2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
37 intel_ring_initialized(struct intel_engine_cs
*ring
)
39 struct drm_device
*dev
= ring
->dev
;
44 if (i915
.enable_execlists
) {
45 struct intel_context
*dctx
= ring
->default_context
;
46 struct intel_ringbuffer
*ringbuf
= dctx
->engine
[ring
->id
].ringbuf
;
50 return ring
->buffer
&& ring
->buffer
->obj
;
53 int __intel_ring_space(int head
, int tail
, int size
)
55 int space
= head
- tail
;
58 return space
- I915_RING_FREE_SPACE
;
61 void intel_ring_update_space(struct intel_ringbuffer
*ringbuf
)
63 if (ringbuf
->last_retired_head
!= -1) {
64 ringbuf
->head
= ringbuf
->last_retired_head
;
65 ringbuf
->last_retired_head
= -1;
68 ringbuf
->space
= __intel_ring_space(ringbuf
->head
& HEAD_ADDR
,
69 ringbuf
->tail
, ringbuf
->size
);
72 int intel_ring_space(struct intel_ringbuffer
*ringbuf
)
74 intel_ring_update_space(ringbuf
);
75 return ringbuf
->space
;
78 bool intel_ring_stopped(struct intel_engine_cs
*ring
)
80 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
81 return dev_priv
->gpu_error
.stop_rings
& intel_ring_flag(ring
);
84 static void __intel_ring_advance(struct intel_engine_cs
*ring
)
86 struct intel_ringbuffer
*ringbuf
= ring
->buffer
;
87 ringbuf
->tail
&= ringbuf
->size
- 1;
88 if (intel_ring_stopped(ring
))
90 ring
->write_tail(ring
, ringbuf
->tail
);
94 gen2_render_ring_flush(struct drm_i915_gem_request
*req
,
95 u32 invalidate_domains
,
98 struct intel_engine_cs
*ring
= req
->ring
;
103 if (((invalidate_domains
|flush_domains
) & I915_GEM_DOMAIN_RENDER
) == 0)
104 cmd
|= MI_NO_WRITE_FLUSH
;
106 if (invalidate_domains
& I915_GEM_DOMAIN_SAMPLER
)
107 cmd
|= MI_READ_FLUSH
;
109 ret
= intel_ring_begin(req
, 2);
113 intel_ring_emit(ring
, cmd
);
114 intel_ring_emit(ring
, MI_NOOP
);
115 intel_ring_advance(ring
);
121 gen4_render_ring_flush(struct drm_i915_gem_request
*req
,
122 u32 invalidate_domains
,
125 struct intel_engine_cs
*ring
= req
->ring
;
126 struct drm_device
*dev
= ring
->dev
;
133 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
135 * also flushed at 2d versus 3d pipeline switches.
139 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140 * MI_READ_FLUSH is set, and is always flushed on 965.
142 * I915_GEM_DOMAIN_COMMAND may not exist?
144 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145 * invalidated when MI_EXE_FLUSH is set.
147 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148 * invalidated with every MI_FLUSH.
152 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155 * are flushed at any MI_FLUSH.
158 cmd
= MI_FLUSH
| MI_NO_WRITE_FLUSH
;
159 if ((invalidate_domains
|flush_domains
) & I915_GEM_DOMAIN_RENDER
)
160 cmd
&= ~MI_NO_WRITE_FLUSH
;
161 if (invalidate_domains
& I915_GEM_DOMAIN_INSTRUCTION
)
164 if (invalidate_domains
& I915_GEM_DOMAIN_COMMAND
&&
165 (IS_G4X(dev
) || IS_GEN5(dev
)))
166 cmd
|= MI_INVALIDATE_ISP
;
168 ret
= intel_ring_begin(req
, 2);
172 intel_ring_emit(ring
, cmd
);
173 intel_ring_emit(ring
, MI_NOOP
);
174 intel_ring_advance(ring
);
180 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181 * implementing two workarounds on gen6. From section 1.4.7.1
182 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
184 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185 * produced by non-pipelined state commands), software needs to first
186 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
189 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
192 * And the workaround for these two requires this workaround first:
194 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195 * BEFORE the pipe-control with a post-sync op and no write-cache
198 * And this last workaround is tricky because of the requirements on
199 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
202 * "1 of the following must also be set:
203 * - Render Target Cache Flush Enable ([12] of DW1)
204 * - Depth Cache Flush Enable ([0] of DW1)
205 * - Stall at Pixel Scoreboard ([1] of DW1)
206 * - Depth Stall ([13] of DW1)
207 * - Post-Sync Operation ([13] of DW1)
208 * - Notify Enable ([8] of DW1)"
210 * The cache flushes require the workaround flush that triggered this
211 * one, so we can't use it. Depth stall would trigger the same.
212 * Post-sync nonzero is what triggered this second workaround, so we
213 * can't use that one either. Notify enable is IRQs, which aren't
214 * really our business. That leaves only stall at scoreboard.
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request
*req
)
219 struct intel_engine_cs
*ring
= req
->ring
;
220 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
223 ret
= intel_ring_begin(req
, 6);
227 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
|
229 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
230 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
); /* address */
231 intel_ring_emit(ring
, 0); /* low dword */
232 intel_ring_emit(ring
, 0); /* high dword */
233 intel_ring_emit(ring
, MI_NOOP
);
234 intel_ring_advance(ring
);
236 ret
= intel_ring_begin(req
, 6);
240 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
241 intel_ring_emit(ring
, PIPE_CONTROL_QW_WRITE
);
242 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
); /* address */
243 intel_ring_emit(ring
, 0);
244 intel_ring_emit(ring
, 0);
245 intel_ring_emit(ring
, MI_NOOP
);
246 intel_ring_advance(ring
);
252 gen6_render_ring_flush(struct drm_i915_gem_request
*req
,
253 u32 invalidate_domains
, u32 flush_domains
)
255 struct intel_engine_cs
*ring
= req
->ring
;
257 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
260 /* Force SNB workarounds for PIPE_CONTROL flushes */
261 ret
= intel_emit_post_sync_nonzero_flush(req
);
265 /* Just flush everything. Experiments have shown that reducing the
266 * number of bits based on the write domains has little performance
270 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
271 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
273 * Ensure that any following seqno writes only happen
274 * when the render cache is indeed flushed.
276 flags
|= PIPE_CONTROL_CS_STALL
;
278 if (invalidate_domains
) {
279 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
280 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
281 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
282 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
283 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
284 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
286 * TLB invalidate requires a post-sync write.
288 flags
|= PIPE_CONTROL_QW_WRITE
| PIPE_CONTROL_CS_STALL
;
291 ret
= intel_ring_begin(req
, 4);
295 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
296 intel_ring_emit(ring
, flags
);
297 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
298 intel_ring_emit(ring
, 0);
299 intel_ring_advance(ring
);
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request
*req
)
307 struct intel_engine_cs
*ring
= req
->ring
;
310 ret
= intel_ring_begin(req
, 4);
314 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
315 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
|
316 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
317 intel_ring_emit(ring
, 0);
318 intel_ring_emit(ring
, 0);
319 intel_ring_advance(ring
);
325 gen7_render_ring_flush(struct drm_i915_gem_request
*req
,
326 u32 invalidate_domains
, u32 flush_domains
)
328 struct intel_engine_cs
*ring
= req
->ring
;
330 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
334 * Ensure that any following seqno writes only happen when the render
335 * cache is indeed flushed.
337 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339 * don't try to be clever and just set it unconditionally.
341 flags
|= PIPE_CONTROL_CS_STALL
;
343 /* Just flush everything. Experiments have shown that reducing the
344 * number of bits based on the write domains has little performance
348 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
349 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
350 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
352 if (invalidate_domains
) {
353 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
354 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
355 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
356 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
357 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
358 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
359 flags
|= PIPE_CONTROL_MEDIA_STATE_CLEAR
;
361 * TLB invalidate requires a post-sync write.
363 flags
|= PIPE_CONTROL_QW_WRITE
;
364 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
366 flags
|= PIPE_CONTROL_STALL_AT_SCOREBOARD
;
368 /* Workaround: we must issue a pipe_control with CS-stall bit
369 * set before a pipe_control command that has the state cache
370 * invalidate bit set. */
371 gen7_render_ring_cs_stall_wa(req
);
374 ret
= intel_ring_begin(req
, 4);
378 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
379 intel_ring_emit(ring
, flags
);
380 intel_ring_emit(ring
, scratch_addr
);
381 intel_ring_emit(ring
, 0);
382 intel_ring_advance(ring
);
388 gen8_emit_pipe_control(struct drm_i915_gem_request
*req
,
389 u32 flags
, u32 scratch_addr
)
391 struct intel_engine_cs
*ring
= req
->ring
;
394 ret
= intel_ring_begin(req
, 6);
398 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
399 intel_ring_emit(ring
, flags
);
400 intel_ring_emit(ring
, scratch_addr
);
401 intel_ring_emit(ring
, 0);
402 intel_ring_emit(ring
, 0);
403 intel_ring_emit(ring
, 0);
404 intel_ring_advance(ring
);
410 gen8_render_ring_flush(struct drm_i915_gem_request
*req
,
411 u32 invalidate_domains
, u32 flush_domains
)
414 u32 scratch_addr
= req
->ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
417 flags
|= PIPE_CONTROL_CS_STALL
;
420 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
421 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
422 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
424 if (invalidate_domains
) {
425 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
426 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
427 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
428 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
429 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
430 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
431 flags
|= PIPE_CONTROL_QW_WRITE
;
432 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
434 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
435 ret
= gen8_emit_pipe_control(req
,
436 PIPE_CONTROL_CS_STALL
|
437 PIPE_CONTROL_STALL_AT_SCOREBOARD
,
443 return gen8_emit_pipe_control(req
, flags
, scratch_addr
);
446 static void ring_write_tail(struct intel_engine_cs
*ring
,
449 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
450 I915_WRITE_TAIL(ring
, value
);
453 u64
intel_ring_get_active_head(struct intel_engine_cs
*ring
)
455 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
458 if (INTEL_INFO(ring
->dev
)->gen
>= 8)
459 acthd
= I915_READ64_2x32(RING_ACTHD(ring
->mmio_base
),
460 RING_ACTHD_UDW(ring
->mmio_base
));
461 else if (INTEL_INFO(ring
->dev
)->gen
>= 4)
462 acthd
= I915_READ(RING_ACTHD(ring
->mmio_base
));
464 acthd
= I915_READ(ACTHD
);
469 static void ring_setup_phys_status_page(struct intel_engine_cs
*ring
)
471 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
474 addr
= dev_priv
->status_page_dmah
->busaddr
;
475 if (INTEL_INFO(ring
->dev
)->gen
>= 4)
476 addr
|= (dev_priv
->status_page_dmah
->busaddr
>> 28) & 0xf0;
477 I915_WRITE(HWS_PGA
, addr
);
480 static void intel_ring_setup_status_page(struct intel_engine_cs
*ring
)
482 struct drm_device
*dev
= ring
->dev
;
483 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
486 /* The ring status page addresses are no longer next to the rest of
487 * the ring registers as of gen7.
492 mmio
= RENDER_HWS_PGA_GEN7
;
495 mmio
= BLT_HWS_PGA_GEN7
;
498 * VCS2 actually doesn't exist on Gen7. Only shut up
499 * gcc switch check warning
503 mmio
= BSD_HWS_PGA_GEN7
;
506 mmio
= VEBOX_HWS_PGA_GEN7
;
509 } else if (IS_GEN6(ring
->dev
)) {
510 mmio
= RING_HWS_PGA_GEN6(ring
->mmio_base
);
512 /* XXX: gen8 returns to sanity */
513 mmio
= RING_HWS_PGA(ring
->mmio_base
);
516 I915_WRITE(mmio
, (u32
)ring
->status_page
.gfx_addr
);
520 * Flush the TLB for this page
522 * FIXME: These two bits have disappeared on gen8, so a question
523 * arises: do we still need this and if so how should we go about
524 * invalidating the TLB?
526 if (INTEL_INFO(dev
)->gen
>= 6 && INTEL_INFO(dev
)->gen
< 8) {
527 u32 reg
= RING_INSTPM(ring
->mmio_base
);
529 /* ring should be idle before issuing a sync flush*/
530 WARN_ON((I915_READ_MODE(ring
) & MODE_IDLE
) == 0);
533 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE
|
535 if (wait_for((I915_READ(reg
) & INSTPM_SYNC_FLUSH
) == 0,
537 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
542 static bool stop_ring(struct intel_engine_cs
*ring
)
544 struct drm_i915_private
*dev_priv
= to_i915(ring
->dev
);
546 if (!IS_GEN2(ring
->dev
)) {
547 I915_WRITE_MODE(ring
, _MASKED_BIT_ENABLE(STOP_RING
));
548 if (wait_for((I915_READ_MODE(ring
) & MODE_IDLE
) != 0, 1000)) {
549 DRM_ERROR("%s : timed out trying to stop ring\n", ring
->name
);
550 /* Sometimes we observe that the idle flag is not
551 * set even though the ring is empty. So double
552 * check before giving up.
554 if (I915_READ_HEAD(ring
) != I915_READ_TAIL(ring
))
559 I915_WRITE_CTL(ring
, 0);
560 I915_WRITE_HEAD(ring
, 0);
561 ring
->write_tail(ring
, 0);
563 if (!IS_GEN2(ring
->dev
)) {
564 (void)I915_READ_CTL(ring
);
565 I915_WRITE_MODE(ring
, _MASKED_BIT_DISABLE(STOP_RING
));
568 return (I915_READ_HEAD(ring
) & HEAD_ADDR
) == 0;
571 static int init_ring_common(struct intel_engine_cs
*ring
)
573 struct drm_device
*dev
= ring
->dev
;
574 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
575 struct intel_ringbuffer
*ringbuf
= ring
->buffer
;
576 struct drm_i915_gem_object
*obj
= ringbuf
->obj
;
579 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
581 if (!stop_ring(ring
)) {
582 /* G45 ring initialization often fails to reset head to zero */
583 DRM_DEBUG_KMS("%s head not reset to zero "
584 "ctl %08x head %08x tail %08x start %08x\n",
587 I915_READ_HEAD(ring
),
588 I915_READ_TAIL(ring
),
589 I915_READ_START(ring
));
591 if (!stop_ring(ring
)) {
592 DRM_ERROR("failed to set %s head to zero "
593 "ctl %08x head %08x tail %08x start %08x\n",
596 I915_READ_HEAD(ring
),
597 I915_READ_TAIL(ring
),
598 I915_READ_START(ring
));
604 if (I915_NEED_GFX_HWS(dev
))
605 intel_ring_setup_status_page(ring
);
607 ring_setup_phys_status_page(ring
);
609 /* Enforce ordering by reading HEAD register back */
610 I915_READ_HEAD(ring
);
612 /* Initialize the ring. This must happen _after_ we've cleared the ring
613 * registers with the above sequence (the readback of the HEAD registers
614 * also enforces ordering), otherwise the hw might lose the new ring
615 * register values. */
616 I915_WRITE_START(ring
, i915_gem_obj_ggtt_offset(obj
));
618 /* WaClearRingBufHeadRegAtInit:ctg,elk */
619 if (I915_READ_HEAD(ring
))
620 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
621 ring
->name
, I915_READ_HEAD(ring
));
622 I915_WRITE_HEAD(ring
, 0);
623 (void)I915_READ_HEAD(ring
);
626 ((ringbuf
->size
- PAGE_SIZE
) & RING_NR_PAGES
)
629 /* If the head is still not zero, the ring is dead */
630 if (wait_for((I915_READ_CTL(ring
) & RING_VALID
) != 0 &&
631 I915_READ_START(ring
) == i915_gem_obj_ggtt_offset(obj
) &&
632 (I915_READ_HEAD(ring
) & HEAD_ADDR
) == 0, 50)) {
633 DRM_ERROR("%s initialization failed "
634 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
636 I915_READ_CTL(ring
), I915_READ_CTL(ring
) & RING_VALID
,
637 I915_READ_HEAD(ring
), I915_READ_TAIL(ring
),
638 I915_READ_START(ring
), (unsigned long)i915_gem_obj_ggtt_offset(obj
));
643 ringbuf
->last_retired_head
= -1;
644 ringbuf
->head
= I915_READ_HEAD(ring
);
645 ringbuf
->tail
= I915_READ_TAIL(ring
) & TAIL_ADDR
;
646 intel_ring_update_space(ringbuf
);
648 memset(&ring
->hangcheck
, 0, sizeof(ring
->hangcheck
));
651 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
657 intel_fini_pipe_control(struct intel_engine_cs
*ring
)
659 struct drm_device
*dev
= ring
->dev
;
661 if (ring
->scratch
.obj
== NULL
)
664 if (INTEL_INFO(dev
)->gen
>= 5) {
665 kunmap(sg_page(ring
->scratch
.obj
->pages
->sgl
));
666 i915_gem_object_ggtt_unpin(ring
->scratch
.obj
);
669 drm_gem_object_unreference(&ring
->scratch
.obj
->base
);
670 ring
->scratch
.obj
= NULL
;
674 intel_init_pipe_control(struct intel_engine_cs
*ring
)
678 WARN_ON(ring
->scratch
.obj
);
680 ring
->scratch
.obj
= i915_gem_alloc_object(ring
->dev
, 4096);
681 if (ring
->scratch
.obj
== NULL
) {
682 DRM_ERROR("Failed to allocate seqno page\n");
687 ret
= i915_gem_object_set_cache_level(ring
->scratch
.obj
, I915_CACHE_LLC
);
691 ret
= i915_gem_obj_ggtt_pin(ring
->scratch
.obj
, 4096, 0);
695 ring
->scratch
.gtt_offset
= i915_gem_obj_ggtt_offset(ring
->scratch
.obj
);
696 ring
->scratch
.cpu_page
= kmap(sg_page(ring
->scratch
.obj
->pages
->sgl
));
697 if (ring
->scratch
.cpu_page
== NULL
) {
702 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
703 ring
->name
, ring
->scratch
.gtt_offset
);
707 i915_gem_object_ggtt_unpin(ring
->scratch
.obj
);
709 drm_gem_object_unreference(&ring
->scratch
.obj
->base
);
714 static int intel_ring_workarounds_emit(struct drm_i915_gem_request
*req
)
717 struct intel_engine_cs
*ring
= req
->ring
;
718 struct drm_device
*dev
= ring
->dev
;
719 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
720 struct i915_workarounds
*w
= &dev_priv
->workarounds
;
725 ring
->gpu_caches_dirty
= true;
726 ret
= intel_ring_flush_all_caches(req
);
730 ret
= intel_ring_begin(req
, (w
->count
* 2 + 2));
734 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(w
->count
));
735 for (i
= 0; i
< w
->count
; i
++) {
736 intel_ring_emit(ring
, w
->reg
[i
].addr
);
737 intel_ring_emit(ring
, w
->reg
[i
].value
);
739 intel_ring_emit(ring
, MI_NOOP
);
741 intel_ring_advance(ring
);
743 ring
->gpu_caches_dirty
= true;
744 ret
= intel_ring_flush_all_caches(req
);
748 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w
->count
);
753 static int intel_rcs_ctx_init(struct drm_i915_gem_request
*req
)
757 ret
= intel_ring_workarounds_emit(req
);
761 ret
= i915_gem_render_state_init(req
);
763 DRM_ERROR("init render state: %d\n", ret
);
768 static int wa_add(struct drm_i915_private
*dev_priv
,
769 const u32 addr
, const u32 mask
, const u32 val
)
771 const u32 idx
= dev_priv
->workarounds
.count
;
773 if (WARN_ON(idx
>= I915_MAX_WA_REGS
))
776 dev_priv
->workarounds
.reg
[idx
].addr
= addr
;
777 dev_priv
->workarounds
.reg
[idx
].value
= val
;
778 dev_priv
->workarounds
.reg
[idx
].mask
= mask
;
780 dev_priv
->workarounds
.count
++;
785 #define WA_REG(addr, mask, val) do { \
786 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
791 #define WA_SET_BIT_MASKED(addr, mask) \
792 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
794 #define WA_CLR_BIT_MASKED(addr, mask) \
795 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
797 #define WA_SET_FIELD_MASKED(addr, mask, value) \
798 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
800 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
801 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
803 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
805 static int gen8_init_workarounds(struct intel_engine_cs
*ring
)
807 struct drm_device
*dev
= ring
->dev
;
808 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
810 WA_SET_BIT_MASKED(INSTPM
, INSTPM_FORCE_ORDERING
);
812 /* WaDisableAsyncFlipPerfMode:bdw,chv */
813 WA_SET_BIT_MASKED(MI_MODE
, ASYNC_FLIP_PERF_DISABLE
);
815 /* WaDisablePartialInstShootdown:bdw,chv */
816 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
817 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
);
819 /* Use Force Non-Coherent whenever executing a 3D context. This is a
820 * workaround for for a possible hang in the unlikely event a TLB
821 * invalidation occurs during a PSD flush.
823 /* WaForceEnableNonCoherent:bdw,chv */
824 /* WaHdcDisableFetchWhenMasked:bdw,chv */
825 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
826 HDC_DONOT_FETCH_MEM_WHEN_MASKED
|
827 HDC_FORCE_NON_COHERENT
);
829 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
830 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
831 * polygons in the same 8x4 pixel/sample area to be processed without
832 * stalling waiting for the earlier ones to write to Hierarchical Z
835 * This optimization is off by default for BDW and CHV; turn it on.
837 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7
, HIZ_RAW_STALL_OPT_DISABLE
);
839 /* Wa4x4STCOptimizationDisable:bdw,chv */
840 WA_SET_BIT_MASKED(CACHE_MODE_1
, GEN8_4x4_STC_OPTIMIZATION_DISABLE
);
843 * BSpec recommends 8x4 when MSAA is used,
844 * however in practice 16x4 seems fastest.
846 * Note that PS/WM thread counts depend on the WIZ hashing
847 * disable bit, which we don't touch here, but it's good
848 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
850 WA_SET_FIELD_MASKED(GEN7_GT_MODE
,
851 GEN6_WIZ_HASHING_MASK
,
852 GEN6_WIZ_HASHING_16x4
);
857 static int bdw_init_workarounds(struct intel_engine_cs
*ring
)
860 struct drm_device
*dev
= ring
->dev
;
861 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
863 ret
= gen8_init_workarounds(ring
);
867 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
868 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
, STALL_DOP_GATING_DISABLE
);
870 /* WaDisableDopClockGating:bdw */
871 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2
,
872 DOP_CLOCK_GATING_DISABLE
);
874 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
875 GEN8_SAMPLER_POWER_BYPASS_DIS
);
877 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
878 /* WaForceContextSaveRestoreNonCoherent:bdw */
879 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT
|
880 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
881 (IS_BDW_GT3(dev
) ? HDC_FENCE_DEST_SLM_DISABLE
: 0));
886 static int chv_init_workarounds(struct intel_engine_cs
*ring
)
889 struct drm_device
*dev
= ring
->dev
;
890 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
892 ret
= gen8_init_workarounds(ring
);
896 /* WaDisableThreadStallDopClockGating:chv */
897 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
, STALL_DOP_GATING_DISABLE
);
899 /* Improve HiZ throughput on CHV. */
900 WA_SET_BIT_MASKED(HIZ_CHICKEN
, CHV_HZ_8X8_MODE_IN_1X
);
905 static int gen9_init_workarounds(struct intel_engine_cs
*ring
)
907 struct drm_device
*dev
= ring
->dev
;
908 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
911 /* WaEnableLbsSlaRetryTimerDecrement:skl */
912 I915_WRITE(BDW_SCRATCH1
, I915_READ(BDW_SCRATCH1
) |
913 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE
);
915 /* WaDisableKillLogic:bxt,skl */
916 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) |
919 /* WaDisablePartialInstShootdown:skl,bxt */
920 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
921 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
);
923 /* Syncing dependencies between camera and graphics:skl,bxt */
924 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
925 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC
);
927 if ((IS_SKYLAKE(dev
) && (INTEL_REVID(dev
) == SKL_REVID_A0
||
928 INTEL_REVID(dev
) == SKL_REVID_B0
)) ||
929 (IS_BROXTON(dev
) && INTEL_REVID(dev
) < BXT_REVID_B0
)) {
930 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
931 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5
,
932 GEN9_DG_MIRROR_FIX_ENABLE
);
935 if ((IS_SKYLAKE(dev
) && INTEL_REVID(dev
) <= SKL_REVID_B0
) ||
936 (IS_BROXTON(dev
) && INTEL_REVID(dev
) < BXT_REVID_B0
)) {
937 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1
,
939 GEN9_RHWO_OPTIMIZATION_DISABLE
);
941 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
942 * but we do that in per ctx batchbuffer as there is an issue
943 * with this register not getting restored on ctx restore
947 if ((IS_SKYLAKE(dev
) && INTEL_REVID(dev
) >= SKL_REVID_C0
) ||
949 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7
,
951 GEN9_ENABLE_YV12_BUGFIX
);
954 /* Wa4x4STCOptimizationDisable:skl,bxt */
955 /* WaDisablePartialResolveInVc:skl,bxt */
956 WA_SET_BIT_MASKED(CACHE_MODE_1
, (GEN8_4x4_STC_OPTIMIZATION_DISABLE
|
957 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE
));
959 /* WaCcsTlbPrefetchDisable:skl,bxt */
960 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5
,
961 GEN9_CCS_TLB_PREFETCH_ENABLE
);
963 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
964 if ((IS_SKYLAKE(dev
) && INTEL_REVID(dev
) == SKL_REVID_C0
) ||
965 (IS_BROXTON(dev
) && INTEL_REVID(dev
) < BXT_REVID_B0
))
966 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0
,
967 PIXEL_MASK_CAMMING_DISABLE
);
969 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970 tmp
= HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT
;
971 if ((IS_SKYLAKE(dev
) && INTEL_REVID(dev
) == SKL_REVID_F0
) ||
972 (IS_BROXTON(dev
) && INTEL_REVID(dev
) >= BXT_REVID_B0
))
973 tmp
|= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE
;
974 WA_SET_BIT_MASKED(HDC_CHICKEN0
, tmp
);
976 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
977 if (IS_SKYLAKE(dev
) ||
978 (IS_BROXTON(dev
) && INTEL_REVID(dev
) <= BXT_REVID_B0
)) {
979 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
980 GEN8_SAMPLER_POWER_BYPASS_DIS
);
983 /* WaDisableSTUnitPowerOptimization:skl,bxt */
984 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2
, GEN8_ST_PO_DISABLE
);
989 static int skl_tune_iz_hashing(struct intel_engine_cs
*ring
)
991 struct drm_device
*dev
= ring
->dev
;
992 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
993 u8 vals
[3] = { 0, 0, 0 };
996 for (i
= 0; i
< 3; i
++) {
1000 * Only consider slices where one, and only one, subslice has 7
1003 if (hweight8(dev_priv
->info
.subslice_7eu
[i
]) != 1)
1007 * subslice_7eu[i] != 0 (because of the check above) and
1008 * ss_max == 4 (maximum number of subslices possible per slice)
1012 ss
= ffs(dev_priv
->info
.subslice_7eu
[i
]) - 1;
1016 if (vals
[0] == 0 && vals
[1] == 0 && vals
[2] == 0)
1019 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1020 WA_SET_FIELD_MASKED(GEN7_GT_MODE
,
1021 GEN9_IZ_HASHING_MASK(2) |
1022 GEN9_IZ_HASHING_MASK(1) |
1023 GEN9_IZ_HASHING_MASK(0),
1024 GEN9_IZ_HASHING(2, vals
[2]) |
1025 GEN9_IZ_HASHING(1, vals
[1]) |
1026 GEN9_IZ_HASHING(0, vals
[0]));
1031 static int skl_init_workarounds(struct intel_engine_cs
*ring
)
1034 struct drm_device
*dev
= ring
->dev
;
1035 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1037 ret
= gen9_init_workarounds(ring
);
1041 if (INTEL_REVID(dev
) <= SKL_REVID_D0
) {
1042 /* WaDisableHDCInvalidation:skl */
1043 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) |
1044 BDW_DISABLE_HDC_INVALIDATION
);
1046 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1047 I915_WRITE(FF_SLICE_CS_CHICKEN2
,
1048 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE
));
1051 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1052 * involving this register should also be added to WA batch as required.
1054 if (INTEL_REVID(dev
) <= SKL_REVID_E0
)
1055 /* WaDisableLSQCROPERFforOCL:skl */
1056 I915_WRITE(GEN8_L3SQCREG4
, I915_READ(GEN8_L3SQCREG4
) |
1057 GEN8_LQSC_RO_PERF_DIS
);
1059 /* WaEnableGapsTsvCreditFix:skl */
1060 if (IS_SKYLAKE(dev
) && (INTEL_REVID(dev
) >= SKL_REVID_C0
)) {
1061 I915_WRITE(GEN8_GARBCNTL
, (I915_READ(GEN8_GARBCNTL
) |
1062 GEN9_GAPS_TSV_CREDIT_DISABLE
));
1065 /* WaDisablePowerCompilerClockGating:skl */
1066 if (INTEL_REVID(dev
) == SKL_REVID_B0
)
1067 WA_SET_BIT_MASKED(HIZ_CHICKEN
,
1068 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE
);
1070 if (INTEL_REVID(dev
) <= SKL_REVID_D0
) {
1072 *Use Force Non-Coherent whenever executing a 3D context. This
1073 * is a workaround for a possible hang in the unlikely event
1074 * a TLB invalidation occurs during a PSD flush.
1076 /* WaForceEnableNonCoherent:skl */
1077 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
1078 HDC_FORCE_NON_COHERENT
);
1081 if (INTEL_REVID(dev
) == SKL_REVID_C0
||
1082 INTEL_REVID(dev
) == SKL_REVID_D0
)
1083 /* WaBarrierPerformanceFixDisable:skl */
1084 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
1085 HDC_FENCE_DEST_SLM_DISABLE
|
1086 HDC_BARRIER_PERFORMANCE_DISABLE
);
1088 /* WaDisableSbeCacheDispatchPortSharing:skl */
1089 if (INTEL_REVID(dev
) <= SKL_REVID_F0
) {
1091 GEN7_HALF_SLICE_CHICKEN1
,
1092 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1095 return skl_tune_iz_hashing(ring
);
1098 static int bxt_init_workarounds(struct intel_engine_cs
*ring
)
1101 struct drm_device
*dev
= ring
->dev
;
1102 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1104 ret
= gen9_init_workarounds(ring
);
1108 /* WaStoreMultiplePTEenable:bxt */
1109 /* This is a requirement according to Hardware specification */
1110 if (INTEL_REVID(dev
) == BXT_REVID_A0
)
1111 I915_WRITE(TILECTL
, I915_READ(TILECTL
) | TILECTL_TLBPF
);
1113 /* WaSetClckGatingDisableMedia:bxt */
1114 if (INTEL_REVID(dev
) == BXT_REVID_A0
) {
1115 I915_WRITE(GEN7_MISCCPCTL
, (I915_READ(GEN7_MISCCPCTL
) &
1116 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE
));
1119 /* WaDisableThreadStallDopClockGating:bxt */
1120 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
1121 STALL_DOP_GATING_DISABLE
);
1123 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1124 if (INTEL_REVID(dev
) <= BXT_REVID_B0
) {
1126 GEN7_HALF_SLICE_CHICKEN1
,
1127 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1133 int init_workarounds_ring(struct intel_engine_cs
*ring
)
1135 struct drm_device
*dev
= ring
->dev
;
1136 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1138 WARN_ON(ring
->id
!= RCS
);
1140 dev_priv
->workarounds
.count
= 0;
1142 if (IS_BROADWELL(dev
))
1143 return bdw_init_workarounds(ring
);
1145 if (IS_CHERRYVIEW(dev
))
1146 return chv_init_workarounds(ring
);
1148 if (IS_SKYLAKE(dev
))
1149 return skl_init_workarounds(ring
);
1151 if (IS_BROXTON(dev
))
1152 return bxt_init_workarounds(ring
);
1157 static int init_render_ring(struct intel_engine_cs
*ring
)
1159 struct drm_device
*dev
= ring
->dev
;
1160 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1161 int ret
= init_ring_common(ring
);
1165 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1166 if (INTEL_INFO(dev
)->gen
>= 4 && INTEL_INFO(dev
)->gen
< 7)
1167 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH
));
1169 /* We need to disable the AsyncFlip performance optimisations in order
1170 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1171 * programmed to '1' on all products.
1173 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1175 if (INTEL_INFO(dev
)->gen
>= 6 && INTEL_INFO(dev
)->gen
< 8)
1176 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
1178 /* Required for the hardware to program scanline values for waiting */
1179 /* WaEnableFlushTlbInvalidationMode:snb */
1180 if (INTEL_INFO(dev
)->gen
== 6)
1181 I915_WRITE(GFX_MODE
,
1182 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
));
1184 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1186 I915_WRITE(GFX_MODE_GEN7
,
1187 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
) |
1188 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE
));
1191 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1192 * "If this bit is set, STCunit will have LRA as replacement
1193 * policy. [...] This bit must be reset. LRA replacement
1194 * policy is not supported."
1196 I915_WRITE(CACHE_MODE_0
,
1197 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
1200 if (INTEL_INFO(dev
)->gen
>= 6 && INTEL_INFO(dev
)->gen
< 8)
1201 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
1203 if (HAS_L3_DPF(dev
))
1204 I915_WRITE_IMR(ring
, ~GT_PARITY_ERROR(dev
));
1206 return init_workarounds_ring(ring
);
1209 static void render_ring_cleanup(struct intel_engine_cs
*ring
)
1211 struct drm_device
*dev
= ring
->dev
;
1212 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1214 if (dev_priv
->semaphore_obj
) {
1215 i915_gem_object_ggtt_unpin(dev_priv
->semaphore_obj
);
1216 drm_gem_object_unreference(&dev_priv
->semaphore_obj
->base
);
1217 dev_priv
->semaphore_obj
= NULL
;
1220 intel_fini_pipe_control(ring
);
1223 static int gen8_rcs_signal(struct drm_i915_gem_request
*signaller_req
,
1224 unsigned int num_dwords
)
1226 #define MBOX_UPDATE_DWORDS 8
1227 struct intel_engine_cs
*signaller
= signaller_req
->ring
;
1228 struct drm_device
*dev
= signaller
->dev
;
1229 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1230 struct intel_engine_cs
*waiter
;
1231 int i
, ret
, num_rings
;
1233 num_rings
= hweight32(INTEL_INFO(dev
)->ring_mask
);
1234 num_dwords
+= (num_rings
-1) * MBOX_UPDATE_DWORDS
;
1235 #undef MBOX_UPDATE_DWORDS
1237 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1241 for_each_ring(waiter
, dev_priv
, i
) {
1243 u64 gtt_offset
= signaller
->semaphore
.signal_ggtt
[i
];
1244 if (gtt_offset
== MI_SEMAPHORE_SYNC_INVALID
)
1247 seqno
= i915_gem_request_get_seqno(signaller_req
);
1248 intel_ring_emit(signaller
, GFX_OP_PIPE_CONTROL(6));
1249 intel_ring_emit(signaller
, PIPE_CONTROL_GLOBAL_GTT_IVB
|
1250 PIPE_CONTROL_QW_WRITE
|
1251 PIPE_CONTROL_FLUSH_ENABLE
);
1252 intel_ring_emit(signaller
, lower_32_bits(gtt_offset
));
1253 intel_ring_emit(signaller
, upper_32_bits(gtt_offset
));
1254 intel_ring_emit(signaller
, seqno
);
1255 intel_ring_emit(signaller
, 0);
1256 intel_ring_emit(signaller
, MI_SEMAPHORE_SIGNAL
|
1257 MI_SEMAPHORE_TARGET(waiter
->id
));
1258 intel_ring_emit(signaller
, 0);
1264 static int gen8_xcs_signal(struct drm_i915_gem_request
*signaller_req
,
1265 unsigned int num_dwords
)
1267 #define MBOX_UPDATE_DWORDS 6
1268 struct intel_engine_cs
*signaller
= signaller_req
->ring
;
1269 struct drm_device
*dev
= signaller
->dev
;
1270 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1271 struct intel_engine_cs
*waiter
;
1272 int i
, ret
, num_rings
;
1274 num_rings
= hweight32(INTEL_INFO(dev
)->ring_mask
);
1275 num_dwords
+= (num_rings
-1) * MBOX_UPDATE_DWORDS
;
1276 #undef MBOX_UPDATE_DWORDS
1278 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1282 for_each_ring(waiter
, dev_priv
, i
) {
1284 u64 gtt_offset
= signaller
->semaphore
.signal_ggtt
[i
];
1285 if (gtt_offset
== MI_SEMAPHORE_SYNC_INVALID
)
1288 seqno
= i915_gem_request_get_seqno(signaller_req
);
1289 intel_ring_emit(signaller
, (MI_FLUSH_DW
+ 1) |
1290 MI_FLUSH_DW_OP_STOREDW
);
1291 intel_ring_emit(signaller
, lower_32_bits(gtt_offset
) |
1292 MI_FLUSH_DW_USE_GTT
);
1293 intel_ring_emit(signaller
, upper_32_bits(gtt_offset
));
1294 intel_ring_emit(signaller
, seqno
);
1295 intel_ring_emit(signaller
, MI_SEMAPHORE_SIGNAL
|
1296 MI_SEMAPHORE_TARGET(waiter
->id
));
1297 intel_ring_emit(signaller
, 0);
1303 static int gen6_signal(struct drm_i915_gem_request
*signaller_req
,
1304 unsigned int num_dwords
)
1306 struct intel_engine_cs
*signaller
= signaller_req
->ring
;
1307 struct drm_device
*dev
= signaller
->dev
;
1308 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1309 struct intel_engine_cs
*useless
;
1310 int i
, ret
, num_rings
;
1312 #define MBOX_UPDATE_DWORDS 3
1313 num_rings
= hweight32(INTEL_INFO(dev
)->ring_mask
);
1314 num_dwords
+= round_up((num_rings
-1) * MBOX_UPDATE_DWORDS
, 2);
1315 #undef MBOX_UPDATE_DWORDS
1317 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1321 for_each_ring(useless
, dev_priv
, i
) {
1322 u32 mbox_reg
= signaller
->semaphore
.mbox
.signal
[i
];
1323 if (mbox_reg
!= GEN6_NOSYNC
) {
1324 u32 seqno
= i915_gem_request_get_seqno(signaller_req
);
1325 intel_ring_emit(signaller
, MI_LOAD_REGISTER_IMM(1));
1326 intel_ring_emit(signaller
, mbox_reg
);
1327 intel_ring_emit(signaller
, seqno
);
1331 /* If num_dwords was rounded, make sure the tail pointer is correct */
1332 if (num_rings
% 2 == 0)
1333 intel_ring_emit(signaller
, MI_NOOP
);
1339 * gen6_add_request - Update the semaphore mailbox registers
1341 * @request - request to write to the ring
1343 * Update the mailbox registers in the *other* rings with the current seqno.
1344 * This acts like a signal in the canonical semaphore.
1347 gen6_add_request(struct drm_i915_gem_request
*req
)
1349 struct intel_engine_cs
*ring
= req
->ring
;
1352 if (ring
->semaphore
.signal
)
1353 ret
= ring
->semaphore
.signal(req
, 4);
1355 ret
= intel_ring_begin(req
, 4);
1360 intel_ring_emit(ring
, MI_STORE_DWORD_INDEX
);
1361 intel_ring_emit(ring
, I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
);
1362 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1363 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
1364 __intel_ring_advance(ring
);
1369 static inline bool i915_gem_has_seqno_wrapped(struct drm_device
*dev
,
1372 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1373 return dev_priv
->last_seqno
< seqno
;
1377 * intel_ring_sync - sync the waiter to the signaller on seqno
1379 * @waiter - ring that is waiting
1380 * @signaller - ring which has, or will signal
1381 * @seqno - seqno which the waiter will block on
1385 gen8_ring_sync(struct drm_i915_gem_request
*waiter_req
,
1386 struct intel_engine_cs
*signaller
,
1389 struct intel_engine_cs
*waiter
= waiter_req
->ring
;
1390 struct drm_i915_private
*dev_priv
= waiter
->dev
->dev_private
;
1393 ret
= intel_ring_begin(waiter_req
, 4);
1397 intel_ring_emit(waiter
, MI_SEMAPHORE_WAIT
|
1398 MI_SEMAPHORE_GLOBAL_GTT
|
1400 MI_SEMAPHORE_SAD_GTE_SDD
);
1401 intel_ring_emit(waiter
, seqno
);
1402 intel_ring_emit(waiter
,
1403 lower_32_bits(GEN8_WAIT_OFFSET(waiter
, signaller
->id
)));
1404 intel_ring_emit(waiter
,
1405 upper_32_bits(GEN8_WAIT_OFFSET(waiter
, signaller
->id
)));
1406 intel_ring_advance(waiter
);
1411 gen6_ring_sync(struct drm_i915_gem_request
*waiter_req
,
1412 struct intel_engine_cs
*signaller
,
1415 struct intel_engine_cs
*waiter
= waiter_req
->ring
;
1416 u32 dw1
= MI_SEMAPHORE_MBOX
|
1417 MI_SEMAPHORE_COMPARE
|
1418 MI_SEMAPHORE_REGISTER
;
1419 u32 wait_mbox
= signaller
->semaphore
.mbox
.wait
[waiter
->id
];
1422 /* Throughout all of the GEM code, seqno passed implies our current
1423 * seqno is >= the last seqno executed. However for hardware the
1424 * comparison is strictly greater than.
1428 WARN_ON(wait_mbox
== MI_SEMAPHORE_SYNC_INVALID
);
1430 ret
= intel_ring_begin(waiter_req
, 4);
1434 /* If seqno wrap happened, omit the wait with no-ops */
1435 if (likely(!i915_gem_has_seqno_wrapped(waiter
->dev
, seqno
))) {
1436 intel_ring_emit(waiter
, dw1
| wait_mbox
);
1437 intel_ring_emit(waiter
, seqno
);
1438 intel_ring_emit(waiter
, 0);
1439 intel_ring_emit(waiter
, MI_NOOP
);
1441 intel_ring_emit(waiter
, MI_NOOP
);
1442 intel_ring_emit(waiter
, MI_NOOP
);
1443 intel_ring_emit(waiter
, MI_NOOP
);
1444 intel_ring_emit(waiter
, MI_NOOP
);
1446 intel_ring_advance(waiter
);
1451 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1453 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1454 PIPE_CONTROL_DEPTH_STALL); \
1455 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1456 intel_ring_emit(ring__, 0); \
1457 intel_ring_emit(ring__, 0); \
1461 pc_render_add_request(struct drm_i915_gem_request
*req
)
1463 struct intel_engine_cs
*ring
= req
->ring
;
1464 u32 scratch_addr
= ring
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
1467 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1468 * incoherent with writes to memory, i.e. completely fubar,
1469 * so we need to use PIPE_NOTIFY instead.
1471 * However, we also need to workaround the qword write
1472 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1473 * memory before requesting an interrupt.
1475 ret
= intel_ring_begin(req
, 32);
1479 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE
|
1480 PIPE_CONTROL_WRITE_FLUSH
|
1481 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
);
1482 intel_ring_emit(ring
, ring
->scratch
.gtt_offset
| PIPE_CONTROL_GLOBAL_GTT
);
1483 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1484 intel_ring_emit(ring
, 0);
1485 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1486 scratch_addr
+= 2 * CACHELINE_BYTES
; /* write to separate cachelines */
1487 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1488 scratch_addr
+= 2 * CACHELINE_BYTES
;
1489 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1490 scratch_addr
+= 2 * CACHELINE_BYTES
;
1491 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1492 scratch_addr
+= 2 * CACHELINE_BYTES
;
1493 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1494 scratch_addr
+= 2 * CACHELINE_BYTES
;
1495 PIPE_CONTROL_FLUSH(ring
, scratch_addr
);
1497 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE
|
1498 PIPE_CONTROL_WRITE_FLUSH
|
1499 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
|
1500 PIPE_CONTROL_NOTIFY
);
1501 intel_ring_emit(ring
, ring
->scratch
.gtt_offset
| PIPE_CONTROL_GLOBAL_GTT
);
1502 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1503 intel_ring_emit(ring
, 0);
1504 __intel_ring_advance(ring
);
1510 gen6_ring_get_seqno(struct intel_engine_cs
*ring
, bool lazy_coherency
)
1512 /* Workaround to force correct ordering between irq and seqno writes on
1513 * ivb (and maybe also on snb) by reading from a CS register (like
1514 * ACTHD) before reading the status page. */
1515 if (!lazy_coherency
) {
1516 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
1517 POSTING_READ(RING_ACTHD(ring
->mmio_base
));
1520 return intel_read_status_page(ring
, I915_GEM_HWS_INDEX
);
1524 ring_get_seqno(struct intel_engine_cs
*ring
, bool lazy_coherency
)
1526 return intel_read_status_page(ring
, I915_GEM_HWS_INDEX
);
1530 ring_set_seqno(struct intel_engine_cs
*ring
, u32 seqno
)
1532 intel_write_status_page(ring
, I915_GEM_HWS_INDEX
, seqno
);
1536 pc_render_get_seqno(struct intel_engine_cs
*ring
, bool lazy_coherency
)
1538 return ring
->scratch
.cpu_page
[0];
1542 pc_render_set_seqno(struct intel_engine_cs
*ring
, u32 seqno
)
1544 ring
->scratch
.cpu_page
[0] = seqno
;
1548 gen5_ring_get_irq(struct intel_engine_cs
*ring
)
1550 struct drm_device
*dev
= ring
->dev
;
1551 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1552 unsigned long flags
;
1554 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1557 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1558 if (ring
->irq_refcount
++ == 0)
1559 gen5_enable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1560 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1566 gen5_ring_put_irq(struct intel_engine_cs
*ring
)
1568 struct drm_device
*dev
= ring
->dev
;
1569 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1570 unsigned long flags
;
1572 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1573 if (--ring
->irq_refcount
== 0)
1574 gen5_disable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1575 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1579 i9xx_ring_get_irq(struct intel_engine_cs
*ring
)
1581 struct drm_device
*dev
= ring
->dev
;
1582 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1583 unsigned long flags
;
1585 if (!intel_irqs_enabled(dev_priv
))
1588 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1589 if (ring
->irq_refcount
++ == 0) {
1590 dev_priv
->irq_mask
&= ~ring
->irq_enable_mask
;
1591 I915_WRITE(IMR
, dev_priv
->irq_mask
);
1594 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1600 i9xx_ring_put_irq(struct intel_engine_cs
*ring
)
1602 struct drm_device
*dev
= ring
->dev
;
1603 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1604 unsigned long flags
;
1606 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1607 if (--ring
->irq_refcount
== 0) {
1608 dev_priv
->irq_mask
|= ring
->irq_enable_mask
;
1609 I915_WRITE(IMR
, dev_priv
->irq_mask
);
1612 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1616 i8xx_ring_get_irq(struct intel_engine_cs
*ring
)
1618 struct drm_device
*dev
= ring
->dev
;
1619 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1620 unsigned long flags
;
1622 if (!intel_irqs_enabled(dev_priv
))
1625 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1626 if (ring
->irq_refcount
++ == 0) {
1627 dev_priv
->irq_mask
&= ~ring
->irq_enable_mask
;
1628 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
1629 POSTING_READ16(IMR
);
1631 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1637 i8xx_ring_put_irq(struct intel_engine_cs
*ring
)
1639 struct drm_device
*dev
= ring
->dev
;
1640 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1641 unsigned long flags
;
1643 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1644 if (--ring
->irq_refcount
== 0) {
1645 dev_priv
->irq_mask
|= ring
->irq_enable_mask
;
1646 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
1647 POSTING_READ16(IMR
);
1649 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1653 bsd_ring_flush(struct drm_i915_gem_request
*req
,
1654 u32 invalidate_domains
,
1657 struct intel_engine_cs
*ring
= req
->ring
;
1660 ret
= intel_ring_begin(req
, 2);
1664 intel_ring_emit(ring
, MI_FLUSH
);
1665 intel_ring_emit(ring
, MI_NOOP
);
1666 intel_ring_advance(ring
);
1671 i9xx_add_request(struct drm_i915_gem_request
*req
)
1673 struct intel_engine_cs
*ring
= req
->ring
;
1676 ret
= intel_ring_begin(req
, 4);
1680 intel_ring_emit(ring
, MI_STORE_DWORD_INDEX
);
1681 intel_ring_emit(ring
, I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
);
1682 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1683 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
1684 __intel_ring_advance(ring
);
1690 gen6_ring_get_irq(struct intel_engine_cs
*ring
)
1692 struct drm_device
*dev
= ring
->dev
;
1693 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1694 unsigned long flags
;
1696 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1699 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1700 if (ring
->irq_refcount
++ == 0) {
1701 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
)
1702 I915_WRITE_IMR(ring
,
1703 ~(ring
->irq_enable_mask
|
1704 GT_PARITY_ERROR(dev
)));
1706 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1707 gen5_enable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1709 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1715 gen6_ring_put_irq(struct intel_engine_cs
*ring
)
1717 struct drm_device
*dev
= ring
->dev
;
1718 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1719 unsigned long flags
;
1721 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1722 if (--ring
->irq_refcount
== 0) {
1723 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
)
1724 I915_WRITE_IMR(ring
, ~GT_PARITY_ERROR(dev
));
1726 I915_WRITE_IMR(ring
, ~0);
1727 gen5_disable_gt_irq(dev_priv
, ring
->irq_enable_mask
);
1729 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1733 hsw_vebox_get_irq(struct intel_engine_cs
*ring
)
1735 struct drm_device
*dev
= ring
->dev
;
1736 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1737 unsigned long flags
;
1739 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1742 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1743 if (ring
->irq_refcount
++ == 0) {
1744 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1745 gen6_enable_pm_irq(dev_priv
, ring
->irq_enable_mask
);
1747 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1753 hsw_vebox_put_irq(struct intel_engine_cs
*ring
)
1755 struct drm_device
*dev
= ring
->dev
;
1756 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1757 unsigned long flags
;
1759 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1760 if (--ring
->irq_refcount
== 0) {
1761 I915_WRITE_IMR(ring
, ~0);
1762 gen6_disable_pm_irq(dev_priv
, ring
->irq_enable_mask
);
1764 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1768 gen8_ring_get_irq(struct intel_engine_cs
*ring
)
1770 struct drm_device
*dev
= ring
->dev
;
1771 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1772 unsigned long flags
;
1774 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
1777 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1778 if (ring
->irq_refcount
++ == 0) {
1779 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
) {
1780 I915_WRITE_IMR(ring
,
1781 ~(ring
->irq_enable_mask
|
1782 GT_RENDER_L3_PARITY_ERROR_INTERRUPT
));
1784 I915_WRITE_IMR(ring
, ~ring
->irq_enable_mask
);
1786 POSTING_READ(RING_IMR(ring
->mmio_base
));
1788 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1794 gen8_ring_put_irq(struct intel_engine_cs
*ring
)
1796 struct drm_device
*dev
= ring
->dev
;
1797 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1798 unsigned long flags
;
1800 spin_lock_irqsave(&dev_priv
->irq_lock
, flags
);
1801 if (--ring
->irq_refcount
== 0) {
1802 if (HAS_L3_DPF(dev
) && ring
->id
== RCS
) {
1803 I915_WRITE_IMR(ring
,
1804 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT
);
1806 I915_WRITE_IMR(ring
, ~0);
1808 POSTING_READ(RING_IMR(ring
->mmio_base
));
1810 spin_unlock_irqrestore(&dev_priv
->irq_lock
, flags
);
1814 i965_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1815 u64 offset
, u32 length
,
1816 unsigned dispatch_flags
)
1818 struct intel_engine_cs
*ring
= req
->ring
;
1821 ret
= intel_ring_begin(req
, 2);
1825 intel_ring_emit(ring
,
1826 MI_BATCH_BUFFER_START
|
1828 (dispatch_flags
& I915_DISPATCH_SECURE
?
1829 0 : MI_BATCH_NON_SECURE_I965
));
1830 intel_ring_emit(ring
, offset
);
1831 intel_ring_advance(ring
);
1836 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1837 #define I830_BATCH_LIMIT (256*1024)
1838 #define I830_TLB_ENTRIES (2)
1839 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1841 i830_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1842 u64 offset
, u32 len
,
1843 unsigned dispatch_flags
)
1845 struct intel_engine_cs
*ring
= req
->ring
;
1846 u32 cs_offset
= ring
->scratch
.gtt_offset
;
1849 ret
= intel_ring_begin(req
, 6);
1853 /* Evict the invalid PTE TLBs */
1854 intel_ring_emit(ring
, COLOR_BLT_CMD
| BLT_WRITE_RGBA
);
1855 intel_ring_emit(ring
, BLT_DEPTH_32
| BLT_ROP_COLOR_COPY
| 4096);
1856 intel_ring_emit(ring
, I830_TLB_ENTRIES
<< 16 | 4); /* load each page */
1857 intel_ring_emit(ring
, cs_offset
);
1858 intel_ring_emit(ring
, 0xdeadbeef);
1859 intel_ring_emit(ring
, MI_NOOP
);
1860 intel_ring_advance(ring
);
1862 if ((dispatch_flags
& I915_DISPATCH_PINNED
) == 0) {
1863 if (len
> I830_BATCH_LIMIT
)
1866 ret
= intel_ring_begin(req
, 6 + 2);
1870 /* Blit the batch (which has now all relocs applied) to the
1871 * stable batch scratch bo area (so that the CS never
1872 * stumbles over its tlb invalidation bug) ...
1874 intel_ring_emit(ring
, SRC_COPY_BLT_CMD
| BLT_WRITE_RGBA
);
1875 intel_ring_emit(ring
, BLT_DEPTH_32
| BLT_ROP_SRC_COPY
| 4096);
1876 intel_ring_emit(ring
, DIV_ROUND_UP(len
, 4096) << 16 | 4096);
1877 intel_ring_emit(ring
, cs_offset
);
1878 intel_ring_emit(ring
, 4096);
1879 intel_ring_emit(ring
, offset
);
1881 intel_ring_emit(ring
, MI_FLUSH
);
1882 intel_ring_emit(ring
, MI_NOOP
);
1883 intel_ring_advance(ring
);
1885 /* ... and execute it. */
1889 ret
= intel_ring_begin(req
, 4);
1893 intel_ring_emit(ring
, MI_BATCH_BUFFER
);
1894 intel_ring_emit(ring
, offset
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1895 0 : MI_BATCH_NON_SECURE
));
1896 intel_ring_emit(ring
, offset
+ len
- 8);
1897 intel_ring_emit(ring
, MI_NOOP
);
1898 intel_ring_advance(ring
);
1904 i915_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1905 u64 offset
, u32 len
,
1906 unsigned dispatch_flags
)
1908 struct intel_engine_cs
*ring
= req
->ring
;
1911 ret
= intel_ring_begin(req
, 2);
1915 intel_ring_emit(ring
, MI_BATCH_BUFFER_START
| MI_BATCH_GTT
);
1916 intel_ring_emit(ring
, offset
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1917 0 : MI_BATCH_NON_SECURE
));
1918 intel_ring_advance(ring
);
1923 static void cleanup_status_page(struct intel_engine_cs
*ring
)
1925 struct drm_i915_gem_object
*obj
;
1927 obj
= ring
->status_page
.obj
;
1931 kunmap(sg_page(obj
->pages
->sgl
));
1932 i915_gem_object_ggtt_unpin(obj
);
1933 drm_gem_object_unreference(&obj
->base
);
1934 ring
->status_page
.obj
= NULL
;
1937 static int init_status_page(struct intel_engine_cs
*ring
)
1939 struct drm_i915_gem_object
*obj
;
1941 if ((obj
= ring
->status_page
.obj
) == NULL
) {
1945 obj
= i915_gem_alloc_object(ring
->dev
, 4096);
1947 DRM_ERROR("Failed to allocate status page\n");
1951 ret
= i915_gem_object_set_cache_level(obj
, I915_CACHE_LLC
);
1956 if (!HAS_LLC(ring
->dev
))
1957 /* On g33, we cannot place HWS above 256MiB, so
1958 * restrict its pinning to the low mappable arena.
1959 * Though this restriction is not documented for
1960 * gen4, gen5, or byt, they also behave similarly
1961 * and hang if the HWS is placed at the top of the
1962 * GTT. To generalise, it appears that all !llc
1963 * platforms have issues with us placing the HWS
1964 * above the mappable region (even though we never
1967 flags
|= PIN_MAPPABLE
;
1968 ret
= i915_gem_obj_ggtt_pin(obj
, 4096, flags
);
1971 drm_gem_object_unreference(&obj
->base
);
1975 ring
->status_page
.obj
= obj
;
1978 ring
->status_page
.gfx_addr
= i915_gem_obj_ggtt_offset(obj
);
1979 ring
->status_page
.page_addr
= kmap(sg_page(obj
->pages
->sgl
));
1980 memset(ring
->status_page
.page_addr
, 0, PAGE_SIZE
);
1982 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1983 ring
->name
, ring
->status_page
.gfx_addr
);
1988 static int init_phys_status_page(struct intel_engine_cs
*ring
)
1990 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
1992 if (!dev_priv
->status_page_dmah
) {
1993 dev_priv
->status_page_dmah
=
1994 drm_pci_alloc(ring
->dev
, PAGE_SIZE
, PAGE_SIZE
);
1995 if (!dev_priv
->status_page_dmah
)
1999 ring
->status_page
.page_addr
= dev_priv
->status_page_dmah
->vaddr
;
2000 memset(ring
->status_page
.page_addr
, 0, PAGE_SIZE
);
2005 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer
*ringbuf
)
2007 iounmap(ringbuf
->virtual_start
);
2008 ringbuf
->virtual_start
= NULL
;
2009 i915_gem_object_ggtt_unpin(ringbuf
->obj
);
2012 int intel_pin_and_map_ringbuffer_obj(struct drm_device
*dev
,
2013 struct intel_ringbuffer
*ringbuf
)
2015 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2016 struct drm_i915_gem_object
*obj
= ringbuf
->obj
;
2019 ret
= i915_gem_obj_ggtt_pin(obj
, PAGE_SIZE
, PIN_MAPPABLE
);
2023 ret
= i915_gem_object_set_to_gtt_domain(obj
, true);
2025 i915_gem_object_ggtt_unpin(obj
);
2029 ringbuf
->virtual_start
= ioremap_wc(dev_priv
->gtt
.mappable_base
+
2030 i915_gem_obj_ggtt_offset(obj
), ringbuf
->size
);
2031 if (ringbuf
->virtual_start
== NULL
) {
2032 i915_gem_object_ggtt_unpin(obj
);
2039 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer
*ringbuf
)
2041 drm_gem_object_unreference(&ringbuf
->obj
->base
);
2042 ringbuf
->obj
= NULL
;
2045 static int intel_alloc_ringbuffer_obj(struct drm_device
*dev
,
2046 struct intel_ringbuffer
*ringbuf
)
2048 struct drm_i915_gem_object
*obj
;
2052 obj
= i915_gem_object_create_stolen(dev
, ringbuf
->size
);
2054 obj
= i915_gem_alloc_object(dev
, ringbuf
->size
);
2058 /* mark ring buffers as read-only from GPU side by default */
2066 struct intel_ringbuffer
*
2067 intel_engine_create_ringbuffer(struct intel_engine_cs
*engine
, int size
)
2069 struct intel_ringbuffer
*ring
;
2072 ring
= kzalloc(sizeof(*ring
), GFP_KERNEL
);
2074 return ERR_PTR(-ENOMEM
);
2076 ring
->ring
= engine
;
2079 /* Workaround an erratum on the i830 which causes a hang if
2080 * the TAIL pointer points to within the last 2 cachelines
2083 ring
->effective_size
= size
;
2084 if (IS_I830(engine
->dev
) || IS_845G(engine
->dev
))
2085 ring
->effective_size
-= 2 * CACHELINE_BYTES
;
2087 ring
->last_retired_head
= -1;
2088 intel_ring_update_space(ring
);
2090 ret
= intel_alloc_ringbuffer_obj(engine
->dev
, ring
);
2092 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2095 return ERR_PTR(ret
);
2102 intel_ringbuffer_free(struct intel_ringbuffer
*ring
)
2104 intel_destroy_ringbuffer_obj(ring
);
2108 static int intel_init_ring_buffer(struct drm_device
*dev
,
2109 struct intel_engine_cs
*ring
)
2111 struct intel_ringbuffer
*ringbuf
;
2114 WARN_ON(ring
->buffer
);
2117 INIT_LIST_HEAD(&ring
->active_list
);
2118 INIT_LIST_HEAD(&ring
->request_list
);
2119 INIT_LIST_HEAD(&ring
->execlist_queue
);
2120 i915_gem_batch_pool_init(dev
, &ring
->batch_pool
);
2121 memset(ring
->semaphore
.sync_seqno
, 0, sizeof(ring
->semaphore
.sync_seqno
));
2123 init_waitqueue_head(&ring
->irq_queue
);
2125 ringbuf
= intel_engine_create_ringbuffer(ring
, 32 * PAGE_SIZE
);
2126 if (IS_ERR(ringbuf
))
2127 return PTR_ERR(ringbuf
);
2128 ring
->buffer
= ringbuf
;
2130 if (I915_NEED_GFX_HWS(dev
)) {
2131 ret
= init_status_page(ring
);
2135 BUG_ON(ring
->id
!= RCS
);
2136 ret
= init_phys_status_page(ring
);
2141 ret
= intel_pin_and_map_ringbuffer_obj(dev
, ringbuf
);
2143 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2145 intel_destroy_ringbuffer_obj(ringbuf
);
2149 ret
= i915_cmd_parser_init_ring(ring
);
2156 intel_ringbuffer_free(ringbuf
);
2157 ring
->buffer
= NULL
;
2161 void intel_cleanup_ring_buffer(struct intel_engine_cs
*ring
)
2163 struct drm_i915_private
*dev_priv
;
2165 if (!intel_ring_initialized(ring
))
2168 dev_priv
= to_i915(ring
->dev
);
2170 intel_stop_ring_buffer(ring
);
2171 WARN_ON(!IS_GEN2(ring
->dev
) && (I915_READ_MODE(ring
) & MODE_IDLE
) == 0);
2173 intel_unpin_ringbuffer_obj(ring
->buffer
);
2174 intel_ringbuffer_free(ring
->buffer
);
2175 ring
->buffer
= NULL
;
2178 ring
->cleanup(ring
);
2180 cleanup_status_page(ring
);
2182 i915_cmd_parser_fini_ring(ring
);
2183 i915_gem_batch_pool_fini(&ring
->batch_pool
);
2186 static int ring_wait_for_space(struct intel_engine_cs
*ring
, int n
)
2188 struct intel_ringbuffer
*ringbuf
= ring
->buffer
;
2189 struct drm_i915_gem_request
*request
;
2193 if (intel_ring_space(ringbuf
) >= n
)
2196 /* The whole point of reserving space is to not wait! */
2197 WARN_ON(ringbuf
->reserved_in_use
);
2199 list_for_each_entry(request
, &ring
->request_list
, list
) {
2200 space
= __intel_ring_space(request
->postfix
, ringbuf
->tail
,
2206 if (WARN_ON(&request
->list
== &ring
->request_list
))
2209 ret
= i915_wait_request(request
);
2213 ringbuf
->space
= space
;
2217 static void __wrap_ring_buffer(struct intel_ringbuffer
*ringbuf
)
2219 uint32_t __iomem
*virt
;
2220 int rem
= ringbuf
->size
- ringbuf
->tail
;
2222 virt
= ringbuf
->virtual_start
+ ringbuf
->tail
;
2225 iowrite32(MI_NOOP
, virt
++);
2228 intel_ring_update_space(ringbuf
);
2231 int intel_ring_idle(struct intel_engine_cs
*ring
)
2233 struct drm_i915_gem_request
*req
;
2235 /* Wait upon the last request to be completed */
2236 if (list_empty(&ring
->request_list
))
2239 req
= list_entry(ring
->request_list
.prev
,
2240 struct drm_i915_gem_request
,
2243 /* Make sure we do not trigger any retires */
2244 return __i915_wait_request(req
,
2245 atomic_read(&to_i915(ring
->dev
)->gpu_error
.reset_counter
),
2246 to_i915(ring
->dev
)->mm
.interruptible
,
2250 int intel_ring_alloc_request_extras(struct drm_i915_gem_request
*request
)
2252 request
->ringbuf
= request
->ring
->buffer
;
2256 int intel_ring_reserve_space(struct drm_i915_gem_request
*request
)
2259 * The first call merely notes the reserve request and is common for
2260 * all back ends. The subsequent localised _begin() call actually
2261 * ensures that the reservation is available. Without the begin, if
2262 * the request creator immediately submitted the request without
2263 * adding any commands to it then there might not actually be
2264 * sufficient room for the submission commands.
2266 intel_ring_reserved_space_reserve(request
->ringbuf
, MIN_SPACE_FOR_ADD_REQUEST
);
2268 return intel_ring_begin(request
, 0);
2271 void intel_ring_reserved_space_reserve(struct intel_ringbuffer
*ringbuf
, int size
)
2273 WARN_ON(ringbuf
->reserved_size
);
2274 WARN_ON(ringbuf
->reserved_in_use
);
2276 ringbuf
->reserved_size
= size
;
2279 void intel_ring_reserved_space_cancel(struct intel_ringbuffer
*ringbuf
)
2281 WARN_ON(ringbuf
->reserved_in_use
);
2283 ringbuf
->reserved_size
= 0;
2284 ringbuf
->reserved_in_use
= false;
2287 void intel_ring_reserved_space_use(struct intel_ringbuffer
*ringbuf
)
2289 WARN_ON(ringbuf
->reserved_in_use
);
2291 ringbuf
->reserved_in_use
= true;
2292 ringbuf
->reserved_tail
= ringbuf
->tail
;
2295 void intel_ring_reserved_space_end(struct intel_ringbuffer
*ringbuf
)
2297 WARN_ON(!ringbuf
->reserved_in_use
);
2298 if (ringbuf
->tail
> ringbuf
->reserved_tail
) {
2299 WARN(ringbuf
->tail
> ringbuf
->reserved_tail
+ ringbuf
->reserved_size
,
2300 "request reserved size too small: %d vs %d!\n",
2301 ringbuf
->tail
- ringbuf
->reserved_tail
, ringbuf
->reserved_size
);
2304 * The ring was wrapped while the reserved space was in use.
2305 * That means that some unknown amount of the ring tail was
2306 * no-op filled and skipped. Thus simply adding the ring size
2307 * to the tail and doing the above space check will not work.
2308 * Rather than attempt to track how much tail was skipped,
2309 * it is much simpler to say that also skipping the sanity
2310 * check every once in a while is not a big issue.
2314 ringbuf
->reserved_size
= 0;
2315 ringbuf
->reserved_in_use
= false;
2318 static int __intel_ring_prepare(struct intel_engine_cs
*ring
, int bytes
)
2320 struct intel_ringbuffer
*ringbuf
= ring
->buffer
;
2321 int remain_usable
= ringbuf
->effective_size
- ringbuf
->tail
;
2322 int remain_actual
= ringbuf
->size
- ringbuf
->tail
;
2323 int ret
, total_bytes
, wait_bytes
= 0;
2324 bool need_wrap
= false;
2326 if (ringbuf
->reserved_in_use
)
2327 total_bytes
= bytes
;
2329 total_bytes
= bytes
+ ringbuf
->reserved_size
;
2331 if (unlikely(bytes
> remain_usable
)) {
2333 * Not enough space for the basic request. So need to flush
2334 * out the remainder and then wait for base + reserved.
2336 wait_bytes
= remain_actual
+ total_bytes
;
2339 if (unlikely(total_bytes
> remain_usable
)) {
2341 * The base request will fit but the reserved space
2342 * falls off the end. So only need to to wait for the
2343 * reserved size after flushing out the remainder.
2345 wait_bytes
= remain_actual
+ ringbuf
->reserved_size
;
2347 } else if (total_bytes
> ringbuf
->space
) {
2348 /* No wrapping required, just waiting. */
2349 wait_bytes
= total_bytes
;
2354 ret
= ring_wait_for_space(ring
, wait_bytes
);
2359 __wrap_ring_buffer(ringbuf
);
2365 int intel_ring_begin(struct drm_i915_gem_request
*req
,
2368 struct intel_engine_cs
*ring
;
2369 struct drm_i915_private
*dev_priv
;
2372 WARN_ON(req
== NULL
);
2374 dev_priv
= ring
->dev
->dev_private
;
2376 ret
= i915_gem_check_wedge(&dev_priv
->gpu_error
,
2377 dev_priv
->mm
.interruptible
);
2381 ret
= __intel_ring_prepare(ring
, num_dwords
* sizeof(uint32_t));
2385 ring
->buffer
->space
-= num_dwords
* sizeof(uint32_t);
2389 /* Align the ring tail to a cacheline boundary */
2390 int intel_ring_cacheline_align(struct drm_i915_gem_request
*req
)
2392 struct intel_engine_cs
*ring
= req
->ring
;
2393 int num_dwords
= (ring
->buffer
->tail
& (CACHELINE_BYTES
- 1)) / sizeof(uint32_t);
2396 if (num_dwords
== 0)
2399 num_dwords
= CACHELINE_BYTES
/ sizeof(uint32_t) - num_dwords
;
2400 ret
= intel_ring_begin(req
, num_dwords
);
2404 while (num_dwords
--)
2405 intel_ring_emit(ring
, MI_NOOP
);
2407 intel_ring_advance(ring
);
2412 void intel_ring_init_seqno(struct intel_engine_cs
*ring
, u32 seqno
)
2414 struct drm_device
*dev
= ring
->dev
;
2415 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2417 if (INTEL_INFO(dev
)->gen
== 6 || INTEL_INFO(dev
)->gen
== 7) {
2418 I915_WRITE(RING_SYNC_0(ring
->mmio_base
), 0);
2419 I915_WRITE(RING_SYNC_1(ring
->mmio_base
), 0);
2421 I915_WRITE(RING_SYNC_2(ring
->mmio_base
), 0);
2424 ring
->set_seqno(ring
, seqno
);
2425 ring
->hangcheck
.seqno
= seqno
;
2428 static void gen6_bsd_ring_write_tail(struct intel_engine_cs
*ring
,
2431 struct drm_i915_private
*dev_priv
= ring
->dev
->dev_private
;
2433 /* Every tail move must follow the sequence below */
2435 /* Disable notification that the ring is IDLE. The GT
2436 * will then assume that it is busy and bring it out of rc6.
2438 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL
,
2439 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
2441 /* Clear the context id. Here be magic! */
2442 I915_WRITE64(GEN6_BSD_RNCID
, 0x0);
2444 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2445 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL
) &
2446 GEN6_BSD_SLEEP_INDICATOR
) == 0,
2448 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2450 /* Now that the ring is fully powered up, update the tail */
2451 I915_WRITE_TAIL(ring
, value
);
2452 POSTING_READ(RING_TAIL(ring
->mmio_base
));
2454 /* Let the ring send IDLE messages to the GT again,
2455 * and so let it sleep to conserve power when idle.
2457 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL
,
2458 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
2461 static int gen6_bsd_ring_flush(struct drm_i915_gem_request
*req
,
2462 u32 invalidate
, u32 flush
)
2464 struct intel_engine_cs
*ring
= req
->ring
;
2468 ret
= intel_ring_begin(req
, 4);
2473 if (INTEL_INFO(ring
->dev
)->gen
>= 8)
2476 /* We always require a command barrier so that subsequent
2477 * commands, such as breadcrumb interrupts, are strictly ordered
2478 * wrt the contents of the write cache being flushed to memory
2479 * (and thus being coherent from the CPU).
2481 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
2484 * Bspec vol 1c.5 - video engine command streamer:
2485 * "If ENABLED, all TLBs will be invalidated once the flush
2486 * operation is complete. This bit is only valid when the
2487 * Post-Sync Operation field is a value of 1h or 3h."
2489 if (invalidate
& I915_GEM_GPU_DOMAINS
)
2490 cmd
|= MI_INVALIDATE_TLB
| MI_INVALIDATE_BSD
;
2492 intel_ring_emit(ring
, cmd
);
2493 intel_ring_emit(ring
, I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
2494 if (INTEL_INFO(ring
->dev
)->gen
>= 8) {
2495 intel_ring_emit(ring
, 0); /* upper addr */
2496 intel_ring_emit(ring
, 0); /* value */
2498 intel_ring_emit(ring
, 0);
2499 intel_ring_emit(ring
, MI_NOOP
);
2501 intel_ring_advance(ring
);
2506 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2507 u64 offset
, u32 len
,
2508 unsigned dispatch_flags
)
2510 struct intel_engine_cs
*ring
= req
->ring
;
2511 bool ppgtt
= USES_PPGTT(ring
->dev
) &&
2512 !(dispatch_flags
& I915_DISPATCH_SECURE
);
2515 ret
= intel_ring_begin(req
, 4);
2519 /* FIXME(BDW): Address space and security selectors. */
2520 intel_ring_emit(ring
, MI_BATCH_BUFFER_START_GEN8
| (ppgtt
<<8) |
2521 (dispatch_flags
& I915_DISPATCH_RS
?
2522 MI_BATCH_RESOURCE_STREAMER
: 0));
2523 intel_ring_emit(ring
, lower_32_bits(offset
));
2524 intel_ring_emit(ring
, upper_32_bits(offset
));
2525 intel_ring_emit(ring
, MI_NOOP
);
2526 intel_ring_advance(ring
);
2532 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2533 u64 offset
, u32 len
,
2534 unsigned dispatch_flags
)
2536 struct intel_engine_cs
*ring
= req
->ring
;
2539 ret
= intel_ring_begin(req
, 2);
2543 intel_ring_emit(ring
,
2544 MI_BATCH_BUFFER_START
|
2545 (dispatch_flags
& I915_DISPATCH_SECURE
?
2546 0 : MI_BATCH_PPGTT_HSW
| MI_BATCH_NON_SECURE_HSW
) |
2547 (dispatch_flags
& I915_DISPATCH_RS
?
2548 MI_BATCH_RESOURCE_STREAMER
: 0));
2549 /* bit0-7 is the length on GEN6+ */
2550 intel_ring_emit(ring
, offset
);
2551 intel_ring_advance(ring
);
2557 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2558 u64 offset
, u32 len
,
2559 unsigned dispatch_flags
)
2561 struct intel_engine_cs
*ring
= req
->ring
;
2564 ret
= intel_ring_begin(req
, 2);
2568 intel_ring_emit(ring
,
2569 MI_BATCH_BUFFER_START
|
2570 (dispatch_flags
& I915_DISPATCH_SECURE
?
2571 0 : MI_BATCH_NON_SECURE_I965
));
2572 /* bit0-7 is the length on GEN6+ */
2573 intel_ring_emit(ring
, offset
);
2574 intel_ring_advance(ring
);
2579 /* Blitter support (SandyBridge+) */
2581 static int gen6_ring_flush(struct drm_i915_gem_request
*req
,
2582 u32 invalidate
, u32 flush
)
2584 struct intel_engine_cs
*ring
= req
->ring
;
2585 struct drm_device
*dev
= ring
->dev
;
2589 ret
= intel_ring_begin(req
, 4);
2594 if (INTEL_INFO(dev
)->gen
>= 8)
2597 /* We always require a command barrier so that subsequent
2598 * commands, such as breadcrumb interrupts, are strictly ordered
2599 * wrt the contents of the write cache being flushed to memory
2600 * (and thus being coherent from the CPU).
2602 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
2605 * Bspec vol 1c.3 - blitter engine command streamer:
2606 * "If ENABLED, all TLBs will be invalidated once the flush
2607 * operation is complete. This bit is only valid when the
2608 * Post-Sync Operation field is a value of 1h or 3h."
2610 if (invalidate
& I915_GEM_DOMAIN_RENDER
)
2611 cmd
|= MI_INVALIDATE_TLB
;
2612 intel_ring_emit(ring
, cmd
);
2613 intel_ring_emit(ring
, I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
2614 if (INTEL_INFO(dev
)->gen
>= 8) {
2615 intel_ring_emit(ring
, 0); /* upper addr */
2616 intel_ring_emit(ring
, 0); /* value */
2618 intel_ring_emit(ring
, 0);
2619 intel_ring_emit(ring
, MI_NOOP
);
2621 intel_ring_advance(ring
);
2626 int intel_init_render_ring_buffer(struct drm_device
*dev
)
2628 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2629 struct intel_engine_cs
*ring
= &dev_priv
->ring
[RCS
];
2630 struct drm_i915_gem_object
*obj
;
2633 ring
->name
= "render ring";
2635 ring
->mmio_base
= RENDER_RING_BASE
;
2637 if (INTEL_INFO(dev
)->gen
>= 8) {
2638 if (i915_semaphore_is_enabled(dev
)) {
2639 obj
= i915_gem_alloc_object(dev
, 4096);
2641 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2642 i915
.semaphores
= 0;
2644 i915_gem_object_set_cache_level(obj
, I915_CACHE_LLC
);
2645 ret
= i915_gem_obj_ggtt_pin(obj
, 0, PIN_NONBLOCK
);
2647 drm_gem_object_unreference(&obj
->base
);
2648 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2649 i915
.semaphores
= 0;
2651 dev_priv
->semaphore_obj
= obj
;
2655 ring
->init_context
= intel_rcs_ctx_init
;
2656 ring
->add_request
= gen6_add_request
;
2657 ring
->flush
= gen8_render_ring_flush
;
2658 ring
->irq_get
= gen8_ring_get_irq
;
2659 ring
->irq_put
= gen8_ring_put_irq
;
2660 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
;
2661 ring
->get_seqno
= gen6_ring_get_seqno
;
2662 ring
->set_seqno
= ring_set_seqno
;
2663 if (i915_semaphore_is_enabled(dev
)) {
2664 WARN_ON(!dev_priv
->semaphore_obj
);
2665 ring
->semaphore
.sync_to
= gen8_ring_sync
;
2666 ring
->semaphore
.signal
= gen8_rcs_signal
;
2667 GEN8_RING_SEMAPHORE_INIT
;
2669 } else if (INTEL_INFO(dev
)->gen
>= 6) {
2670 ring
->init_context
= intel_rcs_ctx_init
;
2671 ring
->add_request
= gen6_add_request
;
2672 ring
->flush
= gen7_render_ring_flush
;
2673 if (INTEL_INFO(dev
)->gen
== 6)
2674 ring
->flush
= gen6_render_ring_flush
;
2675 ring
->irq_get
= gen6_ring_get_irq
;
2676 ring
->irq_put
= gen6_ring_put_irq
;
2677 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
;
2678 ring
->get_seqno
= gen6_ring_get_seqno
;
2679 ring
->set_seqno
= ring_set_seqno
;
2680 if (i915_semaphore_is_enabled(dev
)) {
2681 ring
->semaphore
.sync_to
= gen6_ring_sync
;
2682 ring
->semaphore
.signal
= gen6_signal
;
2684 * The current semaphore is only applied on pre-gen8
2685 * platform. And there is no VCS2 ring on the pre-gen8
2686 * platform. So the semaphore between RCS and VCS2 is
2687 * initialized as INVALID. Gen8 will initialize the
2688 * sema between VCS2 and RCS later.
2690 ring
->semaphore
.mbox
.wait
[RCS
] = MI_SEMAPHORE_SYNC_INVALID
;
2691 ring
->semaphore
.mbox
.wait
[VCS
] = MI_SEMAPHORE_SYNC_RV
;
2692 ring
->semaphore
.mbox
.wait
[BCS
] = MI_SEMAPHORE_SYNC_RB
;
2693 ring
->semaphore
.mbox
.wait
[VECS
] = MI_SEMAPHORE_SYNC_RVE
;
2694 ring
->semaphore
.mbox
.wait
[VCS2
] = MI_SEMAPHORE_SYNC_INVALID
;
2695 ring
->semaphore
.mbox
.signal
[RCS
] = GEN6_NOSYNC
;
2696 ring
->semaphore
.mbox
.signal
[VCS
] = GEN6_VRSYNC
;
2697 ring
->semaphore
.mbox
.signal
[BCS
] = GEN6_BRSYNC
;
2698 ring
->semaphore
.mbox
.signal
[VECS
] = GEN6_VERSYNC
;
2699 ring
->semaphore
.mbox
.signal
[VCS2
] = GEN6_NOSYNC
;
2701 } else if (IS_GEN5(dev
)) {
2702 ring
->add_request
= pc_render_add_request
;
2703 ring
->flush
= gen4_render_ring_flush
;
2704 ring
->get_seqno
= pc_render_get_seqno
;
2705 ring
->set_seqno
= pc_render_set_seqno
;
2706 ring
->irq_get
= gen5_ring_get_irq
;
2707 ring
->irq_put
= gen5_ring_put_irq
;
2708 ring
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
|
2709 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT
;
2711 ring
->add_request
= i9xx_add_request
;
2712 if (INTEL_INFO(dev
)->gen
< 4)
2713 ring
->flush
= gen2_render_ring_flush
;
2715 ring
->flush
= gen4_render_ring_flush
;
2716 ring
->get_seqno
= ring_get_seqno
;
2717 ring
->set_seqno
= ring_set_seqno
;
2719 ring
->irq_get
= i8xx_ring_get_irq
;
2720 ring
->irq_put
= i8xx_ring_put_irq
;
2722 ring
->irq_get
= i9xx_ring_get_irq
;
2723 ring
->irq_put
= i9xx_ring_put_irq
;
2725 ring
->irq_enable_mask
= I915_USER_INTERRUPT
;
2727 ring
->write_tail
= ring_write_tail
;
2729 if (IS_HASWELL(dev
))
2730 ring
->dispatch_execbuffer
= hsw_ring_dispatch_execbuffer
;
2731 else if (IS_GEN8(dev
))
2732 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
2733 else if (INTEL_INFO(dev
)->gen
>= 6)
2734 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
2735 else if (INTEL_INFO(dev
)->gen
>= 4)
2736 ring
->dispatch_execbuffer
= i965_dispatch_execbuffer
;
2737 else if (IS_I830(dev
) || IS_845G(dev
))
2738 ring
->dispatch_execbuffer
= i830_dispatch_execbuffer
;
2740 ring
->dispatch_execbuffer
= i915_dispatch_execbuffer
;
2741 ring
->init_hw
= init_render_ring
;
2742 ring
->cleanup
= render_ring_cleanup
;
2744 /* Workaround batchbuffer to combat CS tlb bug. */
2745 if (HAS_BROKEN_CS_TLB(dev
)) {
2746 obj
= i915_gem_alloc_object(dev
, I830_WA_SIZE
);
2748 DRM_ERROR("Failed to allocate batch bo\n");
2752 ret
= i915_gem_obj_ggtt_pin(obj
, 0, 0);
2754 drm_gem_object_unreference(&obj
->base
);
2755 DRM_ERROR("Failed to ping batch bo\n");
2759 ring
->scratch
.obj
= obj
;
2760 ring
->scratch
.gtt_offset
= i915_gem_obj_ggtt_offset(obj
);
2763 ret
= intel_init_ring_buffer(dev
, ring
);
2767 if (INTEL_INFO(dev
)->gen
>= 5) {
2768 ret
= intel_init_pipe_control(ring
);
2776 int intel_init_bsd_ring_buffer(struct drm_device
*dev
)
2778 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2779 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VCS
];
2781 ring
->name
= "bsd ring";
2784 ring
->write_tail
= ring_write_tail
;
2785 if (INTEL_INFO(dev
)->gen
>= 6) {
2786 ring
->mmio_base
= GEN6_BSD_RING_BASE
;
2787 /* gen6 bsd needs a special wa for tail updates */
2789 ring
->write_tail
= gen6_bsd_ring_write_tail
;
2790 ring
->flush
= gen6_bsd_ring_flush
;
2791 ring
->add_request
= gen6_add_request
;
2792 ring
->get_seqno
= gen6_ring_get_seqno
;
2793 ring
->set_seqno
= ring_set_seqno
;
2794 if (INTEL_INFO(dev
)->gen
>= 8) {
2795 ring
->irq_enable_mask
=
2796 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS1_IRQ_SHIFT
;
2797 ring
->irq_get
= gen8_ring_get_irq
;
2798 ring
->irq_put
= gen8_ring_put_irq
;
2799 ring
->dispatch_execbuffer
=
2800 gen8_ring_dispatch_execbuffer
;
2801 if (i915_semaphore_is_enabled(dev
)) {
2802 ring
->semaphore
.sync_to
= gen8_ring_sync
;
2803 ring
->semaphore
.signal
= gen8_xcs_signal
;
2804 GEN8_RING_SEMAPHORE_INIT
;
2807 ring
->irq_enable_mask
= GT_BSD_USER_INTERRUPT
;
2808 ring
->irq_get
= gen6_ring_get_irq
;
2809 ring
->irq_put
= gen6_ring_put_irq
;
2810 ring
->dispatch_execbuffer
=
2811 gen6_ring_dispatch_execbuffer
;
2812 if (i915_semaphore_is_enabled(dev
)) {
2813 ring
->semaphore
.sync_to
= gen6_ring_sync
;
2814 ring
->semaphore
.signal
= gen6_signal
;
2815 ring
->semaphore
.mbox
.wait
[RCS
] = MI_SEMAPHORE_SYNC_VR
;
2816 ring
->semaphore
.mbox
.wait
[VCS
] = MI_SEMAPHORE_SYNC_INVALID
;
2817 ring
->semaphore
.mbox
.wait
[BCS
] = MI_SEMAPHORE_SYNC_VB
;
2818 ring
->semaphore
.mbox
.wait
[VECS
] = MI_SEMAPHORE_SYNC_VVE
;
2819 ring
->semaphore
.mbox
.wait
[VCS2
] = MI_SEMAPHORE_SYNC_INVALID
;
2820 ring
->semaphore
.mbox
.signal
[RCS
] = GEN6_RVSYNC
;
2821 ring
->semaphore
.mbox
.signal
[VCS
] = GEN6_NOSYNC
;
2822 ring
->semaphore
.mbox
.signal
[BCS
] = GEN6_BVSYNC
;
2823 ring
->semaphore
.mbox
.signal
[VECS
] = GEN6_VEVSYNC
;
2824 ring
->semaphore
.mbox
.signal
[VCS2
] = GEN6_NOSYNC
;
2828 ring
->mmio_base
= BSD_RING_BASE
;
2829 ring
->flush
= bsd_ring_flush
;
2830 ring
->add_request
= i9xx_add_request
;
2831 ring
->get_seqno
= ring_get_seqno
;
2832 ring
->set_seqno
= ring_set_seqno
;
2834 ring
->irq_enable_mask
= ILK_BSD_USER_INTERRUPT
;
2835 ring
->irq_get
= gen5_ring_get_irq
;
2836 ring
->irq_put
= gen5_ring_put_irq
;
2838 ring
->irq_enable_mask
= I915_BSD_USER_INTERRUPT
;
2839 ring
->irq_get
= i9xx_ring_get_irq
;
2840 ring
->irq_put
= i9xx_ring_put_irq
;
2842 ring
->dispatch_execbuffer
= i965_dispatch_execbuffer
;
2844 ring
->init_hw
= init_ring_common
;
2846 return intel_init_ring_buffer(dev
, ring
);
2850 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2852 int intel_init_bsd2_ring_buffer(struct drm_device
*dev
)
2854 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2855 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VCS2
];
2857 ring
->name
= "bsd2 ring";
2860 ring
->write_tail
= ring_write_tail
;
2861 ring
->mmio_base
= GEN8_BSD2_RING_BASE
;
2862 ring
->flush
= gen6_bsd_ring_flush
;
2863 ring
->add_request
= gen6_add_request
;
2864 ring
->get_seqno
= gen6_ring_get_seqno
;
2865 ring
->set_seqno
= ring_set_seqno
;
2866 ring
->irq_enable_mask
=
2867 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS2_IRQ_SHIFT
;
2868 ring
->irq_get
= gen8_ring_get_irq
;
2869 ring
->irq_put
= gen8_ring_put_irq
;
2870 ring
->dispatch_execbuffer
=
2871 gen8_ring_dispatch_execbuffer
;
2872 if (i915_semaphore_is_enabled(dev
)) {
2873 ring
->semaphore
.sync_to
= gen8_ring_sync
;
2874 ring
->semaphore
.signal
= gen8_xcs_signal
;
2875 GEN8_RING_SEMAPHORE_INIT
;
2877 ring
->init_hw
= init_ring_common
;
2879 return intel_init_ring_buffer(dev
, ring
);
2882 int intel_init_blt_ring_buffer(struct drm_device
*dev
)
2884 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2885 struct intel_engine_cs
*ring
= &dev_priv
->ring
[BCS
];
2887 ring
->name
= "blitter ring";
2890 ring
->mmio_base
= BLT_RING_BASE
;
2891 ring
->write_tail
= ring_write_tail
;
2892 ring
->flush
= gen6_ring_flush
;
2893 ring
->add_request
= gen6_add_request
;
2894 ring
->get_seqno
= gen6_ring_get_seqno
;
2895 ring
->set_seqno
= ring_set_seqno
;
2896 if (INTEL_INFO(dev
)->gen
>= 8) {
2897 ring
->irq_enable_mask
=
2898 GT_RENDER_USER_INTERRUPT
<< GEN8_BCS_IRQ_SHIFT
;
2899 ring
->irq_get
= gen8_ring_get_irq
;
2900 ring
->irq_put
= gen8_ring_put_irq
;
2901 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
2902 if (i915_semaphore_is_enabled(dev
)) {
2903 ring
->semaphore
.sync_to
= gen8_ring_sync
;
2904 ring
->semaphore
.signal
= gen8_xcs_signal
;
2905 GEN8_RING_SEMAPHORE_INIT
;
2908 ring
->irq_enable_mask
= GT_BLT_USER_INTERRUPT
;
2909 ring
->irq_get
= gen6_ring_get_irq
;
2910 ring
->irq_put
= gen6_ring_put_irq
;
2911 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
2912 if (i915_semaphore_is_enabled(dev
)) {
2913 ring
->semaphore
.signal
= gen6_signal
;
2914 ring
->semaphore
.sync_to
= gen6_ring_sync
;
2916 * The current semaphore is only applied on pre-gen8
2917 * platform. And there is no VCS2 ring on the pre-gen8
2918 * platform. So the semaphore between BCS and VCS2 is
2919 * initialized as INVALID. Gen8 will initialize the
2920 * sema between BCS and VCS2 later.
2922 ring
->semaphore
.mbox
.wait
[RCS
] = MI_SEMAPHORE_SYNC_BR
;
2923 ring
->semaphore
.mbox
.wait
[VCS
] = MI_SEMAPHORE_SYNC_BV
;
2924 ring
->semaphore
.mbox
.wait
[BCS
] = MI_SEMAPHORE_SYNC_INVALID
;
2925 ring
->semaphore
.mbox
.wait
[VECS
] = MI_SEMAPHORE_SYNC_BVE
;
2926 ring
->semaphore
.mbox
.wait
[VCS2
] = MI_SEMAPHORE_SYNC_INVALID
;
2927 ring
->semaphore
.mbox
.signal
[RCS
] = GEN6_RBSYNC
;
2928 ring
->semaphore
.mbox
.signal
[VCS
] = GEN6_VBSYNC
;
2929 ring
->semaphore
.mbox
.signal
[BCS
] = GEN6_NOSYNC
;
2930 ring
->semaphore
.mbox
.signal
[VECS
] = GEN6_VEBSYNC
;
2931 ring
->semaphore
.mbox
.signal
[VCS2
] = GEN6_NOSYNC
;
2934 ring
->init_hw
= init_ring_common
;
2936 return intel_init_ring_buffer(dev
, ring
);
2939 int intel_init_vebox_ring_buffer(struct drm_device
*dev
)
2941 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2942 struct intel_engine_cs
*ring
= &dev_priv
->ring
[VECS
];
2944 ring
->name
= "video enhancement ring";
2947 ring
->mmio_base
= VEBOX_RING_BASE
;
2948 ring
->write_tail
= ring_write_tail
;
2949 ring
->flush
= gen6_ring_flush
;
2950 ring
->add_request
= gen6_add_request
;
2951 ring
->get_seqno
= gen6_ring_get_seqno
;
2952 ring
->set_seqno
= ring_set_seqno
;
2954 if (INTEL_INFO(dev
)->gen
>= 8) {
2955 ring
->irq_enable_mask
=
2956 GT_RENDER_USER_INTERRUPT
<< GEN8_VECS_IRQ_SHIFT
;
2957 ring
->irq_get
= gen8_ring_get_irq
;
2958 ring
->irq_put
= gen8_ring_put_irq
;
2959 ring
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
2960 if (i915_semaphore_is_enabled(dev
)) {
2961 ring
->semaphore
.sync_to
= gen8_ring_sync
;
2962 ring
->semaphore
.signal
= gen8_xcs_signal
;
2963 GEN8_RING_SEMAPHORE_INIT
;
2966 ring
->irq_enable_mask
= PM_VEBOX_USER_INTERRUPT
;
2967 ring
->irq_get
= hsw_vebox_get_irq
;
2968 ring
->irq_put
= hsw_vebox_put_irq
;
2969 ring
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
2970 if (i915_semaphore_is_enabled(dev
)) {
2971 ring
->semaphore
.sync_to
= gen6_ring_sync
;
2972 ring
->semaphore
.signal
= gen6_signal
;
2973 ring
->semaphore
.mbox
.wait
[RCS
] = MI_SEMAPHORE_SYNC_VER
;
2974 ring
->semaphore
.mbox
.wait
[VCS
] = MI_SEMAPHORE_SYNC_VEV
;
2975 ring
->semaphore
.mbox
.wait
[BCS
] = MI_SEMAPHORE_SYNC_VEB
;
2976 ring
->semaphore
.mbox
.wait
[VECS
] = MI_SEMAPHORE_SYNC_INVALID
;
2977 ring
->semaphore
.mbox
.wait
[VCS2
] = MI_SEMAPHORE_SYNC_INVALID
;
2978 ring
->semaphore
.mbox
.signal
[RCS
] = GEN6_RVESYNC
;
2979 ring
->semaphore
.mbox
.signal
[VCS
] = GEN6_VVESYNC
;
2980 ring
->semaphore
.mbox
.signal
[BCS
] = GEN6_BVESYNC
;
2981 ring
->semaphore
.mbox
.signal
[VECS
] = GEN6_NOSYNC
;
2982 ring
->semaphore
.mbox
.signal
[VCS2
] = GEN6_NOSYNC
;
2985 ring
->init_hw
= init_ring_common
;
2987 return intel_init_ring_buffer(dev
, ring
);
2991 intel_ring_flush_all_caches(struct drm_i915_gem_request
*req
)
2993 struct intel_engine_cs
*ring
= req
->ring
;
2996 if (!ring
->gpu_caches_dirty
)
2999 ret
= ring
->flush(req
, 0, I915_GEM_GPU_DOMAINS
);
3003 trace_i915_gem_ring_flush(req
, 0, I915_GEM_GPU_DOMAINS
);
3005 ring
->gpu_caches_dirty
= false;
3010 intel_ring_invalidate_all_caches(struct drm_i915_gem_request
*req
)
3012 struct intel_engine_cs
*ring
= req
->ring
;
3013 uint32_t flush_domains
;
3017 if (ring
->gpu_caches_dirty
)
3018 flush_domains
= I915_GEM_GPU_DOMAINS
;
3020 ret
= ring
->flush(req
, I915_GEM_GPU_DOMAINS
, flush_domains
);
3024 trace_i915_gem_ring_flush(req
, I915_GEM_GPU_DOMAINS
, flush_domains
);
3026 ring
->gpu_caches_dirty
= false;
3031 intel_stop_ring_buffer(struct intel_engine_cs
*ring
)
3035 if (!intel_ring_initialized(ring
))
3038 ret
= intel_ring_idle(ring
);
3039 if (ret
&& !i915_reset_in_progress(&to_i915(ring
->dev
)->gpu_error
))
3040 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",