde
] = pt
;
1905 __set_bit(pde
, new_page_tables
);
1906 trace_i915_page_table_entry_alloc(vm
, pde
, start
, GEN6_PDE_SHIFT
);
1910 length
= length_save
;
1912 gen6_for_each_pde(pt
, &ppgtt
->pd
, start
, length
, temp
, pde
) {
1913 DECLARE_BITMAP(tmp_bitmap
, GEN6_PTES
);
1915 bitmap_zero(tmp_bitmap
, GEN6_PTES
);
1916 bitmap_set(tmp_bitmap
, gen6_pte_index(start
),
1917 gen6_pte_count(start
, length
));
1919 if (__test_and_clear_bit(pde
, new_page_tables
))
1920 gen6_write_pde(&ppgtt
->pd
, pde
, pt
);
1922 trace_i915_page_table_entry_map(vm
, pde
, pt
,
1923 gen6_pte_index(start
),
1924 gen6_pte_count(start
, length
),
1926 bitmap_or(pt
->used_ptes
, tmp_bitmap
, pt
->used_ptes
,
1930 WARN_ON(!bitmap_empty(new_page_tables
, I915_PDES
));
1932 /* Make sure write is complete before other code can use this page
1933 * table. Also require for WC mapped PTEs */
1934 readl(dev_priv
->gtt
.gsm
);
1936 mark_tlbs_dirty(ppgtt
);
1940 for_each_set_bit(pde
, new_page_tables
, I915_PDES
) {
1941 struct i915_page_table
*pt
= ppgtt
->pd
.page_table
[pde
];
1943 ppgtt
->pd
.page_table
[pde
] = vm
->scratch_pt
;
1944 free_pt(vm
->dev
, pt
);
1947 mark_tlbs_dirty(ppgtt
);
1951 static int gen6_init_scratch(struct i915_address_space
*vm
)
1953 struct drm_device
*dev
= vm
->dev
;
1955 vm
->scratch_page
= alloc_scratch_page(dev
);
1956 if (IS_ERR(vm
->scratch_page
))
1957 return PTR_ERR(vm
->scratch_page
);
1959 vm
->scratch_pt
= alloc_pt(dev
);
1960 if (IS_ERR(vm
->scratch_pt
)) {
1961 free_scratch_page(dev
, vm
->scratch_page
);
1962 return PTR_ERR(vm
->scratch_pt
);
1965 gen6_initialize_pt(vm
, vm
->scratch_pt
);
1970 static void gen6_free_scratch(struct i915_address_space
*vm
)
1972 struct drm_device
*dev
= vm
->dev
;
1974 free_pt(dev
, vm
->scratch_pt
);
1975 free_scratch_page(dev
, vm
->scratch_page
);
1978 static void gen6_ppgtt_cleanup(struct i915_address_space
*vm
)
1980 struct i915_hw_ppgtt
*ppgtt
=
1981 container_of(vm
, struct i915_hw_ppgtt
, base
);
1982 struct i915_page_table
*pt
;
1985 drm_mm_remove_node(&ppgtt
->node
);
1987 gen6_for_all_pdes(pt
, ppgtt
, pde
) {
1988 if (pt
!= vm
->scratch_pt
)
1989 free_pt(ppgtt
->base
.dev
, pt
);
1992 gen6_free_scratch(vm
);
1995 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt
*ppgtt
)
1997 struct i915_address_space
*vm
= &ppgtt
->base
;
1998 struct drm_device
*dev
= ppgtt
->base
.dev
;
1999 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2000 bool retried
= false;
2003 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2004 * allocator works in address space sizes, so it's multiplied by page
2005 * size. We allocate at the top of the GTT to avoid fragmentation.
2007 BUG_ON(!drm_mm_initialized(&dev_priv
->gtt
.base
.mm
));
2009 ret
= gen6_init_scratch(vm
);
2014 ret
= drm_mm_insert_node_in_range_generic(&dev_priv
->gtt
.base
.mm
,
2015 &ppgtt
->node
, GEN6_PD_SIZE
,
2017 0, dev_priv
->gtt
.base
.total
,
2019 if (ret
== -ENOSPC
&& !retried
) {
2020 ret
= i915_gem_evict_something(dev
, &dev_priv
->gtt
.base
,
2021 GEN6_PD_SIZE
, GEN6_PD_ALIGN
,
2023 0, dev_priv
->gtt
.base
.total
,
2036 if (ppgtt
->node
.start
< dev_priv
->gtt
.mappable_end
)
2037 DRM_DEBUG("Forced to use aperture for PDEs\n");
2042 gen6_free_scratch(vm
);
2046 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt
*ppgtt
)
2048 return gen6_ppgtt_allocate_page_directories(ppgtt
);
2051 static void gen6_scratch_va_range(struct i915_hw_ppgtt
*ppgtt
,
2052 uint64_t start
, uint64_t length
)
2054 struct i915_page_table
*unused
;
2057 gen6_for_each_pde(unused
, &ppgtt
->pd
, start
, length
, temp
, pde
)
2058 ppgtt
->pd
.page_table
[pde
] = ppgtt
->base
.scratch_pt
;
2061 static int gen6_ppgtt_init(struct i915_hw_ppgtt
*ppgtt
)
2063 struct drm_device
*dev
= ppgtt
->base
.dev
;
2064 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2067 ppgtt
->base
.pte_encode
= dev_priv
->gtt
.base
.pte_encode
;
2069 ppgtt
->switch_mm
= gen6_mm_switch
;
2070 } else if (IS_HASWELL(dev
)) {
2071 ppgtt
->switch_mm
= hsw_mm_switch
;
2072 } else if (IS_GEN7(dev
)) {
2073 ppgtt
->switch_mm
= gen7_mm_switch
;
2077 if (intel_vgpu_active(dev
))
2078 ppgtt
->switch_mm
= vgpu_mm_switch
;
2080 ret
= gen6_ppgtt_alloc(ppgtt
);
2084 ppgtt
->base
.allocate_va_range
= gen6_alloc_va_range
;
2085 ppgtt
->base
.clear_range
= gen6_ppgtt_clear_range
;
2086 ppgtt
->base
.insert_entries
= gen6_ppgtt_insert_entries
;
2087 ppgtt
->base
.unbind_vma
= ppgtt_unbind_vma
;
2088 ppgtt
->base
.bind_vma
= ppgtt_bind_vma
;
2089 ppgtt
->base
.cleanup
= gen6_ppgtt_cleanup
;
2090 ppgtt
->base
.start
= 0;
2091 ppgtt
->base
.total
= I915_PDES
* GEN6_PTES
* PAGE_SIZE
;
2092 ppgtt
->debug_dump
= gen6_dump_ppgtt
;
2094 ppgtt
->pd
.base
.ggtt_offset
=
2095 ppgtt
->node
.start
/ PAGE_SIZE
* sizeof(gen6_pte_t
);
2097 ppgtt
->pd_addr
= (gen6_pte_t __iomem
*)dev_priv
->gtt
.gsm
+
2098 ppgtt
->pd
.base
.ggtt_offset
/ sizeof(gen6_pte_t
);
2100 gen6_scratch_va_range(ppgtt
, 0, ppgtt
->base
.total
);
2102 gen6_write_page_range(dev_priv
, &ppgtt
->pd
, 0, ppgtt
->base
.total
);
2104 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2105 ppgtt
->node
.size
>> 20,
2106 ppgtt
->node
.start
/ PAGE_SIZE
);
2108 DRM_DEBUG("Adding PPGTT at offset %x\n",
2109 ppgtt
->pd
.base
.ggtt_offset
<< 10);
2114 static int __hw_ppgtt_init(struct drm_device
*dev
, struct i915_hw_ppgtt
*ppgtt
)
2116 ppgtt
->base
.dev
= dev
;
2118 if (INTEL_INFO(dev
)->gen
< 8)
2119 return gen6_ppgtt_init(ppgtt
);
2121 return gen8_ppgtt_init(ppgtt
);
2124 static void i915_address_space_init(struct i915_address_space
*vm
,
2125 struct drm_i915_private
*dev_priv
)
2127 drm_mm_init(&vm
->mm
, vm
->start
, vm
->total
);
2128 vm
->dev
= dev_priv
->dev
;
2129 INIT_LIST_HEAD(&vm
->active_list
);
2130 INIT_LIST_HEAD(&vm
->inactive_list
);
2131 list_add_tail(&vm
->global_link
, &dev_priv
->vm_list
);
2134 int i915_ppgtt_init(struct drm_device
*dev
, struct i915_hw_ppgtt
*ppgtt
)
2136 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2139 ret
= __hw_ppgtt_init(dev
, ppgtt
);
2141 kref_init(&ppgtt
->ref
);
2142 i915_address_space_init(&ppgtt
->base
, dev_priv
);
2148 int i915_ppgtt_init_hw(struct drm_device
*dev
)
2150 /* In the case of execlists, PPGTT is enabled by the context descriptor
2151 * and the PDPs are contained within the context itself. We don't
2152 * need to do anything here. */
2153 if (i915
.enable_execlists
)
2156 if (!USES_PPGTT(dev
))
2160 gen6_ppgtt_enable(dev
);
2161 else if (IS_GEN7(dev
))
2162 gen7_ppgtt_enable(dev
);
2163 else if (INTEL_INFO(dev
)->gen
>= 8)
2164 gen8_ppgtt_enable(dev
);
2166 MISSING_CASE(INTEL_INFO(dev
)->gen
);
2171 int i915_ppgtt_init_ring(struct drm_i915_gem_request
*req
)
2173 struct drm_i915_private
*dev_priv
= req
->ring
->dev
->dev_private
;
2174 struct i915_hw_ppgtt
*ppgtt
= dev_priv
->mm
.aliasing_ppgtt
;
2176 if (i915
.enable_execlists
)
2182 return ppgtt
->switch_mm(ppgtt
, req
);
2185 struct i915_hw_ppgtt
*
2186 i915_ppgtt_create(struct drm_device
*dev
, struct drm_i915_file_private
*fpriv
)
2188 struct i915_hw_ppgtt
*ppgtt
;
2191 ppgtt
= kzalloc(sizeof(*ppgtt
), GFP_KERNEL
);
2193 return ERR_PTR(-ENOMEM
);
2195 ret
= i915_ppgtt_init(dev
, ppgtt
);
2198 return ERR_PTR(ret
);
2201 ppgtt
->file_priv
= fpriv
;
2203 trace_i915_ppgtt_create(&ppgtt
->base
);
2208 void i915_ppgtt_release(struct kref
*kref
)
2210 struct i915_hw_ppgtt
*ppgtt
=
2211 container_of(kref
, struct i915_hw_ppgtt
, ref
);
2213 trace_i915_ppgtt_release(&ppgtt
->base
);
2215 /* vmas should already be unbound */
2216 WARN_ON(!list_empty(&ppgtt
->base
.active_list
));
2217 WARN_ON(!list_empty(&ppgtt
->base
.inactive_list
));
2219 list_del(&ppgtt
->base
.global_link
);
2220 drm_mm_takedown(&ppgtt
->base
.mm
);
2222 ppgtt
->base
.cleanup(&ppgtt
->base
);
2226 extern int intel_iommu_gfx_mapped
;
2227 /* Certain Gen5 chipsets require require idling the GPU before
2228 * unmapping anything from the GTT when VT-d is enabled.
2230 static bool needs_idle_maps(struct drm_device
*dev
)
2232 #ifdef CONFIG_INTEL_IOMMU
2233 /* Query intel_iommu to see if we need the workaround. Presumably that
2236 if (IS_GEN5(dev
) && IS_MOBILE(dev
) && intel_iommu_gfx_mapped
)
2242 static bool do_idling(struct drm_i915_private
*dev_priv
)
2244 bool ret
= dev_priv
->mm
.interruptible
;
2246 if (unlikely(dev_priv
->gtt
.do_idle_maps
)) {
2247 dev_priv
->mm
.interruptible
= false;
2248 if (i915_gpu_idle(dev_priv
->dev
)) {
2249 DRM_ERROR("Couldn't idle GPU\n");
2250 /* Wait a bit, in hopes it avoids the hang */
2258 static void undo_idling(struct drm_i915_private
*dev_priv
, bool interruptible
)
2260 if (unlikely(dev_priv
->gtt
.do_idle_maps
))
2261 dev_priv
->mm
.interruptible
= interruptible
;
2264 void i915_check_and_clear_faults(struct drm_device
*dev
)
2266 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2267 struct intel_engine_cs
*ring
;
2270 if (INTEL_INFO(dev
)->gen
< 6)
2273 for_each_ring(ring
, dev_priv
, i
) {
2275 fault_reg
= I915_READ(RING_FAULT_REG(ring
));
2276 if (fault_reg
& RING_FAULT_VALID
) {
2277 DRM_DEBUG_DRIVER("Unexpected fault\n"
2279 "\tAddress space: %s\n"
2282 fault_reg
& PAGE_MASK
,
2283 fault_reg
& RING_FAULT_GTTSEL_MASK
? "GGTT" : "PPGTT",
2284 RING_FAULT_SRCID(fault_reg
),
2285 RING_FAULT_FAULT_TYPE(fault_reg
));
2286 I915_WRITE(RING_FAULT_REG(ring
),
2287 fault_reg
& ~RING_FAULT_VALID
);
2290 POSTING_READ(RING_FAULT_REG(&dev_priv
->ring
[RCS
]));
2293 static void i915_ggtt_flush(struct drm_i915_private
*dev_priv
)
2295 if (INTEL_INFO(dev_priv
->dev
)->gen
< 6) {
2296 intel_gtt_chipset_flush();
2298 I915_WRITE(GFX_FLSH_CNTL_GEN6
, GFX_FLSH_CNTL_EN
);
2299 POSTING_READ(GFX_FLSH_CNTL_GEN6
);
2303 void i915_gem_suspend_gtt_mappings(struct drm_device
*dev
)
2305 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2307 /* Don't bother messing with faults pre GEN6 as we have little
2308 * documentation supporting that it's a good idea.
2310 if (INTEL_INFO(dev
)->gen
< 6)
2313 i915_check_and_clear_faults(dev
);
2315 dev_priv
->gtt
.base
.clear_range(&dev_priv
->gtt
.base
,
2316 dev_priv
->gtt
.base
.start
,
2317 dev_priv
->gtt
.base
.total
,
2320 i915_ggtt_flush(dev_priv
);
2323 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object
*obj
)
2325 if (!dma_map_sg(&obj
->base
.dev
->pdev
->dev
,
2326 obj
->pages
->sgl
, obj
->pages
->nents
,
2327 PCI_DMA_BIDIRECTIONAL
))
2333 static void gen8_set_pte(void __iomem
*addr
, gen8_pte_t pte
)
2338 iowrite32((u32
)pte
, addr
);
2339 iowrite32(pte
>> 32, addr
+ 4);
2343 static void gen8_ggtt_insert_entries(struct i915_address_space
*vm
,
2344 struct sg_table
*st
,
2346 enum i915_cache_level level
, u32 unused
)
2348 struct drm_i915_private
*dev_priv
= vm
->dev
->dev_private
;
2349 unsigned first_entry
= start
>> PAGE_SHIFT
;
2350 gen8_pte_t __iomem
*gtt_entries
=
2351 (gen8_pte_t __iomem
*)dev_priv
->gtt
.gsm
+ first_entry
;
2353 struct sg_page_iter sg_iter
;
2354 dma_addr_t addr
= 0; /* shut up gcc */
2356 for_each_sg_page(st
->sgl
, &sg_iter
, st
->nents
, 0) {
2357 addr
= sg_dma_address(sg_iter
.sg
) +
2358 (sg_iter
.sg_pgoffset
<< PAGE_SHIFT
);
2359 gen8_set_pte(>t_entries
[i
],
2360 gen8_pte_encode(addr
, level
, true));
2365 * XXX: This serves as a posting read to make sure that the PTE has
2366 * actually been updated. There is some concern that even though
2367 * registers and PTEs are within the same BAR that they are potentially
2368 * of NUMA access patterns. Therefore, even with the way we assume
2369 * hardware should work, we must keep this posting read for paranoia.
2372 WARN_ON(readq(>t_entries
[i
-1])
2373 != gen8_pte_encode(addr
, level
, true));
2375 /* This next bit makes the above posting read even more important. We
2376 * want to flush the TLBs only after we're certain all the PTE updates
2379 I915_WRITE(GFX_FLSH_CNTL_GEN6
, GFX_FLSH_CNTL_EN
);
2380 POSTING_READ(GFX_FLSH_CNTL_GEN6
);
2384 * Binds an object into the global gtt with the specified cache level. The object
2385 * will be accessible to the GPU via commands whose operands reference offsets
2386 * within the global GTT as well as accessible by the GPU through the GMADR
2387 * mapped BAR (dev_priv->mm.gtt->gtt).
2389 static void gen6_ggtt_insert_entries(struct i915_address_space
*vm
,
2390 struct sg_table
*st
,
2392 enum i915_cache_level level
, u32 flags
)
2394 struct drm_i915_private
*dev_priv
= vm
->dev
->dev_private
;
2395 unsigned first_entry
= start
>> PAGE_SHIFT
;
2396 gen6_pte_t __iomem
*gtt_entries
=
2397 (gen6_pte_t __iomem
*)dev_priv
->gtt
.gsm
+ first_entry
;
2399 struct sg_page_iter sg_iter
;
2400 dma_addr_t addr
= 0;
2402 for_each_sg_page(st
->sgl
, &sg_iter
, st
->nents
, 0) {
2403 addr
= sg_page_iter_dma_address(&sg_iter
);
2404 iowrite32(vm
->pte_encode(addr
, level
, true, flags
), >t_entries
[i
]);
2408 /* XXX: This serves as a posting read to make sure that the PTE has
2409 * actually been updated. There is some concern that even though
2410 * registers and PTEs are within the same BAR that they are potentially
2411 * of NUMA access patterns. Therefore, even with the way we assume
2412 * hardware should work, we must keep this posting read for paranoia.
2415 unsigned long gtt
= readl(>t_entries
[i
-1]);
2416 WARN_ON(gtt
!= vm
->pte_encode(addr
, level
, true, flags
));
2419 /* This next bit makes the above posting read even more important. We
2420 * want to flush the TLBs only after we're certain all the PTE updates
2423 I915_WRITE(GFX_FLSH_CNTL_GEN6
, GFX_FLSH_CNTL_EN
);
2424 POSTING_READ(GFX_FLSH_CNTL_GEN6
);
2427 static void gen8_ggtt_clear_range(struct i915_address_space
*vm
,
2432 struct drm_i915_private
*dev_priv
= vm
->dev
->dev_private
;
2433 unsigned first_entry
= start
>> PAGE_SHIFT
;
2434 unsigned num_entries
= length
>> PAGE_SHIFT
;
2435 gen8_pte_t scratch_pte
, __iomem
*gtt_base
=
2436 (gen8_pte_t __iomem
*) dev_priv
->gtt
.gsm
+ first_entry
;
2437 const int max_entries
= gtt_total_entries(dev_priv
->gtt
) - first_entry
;
2440 if (WARN(num_entries
> max_entries
,
2441 "First entry = %d; Num entries = %d (max=%d)\n",
2442 first_entry
, num_entries
, max_entries
))
2443 num_entries
= max_entries
;
2445 scratch_pte
= gen8_pte_encode(px_dma(vm
->scratch_page
),
2448 for (i
= 0; i
< num_entries
; i
++)
2449 gen8_set_pte(>t_base
[i
], scratch_pte
);
2453 static void gen6_ggtt_clear_range(struct i915_address_space
*vm
,
2458 struct drm_i915_private
*dev_priv
= vm
->dev
->dev_private
;
2459 unsigned first_entry
= start
>> PAGE_SHIFT
;
2460 unsigned num_entries
= length
>> PAGE_SHIFT
;
2461 gen6_pte_t scratch_pte
, __iomem
*gtt_base
=
2462 (gen6_pte_t __iomem
*) dev_priv
->gtt
.gsm
+ first_entry
;
2463 const int max_entries
= gtt_total_entries(dev_priv
->gtt
) - first_entry
;
2466 if (WARN(num_entries
> max_entries
,
2467 "First entry = %d; Num entries = %d (max=%d)\n",
2468 first_entry
, num_entries
, max_entries
))
2469 num_entries
= max_entries
;
2471 scratch_pte
= vm
->pte_encode(px_dma(vm
->scratch_page
),
2472 I915_CACHE_LLC
, use_scratch
, 0);
2474 for (i
= 0; i
< num_entries
; i
++)
2475 iowrite32(scratch_pte
, >t_base
[i
]);
2479 static void i915_ggtt_insert_entries(struct i915_address_space
*vm
,
2480 struct sg_table
*pages
,
2482 enum i915_cache_level cache_level
, u32 unused
)
2484 unsigned int flags
= (cache_level
== I915_CACHE_NONE
) ?
2485 AGP_USER_MEMORY
: AGP_USER_CACHED_MEMORY
;
2487 intel_gtt_insert_sg_entries(pages
, start
>> PAGE_SHIFT
, flags
);
2491 static void i915_ggtt_clear_range(struct i915_address_space
*vm
,
2496 unsigned first_entry
= start
>> PAGE_SHIFT
;
2497 unsigned num_entries
= length
>> PAGE_SHIFT
;
2498 intel_gtt_clear_range(first_entry
, num_entries
);
2501 static int ggtt_bind_vma(struct i915_vma
*vma
,
2502 enum i915_cache_level cache_level
,
2505 struct drm_i915_gem_object
*obj
= vma
->obj
;
2509 ret
= i915_get_ggtt_vma_pages(vma
);
2513 /* Currently applicable only to VLV */
2515 pte_flags
|= PTE_READ_ONLY
;
2517 vma
->vm
->insert_entries(vma
->vm
, vma
->ggtt_view
.pages
,
2519 cache_level
, pte_flags
);
2522 * Without aliasing PPGTT there's no difference between
2523 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2524 * upgrade to both bound if we bind either to avoid double-binding.
2526 vma
->bound
|= GLOBAL_BIND
| LOCAL_BIND
;
2531 static int aliasing_gtt_bind_vma(struct i915_vma
*vma
,
2532 enum i915_cache_level cache_level
,
2535 struct drm_device
*dev
= vma
->vm
->dev
;
2536 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2537 struct drm_i915_gem_object
*obj
= vma
->obj
;
2538 struct sg_table
*pages
= obj
->pages
;
2542 ret
= i915_get_ggtt_vma_pages(vma
);
2545 pages
= vma
->ggtt_view
.pages
;
2547 /* Currently applicable only to VLV */
2549 pte_flags
|= PTE_READ_ONLY
;
2552 if (flags
& GLOBAL_BIND
) {
2553 vma
->vm
->insert_entries(vma
->vm
, pages
,
2555 cache_level
, pte_flags
);
2558 if (flags
& LOCAL_BIND
) {
2559 struct i915_hw_ppgtt
*appgtt
= dev_priv
->mm
.aliasing_ppgtt
;
2560 appgtt
->base
.insert_entries(&appgtt
->base
, pages
,
2562 cache_level
, pte_flags
);
2568 static void ggtt_unbind_vma(struct i915_vma
*vma
)
2570 struct drm_device
*dev
= vma
->vm
->dev
;
2571 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2572 struct drm_i915_gem_object
*obj
= vma
->obj
;
2573 const uint64_t size
= min_t(uint64_t,
2577 if (vma
->bound
& GLOBAL_BIND
) {
2578 vma
->vm
->clear_range(vma
->vm
,
2584 if (dev_priv
->mm
.aliasing_ppgtt
&& vma
->bound
& LOCAL_BIND
) {
2585 struct i915_hw_ppgtt
*appgtt
= dev_priv
->mm
.aliasing_ppgtt
;
2587 appgtt
->base
.clear_range(&appgtt
->base
,
2594 void i915_gem_gtt_finish_object(struct drm_i915_gem_object
*obj
)
2596 struct drm_device
*dev
= obj
->base
.dev
;
2597 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2600 interruptible
= do_idling(dev_priv
);
2602 dma_unmap_sg(&dev
->pdev
->dev
, obj
->pages
->sgl
, obj
->pages
->nents
,
2603 PCI_DMA_BIDIRECTIONAL
);
2605 undo_idling(dev_priv
, interruptible
);
2608 static void i915_gtt_color_adjust(struct drm_mm_node
*node
,
2609 unsigned long color
,
2613 if (node
->color
!= color
)
2616 if (!list_empty(&node
->node_list
)) {
2617 node
= list_entry(node
->node_list
.next
,
2620 if (node
->allocated
&& node
->color
!= color
)
2625 static int i915_gem_setup_global_gtt(struct drm_device
*dev
,
2630 /* Let GEM Manage all of the aperture.
2632 * However, leave one page at the end still bound to the scratch page.
2633 * There are a number of places where the hardware apparently prefetches
2634 * past the end of the object, and we've seen multiple hangs with the
2635 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2636 * aperture. One page should be enough to keep any prefetching inside
2639 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2640 struct i915_address_space
*ggtt_vm
= &dev_priv
->gtt
.base
;
2641 struct drm_mm_node
*entry
;
2642 struct drm_i915_gem_object
*obj
;
2643 unsigned long hole_start
, hole_end
;
2646 BUG_ON(mappable_end
> end
);
2648 ggtt_vm
->start
= start
;
2650 /* Subtract the guard page before address space initialization to
2651 * shrink the range used by drm_mm */
2652 ggtt_vm
->total
= end
- start
- PAGE_SIZE
;
2653 i915_address_space_init(ggtt_vm
, dev_priv
);
2654 ggtt_vm
->total
+= PAGE_SIZE
;
2656 if (intel_vgpu_active(dev
)) {
2657 ret
= intel_vgt_balloon(dev
);
2663 ggtt_vm
->mm
.color_adjust
= i915_gtt_color_adjust
;
2665 /* Mark any preallocated objects as occupied */
2666 list_for_each_entry(obj
, &dev_priv
->mm
.bound_list
, global_list
) {
2667 struct i915_vma
*vma
= i915_gem_obj_to_vma(obj
, ggtt_vm
);
2669 DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2670 i915_gem_obj_ggtt_offset(obj
), obj
->base
.size
);
2672 WARN_ON(i915_gem_obj_ggtt_bound(obj
));
2673 ret
= drm_mm_reserve_node(&ggtt_vm
->mm
, &vma
->node
);
2675 DRM_DEBUG_KMS("Reservation failed: %i\n", ret
);
2678 vma
->bound
|= GLOBAL_BIND
;
2679 list_add_tail(&vma
->mm_list
, &ggtt_vm
->inactive_list
);
2682 /* Clear any non-preallocated blocks */
2683 drm_mm_for_each_hole(entry
, &ggtt_vm
->mm
, hole_start
, hole_end
) {
2684 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2685 hole_start
, hole_end
);
2686 ggtt_vm
->clear_range(ggtt_vm
, hole_start
,
2687 hole_end
- hole_start
, true);
2690 /* And finally clear the reserved guard page */
2691 ggtt_vm
->clear_range(ggtt_vm
, end
- PAGE_SIZE
, PAGE_SIZE
, true);
2693 if (USES_PPGTT(dev
) && !USES_FULL_PPGTT(dev
)) {
2694 struct i915_hw_ppgtt
*ppgtt
;
2696 ppgtt
= kzalloc(sizeof(*ppgtt
), GFP_KERNEL
);
2700 ret
= __hw_ppgtt_init(dev
, ppgtt
);
2702 ppgtt
->base
.cleanup(&ppgtt
->base
);
2707 if (ppgtt
->base
.allocate_va_range
)
2708 ret
= ppgtt
->base
.allocate_va_range(&ppgtt
->base
, 0,
2711 ppgtt
->base
.cleanup(&ppgtt
->base
);
2716 ppgtt
->base
.clear_range(&ppgtt
->base
,
2721 dev_priv
->mm
.aliasing_ppgtt
= ppgtt
;
2722 WARN_ON(dev_priv
->gtt
.base
.bind_vma
!= ggtt_bind_vma
);
2723 dev_priv
->gtt
.base
.bind_vma
= aliasing_gtt_bind_vma
;
2729 void i915_gem_init_global_gtt(struct drm_device
*dev
)
2731 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2732 u64 gtt_size
, mappable_size
;
2734 gtt_size
= dev_priv
->gtt
.base
.total
;
2735 mappable_size
= dev_priv
->gtt
.mappable_end
;
2737 i915_gem_setup_global_gtt(dev
, 0, mappable_size
, gtt_size
);
2740 void i915_global_gtt_cleanup(struct drm_device
*dev
)
2742 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2743 struct i915_address_space
*vm
= &dev_priv
->gtt
.base
;
2745 if (dev_priv
->mm
.aliasing_ppgtt
) {
2746 struct i915_hw_ppgtt
*ppgtt
= dev_priv
->mm
.aliasing_ppgtt
;
2748 ppgtt
->base
.cleanup(&ppgtt
->base
);
2751 if (drm_mm_initialized(&vm
->mm
)) {
2752 if (intel_vgpu_active(dev
))
2753 intel_vgt_deballoon();
2755 drm_mm_takedown(&vm
->mm
);
2756 list_del(&vm
->global_link
);
2762 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl
)
2764 snb_gmch_ctl
>>= SNB_GMCH_GGMS_SHIFT
;
2765 snb_gmch_ctl
&= SNB_GMCH_GGMS_MASK
;
2766 return snb_gmch_ctl
<< 20;
2769 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl
)
2771 bdw_gmch_ctl
>>= BDW_GMCH_GGMS_SHIFT
;
2772 bdw_gmch_ctl
&= BDW_GMCH_GGMS_MASK
;
2774 bdw_gmch_ctl
= 1 << bdw_gmch_ctl
;
2776 #ifdef CONFIG_X86_32
2777 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2778 if (bdw_gmch_ctl
> 4)
2782 return bdw_gmch_ctl
<< 20;
2785 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl
)
2787 gmch_ctrl
>>= SNB_GMCH_GGMS_SHIFT
;
2788 gmch_ctrl
&= SNB_GMCH_GGMS_MASK
;
2791 return 1 << (20 + gmch_ctrl
);
2796 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl
)
2798 snb_gmch_ctl
>>= SNB_GMCH_GMS_SHIFT
;
2799 snb_gmch_ctl
&= SNB_GMCH_GMS_MASK
;
2800 return snb_gmch_ctl
<< 25; /* 32 MB units */
2803 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl
)
2805 bdw_gmch_ctl
>>= BDW_GMCH_GMS_SHIFT
;
2806 bdw_gmch_ctl
&= BDW_GMCH_GMS_MASK
;
2807 return bdw_gmch_ctl
<< 25; /* 32 MB units */
2810 static size_t chv_get_stolen_size(u16 gmch_ctrl
)
2812 gmch_ctrl
>>= SNB_GMCH_GMS_SHIFT
;
2813 gmch_ctrl
&= SNB_GMCH_GMS_MASK
;
2816 * 0x0 to 0x10: 32MB increments starting at 0MB
2817 * 0x11 to 0x16: 4MB increments starting at 8MB
2818 * 0x17 to 0x1d: 4MB increments start at 36MB
2820 if (gmch_ctrl
< 0x11)
2821 return gmch_ctrl
<< 25;
2822 else if (gmch_ctrl
< 0x17)
2823 return (gmch_ctrl
- 0x11 + 2) << 22;
2825 return (gmch_ctrl
- 0x17 + 9) << 22;
2828 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl
)
2830 gen9_gmch_ctl
>>= BDW_GMCH_GMS_SHIFT
;
2831 gen9_gmch_ctl
&= BDW_GMCH_GMS_MASK
;
2833 if (gen9_gmch_ctl
< 0xf0)
2834 return gen9_gmch_ctl
<< 25; /* 32 MB units */
2836 /* 4MB increments starting at 0xf0 for 4MB */
2837 return (gen9_gmch_ctl
- 0xf0 + 1) << 22;
2840 static int ggtt_probe_common(struct drm_device
*dev
,
2843 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2844 struct i915_page_scratch
*scratch_page
;
2845 phys_addr_t gtt_phys_addr
;
2847 /* For Modern GENs the PTEs and register space are split in the BAR */
2848 gtt_phys_addr
= pci_resource_start(dev
->pdev
, 0) +
2849 (pci_resource_len(dev
->pdev
, 0) / 2);
2852 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2853 * dropped. For WC mappings in general we have 64 byte burst writes
2854 * when the WC buffer is flushed, so we can't use it, but have to
2855 * resort to an uncached mapping. The WC issue is easily caught by the
2856 * readback check when writing GTT PTE entries.
2858 if (IS_BROXTON(dev
))
2859 dev_priv
->gtt
.gsm
= ioremap_nocache(gtt_phys_addr
, gtt_size
);
2861 dev_priv
->gtt
.gsm
= ioremap_wc(gtt_phys_addr
, gtt_size
);
2862 if (!dev_priv
->gtt
.gsm
) {
2863 DRM_ERROR("Failed to map the gtt page table\n");
2867 scratch_page
= alloc_scratch_page(dev
);
2868 if (IS_ERR(scratch_page
)) {
2869 DRM_ERROR("Scratch setup failed\n");
2870 /* iounmap will also get called at remove, but meh */
2871 iounmap(dev_priv
->gtt
.gsm
);
2872 return PTR_ERR(scratch_page
);
2875 dev_priv
->gtt
.base
.scratch_page
= scratch_page
;
2880 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2881 * bits. When using advanced contexts each context stores its own PAT, but
2882 * writing this data shouldn't be harmful even in those cases. */
2883 static void bdw_setup_private_ppat(struct drm_i915_private
*dev_priv
)
2887 pat
= GEN8_PPAT(0, GEN8_PPAT_WB
| GEN8_PPAT_LLC
) | /* for normal objects, no eLLC */
2888 GEN8_PPAT(1, GEN8_PPAT_WC
| GEN8_PPAT_LLCELLC
) | /* for something pointing to ptes? */
2889 GEN8_PPAT(2, GEN8_PPAT_WT
| GEN8_PPAT_LLCELLC
) | /* for scanout with eLLC */
2890 GEN8_PPAT(3, GEN8_PPAT_UC
) | /* Uncached objects, mostly for scanout */
2891 GEN8_PPAT(4, GEN8_PPAT_WB
| GEN8_PPAT_LLCELLC
| GEN8_PPAT_AGE(0)) |
2892 GEN8_PPAT(5, GEN8_PPAT_WB
| GEN8_PPAT_LLCELLC
| GEN8_PPAT_AGE(1)) |
2893 GEN8_PPAT(6, GEN8_PPAT_WB
| GEN8_PPAT_LLCELLC
| GEN8_PPAT_AGE(2)) |
2894 GEN8_PPAT(7, GEN8_PPAT_WB
| GEN8_PPAT_LLCELLC
| GEN8_PPAT_AGE(3));
2896 if (!USES_PPGTT(dev_priv
->dev
))
2897 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2898 * so RTL will always use the value corresponding to
2900 * So let's disable cache for GGTT to avoid screen corruptions.
2901 * MOCS still can be used though.
2902 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2903 * before this patch, i.e. the same uncached + snooping access
2904 * like on gen6/7 seems to be in effect.
2905 * - So this just fixes blitter/render access. Again it looks
2906 * like it's not just uncached access, but uncached + snooping.
2907 * So we can still hold onto all our assumptions wrt cpu
2908 * clflushing on LLC machines.
2910 pat
= GEN8_PPAT(0, GEN8_PPAT_UC
);
2912 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2913 * write would work. */
2914 I915_WRITE(GEN8_PRIVATE_PAT_LO
, pat
);
2915 I915_WRITE(GEN8_PRIVATE_PAT_HI
, pat
>> 32);
2918 static void chv_setup_private_ppat(struct drm_i915_private
*dev_priv
)
2923 * Map WB on BDW to snooped on CHV.
2925 * Only the snoop bit has meaning for CHV, the rest is
2928 * The hardware will never snoop for certain types of accesses:
2929 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2930 * - PPGTT page tables
2931 * - some other special cycles
2933 * As with BDW, we also need to consider the following for GT accesses:
2934 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2935 * so RTL will always use the value corresponding to
2937 * Which means we must set the snoop bit in PAT entry 0
2938 * in order to keep the global status page working.
2940 pat
= GEN8_PPAT(0, CHV_PPAT_SNOOP
) |
2944 GEN8_PPAT(4, CHV_PPAT_SNOOP
) |
2945 GEN8_PPAT(5, CHV_PPAT_SNOOP
) |
2946 GEN8_PPAT(6, CHV_PPAT_SNOOP
) |
2947 GEN8_PPAT(7, CHV_PPAT_SNOOP
);
2949 I915_WRITE(GEN8_PRIVATE_PAT_LO
, pat
);
2950 I915_WRITE(GEN8_PRIVATE_PAT_HI
, pat
>> 32);
2953 static int gen8_gmch_probe(struct drm_device
*dev
,
2956 phys_addr_t
*mappable_base
,
2959 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2964 /* TODO: We're not aware of mappable constraints on gen8 yet */
2965 *mappable_base
= pci_resource_start(dev
->pdev
, 2);
2966 *mappable_end
= pci_resource_len(dev
->pdev
, 2);
2968 if (!pci_set_dma_mask(dev
->pdev
, DMA_BIT_MASK(39)))
2969 pci_set_consistent_dma_mask(dev
->pdev
, DMA_BIT_MASK(39));
2971 pci_read_config_word(dev
->pdev
, SNB_GMCH_CTRL
, &snb_gmch_ctl
);
2973 if (INTEL_INFO(dev
)->gen
>= 9) {
2974 *stolen
= gen9_get_stolen_size(snb_gmch_ctl
);
2975 gtt_size
= gen8_get_total_gtt_size(snb_gmch_ctl
);
2976 } else if (IS_CHERRYVIEW(dev
)) {
2977 *stolen
= chv_get_stolen_size(snb_gmch_ctl
);
2978 gtt_size
= chv_get_total_gtt_size(snb_gmch_ctl
);
2980 *stolen
= gen8_get_stolen_size(snb_gmch_ctl
);
2981 gtt_size
= gen8_get_total_gtt_size(snb_gmch_ctl
);
2984 *gtt_total
= (gtt_size
/ sizeof(gen8_pte_t
)) << PAGE_SHIFT
;
2986 if (IS_CHERRYVIEW(dev
) || IS_BROXTON(dev
))
2987 chv_setup_private_ppat(dev_priv
);
2989 bdw_setup_private_ppat(dev_priv
);
2991 ret
= ggtt_probe_common(dev
, gtt_size
);
2993 dev_priv
->gtt
.base
.clear_range
= gen8_ggtt_clear_range
;
2994 dev_priv
->gtt
.base
.insert_entries
= gen8_ggtt_insert_entries
;
2995 dev_priv
->gtt
.base
.bind_vma
= ggtt_bind_vma
;
2996 dev_priv
->gtt
.base
.unbind_vma
= ggtt_unbind_vma
;
3001 static int gen6_gmch_probe(struct drm_device
*dev
,
3004 phys_addr_t
*mappable_base
,
3007 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3008 unsigned int gtt_size
;
3012 *mappable_base
= pci_resource_start(dev
->pdev
, 2);
3013 *mappable_end
= pci_resource_len(dev
->pdev
, 2);
3015 /* 64/512MB is the current min/max we actually know of, but this is just
3016 * a coarse sanity check.
3018 if ((*mappable_end
< (64<<20) || (*mappable_end
> (512<<20)))) {
3019 DRM_ERROR("Unknown GMADR size (%llx)\n",
3020 dev_priv
->gtt
.mappable_end
);
3024 if (!pci_set_dma_mask(dev
->pdev
, DMA_BIT_MASK(40)))
3025 pci_set_consistent_dma_mask(dev
->pdev
, DMA_BIT_MASK(40));
3026 pci_read_config_word(dev
->pdev
, SNB_GMCH_CTRL
, &snb_gmch_ctl
);
3028 *stolen
= gen6_get_stolen_size(snb_gmch_ctl
);
3030 gtt_size
= gen6_get_total_gtt_size(snb_gmch_ctl
);
3031 *gtt_total
= (gtt_size
/ sizeof(gen6_pte_t
)) << PAGE_SHIFT
;
3033 ret
= ggtt_probe_common(dev
, gtt_size
);
3035 dev_priv
->gtt
.base
.clear_range
= gen6_ggtt_clear_range
;
3036 dev_priv
->gtt
.base
.insert_entries
= gen6_ggtt_insert_entries
;
3037 dev_priv
->gtt
.base
.bind_vma
= ggtt_bind_vma
;
3038 dev_priv
->gtt
.base
.unbind_vma
= ggtt_unbind_vma
;
3043 static void gen6_gmch_remove(struct i915_address_space
*vm
)
3046 struct i915_gtt
*gtt
= container_of(vm
, struct i915_gtt
, base
);
3049 free_scratch_page(vm
->dev
, vm
->scratch_page
);
3052 static int i915_gmch_probe(struct drm_device
*dev
,
3055 phys_addr_t
*mappable_base
,
3058 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3061 ret
= intel_gmch_probe(dev_priv
->bridge_dev
, dev_priv
->dev
->pdev
, NULL
);
3063 DRM_ERROR("failed to set up gmch\n");
3067 intel_gtt_get(gtt_total
, stolen
, mappable_base
, mappable_end
);
3069 dev_priv
->gtt
.do_idle_maps
= needs_idle_maps(dev_priv
->dev
);
3070 dev_priv
->gtt
.base
.insert_entries
= i915_ggtt_insert_entries
;
3071 dev_priv
->gtt
.base
.clear_range
= i915_ggtt_clear_range
;
3072 dev_priv
->gtt
.base
.bind_vma
= ggtt_bind_vma
;
3073 dev_priv
->gtt
.base
.unbind_vma
= ggtt_unbind_vma
;
3075 if (unlikely(dev_priv
->gtt
.do_idle_maps
))
3076 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3081 static void i915_gmch_remove(struct i915_address_space
*vm
)
3083 intel_gmch_remove();
3086 int i915_gem_gtt_init(struct drm_device
*dev
)
3088 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3089 struct i915_gtt
*gtt
= &dev_priv
->gtt
;
3092 if (INTEL_INFO(dev
)->gen
<= 5) {
3093 gtt
->gtt_probe
= i915_gmch_probe
;
3094 gtt
->base
.cleanup
= i915_gmch_remove
;
3095 } else if (INTEL_INFO(dev
)->gen
< 8) {
3096 gtt
->gtt_probe
= gen6_gmch_probe
;
3097 gtt
->base
.cleanup
= gen6_gmch_remove
;
3098 if (IS_HASWELL(dev
) && dev_priv
->ellc_size
)
3099 gtt
->base
.pte_encode
= iris_pte_encode
;
3100 else if (IS_HASWELL(dev
))
3101 gtt
->base
.pte_encode
= hsw_pte_encode
;
3102 else if (IS_VALLEYVIEW(dev
))
3103 gtt
->base
.pte_encode
= byt_pte_encode
;
3104 else if (INTEL_INFO(dev
)->gen
>= 7)
3105 gtt
->base
.pte_encode
= ivb_pte_encode
;
3107 gtt
->base
.pte_encode
= snb_pte_encode
;
3109 dev_priv
->gtt
.gtt_probe
= gen8_gmch_probe
;
3110 dev_priv
->gtt
.base
.cleanup
= gen6_gmch_remove
;
3113 gtt
->base
.dev
= dev
;
3115 ret
= gtt
->gtt_probe(dev
, >t
->base
.total
, >t
->stolen_size
,
3116 >t
->mappable_base
, >t
->mappable_end
);
3120 /* GMADR is the PCI mmio aperture into the global GTT. */
3121 DRM_INFO("Memory usable by graphics device = %lluM\n",
3122 gtt
->base
.total
>> 20);
3123 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt
->mappable_end
>> 20);
3124 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt
->stolen_size
>> 20);
3125 #ifdef CONFIG_INTEL_IOMMU
3126 if (intel_iommu_gfx_mapped
)
3127 DRM_INFO("VT-d active for gfx access\n");
3130 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3131 * user's requested state against the hardware/driver capabilities. We
3132 * do this now so that we can print out any log messages once rather
3133 * than every time we check intel_enable_ppgtt().
3135 i915
.enable_ppgtt
= sanitize_enable_ppgtt(dev
, i915
.enable_ppgtt
);
3136 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915
.enable_ppgtt
);
3141 void i915_gem_restore_gtt_mappings(struct drm_device
*dev
)
3143 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3144 struct drm_i915_gem_object
*obj
;
3145 struct i915_address_space
*vm
;
3146 struct i915_vma
*vma
;
3149 i915_check_and_clear_faults(dev
);
3151 /* First fill our portion of the GTT with scratch pages */
3152 dev_priv
->gtt
.base
.clear_range(&dev_priv
->gtt
.base
,
3153 dev_priv
->gtt
.base
.start
,
3154 dev_priv
->gtt
.base
.total
,
3157 /* Cache flush objects bound into GGTT and rebind them. */
3158 vm
= &dev_priv
->gtt
.base
;
3159 list_for_each_entry(obj
, &dev_priv
->mm
.bound_list
, global_list
) {
3161 list_for_each_entry(vma
, &obj
->vma_list
, vma_link
) {
3165 WARN_ON(i915_vma_bind(vma
, obj
->cache_level
,
3172 i915_gem_clflush_object(obj
, obj
->pin_display
);
3175 if (INTEL_INFO(dev
)->gen
>= 8) {
3176 if (IS_CHERRYVIEW(dev
) || IS_BROXTON(dev
))
3177 chv_setup_private_ppat(dev_priv
);
3179 bdw_setup_private_ppat(dev_priv
);
3184 if (USES_PPGTT(dev
)) {
3185 list_for_each_entry(vm
, &dev_priv
->vm_list
, global_link
) {
3186 /* TODO: Perhaps it shouldn't be gen6 specific */
3188 struct i915_hw_ppgtt
*ppgtt
=
3189 container_of(vm
, struct i915_hw_ppgtt
,
3192 if (i915_is_ggtt(vm
))
3193 ppgtt
= dev_priv
->mm
.aliasing_ppgtt
;
3195 gen6_write_page_range(dev_priv
, &ppgtt
->pd
,
3196 0, ppgtt
->base
.total
);
3200 i915_ggtt_flush(dev_priv
);
3203 static struct i915_vma
*
3204 __i915_gem_vma_create(struct drm_i915_gem_object
*obj
,
3205 struct i915_address_space
*vm
,
3206 const struct i915_ggtt_view
*ggtt_view
)
3208 struct i915_vma
*vma
;
3210 if (WARN_ON(i915_is_ggtt(vm
) != !!ggtt_view
))
3211 return ERR_PTR(-EINVAL
);
3213 vma
= kmem_cache_zalloc(to_i915(obj
->base
.dev
)->vmas
, GFP_KERNEL
);
3215 return ERR_PTR(-ENOMEM
);
3217 INIT_LIST_HEAD(&vma
->vma_link
);
3218 INIT_LIST_HEAD(&vma
->mm_list
);
3219 INIT_LIST_HEAD(&vma
->exec_list
);
3223 if (i915_is_ggtt(vm
))
3224 vma
->ggtt_view
= *ggtt_view
;
3226 list_add_tail(&vma
->vma_link
, &obj
->vma_list
);
3227 if (!i915_is_ggtt(vm
))
3228 i915_ppgtt_get(i915_vm_to_ppgtt(vm
));
3234 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object
*obj
,
3235 struct i915_address_space
*vm
)
3237 struct i915_vma
*vma
;
3239 vma
= i915_gem_obj_to_vma(obj
, vm
);
3241 vma
= __i915_gem_vma_create(obj
, vm
,
3242 i915_is_ggtt(vm
) ? &i915_ggtt_view_normal
: NULL
);
3248 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object
*obj
,
3249 const struct i915_ggtt_view
*view
)
3251 struct i915_address_space
*ggtt
= i915_obj_to_ggtt(obj
);
3252 struct i915_vma
*vma
;
3255 return ERR_PTR(-EINVAL
);
3257 vma
= i915_gem_obj_to_ggtt_view(obj
, view
);
3263 vma
= __i915_gem_vma_create(obj
, ggtt
, view
);
3269 static struct scatterlist
*
3270 rotate_pages(dma_addr_t
*in
, unsigned int offset
,
3271 unsigned int width
, unsigned int height
,
3272 struct sg_table
*st
, struct scatterlist
*sg
)
3274 unsigned int column
, row
;
3275 unsigned int src_idx
;
3282 for (column
= 0; column
< width
; column
++) {
3283 src_idx
= width
* (height
- 1) + column
;
3284 for (row
= 0; row
< height
; row
++) {
3286 /* We don't need the pages, but need to initialize
3287 * the entries so the sg list can be happily traversed.
3288 * The only thing we need are DMA addresses.
3290 sg_set_page(sg
, NULL
, PAGE_SIZE
, 0);
3291 sg_dma_address(sg
) = in
[offset
+ src_idx
];
3292 sg_dma_len(sg
) = PAGE_SIZE
;
3301 static struct sg_table
*
3302 intel_rotate_fb_obj_pages(struct i915_ggtt_view
*ggtt_view
,
3303 struct drm_i915_gem_object
*obj
)
3305 struct intel_rotation_info
*rot_info
= &ggtt_view
->rotation_info
;
3306 unsigned int size_pages
= rot_info
->size
>> PAGE_SHIFT
;
3307 unsigned int size_pages_uv
;
3308 struct sg_page_iter sg_iter
;
3310 dma_addr_t
*page_addr_list
;
3311 struct sg_table
*st
;
3312 unsigned int uv_start_page
;
3313 struct scatterlist
*sg
;
3316 /* Allocate a temporary list of source pages for random access. */
3317 page_addr_list
= drm_malloc_ab(obj
->base
.size
/ PAGE_SIZE
,
3318 sizeof(dma_addr_t
));
3319 if (!page_addr_list
)
3320 return ERR_PTR(ret
);
3322 /* Account for UV plane with NV12. */
3323 if (rot_info
->pixel_format
== DRM_FORMAT_NV12
)
3324 size_pages_uv
= rot_info
->size_uv
>> PAGE_SHIFT
;
3328 /* Allocate target SG list. */
3329 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
3333 ret
= sg_alloc_table(st
, size_pages
+ size_pages_uv
, GFP_KERNEL
);
3337 /* Populate source page list from the object. */
3339 for_each_sg_page(obj
->pages
->sgl
, &sg_iter
, obj
->pages
->nents
, 0) {
3340 page_addr_list
[i
] = sg_page_iter_dma_address(&sg_iter
);
3344 /* Rotate the pages. */
3345 sg
= rotate_pages(page_addr_list
, 0,
3346 rot_info
->width_pages
, rot_info
->height_pages
,
3349 /* Append the UV plane if NV12. */
3350 if (rot_info
->pixel_format
== DRM_FORMAT_NV12
) {
3351 uv_start_page
= size_pages
;
3353 /* Check for tile-row un-alignment. */
3354 if (offset_in_page(rot_info
->uv_offset
))
3357 rot_info
->uv_start_page
= uv_start_page
;
3359 rotate_pages(page_addr_list
, uv_start_page
,
3360 rot_info
->width_pages_uv
,
3361 rot_info
->height_pages_uv
,
3366 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3367 obj
->base
.size
, rot_info
->pitch
, rot_info
->height
,
3368 rot_info
->pixel_format
, rot_info
->width_pages
,
3369 rot_info
->height_pages
, size_pages
+ size_pages_uv
,
3372 drm_free_large(page_addr_list
);
3379 drm_free_large(page_addr_list
);
3382 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3383 obj
->base
.size
, ret
, rot_info
->pitch
, rot_info
->height
,
3384 rot_info
->pixel_format
, rot_info
->width_pages
,
3385 rot_info
->height_pages
, size_pages
+ size_pages_uv
,
3387 return ERR_PTR(ret
);
3390 static struct sg_table
*
3391 intel_partial_pages(const struct i915_ggtt_view
*view
,
3392 struct drm_i915_gem_object
*obj
)
3394 struct sg_table
*st
;
3395 struct scatterlist
*sg
;
3396 struct sg_page_iter obj_sg_iter
;
3399 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
3403 ret
= sg_alloc_table(st
, view
->params
.partial
.size
, GFP_KERNEL
);
3409 for_each_sg_page(obj
->pages
->sgl
, &obj_sg_iter
, obj
->pages
->nents
,
3410 view
->params
.partial
.offset
)
3412 if (st
->nents
>= view
->params
.partial
.size
)
3415 sg_set_page(sg
, NULL
, PAGE_SIZE
, 0);
3416 sg_dma_address(sg
) = sg_page_iter_dma_address(&obj_sg_iter
);
3417 sg_dma_len(sg
) = PAGE_SIZE
;
3428 return ERR_PTR(ret
);
3432 i915_get_ggtt_vma_pages(struct i915_vma
*vma
)
3436 if (vma
->ggtt_view
.pages
)
3439 if (vma
->ggtt_view
.type
== I915_GGTT_VIEW_NORMAL
)
3440 vma
->ggtt_view
.pages
= vma
->obj
->pages
;
3441 else if (vma
->ggtt_view
.type
== I915_GGTT_VIEW_ROTATED
)
3442 vma
->ggtt_view
.pages
=
3443 intel_rotate_fb_obj_pages(&vma
->ggtt_view
, vma
->obj
);
3444 else if (vma
->ggtt_view
.type
== I915_GGTT_VIEW_PARTIAL
)
3445 vma
->ggtt_view
.pages
=
3446 intel_partial_pages(&vma
->ggtt_view
, vma
->obj
);
3448 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3449 vma
->ggtt_view
.type
);
3451 if (!vma
->ggtt_view
.pages
) {
3452 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3453 vma
->ggtt_view
.type
);
3455 } else if (IS_ERR(vma
->ggtt_view
.pages
)) {
3456 ret
= PTR_ERR(vma
->ggtt_view
.pages
);
3457 vma
->ggtt_view
.pages
= NULL
;
3458 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3459 vma
->ggtt_view
.type
, ret
);
3466 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3468 * @cache_level: mapping cache level
3469 * @flags: flags like global or local mapping
3471 * DMA addresses are taken from the scatter-gather table of this object (or of
3472 * this VMA in case of non-default GGTT views) and PTE entries set up.
3473 * Note that DMA addresses are also the only part of the SG table we care about.
3475 int i915_vma_bind(struct i915_vma
*vma
, enum i915_cache_level cache_level
,
3481 if (WARN_ON(flags
== 0))
3485 if (flags
& PIN_GLOBAL
)
3486 bind_flags
|= GLOBAL_BIND
;
3487 if (flags
& PIN_USER
)
3488 bind_flags
|= LOCAL_BIND
;
3490 if (flags
& PIN_UPDATE
)
3491 bind_flags
|= vma
->bound
;
3493 bind_flags
&= ~vma
->bound
;
3495 if (bind_flags
== 0)
3498 if (vma
->bound
== 0 && vma
->vm
->allocate_va_range
) {
3499 trace_i915_va_alloc(vma
->vm
,
3502 VM_TO_TRACE_NAME(vma
->vm
));
3504 /* XXX: i915_vma_pin() will fix this +- hack */
3506 ret
= vma
->vm
->allocate_va_range(vma
->vm
,
3514 ret
= vma
->vm
->bind_vma(vma
, cache_level
, bind_flags
);
3518 vma
->bound
|= bind_flags
;
3524 * i915_ggtt_view_size - Get the size of a GGTT view.
3525 * @obj: Object the view is of.
3526 * @view: The view in question.
3528 * @return The size of the GGTT view in bytes.
3531 i915_ggtt_view_size(struct drm_i915_gem_object
*obj
,
3532 const struct i915_ggtt_view
*view
)
3534 if (view
->type
== I915_GGTT_VIEW_NORMAL
) {
3535 return obj
->base
.size
;
3536 } else if (view
->type
== I915_GGTT_VIEW_ROTATED
) {
3537 return view
->rotation_info
.size
;
3538 } else if (view
->type
== I915_GGTT_VIEW_PARTIAL
) {
3539 return view
->params
.partial
.size
<< PAGE_SHIFT
;
3541 WARN_ONCE(1, "GGTT view %u not implemented!\n", view
->type
);
3542 return obj
->base
.size
;