2 * Copyright 2007 Dave Airlied
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drm.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
42 * NV10-NV40 tiling helpers
46 nv10_bo_update_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*reg
,
47 u32 addr
, u32 size
, u32 pitch
, u32 flags
)
49 struct nouveau_drm
*drm
= nouveau_drm(dev
);
50 int i
= reg
- drm
->tile
.reg
;
51 struct nvkm_device
*device
= nvxx_device(&drm
->device
);
52 struct nvkm_fb
*fb
= device
->fb
;
53 struct nvkm_fb_tile
*tile
= &fb
->tile
.region
[i
];
55 nouveau_fence_unref(®
->fence
);
58 nvkm_fb_tile_fini(fb
, i
, tile
);
61 nvkm_fb_tile_init(fb
, i
, addr
, size
, pitch
, flags
, tile
);
63 nvkm_fb_tile_prog(fb
, i
, tile
);
66 static struct nouveau_drm_tile
*
67 nv10_bo_get_tile_region(struct drm_device
*dev
, int i
)
69 struct nouveau_drm
*drm
= nouveau_drm(dev
);
70 struct nouveau_drm_tile
*tile
= &drm
->tile
.reg
[i
];
72 spin_lock(&drm
->tile
.lock
);
75 (!tile
->fence
|| nouveau_fence_done(tile
->fence
)))
80 spin_unlock(&drm
->tile
.lock
);
85 nv10_bo_put_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*tile
,
88 struct nouveau_drm
*drm
= nouveau_drm(dev
);
91 spin_lock(&drm
->tile
.lock
);
92 tile
->fence
= (struct nouveau_fence
*)fence_get(fence
);
94 spin_unlock(&drm
->tile
.lock
);
98 static struct nouveau_drm_tile
*
99 nv10_bo_set_tiling(struct drm_device
*dev
, u32 addr
,
100 u32 size
, u32 pitch
, u32 flags
)
102 struct nouveau_drm
*drm
= nouveau_drm(dev
);
103 struct nvkm_fb
*fb
= nvxx_fb(&drm
->device
);
104 struct nouveau_drm_tile
*tile
, *found
= NULL
;
107 for (i
= 0; i
< fb
->tile
.regions
; i
++) {
108 tile
= nv10_bo_get_tile_region(dev
, i
);
110 if (pitch
&& !found
) {
114 } else if (tile
&& fb
->tile
.region
[i
].pitch
) {
115 /* Kill an unused tile region. */
116 nv10_bo_update_tile_region(dev
, tile
, 0, 0, 0, 0);
119 nv10_bo_put_tile_region(dev
, tile
, NULL
);
123 nv10_bo_update_tile_region(dev
, found
, addr
, size
,
129 nouveau_bo_del_ttm(struct ttm_buffer_object
*bo
)
131 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
132 struct drm_device
*dev
= drm
->dev
;
133 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
135 if (unlikely(nvbo
->gem
.filp
))
136 DRM_ERROR("bo %p still attached to GEM object\n", bo
);
137 WARN_ON(nvbo
->pin_refcnt
> 0);
138 nv10_bo_put_tile_region(dev
, nvbo
->tile
, NULL
);
143 nouveau_bo_fixup_align(struct nouveau_bo
*nvbo
, u32 flags
,
144 int *align
, int *size
)
146 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
147 struct nvif_device
*device
= &drm
->device
;
149 if (device
->info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
150 if (nvbo
->tile_mode
) {
151 if (device
->info
.chipset
>= 0x40) {
153 *size
= roundup(*size
, 64 * nvbo
->tile_mode
);
155 } else if (device
->info
.chipset
>= 0x30) {
157 *size
= roundup(*size
, 64 * nvbo
->tile_mode
);
159 } else if (device
->info
.chipset
>= 0x20) {
161 *size
= roundup(*size
, 64 * nvbo
->tile_mode
);
163 } else if (device
->info
.chipset
>= 0x10) {
165 *size
= roundup(*size
, 32 * nvbo
->tile_mode
);
169 *size
= roundup(*size
, (1 << nvbo
->page_shift
));
170 *align
= max((1 << nvbo
->page_shift
), *align
);
173 *size
= roundup(*size
, PAGE_SIZE
);
177 nouveau_bo_new(struct drm_device
*dev
, int size
, int align
,
178 uint32_t flags
, uint32_t tile_mode
, uint32_t tile_flags
,
179 struct sg_table
*sg
, struct reservation_object
*robj
,
180 struct nouveau_bo
**pnvbo
)
182 struct nouveau_drm
*drm
= nouveau_drm(dev
);
183 struct nouveau_bo
*nvbo
;
186 int type
= ttm_bo_type_device
;
191 lpg_shift
= drm
->client
.vm
->mmu
->lpg_shift
;
192 max_size
= INT_MAX
& ~((1 << lpg_shift
) - 1);
194 if (size
<= 0 || size
> max_size
) {
195 NV_WARN(drm
, "skipped size %x\n", (u32
)size
);
200 type
= ttm_bo_type_sg
;
202 nvbo
= kzalloc(sizeof(struct nouveau_bo
), GFP_KERNEL
);
205 INIT_LIST_HEAD(&nvbo
->head
);
206 INIT_LIST_HEAD(&nvbo
->entry
);
207 INIT_LIST_HEAD(&nvbo
->vma_list
);
208 nvbo
->tile_mode
= tile_mode
;
209 nvbo
->tile_flags
= tile_flags
;
210 nvbo
->bo
.bdev
= &drm
->ttm
.bdev
;
212 if (!nvxx_device(&drm
->device
)->func
->cpu_coherent
)
213 nvbo
->force_coherent
= flags
& TTM_PL_FLAG_UNCACHED
;
215 nvbo
->page_shift
= 12;
216 if (drm
->client
.vm
) {
217 if (!(flags
& TTM_PL_FLAG_TT
) && size
> 256 * 1024)
218 nvbo
->page_shift
= drm
->client
.vm
->mmu
->lpg_shift
;
221 nouveau_bo_fixup_align(nvbo
, flags
, &align
, &size
);
222 nvbo
->bo
.mem
.num_pages
= size
>> PAGE_SHIFT
;
223 nouveau_bo_placement_set(nvbo
, flags
, 0);
225 acc_size
= ttm_bo_dma_acc_size(&drm
->ttm
.bdev
, size
,
226 sizeof(struct nouveau_bo
));
228 ret
= ttm_bo_init(&drm
->ttm
.bdev
, &nvbo
->bo
, size
,
229 type
, &nvbo
->placement
,
230 align
>> PAGE_SHIFT
, false, NULL
, acc_size
, sg
,
231 robj
, nouveau_bo_del_ttm
);
233 /* ttm will call nouveau_bo_del_ttm if it fails.. */
242 set_placement_list(struct ttm_place
*pl
, unsigned *n
, uint32_t type
, uint32_t flags
)
246 if (type
& TTM_PL_FLAG_VRAM
)
247 pl
[(*n
)++].flags
= TTM_PL_FLAG_VRAM
| flags
;
248 if (type
& TTM_PL_FLAG_TT
)
249 pl
[(*n
)++].flags
= TTM_PL_FLAG_TT
| flags
;
250 if (type
& TTM_PL_FLAG_SYSTEM
)
251 pl
[(*n
)++].flags
= TTM_PL_FLAG_SYSTEM
| flags
;
255 set_placement_range(struct nouveau_bo
*nvbo
, uint32_t type
)
257 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
258 u32 vram_pages
= drm
->device
.info
.ram_size
>> PAGE_SHIFT
;
259 unsigned i
, fpfn
, lpfn
;
261 if (drm
->device
.info
.family
== NV_DEVICE_INFO_V0_CELSIUS
&&
262 nvbo
->tile_mode
&& (type
& TTM_PL_FLAG_VRAM
) &&
263 nvbo
->bo
.mem
.num_pages
< vram_pages
/ 4) {
265 * Make sure that the color and depth buffers are handled
266 * by independent memory controller units. Up to a 9x
267 * speed up when alpha-blending and depth-test are enabled
270 if (nvbo
->tile_flags
& NOUVEAU_GEM_TILE_ZETA
) {
271 fpfn
= vram_pages
/ 2;
275 lpfn
= vram_pages
/ 2;
277 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
278 nvbo
->placements
[i
].fpfn
= fpfn
;
279 nvbo
->placements
[i
].lpfn
= lpfn
;
281 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
282 nvbo
->busy_placements
[i
].fpfn
= fpfn
;
283 nvbo
->busy_placements
[i
].lpfn
= lpfn
;
289 nouveau_bo_placement_set(struct nouveau_bo
*nvbo
, uint32_t type
, uint32_t busy
)
291 struct ttm_placement
*pl
= &nvbo
->placement
;
292 uint32_t flags
= (nvbo
->force_coherent
? TTM_PL_FLAG_UNCACHED
:
293 TTM_PL_MASK_CACHING
) |
294 (nvbo
->pin_refcnt
? TTM_PL_FLAG_NO_EVICT
: 0);
296 pl
->placement
= nvbo
->placements
;
297 set_placement_list(nvbo
->placements
, &pl
->num_placement
,
300 pl
->busy_placement
= nvbo
->busy_placements
;
301 set_placement_list(nvbo
->busy_placements
, &pl
->num_busy_placement
,
304 set_placement_range(nvbo
, type
);
308 nouveau_bo_pin(struct nouveau_bo
*nvbo
, uint32_t memtype
, bool contig
)
310 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
311 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
312 bool force
= false, evict
= false;
315 ret
= ttm_bo_reserve(bo
, false, false, false, NULL
);
319 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
&&
320 memtype
== TTM_PL_FLAG_VRAM
&& contig
) {
321 if (nvbo
->tile_flags
& NOUVEAU_GEM_TILE_NONCONTIG
) {
322 if (bo
->mem
.mem_type
== TTM_PL_VRAM
) {
323 struct nvkm_mem
*mem
= bo
->mem
.mm_node
;
324 if (!list_is_singular(&mem
->regions
))
327 nvbo
->tile_flags
&= ~NOUVEAU_GEM_TILE_NONCONTIG
;
332 if (nvbo
->pin_refcnt
) {
333 if (!(memtype
& (1 << bo
->mem
.mem_type
)) || evict
) {
334 NV_ERROR(drm
, "bo %p pinned elsewhere: "
335 "0x%08x vs 0x%08x\n", bo
,
336 1 << bo
->mem
.mem_type
, memtype
);
344 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
, 0);
345 ret
= nouveau_bo_validate(nvbo
, false, false);
351 nouveau_bo_placement_set(nvbo
, memtype
, 0);
353 /* drop pin_refcnt temporarily, so we don't trip the assertion
354 * in nouveau_bo_move() that makes sure we're not trying to
355 * move a pinned buffer
358 ret
= nouveau_bo_validate(nvbo
, false, false);
363 switch (bo
->mem
.mem_type
) {
365 drm
->gem
.vram_available
-= bo
->mem
.size
;
368 drm
->gem
.gart_available
-= bo
->mem
.size
;
376 nvbo
->tile_flags
|= NOUVEAU_GEM_TILE_NONCONTIG
;
377 ttm_bo_unreserve(bo
);
382 nouveau_bo_unpin(struct nouveau_bo
*nvbo
)
384 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
385 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
388 ret
= ttm_bo_reserve(bo
, false, false, false, NULL
);
392 ref
= --nvbo
->pin_refcnt
;
393 WARN_ON_ONCE(ref
< 0);
397 nouveau_bo_placement_set(nvbo
, bo
->mem
.placement
, 0);
399 ret
= nouveau_bo_validate(nvbo
, false, false);
401 switch (bo
->mem
.mem_type
) {
403 drm
->gem
.vram_available
+= bo
->mem
.size
;
406 drm
->gem
.gart_available
+= bo
->mem
.size
;
414 ttm_bo_unreserve(bo
);
419 nouveau_bo_map(struct nouveau_bo
*nvbo
)
423 ret
= ttm_bo_reserve(&nvbo
->bo
, false, false, false, NULL
);
428 * TTM buffers allocated using the DMA API already have a mapping, let's
431 if (!nvbo
->force_coherent
)
432 ret
= ttm_bo_kmap(&nvbo
->bo
, 0, nvbo
->bo
.mem
.num_pages
,
435 ttm_bo_unreserve(&nvbo
->bo
);
440 nouveau_bo_unmap(struct nouveau_bo
*nvbo
)
446 * TTM buffers allocated using the DMA API already had a coherent
447 * mapping which we used, no need to unmap.
449 if (!nvbo
->force_coherent
)
450 ttm_bo_kunmap(&nvbo
->kmap
);
454 nouveau_bo_sync_for_device(struct nouveau_bo
*nvbo
)
456 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
457 struct nvkm_device
*device
= nvxx_device(&drm
->device
);
458 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
464 /* Don't waste time looping if the object is coherent */
465 if (nvbo
->force_coherent
)
468 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
469 dma_sync_single_for_device(device
->dev
, ttm_dma
->dma_address
[i
],
470 PAGE_SIZE
, DMA_TO_DEVICE
);
474 nouveau_bo_sync_for_cpu(struct nouveau_bo
*nvbo
)
476 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
477 struct nvkm_device
*device
= nvxx_device(&drm
->device
);
478 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
484 /* Don't waste time looping if the object is coherent */
485 if (nvbo
->force_coherent
)
488 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
489 dma_sync_single_for_cpu(device
->dev
, ttm_dma
->dma_address
[i
],
490 PAGE_SIZE
, DMA_FROM_DEVICE
);
494 nouveau_bo_validate(struct nouveau_bo
*nvbo
, bool interruptible
,
499 ret
= ttm_bo_validate(&nvbo
->bo
, &nvbo
->placement
,
500 interruptible
, no_wait_gpu
);
504 nouveau_bo_sync_for_device(nvbo
);
510 _nouveau_bo_mem_index(struct nouveau_bo
*nvbo
, unsigned index
, void *mem
, u8 sz
)
512 struct ttm_dma_tt
*dma_tt
;
518 /* kmap'd address, return the corresponding offset */
521 /* DMA-API mapping, lookup the right address */
522 dma_tt
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
523 m
= dma_tt
->cpu_address
[index
/ PAGE_SIZE
];
524 m
+= index
% PAGE_SIZE
;
529 #define nouveau_bo_mem_index(o, i, m) _nouveau_bo_mem_index(o, i, m, sizeof(*m))
532 nouveau_bo_wr16(struct nouveau_bo
*nvbo
, unsigned index
, u16 val
)
535 u16
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
537 mem
= nouveau_bo_mem_index(nvbo
, index
, mem
);
540 iowrite16_native(val
, (void __force __iomem
*)mem
);
546 nouveau_bo_rd32(struct nouveau_bo
*nvbo
, unsigned index
)
549 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
551 mem
= nouveau_bo_mem_index(nvbo
, index
, mem
);
554 return ioread32_native((void __force __iomem
*)mem
);
560 nouveau_bo_wr32(struct nouveau_bo
*nvbo
, unsigned index
, u32 val
)
563 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
565 mem
= nouveau_bo_mem_index(nvbo
, index
, mem
);
568 iowrite32_native(val
, (void __force __iomem
*)mem
);
573 static struct ttm_tt
*
574 nouveau_ttm_tt_create(struct ttm_bo_device
*bdev
, unsigned long size
,
575 uint32_t page_flags
, struct page
*dummy_read
)
577 #if IS_ENABLED(CONFIG_AGP)
578 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
580 if (drm
->agp
.bridge
) {
581 return ttm_agp_tt_create(bdev
, drm
->agp
.bridge
, size
,
582 page_flags
, dummy_read
);
586 return nouveau_sgdma_create_ttm(bdev
, size
, page_flags
, dummy_read
);
590 nouveau_bo_invalidate_caches(struct ttm_bo_device
*bdev
, uint32_t flags
)
592 /* We'll do this from user space. */
597 nouveau_bo_init_mem_type(struct ttm_bo_device
*bdev
, uint32_t type
,
598 struct ttm_mem_type_manager
*man
)
600 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
604 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
605 man
->available_caching
= TTM_PL_MASK_CACHING
;
606 man
->default_caching
= TTM_PL_FLAG_CACHED
;
609 man
->flags
= TTM_MEMTYPE_FLAG_FIXED
|
610 TTM_MEMTYPE_FLAG_MAPPABLE
;
611 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
613 man
->default_caching
= TTM_PL_FLAG_WC
;
615 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
616 /* Some BARs do not support being ioremapped WC */
617 if (nvxx_bar(&drm
->device
)->iomap_uncached
) {
618 man
->available_caching
= TTM_PL_FLAG_UNCACHED
;
619 man
->default_caching
= TTM_PL_FLAG_UNCACHED
;
622 man
->func
= &nouveau_vram_manager
;
623 man
->io_reserve_fastpath
= false;
624 man
->use_io_reserve_lru
= true;
626 man
->func
= &ttm_bo_manager_func
;
630 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
)
631 man
->func
= &nouveau_gart_manager
;
633 if (!drm
->agp
.bridge
)
634 man
->func
= &nv04_gart_manager
;
636 man
->func
= &ttm_bo_manager_func
;
638 if (drm
->agp
.bridge
) {
639 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
640 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
642 man
->default_caching
= TTM_PL_FLAG_WC
;
644 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
|
645 TTM_MEMTYPE_FLAG_CMA
;
646 man
->available_caching
= TTM_PL_MASK_CACHING
;
647 man
->default_caching
= TTM_PL_FLAG_CACHED
;
658 nouveau_bo_evict_flags(struct ttm_buffer_object
*bo
, struct ttm_placement
*pl
)
660 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
662 switch (bo
->mem
.mem_type
) {
664 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
,
668 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_SYSTEM
, 0);
672 *pl
= nvbo
->placement
;
677 nve0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
679 int ret
= RING_SPACE(chan
, 2);
681 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
682 OUT_RING (chan
, handle
& 0x0000ffff);
689 nve0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
690 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
692 struct nvkm_mem
*node
= old_mem
->mm_node
;
693 int ret
= RING_SPACE(chan
, 10);
695 BEGIN_NVC0(chan
, NvSubCopy
, 0x0400, 8);
696 OUT_RING (chan
, upper_32_bits(node
->vma
[0].offset
));
697 OUT_RING (chan
, lower_32_bits(node
->vma
[0].offset
));
698 OUT_RING (chan
, upper_32_bits(node
->vma
[1].offset
));
699 OUT_RING (chan
, lower_32_bits(node
->vma
[1].offset
));
700 OUT_RING (chan
, PAGE_SIZE
);
701 OUT_RING (chan
, PAGE_SIZE
);
702 OUT_RING (chan
, PAGE_SIZE
);
703 OUT_RING (chan
, new_mem
->num_pages
);
704 BEGIN_IMC0(chan
, NvSubCopy
, 0x0300, 0x0386);
710 nvc0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
712 int ret
= RING_SPACE(chan
, 2);
714 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
715 OUT_RING (chan
, handle
);
721 nvc0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
722 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
724 struct nvkm_mem
*node
= old_mem
->mm_node
;
725 u64 src_offset
= node
->vma
[0].offset
;
726 u64 dst_offset
= node
->vma
[1].offset
;
727 u32 page_count
= new_mem
->num_pages
;
730 page_count
= new_mem
->num_pages
;
732 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
734 ret
= RING_SPACE(chan
, 11);
738 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 8);
739 OUT_RING (chan
, upper_32_bits(src_offset
));
740 OUT_RING (chan
, lower_32_bits(src_offset
));
741 OUT_RING (chan
, upper_32_bits(dst_offset
));
742 OUT_RING (chan
, lower_32_bits(dst_offset
));
743 OUT_RING (chan
, PAGE_SIZE
);
744 OUT_RING (chan
, PAGE_SIZE
);
745 OUT_RING (chan
, PAGE_SIZE
);
746 OUT_RING (chan
, line_count
);
747 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
748 OUT_RING (chan
, 0x00000110);
750 page_count
-= line_count
;
751 src_offset
+= (PAGE_SIZE
* line_count
);
752 dst_offset
+= (PAGE_SIZE
* line_count
);
759 nvc0_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
760 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
762 struct nvkm_mem
*node
= old_mem
->mm_node
;
763 u64 src_offset
= node
->vma
[0].offset
;
764 u64 dst_offset
= node
->vma
[1].offset
;
765 u32 page_count
= new_mem
->num_pages
;
768 page_count
= new_mem
->num_pages
;
770 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
772 ret
= RING_SPACE(chan
, 12);
776 BEGIN_NVC0(chan
, NvSubCopy
, 0x0238, 2);
777 OUT_RING (chan
, upper_32_bits(dst_offset
));
778 OUT_RING (chan
, lower_32_bits(dst_offset
));
779 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 6);
780 OUT_RING (chan
, upper_32_bits(src_offset
));
781 OUT_RING (chan
, lower_32_bits(src_offset
));
782 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
783 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
784 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
785 OUT_RING (chan
, line_count
);
786 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
787 OUT_RING (chan
, 0x00100110);
789 page_count
-= line_count
;
790 src_offset
+= (PAGE_SIZE
* line_count
);
791 dst_offset
+= (PAGE_SIZE
* line_count
);
798 nva3_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
799 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
801 struct nvkm_mem
*node
= old_mem
->mm_node
;
802 u64 src_offset
= node
->vma
[0].offset
;
803 u64 dst_offset
= node
->vma
[1].offset
;
804 u32 page_count
= new_mem
->num_pages
;
807 page_count
= new_mem
->num_pages
;
809 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
811 ret
= RING_SPACE(chan
, 11);
815 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
816 OUT_RING (chan
, upper_32_bits(src_offset
));
817 OUT_RING (chan
, lower_32_bits(src_offset
));
818 OUT_RING (chan
, upper_32_bits(dst_offset
));
819 OUT_RING (chan
, lower_32_bits(dst_offset
));
820 OUT_RING (chan
, PAGE_SIZE
);
821 OUT_RING (chan
, PAGE_SIZE
);
822 OUT_RING (chan
, PAGE_SIZE
);
823 OUT_RING (chan
, line_count
);
824 BEGIN_NV04(chan
, NvSubCopy
, 0x0300, 1);
825 OUT_RING (chan
, 0x00000110);
827 page_count
-= line_count
;
828 src_offset
+= (PAGE_SIZE
* line_count
);
829 dst_offset
+= (PAGE_SIZE
* line_count
);
836 nv98_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
837 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
839 struct nvkm_mem
*node
= old_mem
->mm_node
;
840 int ret
= RING_SPACE(chan
, 7);
842 BEGIN_NV04(chan
, NvSubCopy
, 0x0320, 6);
843 OUT_RING (chan
, upper_32_bits(node
->vma
[0].offset
));
844 OUT_RING (chan
, lower_32_bits(node
->vma
[0].offset
));
845 OUT_RING (chan
, upper_32_bits(node
->vma
[1].offset
));
846 OUT_RING (chan
, lower_32_bits(node
->vma
[1].offset
));
847 OUT_RING (chan
, 0x00000000 /* COPY */);
848 OUT_RING (chan
, new_mem
->num_pages
<< PAGE_SHIFT
);
854 nv84_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
855 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
857 struct nvkm_mem
*node
= old_mem
->mm_node
;
858 int ret
= RING_SPACE(chan
, 7);
860 BEGIN_NV04(chan
, NvSubCopy
, 0x0304, 6);
861 OUT_RING (chan
, new_mem
->num_pages
<< PAGE_SHIFT
);
862 OUT_RING (chan
, upper_32_bits(node
->vma
[0].offset
));
863 OUT_RING (chan
, lower_32_bits(node
->vma
[0].offset
));
864 OUT_RING (chan
, upper_32_bits(node
->vma
[1].offset
));
865 OUT_RING (chan
, lower_32_bits(node
->vma
[1].offset
));
866 OUT_RING (chan
, 0x00000000 /* MODE_COPY, QUERY_NONE */);
872 nv50_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
874 int ret
= RING_SPACE(chan
, 6);
876 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
877 OUT_RING (chan
, handle
);
878 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 3);
879 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
880 OUT_RING (chan
, chan
->vram
.handle
);
881 OUT_RING (chan
, chan
->vram
.handle
);
888 nv50_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
889 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
891 struct nvkm_mem
*node
= old_mem
->mm_node
;
892 u64 length
= (new_mem
->num_pages
<< PAGE_SHIFT
);
893 u64 src_offset
= node
->vma
[0].offset
;
894 u64 dst_offset
= node
->vma
[1].offset
;
895 int src_tiled
= !!node
->memtype
;
896 int dst_tiled
= !!((struct nvkm_mem
*)new_mem
->mm_node
)->memtype
;
900 u32 amount
, stride
, height
;
902 ret
= RING_SPACE(chan
, 18 + 6 * (src_tiled
+ dst_tiled
));
906 amount
= min(length
, (u64
)(4 * 1024 * 1024));
908 height
= amount
/ stride
;
911 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 7);
914 OUT_RING (chan
, stride
);
915 OUT_RING (chan
, height
);
920 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 1);
924 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 7);
927 OUT_RING (chan
, stride
);
928 OUT_RING (chan
, height
);
933 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 1);
937 BEGIN_NV04(chan
, NvSubCopy
, 0x0238, 2);
938 OUT_RING (chan
, upper_32_bits(src_offset
));
939 OUT_RING (chan
, upper_32_bits(dst_offset
));
940 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
941 OUT_RING (chan
, lower_32_bits(src_offset
));
942 OUT_RING (chan
, lower_32_bits(dst_offset
));
943 OUT_RING (chan
, stride
);
944 OUT_RING (chan
, stride
);
945 OUT_RING (chan
, stride
);
946 OUT_RING (chan
, height
);
947 OUT_RING (chan
, 0x00000101);
948 OUT_RING (chan
, 0x00000000);
949 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
953 src_offset
+= amount
;
954 dst_offset
+= amount
;
961 nv04_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
963 int ret
= RING_SPACE(chan
, 4);
965 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
966 OUT_RING (chan
, handle
);
967 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 1);
968 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
974 static inline uint32_t
975 nouveau_bo_mem_ctxdma(struct ttm_buffer_object
*bo
,
976 struct nouveau_channel
*chan
, struct ttm_mem_reg
*mem
)
978 if (mem
->mem_type
== TTM_PL_TT
)
980 return chan
->vram
.handle
;
984 nv04_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
985 struct ttm_mem_reg
*old_mem
, struct ttm_mem_reg
*new_mem
)
987 u32 src_offset
= old_mem
->start
<< PAGE_SHIFT
;
988 u32 dst_offset
= new_mem
->start
<< PAGE_SHIFT
;
989 u32 page_count
= new_mem
->num_pages
;
992 ret
= RING_SPACE(chan
, 3);
996 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE
, 2);
997 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, old_mem
));
998 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, new_mem
));
1000 page_count
= new_mem
->num_pages
;
1001 while (page_count
) {
1002 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
1004 ret
= RING_SPACE(chan
, 11);
1008 BEGIN_NV04(chan
, NvSubCopy
,
1009 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN
, 8);
1010 OUT_RING (chan
, src_offset
);
1011 OUT_RING (chan
, dst_offset
);
1012 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
1013 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
1014 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
1015 OUT_RING (chan
, line_count
);
1016 OUT_RING (chan
, 0x00000101);
1017 OUT_RING (chan
, 0x00000000);
1018 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
1021 page_count
-= line_count
;
1022 src_offset
+= (PAGE_SIZE
* line_count
);
1023 dst_offset
+= (PAGE_SIZE
* line_count
);
1030 nouveau_bo_move_prep(struct nouveau_drm
*drm
, struct ttm_buffer_object
*bo
,
1031 struct ttm_mem_reg
*mem
)
1033 struct nvkm_mem
*old_node
= bo
->mem
.mm_node
;
1034 struct nvkm_mem
*new_node
= mem
->mm_node
;
1035 u64 size
= (u64
)mem
->num_pages
<< PAGE_SHIFT
;
1038 ret
= nvkm_vm_get(drm
->client
.vm
, size
, old_node
->page_shift
,
1039 NV_MEM_ACCESS_RW
, &old_node
->vma
[0]);
1043 ret
= nvkm_vm_get(drm
->client
.vm
, size
, new_node
->page_shift
,
1044 NV_MEM_ACCESS_RW
, &old_node
->vma
[1]);
1046 nvkm_vm_put(&old_node
->vma
[0]);
1050 nvkm_vm_map(&old_node
->vma
[0], old_node
);
1051 nvkm_vm_map(&old_node
->vma
[1], new_node
);
1056 nouveau_bo_move_m2mf(struct ttm_buffer_object
*bo
, int evict
, bool intr
,
1057 bool no_wait_gpu
, struct ttm_mem_reg
*new_mem
)
1059 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1060 struct nouveau_channel
*chan
= drm
->ttm
.chan
;
1061 struct nouveau_cli
*cli
= (void *)chan
->user
.client
;
1062 struct nouveau_fence
*fence
;
1065 /* create temporary vmas for the transfer and attach them to the
1066 * old nvkm_mem node, these will get cleaned up after ttm has
1067 * destroyed the ttm_mem_reg
1069 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
1070 ret
= nouveau_bo_move_prep(drm
, bo
, new_mem
);
1075 mutex_lock_nested(&cli
->mutex
, SINGLE_DEPTH_NESTING
);
1076 ret
= nouveau_fence_sync(nouveau_bo(bo
), chan
, true, intr
);
1078 ret
= drm
->ttm
.move(chan
, bo
, &bo
->mem
, new_mem
);
1080 ret
= nouveau_fence_new(chan
, false, &fence
);
1082 ret
= ttm_bo_move_accel_cleanup(bo
,
1087 nouveau_fence_unref(&fence
);
1091 mutex_unlock(&cli
->mutex
);
1096 nouveau_bo_move_init(struct nouveau_drm
*drm
)
1098 static const struct {
1102 int (*exec
)(struct nouveau_channel
*,
1103 struct ttm_buffer_object
*,
1104 struct ttm_mem_reg
*, struct ttm_mem_reg
*);
1105 int (*init
)(struct nouveau_channel
*, u32 handle
);
1107 { "COPY", 4, 0xb0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1108 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1109 { "COPY", 4, 0xa0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1110 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1111 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1112 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1113 { "COPY", 0, 0x85b5, nva3_bo_move_copy
, nv50_bo_move_init
},
1114 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec
, nv50_bo_move_init
},
1115 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf
, nvc0_bo_move_init
},
1116 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf
, nv50_bo_move_init
},
1117 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf
, nv04_bo_move_init
},
1119 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec
, nv50_bo_move_init
},
1120 }, *mthd
= _methods
;
1121 const char *name
= "CPU";
1125 struct nouveau_channel
*chan
;
1130 chan
= drm
->channel
;
1134 ret
= nvif_object_init(&chan
->user
,
1135 mthd
->oclass
| (mthd
->engine
<< 16),
1136 mthd
->oclass
, NULL
, 0,
1139 ret
= mthd
->init(chan
, drm
->ttm
.copy
.handle
);
1141 nvif_object_fini(&drm
->ttm
.copy
);
1145 drm
->ttm
.move
= mthd
->exec
;
1146 drm
->ttm
.chan
= chan
;
1150 } while ((++mthd
)->exec
);
1152 NV_INFO(drm
, "MM: using %s for buffer copies\n", name
);
1156 nouveau_bo_move_flipd(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1157 bool no_wait_gpu
, struct ttm_mem_reg
*new_mem
)
1159 struct ttm_place placement_memtype
= {
1162 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1164 struct ttm_placement placement
;
1165 struct ttm_mem_reg tmp_mem
;
1168 placement
.num_placement
= placement
.num_busy_placement
= 1;
1169 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1172 tmp_mem
.mm_node
= NULL
;
1173 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_mem
, intr
, no_wait_gpu
);
1177 ret
= ttm_tt_bind(bo
->ttm
, &tmp_mem
);
1181 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, &tmp_mem
);
1185 ret
= ttm_bo_move_ttm(bo
, true, no_wait_gpu
, new_mem
);
1187 ttm_bo_mem_put(bo
, &tmp_mem
);
1192 nouveau_bo_move_flips(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1193 bool no_wait_gpu
, struct ttm_mem_reg
*new_mem
)
1195 struct ttm_place placement_memtype
= {
1198 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1200 struct ttm_placement placement
;
1201 struct ttm_mem_reg tmp_mem
;
1204 placement
.num_placement
= placement
.num_busy_placement
= 1;
1205 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1208 tmp_mem
.mm_node
= NULL
;
1209 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_mem
, intr
, no_wait_gpu
);
1213 ret
= ttm_bo_move_ttm(bo
, true, no_wait_gpu
, &tmp_mem
);
1217 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, new_mem
);
1222 ttm_bo_mem_put(bo
, &tmp_mem
);
1227 nouveau_bo_move_ntfy(struct ttm_buffer_object
*bo
, struct ttm_mem_reg
*new_mem
)
1229 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1230 struct nvkm_vma
*vma
;
1232 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1233 if (bo
->destroy
!= nouveau_bo_del_ttm
)
1236 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1237 if (new_mem
&& new_mem
->mem_type
!= TTM_PL_SYSTEM
&&
1238 (new_mem
->mem_type
== TTM_PL_VRAM
||
1239 nvbo
->page_shift
!= vma
->vm
->mmu
->lpg_shift
)) {
1240 nvkm_vm_map(vma
, new_mem
->mm_node
);
1248 nouveau_bo_vm_bind(struct ttm_buffer_object
*bo
, struct ttm_mem_reg
*new_mem
,
1249 struct nouveau_drm_tile
**new_tile
)
1251 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1252 struct drm_device
*dev
= drm
->dev
;
1253 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1254 u64 offset
= new_mem
->start
<< PAGE_SHIFT
;
1257 if (new_mem
->mem_type
!= TTM_PL_VRAM
)
1260 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
) {
1261 *new_tile
= nv10_bo_set_tiling(dev
, offset
, new_mem
->size
,
1270 nouveau_bo_vm_cleanup(struct ttm_buffer_object
*bo
,
1271 struct nouveau_drm_tile
*new_tile
,
1272 struct nouveau_drm_tile
**old_tile
)
1274 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1275 struct drm_device
*dev
= drm
->dev
;
1276 struct fence
*fence
= reservation_object_get_excl(bo
->resv
);
1278 nv10_bo_put_tile_region(dev
, *old_tile
, fence
);
1279 *old_tile
= new_tile
;
1283 nouveau_bo_move(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1284 bool no_wait_gpu
, struct ttm_mem_reg
*new_mem
)
1286 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1287 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1288 struct ttm_mem_reg
*old_mem
= &bo
->mem
;
1289 struct nouveau_drm_tile
*new_tile
= NULL
;
1292 if (nvbo
->pin_refcnt
)
1293 NV_WARN(drm
, "Moving pinned object %p!\n", nvbo
);
1295 if (drm
->device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1296 ret
= nouveau_bo_vm_bind(bo
, new_mem
, &new_tile
);
1302 if (old_mem
->mem_type
== TTM_PL_SYSTEM
&& !bo
->ttm
) {
1303 BUG_ON(bo
->mem
.mm_node
!= NULL
);
1305 new_mem
->mm_node
= NULL
;
1309 /* Hardware assisted copy. */
1310 if (drm
->ttm
.move
) {
1311 if (new_mem
->mem_type
== TTM_PL_SYSTEM
)
1312 ret
= nouveau_bo_move_flipd(bo
, evict
, intr
,
1313 no_wait_gpu
, new_mem
);
1314 else if (old_mem
->mem_type
== TTM_PL_SYSTEM
)
1315 ret
= nouveau_bo_move_flips(bo
, evict
, intr
,
1316 no_wait_gpu
, new_mem
);
1318 ret
= nouveau_bo_move_m2mf(bo
, evict
, intr
,
1319 no_wait_gpu
, new_mem
);
1324 /* Fallback to software copy. */
1325 ret
= ttm_bo_wait(bo
, true, intr
, no_wait_gpu
);
1327 ret
= ttm_bo_move_memcpy(bo
, evict
, no_wait_gpu
, new_mem
);
1330 if (drm
->device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1332 nouveau_bo_vm_cleanup(bo
, NULL
, &new_tile
);
1334 nouveau_bo_vm_cleanup(bo
, new_tile
, &nvbo
->tile
);
1341 nouveau_bo_verify_access(struct ttm_buffer_object
*bo
, struct file
*filp
)
1343 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1345 return drm_vma_node_verify_access(&nvbo
->gem
.vma_node
, filp
);
1349 nouveau_ttm_io_mem_reserve(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*mem
)
1351 struct ttm_mem_type_manager
*man
= &bdev
->man
[mem
->mem_type
];
1352 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1353 struct nvkm_device
*device
= nvxx_device(&drm
->device
);
1354 struct nvkm_mem
*node
= mem
->mm_node
;
1357 mem
->bus
.addr
= NULL
;
1358 mem
->bus
.offset
= 0;
1359 mem
->bus
.size
= mem
->num_pages
<< PAGE_SHIFT
;
1361 mem
->bus
.is_iomem
= false;
1362 if (!(man
->flags
& TTM_MEMTYPE_FLAG_MAPPABLE
))
1364 switch (mem
->mem_type
) {
1369 #if IS_ENABLED(CONFIG_AGP)
1370 if (drm
->agp
.bridge
) {
1371 mem
->bus
.offset
= mem
->start
<< PAGE_SHIFT
;
1372 mem
->bus
.base
= drm
->agp
.base
;
1373 mem
->bus
.is_iomem
= !drm
->agp
.cma
;
1376 if (drm
->device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
|| !node
->memtype
)
1379 /* fallthrough, tiled memory */
1381 mem
->bus
.offset
= mem
->start
<< PAGE_SHIFT
;
1382 mem
->bus
.base
= device
->func
->resource_addr(device
, 1);
1383 mem
->bus
.is_iomem
= true;
1384 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
1385 struct nvkm_bar
*bar
= nvxx_bar(&drm
->device
);
1386 int page_shift
= 12;
1387 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_FERMI
)
1388 page_shift
= node
->page_shift
;
1390 ret
= nvkm_bar_umap(bar
, node
->size
<< 12, page_shift
,
1395 nvkm_vm_map(&node
->bar_vma
, node
);
1396 mem
->bus
.offset
= node
->bar_vma
.offset
;
1406 nouveau_ttm_io_mem_free(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*mem
)
1408 struct nvkm_mem
*node
= mem
->mm_node
;
1410 if (!node
->bar_vma
.node
)
1413 nvkm_vm_unmap(&node
->bar_vma
);
1414 nvkm_vm_put(&node
->bar_vma
);
1418 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object
*bo
)
1420 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1421 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1422 struct nvkm_device
*device
= nvxx_device(&drm
->device
);
1423 u32 mappable
= device
->func
->resource_size(device
, 1) >> PAGE_SHIFT
;
1426 /* as long as the bo isn't in vram, and isn't tiled, we've got
1427 * nothing to do here.
1429 if (bo
->mem
.mem_type
!= TTM_PL_VRAM
) {
1430 if (drm
->device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
||
1431 !nouveau_bo_tile_layout(nvbo
))
1434 if (bo
->mem
.mem_type
== TTM_PL_SYSTEM
) {
1435 nouveau_bo_placement_set(nvbo
, TTM_PL_TT
, 0);
1437 ret
= nouveau_bo_validate(nvbo
, false, false);
1444 /* make sure bo is in mappable vram */
1445 if (drm
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
||
1446 bo
->mem
.start
+ bo
->mem
.num_pages
< mappable
)
1449 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
1450 nvbo
->placements
[i
].fpfn
= 0;
1451 nvbo
->placements
[i
].lpfn
= mappable
;
1454 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
1455 nvbo
->busy_placements
[i
].fpfn
= 0;
1456 nvbo
->busy_placements
[i
].lpfn
= mappable
;
1459 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_VRAM
, 0);
1460 return nouveau_bo_validate(nvbo
, false, false);
1464 nouveau_ttm_tt_populate(struct ttm_tt
*ttm
)
1466 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1467 struct nouveau_drm
*drm
;
1468 struct nvkm_device
*device
;
1469 struct drm_device
*dev
;
1470 struct device
*pdev
;
1473 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1475 if (ttm
->state
!= tt_unpopulated
)
1478 if (slave
&& ttm
->sg
) {
1479 /* make userspace faulting work */
1480 drm_prime_sg_to_page_addr_arrays(ttm
->sg
, ttm
->pages
,
1481 ttm_dma
->dma_address
, ttm
->num_pages
);
1482 ttm
->state
= tt_unbound
;
1486 drm
= nouveau_bdev(ttm
->bdev
);
1487 device
= nvxx_device(&drm
->device
);
1492 * Objects matching this condition have been marked as force_coherent,
1493 * so use the DMA API for them.
1495 if (!nvxx_device(&drm
->device
)->func
->cpu_coherent
&&
1496 ttm
->caching_state
== tt_uncached
)
1497 return ttm_dma_populate(ttm_dma
, dev
->dev
);
1499 #if IS_ENABLED(CONFIG_AGP)
1500 if (drm
->agp
.bridge
) {
1501 return ttm_agp_tt_populate(ttm
);
1505 #ifdef CONFIG_SWIOTLB
1506 if (swiotlb_nr_tbl()) {
1507 return ttm_dma_populate((void *)ttm
, dev
->dev
);
1511 r
= ttm_pool_populate(ttm
);
1516 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1519 addr
= dma_map_page(pdev
, ttm
->pages
[i
], 0, PAGE_SIZE
,
1522 if (dma_mapping_error(pdev
, addr
)) {
1524 dma_unmap_page(pdev
, ttm_dma
->dma_address
[i
],
1525 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
1526 ttm_dma
->dma_address
[i
] = 0;
1528 ttm_pool_unpopulate(ttm
);
1532 ttm_dma
->dma_address
[i
] = addr
;
1538 nouveau_ttm_tt_unpopulate(struct ttm_tt
*ttm
)
1540 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1541 struct nouveau_drm
*drm
;
1542 struct nvkm_device
*device
;
1543 struct drm_device
*dev
;
1544 struct device
*pdev
;
1546 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1551 drm
= nouveau_bdev(ttm
->bdev
);
1552 device
= nvxx_device(&drm
->device
);
1557 * Objects matching this condition have been marked as force_coherent,
1558 * so use the DMA API for them.
1560 if (!nvxx_device(&drm
->device
)->func
->cpu_coherent
&&
1561 ttm
->caching_state
== tt_uncached
) {
1562 ttm_dma_unpopulate(ttm_dma
, dev
->dev
);
1566 #if IS_ENABLED(CONFIG_AGP)
1567 if (drm
->agp
.bridge
) {
1568 ttm_agp_tt_unpopulate(ttm
);
1573 #ifdef CONFIG_SWIOTLB
1574 if (swiotlb_nr_tbl()) {
1575 ttm_dma_unpopulate((void *)ttm
, dev
->dev
);
1580 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1581 if (ttm_dma
->dma_address
[i
]) {
1582 dma_unmap_page(pdev
, ttm_dma
->dma_address
[i
], PAGE_SIZE
,
1587 ttm_pool_unpopulate(ttm
);
1591 nouveau_bo_fence(struct nouveau_bo
*nvbo
, struct nouveau_fence
*fence
, bool exclusive
)
1593 struct reservation_object
*resv
= nvbo
->bo
.resv
;
1596 reservation_object_add_excl_fence(resv
, &fence
->base
);
1598 reservation_object_add_shared_fence(resv
, &fence
->base
);
1601 struct ttm_bo_driver nouveau_bo_driver
= {
1602 .ttm_tt_create
= &nouveau_ttm_tt_create
,
1603 .ttm_tt_populate
= &nouveau_ttm_tt_populate
,
1604 .ttm_tt_unpopulate
= &nouveau_ttm_tt_unpopulate
,
1605 .invalidate_caches
= nouveau_bo_invalidate_caches
,
1606 .init_mem_type
= nouveau_bo_init_mem_type
,
1607 .evict_flags
= nouveau_bo_evict_flags
,
1608 .move_notify
= nouveau_bo_move_ntfy
,
1609 .move
= nouveau_bo_move
,
1610 .verify_access
= nouveau_bo_verify_access
,
1611 .fault_reserve_notify
= &nouveau_ttm_fault_reserve_notify
,
1612 .io_mem_reserve
= &nouveau_ttm_io_mem_reserve
,
1613 .io_mem_free
= &nouveau_ttm_io_mem_free
,
1617 nouveau_bo_vma_find(struct nouveau_bo
*nvbo
, struct nvkm_vm
*vm
)
1619 struct nvkm_vma
*vma
;
1620 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1629 nouveau_bo_vma_add(struct nouveau_bo
*nvbo
, struct nvkm_vm
*vm
,
1630 struct nvkm_vma
*vma
)
1632 const u32 size
= nvbo
->bo
.mem
.num_pages
<< PAGE_SHIFT
;
1635 ret
= nvkm_vm_get(vm
, size
, nvbo
->page_shift
,
1636 NV_MEM_ACCESS_RW
, vma
);
1640 if ( nvbo
->bo
.mem
.mem_type
!= TTM_PL_SYSTEM
&&
1641 (nvbo
->bo
.mem
.mem_type
== TTM_PL_VRAM
||
1642 nvbo
->page_shift
!= vma
->vm
->mmu
->lpg_shift
))
1643 nvkm_vm_map(vma
, nvbo
->bo
.mem
.mm_node
);
1645 list_add_tail(&vma
->head
, &nvbo
->vma_list
);
1651 nouveau_bo_vma_del(struct nouveau_bo
*nvbo
, struct nvkm_vma
*vma
)
1654 if (nvbo
->bo
.mem
.mem_type
!= TTM_PL_SYSTEM
)
1657 list_del(&vma
->head
);