mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
[linux/fpc-iii.git] / mm / filemap.c
blob1bb007624b53e1cc086ae26d91238d6c3683d6b2
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
43 * FIXME: remove all knowledge of the buffer layer from the core VM
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 #include <asm/mman.h>
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * Lock ordering:
64 * ->i_mmap_rwsem (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
69 * ->i_mutex
70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 * ->mmap_sem
73 * ->i_mmap_rwsem
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_rwsem
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->i_mmap_rwsem
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
121 VM_BUG_ON(!PageLocked(page));
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125 if (shadow) {
126 mapping->nrshadows++;
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
133 smp_wmb();
135 mapping->nrpages--;
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
162 * Track node that only contains shadow entries.
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
176 * Delete a page from the page cache and free it. Caller has to make
177 * sure the page is locked and that nobody else uses it - or that usage
178 * is safe. The caller must hold the mapping's tree_lock and
179 * mem_cgroup_begin_page_stat().
181 void __delete_from_page_cache(struct page *page, void *shadow,
182 struct mem_cgroup *memcg)
184 struct address_space *mapping = page->mapping;
186 trace_mm_filemap_delete_from_page_cache(page);
188 * if we're uptodate, flush out into the cleancache, otherwise
189 * invalidate any existing cleancache entries. We can't leave
190 * stale data around in the cleancache once our page is gone
192 if (PageUptodate(page) && PageMappedToDisk(page))
193 cleancache_put_page(page);
194 else
195 cleancache_invalidate_page(mapping, page);
197 page_cache_tree_delete(mapping, page, shadow);
199 page->mapping = NULL;
200 /* Leave page->index set: truncation lookup relies upon it */
202 /* hugetlb pages do not participate in page cache accounting. */
203 if (!PageHuge(page))
204 __dec_zone_page_state(page, NR_FILE_PAGES);
205 if (PageSwapBacked(page))
206 __dec_zone_page_state(page, NR_SHMEM);
207 BUG_ON(page_mapped(page));
210 * At this point page must be either written or cleaned by truncate.
211 * Dirty page here signals a bug and loss of unwritten data.
213 * This fixes dirty accounting after removing the page entirely but
214 * leaves PageDirty set: it has no effect for truncated page and
215 * anyway will be cleared before returning page into buddy allocator.
217 if (WARN_ON_ONCE(PageDirty(page)))
218 account_page_cleaned(page, mapping, memcg,
219 inode_to_wb(mapping->host));
223 * delete_from_page_cache - delete page from page cache
224 * @page: the page which the kernel is trying to remove from page cache
226 * This must be called only on pages that have been verified to be in the page
227 * cache and locked. It will never put the page into the free list, the caller
228 * has a reference on the page.
230 void delete_from_page_cache(struct page *page)
232 struct address_space *mapping = page->mapping;
233 struct mem_cgroup *memcg;
234 unsigned long flags;
236 void (*freepage)(struct page *);
238 BUG_ON(!PageLocked(page));
240 freepage = mapping->a_ops->freepage;
242 memcg = mem_cgroup_begin_page_stat(page);
243 spin_lock_irqsave(&mapping->tree_lock, flags);
244 __delete_from_page_cache(page, NULL, memcg);
245 spin_unlock_irqrestore(&mapping->tree_lock, flags);
246 mem_cgroup_end_page_stat(memcg);
248 if (freepage)
249 freepage(page);
250 page_cache_release(page);
252 EXPORT_SYMBOL(delete_from_page_cache);
254 static int filemap_check_errors(struct address_space *mapping)
256 int ret = 0;
257 /* Check for outstanding write errors */
258 if (test_bit(AS_ENOSPC, &mapping->flags) &&
259 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
260 ret = -ENOSPC;
261 if (test_bit(AS_EIO, &mapping->flags) &&
262 test_and_clear_bit(AS_EIO, &mapping->flags))
263 ret = -EIO;
264 return ret;
268 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
269 * @mapping: address space structure to write
270 * @start: offset in bytes where the range starts
271 * @end: offset in bytes where the range ends (inclusive)
272 * @sync_mode: enable synchronous operation
274 * Start writeback against all of a mapping's dirty pages that lie
275 * within the byte offsets <start, end> inclusive.
277 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
278 * opposed to a regular memory cleansing writeback. The difference between
279 * these two operations is that if a dirty page/buffer is encountered, it must
280 * be waited upon, and not just skipped over.
282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
283 loff_t end, int sync_mode)
285 int ret;
286 struct writeback_control wbc = {
287 .sync_mode = sync_mode,
288 .nr_to_write = LONG_MAX,
289 .range_start = start,
290 .range_end = end,
293 if (!mapping_cap_writeback_dirty(mapping))
294 return 0;
296 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
297 ret = do_writepages(mapping, &wbc);
298 wbc_detach_inode(&wbc);
299 return ret;
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
308 int filemap_fdatawrite(struct address_space *mapping)
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 EXPORT_SYMBOL(filemap_fdatawrite);
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315 loff_t end)
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
328 int filemap_flush(struct address_space *mapping)
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 EXPORT_SYMBOL(filemap_flush);
334 static int __filemap_fdatawait_range(struct address_space *mapping,
335 loff_t start_byte, loff_t end_byte)
337 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
338 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
339 struct pagevec pvec;
340 int nr_pages;
341 int ret = 0;
343 if (end_byte < start_byte)
344 goto out;
346 pagevec_init(&pvec, 0);
347 while ((index <= end) &&
348 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
349 PAGECACHE_TAG_WRITEBACK,
350 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
351 unsigned i;
353 for (i = 0; i < nr_pages; i++) {
354 struct page *page = pvec.pages[i];
356 /* until radix tree lookup accepts end_index */
357 if (page->index > end)
358 continue;
360 wait_on_page_writeback(page);
361 if (TestClearPageError(page))
362 ret = -EIO;
364 pagevec_release(&pvec);
365 cond_resched();
367 out:
368 return ret;
372 * filemap_fdatawait_range - wait for writeback to complete
373 * @mapping: address space structure to wait for
374 * @start_byte: offset in bytes where the range starts
375 * @end_byte: offset in bytes where the range ends (inclusive)
377 * Walk the list of under-writeback pages of the given address space
378 * in the given range and wait for all of them. Check error status of
379 * the address space and return it.
381 * Since the error status of the address space is cleared by this function,
382 * callers are responsible for checking the return value and handling and/or
383 * reporting the error.
385 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
386 loff_t end_byte)
388 int ret, ret2;
390 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
391 ret2 = filemap_check_errors(mapping);
392 if (!ret)
393 ret = ret2;
395 return ret;
397 EXPORT_SYMBOL(filemap_fdatawait_range);
400 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
401 * @mapping: address space structure to wait for
403 * Walk the list of under-writeback pages of the given address space
404 * and wait for all of them. Unlike filemap_fdatawait(), this function
405 * does not clear error status of the address space.
407 * Use this function if callers don't handle errors themselves. Expected
408 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
409 * fsfreeze(8)
411 void filemap_fdatawait_keep_errors(struct address_space *mapping)
413 loff_t i_size = i_size_read(mapping->host);
415 if (i_size == 0)
416 return;
418 __filemap_fdatawait_range(mapping, 0, i_size - 1);
422 * filemap_fdatawait - wait for all under-writeback pages to complete
423 * @mapping: address space structure to wait for
425 * Walk the list of under-writeback pages of the given address space
426 * and wait for all of them. Check error status of the address space
427 * and return it.
429 * Since the error status of the address space is cleared by this function,
430 * callers are responsible for checking the return value and handling and/or
431 * reporting the error.
433 int filemap_fdatawait(struct address_space *mapping)
435 loff_t i_size = i_size_read(mapping->host);
437 if (i_size == 0)
438 return 0;
440 return filemap_fdatawait_range(mapping, 0, i_size - 1);
442 EXPORT_SYMBOL(filemap_fdatawait);
444 int filemap_write_and_wait(struct address_space *mapping)
446 int err = 0;
448 if (mapping->nrpages) {
449 err = filemap_fdatawrite(mapping);
451 * Even if the above returned error, the pages may be
452 * written partially (e.g. -ENOSPC), so we wait for it.
453 * But the -EIO is special case, it may indicate the worst
454 * thing (e.g. bug) happened, so we avoid waiting for it.
456 if (err != -EIO) {
457 int err2 = filemap_fdatawait(mapping);
458 if (!err)
459 err = err2;
461 } else {
462 err = filemap_check_errors(mapping);
464 return err;
466 EXPORT_SYMBOL(filemap_write_and_wait);
469 * filemap_write_and_wait_range - write out & wait on a file range
470 * @mapping: the address_space for the pages
471 * @lstart: offset in bytes where the range starts
472 * @lend: offset in bytes where the range ends (inclusive)
474 * Write out and wait upon file offsets lstart->lend, inclusive.
476 * Note that `lend' is inclusive (describes the last byte to be written) so
477 * that this function can be used to write to the very end-of-file (end = -1).
479 int filemap_write_and_wait_range(struct address_space *mapping,
480 loff_t lstart, loff_t lend)
482 int err = 0;
484 if (mapping->nrpages) {
485 err = __filemap_fdatawrite_range(mapping, lstart, lend,
486 WB_SYNC_ALL);
487 /* See comment of filemap_write_and_wait() */
488 if (err != -EIO) {
489 int err2 = filemap_fdatawait_range(mapping,
490 lstart, lend);
491 if (!err)
492 err = err2;
494 } else {
495 err = filemap_check_errors(mapping);
497 return err;
499 EXPORT_SYMBOL(filemap_write_and_wait_range);
502 * replace_page_cache_page - replace a pagecache page with a new one
503 * @old: page to be replaced
504 * @new: page to replace with
505 * @gfp_mask: allocation mode
507 * This function replaces a page in the pagecache with a new one. On
508 * success it acquires the pagecache reference for the new page and
509 * drops it for the old page. Both the old and new pages must be
510 * locked. This function does not add the new page to the LRU, the
511 * caller must do that.
513 * The remove + add is atomic. The only way this function can fail is
514 * memory allocation failure.
516 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
518 int error;
520 VM_BUG_ON_PAGE(!PageLocked(old), old);
521 VM_BUG_ON_PAGE(!PageLocked(new), new);
522 VM_BUG_ON_PAGE(new->mapping, new);
524 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
525 if (!error) {
526 struct address_space *mapping = old->mapping;
527 void (*freepage)(struct page *);
528 struct mem_cgroup *memcg;
529 unsigned long flags;
531 pgoff_t offset = old->index;
532 freepage = mapping->a_ops->freepage;
534 page_cache_get(new);
535 new->mapping = mapping;
536 new->index = offset;
538 memcg = mem_cgroup_begin_page_stat(old);
539 spin_lock_irqsave(&mapping->tree_lock, flags);
540 __delete_from_page_cache(old, NULL, memcg);
541 error = radix_tree_insert(&mapping->page_tree, offset, new);
542 BUG_ON(error);
543 mapping->nrpages++;
546 * hugetlb pages do not participate in page cache accounting.
548 if (!PageHuge(new))
549 __inc_zone_page_state(new, NR_FILE_PAGES);
550 if (PageSwapBacked(new))
551 __inc_zone_page_state(new, NR_SHMEM);
552 spin_unlock_irqrestore(&mapping->tree_lock, flags);
553 mem_cgroup_end_page_stat(memcg);
554 mem_cgroup_replace_page(old, new);
555 radix_tree_preload_end();
556 if (freepage)
557 freepage(old);
558 page_cache_release(old);
561 return error;
563 EXPORT_SYMBOL_GPL(replace_page_cache_page);
565 static int page_cache_tree_insert(struct address_space *mapping,
566 struct page *page, void **shadowp)
568 struct radix_tree_node *node;
569 void **slot;
570 int error;
572 error = __radix_tree_create(&mapping->page_tree, page->index,
573 &node, &slot);
574 if (error)
575 return error;
576 if (*slot) {
577 void *p;
579 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
580 if (!radix_tree_exceptional_entry(p))
581 return -EEXIST;
582 if (shadowp)
583 *shadowp = p;
584 mapping->nrshadows--;
585 if (node)
586 workingset_node_shadows_dec(node);
588 radix_tree_replace_slot(slot, page);
589 mapping->nrpages++;
590 if (node) {
591 workingset_node_pages_inc(node);
593 * Don't track node that contains actual pages.
595 * Avoid acquiring the list_lru lock if already
596 * untracked. The list_empty() test is safe as
597 * node->private_list is protected by
598 * mapping->tree_lock.
600 if (!list_empty(&node->private_list))
601 list_lru_del(&workingset_shadow_nodes,
602 &node->private_list);
604 return 0;
607 static int __add_to_page_cache_locked(struct page *page,
608 struct address_space *mapping,
609 pgoff_t offset, gfp_t gfp_mask,
610 void **shadowp)
612 int huge = PageHuge(page);
613 struct mem_cgroup *memcg;
614 int error;
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
619 if (!huge) {
620 error = mem_cgroup_try_charge(page, current->mm,
621 gfp_mask, &memcg);
622 if (error)
623 return error;
626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 if (error) {
628 if (!huge)
629 mem_cgroup_cancel_charge(page, memcg);
630 return error;
633 page_cache_get(page);
634 page->mapping = mapping;
635 page->index = offset;
637 spin_lock_irq(&mapping->tree_lock);
638 error = page_cache_tree_insert(mapping, page, shadowp);
639 radix_tree_preload_end();
640 if (unlikely(error))
641 goto err_insert;
643 /* hugetlb pages do not participate in page cache accounting. */
644 if (!huge)
645 __inc_zone_page_state(page, NR_FILE_PAGES);
646 spin_unlock_irq(&mapping->tree_lock);
647 if (!huge)
648 mem_cgroup_commit_charge(page, memcg, false);
649 trace_mm_filemap_add_to_page_cache(page);
650 return 0;
651 err_insert:
652 page->mapping = NULL;
653 /* Leave page->index set: truncation relies upon it */
654 spin_unlock_irq(&mapping->tree_lock);
655 if (!huge)
656 mem_cgroup_cancel_charge(page, memcg);
657 page_cache_release(page);
658 return error;
662 * add_to_page_cache_locked - add a locked page to the pagecache
663 * @page: page to add
664 * @mapping: the page's address_space
665 * @offset: page index
666 * @gfp_mask: page allocation mode
668 * This function is used to add a page to the pagecache. It must be locked.
669 * This function does not add the page to the LRU. The caller must do that.
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 pgoff_t offset, gfp_t gfp_mask)
674 return __add_to_page_cache_locked(page, mapping, offset,
675 gfp_mask, NULL);
677 EXPORT_SYMBOL(add_to_page_cache_locked);
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 pgoff_t offset, gfp_t gfp_mask)
682 void *shadow = NULL;
683 int ret;
685 __set_page_locked(page);
686 ret = __add_to_page_cache_locked(page, mapping, offset,
687 gfp_mask, &shadow);
688 if (unlikely(ret))
689 __clear_page_locked(page);
690 else {
692 * The page might have been evicted from cache only
693 * recently, in which case it should be activated like
694 * any other repeatedly accessed page.
696 if (shadow && workingset_refault(shadow)) {
697 SetPageActive(page);
698 workingset_activation(page);
699 } else
700 ClearPageActive(page);
701 lru_cache_add(page);
703 return ret;
705 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
707 #ifdef CONFIG_NUMA
708 struct page *__page_cache_alloc(gfp_t gfp)
710 int n;
711 struct page *page;
713 if (cpuset_do_page_mem_spread()) {
714 unsigned int cpuset_mems_cookie;
715 do {
716 cpuset_mems_cookie = read_mems_allowed_begin();
717 n = cpuset_mem_spread_node();
718 page = __alloc_pages_node(n, gfp, 0);
719 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
721 return page;
723 return alloc_pages(gfp, 0);
725 EXPORT_SYMBOL(__page_cache_alloc);
726 #endif
729 * In order to wait for pages to become available there must be
730 * waitqueues associated with pages. By using a hash table of
731 * waitqueues where the bucket discipline is to maintain all
732 * waiters on the same queue and wake all when any of the pages
733 * become available, and for the woken contexts to check to be
734 * sure the appropriate page became available, this saves space
735 * at a cost of "thundering herd" phenomena during rare hash
736 * collisions.
738 wait_queue_head_t *page_waitqueue(struct page *page)
740 const struct zone *zone = page_zone(page);
742 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
744 EXPORT_SYMBOL(page_waitqueue);
746 void wait_on_page_bit(struct page *page, int bit_nr)
748 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
750 if (test_bit(bit_nr, &page->flags))
751 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
752 TASK_UNINTERRUPTIBLE);
754 EXPORT_SYMBOL(wait_on_page_bit);
756 int wait_on_page_bit_killable(struct page *page, int bit_nr)
758 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
760 if (!test_bit(bit_nr, &page->flags))
761 return 0;
763 return __wait_on_bit(page_waitqueue(page), &wait,
764 bit_wait_io, TASK_KILLABLE);
767 int wait_on_page_bit_killable_timeout(struct page *page,
768 int bit_nr, unsigned long timeout)
770 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
772 wait.key.timeout = jiffies + timeout;
773 if (!test_bit(bit_nr, &page->flags))
774 return 0;
775 return __wait_on_bit(page_waitqueue(page), &wait,
776 bit_wait_io_timeout, TASK_KILLABLE);
778 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
781 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
782 * @page: Page defining the wait queue of interest
783 * @waiter: Waiter to add to the queue
785 * Add an arbitrary @waiter to the wait queue for the nominated @page.
787 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
789 wait_queue_head_t *q = page_waitqueue(page);
790 unsigned long flags;
792 spin_lock_irqsave(&q->lock, flags);
793 __add_wait_queue(q, waiter);
794 spin_unlock_irqrestore(&q->lock, flags);
796 EXPORT_SYMBOL_GPL(add_page_wait_queue);
799 * unlock_page - unlock a locked page
800 * @page: the page
802 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
803 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
804 * mechanism between PageLocked pages and PageWriteback pages is shared.
805 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
807 * The mb is necessary to enforce ordering between the clear_bit and the read
808 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
810 void unlock_page(struct page *page)
812 VM_BUG_ON_PAGE(!PageLocked(page), page);
813 clear_bit_unlock(PG_locked, &page->flags);
814 smp_mb__after_atomic();
815 wake_up_page(page, PG_locked);
817 EXPORT_SYMBOL(unlock_page);
820 * end_page_writeback - end writeback against a page
821 * @page: the page
823 void end_page_writeback(struct page *page)
826 * TestClearPageReclaim could be used here but it is an atomic
827 * operation and overkill in this particular case. Failing to
828 * shuffle a page marked for immediate reclaim is too mild to
829 * justify taking an atomic operation penalty at the end of
830 * ever page writeback.
832 if (PageReclaim(page)) {
833 ClearPageReclaim(page);
834 rotate_reclaimable_page(page);
837 if (!test_clear_page_writeback(page))
838 BUG();
840 smp_mb__after_atomic();
841 wake_up_page(page, PG_writeback);
843 EXPORT_SYMBOL(end_page_writeback);
846 * After completing I/O on a page, call this routine to update the page
847 * flags appropriately
849 void page_endio(struct page *page, int rw, int err)
851 if (rw == READ) {
852 if (!err) {
853 SetPageUptodate(page);
854 } else {
855 ClearPageUptodate(page);
856 SetPageError(page);
858 unlock_page(page);
859 } else { /* rw == WRITE */
860 if (err) {
861 SetPageError(page);
862 if (page->mapping)
863 mapping_set_error(page->mapping, err);
865 end_page_writeback(page);
868 EXPORT_SYMBOL_GPL(page_endio);
871 * __lock_page - get a lock on the page, assuming we need to sleep to get it
872 * @page: the page to lock
874 void __lock_page(struct page *page)
876 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
878 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
879 TASK_UNINTERRUPTIBLE);
881 EXPORT_SYMBOL(__lock_page);
883 int __lock_page_killable(struct page *page)
885 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
887 return __wait_on_bit_lock(page_waitqueue(page), &wait,
888 bit_wait_io, TASK_KILLABLE);
890 EXPORT_SYMBOL_GPL(__lock_page_killable);
893 * Return values:
894 * 1 - page is locked; mmap_sem is still held.
895 * 0 - page is not locked.
896 * mmap_sem has been released (up_read()), unless flags had both
897 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
898 * which case mmap_sem is still held.
900 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
901 * with the page locked and the mmap_sem unperturbed.
903 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
904 unsigned int flags)
906 if (flags & FAULT_FLAG_ALLOW_RETRY) {
908 * CAUTION! In this case, mmap_sem is not released
909 * even though return 0.
911 if (flags & FAULT_FLAG_RETRY_NOWAIT)
912 return 0;
914 up_read(&mm->mmap_sem);
915 if (flags & FAULT_FLAG_KILLABLE)
916 wait_on_page_locked_killable(page);
917 else
918 wait_on_page_locked(page);
919 return 0;
920 } else {
921 if (flags & FAULT_FLAG_KILLABLE) {
922 int ret;
924 ret = __lock_page_killable(page);
925 if (ret) {
926 up_read(&mm->mmap_sem);
927 return 0;
929 } else
930 __lock_page(page);
931 return 1;
936 * page_cache_next_hole - find the next hole (not-present entry)
937 * @mapping: mapping
938 * @index: index
939 * @max_scan: maximum range to search
941 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
942 * lowest indexed hole.
944 * Returns: the index of the hole if found, otherwise returns an index
945 * outside of the set specified (in which case 'return - index >=
946 * max_scan' will be true). In rare cases of index wrap-around, 0 will
947 * be returned.
949 * page_cache_next_hole may be called under rcu_read_lock. However,
950 * like radix_tree_gang_lookup, this will not atomically search a
951 * snapshot of the tree at a single point in time. For example, if a
952 * hole is created at index 5, then subsequently a hole is created at
953 * index 10, page_cache_next_hole covering both indexes may return 10
954 * if called under rcu_read_lock.
956 pgoff_t page_cache_next_hole(struct address_space *mapping,
957 pgoff_t index, unsigned long max_scan)
959 unsigned long i;
961 for (i = 0; i < max_scan; i++) {
962 struct page *page;
964 page = radix_tree_lookup(&mapping->page_tree, index);
965 if (!page || radix_tree_exceptional_entry(page))
966 break;
967 index++;
968 if (index == 0)
969 break;
972 return index;
974 EXPORT_SYMBOL(page_cache_next_hole);
977 * page_cache_prev_hole - find the prev hole (not-present entry)
978 * @mapping: mapping
979 * @index: index
980 * @max_scan: maximum range to search
982 * Search backwards in the range [max(index-max_scan+1, 0), index] for
983 * the first hole.
985 * Returns: the index of the hole if found, otherwise returns an index
986 * outside of the set specified (in which case 'index - return >=
987 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
988 * will be returned.
990 * page_cache_prev_hole may be called under rcu_read_lock. However,
991 * like radix_tree_gang_lookup, this will not atomically search a
992 * snapshot of the tree at a single point in time. For example, if a
993 * hole is created at index 10, then subsequently a hole is created at
994 * index 5, page_cache_prev_hole covering both indexes may return 5 if
995 * called under rcu_read_lock.
997 pgoff_t page_cache_prev_hole(struct address_space *mapping,
998 pgoff_t index, unsigned long max_scan)
1000 unsigned long i;
1002 for (i = 0; i < max_scan; i++) {
1003 struct page *page;
1005 page = radix_tree_lookup(&mapping->page_tree, index);
1006 if (!page || radix_tree_exceptional_entry(page))
1007 break;
1008 index--;
1009 if (index == ULONG_MAX)
1010 break;
1013 return index;
1015 EXPORT_SYMBOL(page_cache_prev_hole);
1018 * find_get_entry - find and get a page cache entry
1019 * @mapping: the address_space to search
1020 * @offset: the page cache index
1022 * Looks up the page cache slot at @mapping & @offset. If there is a
1023 * page cache page, it is returned with an increased refcount.
1025 * If the slot holds a shadow entry of a previously evicted page, or a
1026 * swap entry from shmem/tmpfs, it is returned.
1028 * Otherwise, %NULL is returned.
1030 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1032 void **pagep;
1033 struct page *page;
1035 rcu_read_lock();
1036 repeat:
1037 page = NULL;
1038 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1039 if (pagep) {
1040 page = radix_tree_deref_slot(pagep);
1041 if (unlikely(!page))
1042 goto out;
1043 if (radix_tree_exception(page)) {
1044 if (radix_tree_deref_retry(page))
1045 goto repeat;
1047 * A shadow entry of a recently evicted page,
1048 * or a swap entry from shmem/tmpfs. Return
1049 * it without attempting to raise page count.
1051 goto out;
1053 if (!page_cache_get_speculative(page))
1054 goto repeat;
1057 * Has the page moved?
1058 * This is part of the lockless pagecache protocol. See
1059 * include/linux/pagemap.h for details.
1061 if (unlikely(page != *pagep)) {
1062 page_cache_release(page);
1063 goto repeat;
1066 out:
1067 rcu_read_unlock();
1069 return page;
1071 EXPORT_SYMBOL(find_get_entry);
1074 * find_lock_entry - locate, pin and lock a page cache entry
1075 * @mapping: the address_space to search
1076 * @offset: the page cache index
1078 * Looks up the page cache slot at @mapping & @offset. If there is a
1079 * page cache page, it is returned locked and with an increased
1080 * refcount.
1082 * If the slot holds a shadow entry of a previously evicted page, or a
1083 * swap entry from shmem/tmpfs, it is returned.
1085 * Otherwise, %NULL is returned.
1087 * find_lock_entry() may sleep.
1089 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1091 struct page *page;
1093 repeat:
1094 page = find_get_entry(mapping, offset);
1095 if (page && !radix_tree_exception(page)) {
1096 lock_page(page);
1097 /* Has the page been truncated? */
1098 if (unlikely(page->mapping != mapping)) {
1099 unlock_page(page);
1100 page_cache_release(page);
1101 goto repeat;
1103 VM_BUG_ON_PAGE(page->index != offset, page);
1105 return page;
1107 EXPORT_SYMBOL(find_lock_entry);
1110 * pagecache_get_page - find and get a page reference
1111 * @mapping: the address_space to search
1112 * @offset: the page index
1113 * @fgp_flags: PCG flags
1114 * @gfp_mask: gfp mask to use for the page cache data page allocation
1116 * Looks up the page cache slot at @mapping & @offset.
1118 * PCG flags modify how the page is returned.
1120 * FGP_ACCESSED: the page will be marked accessed
1121 * FGP_LOCK: Page is return locked
1122 * FGP_CREAT: If page is not present then a new page is allocated using
1123 * @gfp_mask and added to the page cache and the VM's LRU
1124 * list. The page is returned locked and with an increased
1125 * refcount. Otherwise, %NULL is returned.
1127 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1128 * if the GFP flags specified for FGP_CREAT are atomic.
1130 * If there is a page cache page, it is returned with an increased refcount.
1132 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1133 int fgp_flags, gfp_t gfp_mask)
1135 struct page *page;
1137 repeat:
1138 page = find_get_entry(mapping, offset);
1139 if (radix_tree_exceptional_entry(page))
1140 page = NULL;
1141 if (!page)
1142 goto no_page;
1144 if (fgp_flags & FGP_LOCK) {
1145 if (fgp_flags & FGP_NOWAIT) {
1146 if (!trylock_page(page)) {
1147 page_cache_release(page);
1148 return NULL;
1150 } else {
1151 lock_page(page);
1154 /* Has the page been truncated? */
1155 if (unlikely(page->mapping != mapping)) {
1156 unlock_page(page);
1157 page_cache_release(page);
1158 goto repeat;
1160 VM_BUG_ON_PAGE(page->index != offset, page);
1163 if (page && (fgp_flags & FGP_ACCESSED))
1164 mark_page_accessed(page);
1166 no_page:
1167 if (!page && (fgp_flags & FGP_CREAT)) {
1168 int err;
1169 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1170 gfp_mask |= __GFP_WRITE;
1171 if (fgp_flags & FGP_NOFS)
1172 gfp_mask &= ~__GFP_FS;
1174 page = __page_cache_alloc(gfp_mask);
1175 if (!page)
1176 return NULL;
1178 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1179 fgp_flags |= FGP_LOCK;
1181 /* Init accessed so avoid atomic mark_page_accessed later */
1182 if (fgp_flags & FGP_ACCESSED)
1183 __SetPageReferenced(page);
1185 err = add_to_page_cache_lru(page, mapping, offset,
1186 gfp_mask & GFP_RECLAIM_MASK);
1187 if (unlikely(err)) {
1188 page_cache_release(page);
1189 page = NULL;
1190 if (err == -EEXIST)
1191 goto repeat;
1195 return page;
1197 EXPORT_SYMBOL(pagecache_get_page);
1200 * find_get_entries - gang pagecache lookup
1201 * @mapping: The address_space to search
1202 * @start: The starting page cache index
1203 * @nr_entries: The maximum number of entries
1204 * @entries: Where the resulting entries are placed
1205 * @indices: The cache indices corresponding to the entries in @entries
1207 * find_get_entries() will search for and return a group of up to
1208 * @nr_entries entries in the mapping. The entries are placed at
1209 * @entries. find_get_entries() takes a reference against any actual
1210 * pages it returns.
1212 * The search returns a group of mapping-contiguous page cache entries
1213 * with ascending indexes. There may be holes in the indices due to
1214 * not-present pages.
1216 * Any shadow entries of evicted pages, or swap entries from
1217 * shmem/tmpfs, are included in the returned array.
1219 * find_get_entries() returns the number of pages and shadow entries
1220 * which were found.
1222 unsigned find_get_entries(struct address_space *mapping,
1223 pgoff_t start, unsigned int nr_entries,
1224 struct page **entries, pgoff_t *indices)
1226 void **slot;
1227 unsigned int ret = 0;
1228 struct radix_tree_iter iter;
1230 if (!nr_entries)
1231 return 0;
1233 rcu_read_lock();
1234 restart:
1235 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1236 struct page *page;
1237 repeat:
1238 page = radix_tree_deref_slot(slot);
1239 if (unlikely(!page))
1240 continue;
1241 if (radix_tree_exception(page)) {
1242 if (radix_tree_deref_retry(page))
1243 goto restart;
1245 * A shadow entry of a recently evicted page,
1246 * or a swap entry from shmem/tmpfs. Return
1247 * it without attempting to raise page count.
1249 goto export;
1251 if (!page_cache_get_speculative(page))
1252 goto repeat;
1254 /* Has the page moved? */
1255 if (unlikely(page != *slot)) {
1256 page_cache_release(page);
1257 goto repeat;
1259 export:
1260 indices[ret] = iter.index;
1261 entries[ret] = page;
1262 if (++ret == nr_entries)
1263 break;
1265 rcu_read_unlock();
1266 return ret;
1270 * find_get_pages - gang pagecache lookup
1271 * @mapping: The address_space to search
1272 * @start: The starting page index
1273 * @nr_pages: The maximum number of pages
1274 * @pages: Where the resulting pages are placed
1276 * find_get_pages() will search for and return a group of up to
1277 * @nr_pages pages in the mapping. The pages are placed at @pages.
1278 * find_get_pages() takes a reference against the returned pages.
1280 * The search returns a group of mapping-contiguous pages with ascending
1281 * indexes. There may be holes in the indices due to not-present pages.
1283 * find_get_pages() returns the number of pages which were found.
1285 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1286 unsigned int nr_pages, struct page **pages)
1288 struct radix_tree_iter iter;
1289 void **slot;
1290 unsigned ret = 0;
1292 if (unlikely(!nr_pages))
1293 return 0;
1295 rcu_read_lock();
1296 restart:
1297 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1298 struct page *page;
1299 repeat:
1300 page = radix_tree_deref_slot(slot);
1301 if (unlikely(!page))
1302 continue;
1304 if (radix_tree_exception(page)) {
1305 if (radix_tree_deref_retry(page)) {
1307 * Transient condition which can only trigger
1308 * when entry at index 0 moves out of or back
1309 * to root: none yet gotten, safe to restart.
1311 WARN_ON(iter.index);
1312 goto restart;
1315 * A shadow entry of a recently evicted page,
1316 * or a swap entry from shmem/tmpfs. Skip
1317 * over it.
1319 continue;
1322 if (!page_cache_get_speculative(page))
1323 goto repeat;
1325 /* Has the page moved? */
1326 if (unlikely(page != *slot)) {
1327 page_cache_release(page);
1328 goto repeat;
1331 pages[ret] = page;
1332 if (++ret == nr_pages)
1333 break;
1336 rcu_read_unlock();
1337 return ret;
1341 * find_get_pages_contig - gang contiguous pagecache lookup
1342 * @mapping: The address_space to search
1343 * @index: The starting page index
1344 * @nr_pages: The maximum number of pages
1345 * @pages: Where the resulting pages are placed
1347 * find_get_pages_contig() works exactly like find_get_pages(), except
1348 * that the returned number of pages are guaranteed to be contiguous.
1350 * find_get_pages_contig() returns the number of pages which were found.
1352 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1353 unsigned int nr_pages, struct page **pages)
1355 struct radix_tree_iter iter;
1356 void **slot;
1357 unsigned int ret = 0;
1359 if (unlikely(!nr_pages))
1360 return 0;
1362 rcu_read_lock();
1363 restart:
1364 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1365 struct page *page;
1366 repeat:
1367 page = radix_tree_deref_slot(slot);
1368 /* The hole, there no reason to continue */
1369 if (unlikely(!page))
1370 break;
1372 if (radix_tree_exception(page)) {
1373 if (radix_tree_deref_retry(page)) {
1375 * Transient condition which can only trigger
1376 * when entry at index 0 moves out of or back
1377 * to root: none yet gotten, safe to restart.
1379 goto restart;
1382 * A shadow entry of a recently evicted page,
1383 * or a swap entry from shmem/tmpfs. Stop
1384 * looking for contiguous pages.
1386 break;
1389 if (!page_cache_get_speculative(page))
1390 goto repeat;
1392 /* Has the page moved? */
1393 if (unlikely(page != *slot)) {
1394 page_cache_release(page);
1395 goto repeat;
1399 * must check mapping and index after taking the ref.
1400 * otherwise we can get both false positives and false
1401 * negatives, which is just confusing to the caller.
1403 if (page->mapping == NULL || page->index != iter.index) {
1404 page_cache_release(page);
1405 break;
1408 pages[ret] = page;
1409 if (++ret == nr_pages)
1410 break;
1412 rcu_read_unlock();
1413 return ret;
1415 EXPORT_SYMBOL(find_get_pages_contig);
1418 * find_get_pages_tag - find and return pages that match @tag
1419 * @mapping: the address_space to search
1420 * @index: the starting page index
1421 * @tag: the tag index
1422 * @nr_pages: the maximum number of pages
1423 * @pages: where the resulting pages are placed
1425 * Like find_get_pages, except we only return pages which are tagged with
1426 * @tag. We update @index to index the next page for the traversal.
1428 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1429 int tag, unsigned int nr_pages, struct page **pages)
1431 struct radix_tree_iter iter;
1432 void **slot;
1433 unsigned ret = 0;
1435 if (unlikely(!nr_pages))
1436 return 0;
1438 rcu_read_lock();
1439 restart:
1440 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1441 &iter, *index, tag) {
1442 struct page *page;
1443 repeat:
1444 page = radix_tree_deref_slot(slot);
1445 if (unlikely(!page))
1446 continue;
1448 if (radix_tree_exception(page)) {
1449 if (radix_tree_deref_retry(page)) {
1451 * Transient condition which can only trigger
1452 * when entry at index 0 moves out of or back
1453 * to root: none yet gotten, safe to restart.
1455 goto restart;
1458 * A shadow entry of a recently evicted page.
1460 * Those entries should never be tagged, but
1461 * this tree walk is lockless and the tags are
1462 * looked up in bulk, one radix tree node at a
1463 * time, so there is a sizable window for page
1464 * reclaim to evict a page we saw tagged.
1466 * Skip over it.
1468 continue;
1471 if (!page_cache_get_speculative(page))
1472 goto repeat;
1474 /* Has the page moved? */
1475 if (unlikely(page != *slot)) {
1476 page_cache_release(page);
1477 goto repeat;
1480 pages[ret] = page;
1481 if (++ret == nr_pages)
1482 break;
1485 rcu_read_unlock();
1487 if (ret)
1488 *index = pages[ret - 1]->index + 1;
1490 return ret;
1492 EXPORT_SYMBOL(find_get_pages_tag);
1495 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1496 * a _large_ part of the i/o request. Imagine the worst scenario:
1498 * ---R__________________________________________B__________
1499 * ^ reading here ^ bad block(assume 4k)
1501 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1502 * => failing the whole request => read(R) => read(R+1) =>
1503 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1504 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1505 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1507 * It is going insane. Fix it by quickly scaling down the readahead size.
1509 static void shrink_readahead_size_eio(struct file *filp,
1510 struct file_ra_state *ra)
1512 ra->ra_pages /= 4;
1516 * do_generic_file_read - generic file read routine
1517 * @filp: the file to read
1518 * @ppos: current file position
1519 * @iter: data destination
1520 * @written: already copied
1522 * This is a generic file read routine, and uses the
1523 * mapping->a_ops->readpage() function for the actual low-level stuff.
1525 * This is really ugly. But the goto's actually try to clarify some
1526 * of the logic when it comes to error handling etc.
1528 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1529 struct iov_iter *iter, ssize_t written)
1531 struct address_space *mapping = filp->f_mapping;
1532 struct inode *inode = mapping->host;
1533 struct file_ra_state *ra = &filp->f_ra;
1534 pgoff_t index;
1535 pgoff_t last_index;
1536 pgoff_t prev_index;
1537 unsigned long offset; /* offset into pagecache page */
1538 unsigned int prev_offset;
1539 int error = 0;
1541 index = *ppos >> PAGE_CACHE_SHIFT;
1542 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1543 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1544 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1545 offset = *ppos & ~PAGE_CACHE_MASK;
1547 for (;;) {
1548 struct page *page;
1549 pgoff_t end_index;
1550 loff_t isize;
1551 unsigned long nr, ret;
1553 cond_resched();
1554 find_page:
1555 page = find_get_page(mapping, index);
1556 if (!page) {
1557 page_cache_sync_readahead(mapping,
1558 ra, filp,
1559 index, last_index - index);
1560 page = find_get_page(mapping, index);
1561 if (unlikely(page == NULL))
1562 goto no_cached_page;
1564 if (PageReadahead(page)) {
1565 page_cache_async_readahead(mapping,
1566 ra, filp, page,
1567 index, last_index - index);
1569 if (!PageUptodate(page)) {
1570 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1571 !mapping->a_ops->is_partially_uptodate)
1572 goto page_not_up_to_date;
1573 if (!trylock_page(page))
1574 goto page_not_up_to_date;
1575 /* Did it get truncated before we got the lock? */
1576 if (!page->mapping)
1577 goto page_not_up_to_date_locked;
1578 if (!mapping->a_ops->is_partially_uptodate(page,
1579 offset, iter->count))
1580 goto page_not_up_to_date_locked;
1581 unlock_page(page);
1583 page_ok:
1585 * i_size must be checked after we know the page is Uptodate.
1587 * Checking i_size after the check allows us to calculate
1588 * the correct value for "nr", which means the zero-filled
1589 * part of the page is not copied back to userspace (unless
1590 * another truncate extends the file - this is desired though).
1593 isize = i_size_read(inode);
1594 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1595 if (unlikely(!isize || index > end_index)) {
1596 page_cache_release(page);
1597 goto out;
1600 /* nr is the maximum number of bytes to copy from this page */
1601 nr = PAGE_CACHE_SIZE;
1602 if (index == end_index) {
1603 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1604 if (nr <= offset) {
1605 page_cache_release(page);
1606 goto out;
1609 nr = nr - offset;
1611 /* If users can be writing to this page using arbitrary
1612 * virtual addresses, take care about potential aliasing
1613 * before reading the page on the kernel side.
1615 if (mapping_writably_mapped(mapping))
1616 flush_dcache_page(page);
1619 * When a sequential read accesses a page several times,
1620 * only mark it as accessed the first time.
1622 if (prev_index != index || offset != prev_offset)
1623 mark_page_accessed(page);
1624 prev_index = index;
1627 * Ok, we have the page, and it's up-to-date, so
1628 * now we can copy it to user space...
1631 ret = copy_page_to_iter(page, offset, nr, iter);
1632 offset += ret;
1633 index += offset >> PAGE_CACHE_SHIFT;
1634 offset &= ~PAGE_CACHE_MASK;
1635 prev_offset = offset;
1637 page_cache_release(page);
1638 written += ret;
1639 if (!iov_iter_count(iter))
1640 goto out;
1641 if (ret < nr) {
1642 error = -EFAULT;
1643 goto out;
1645 continue;
1647 page_not_up_to_date:
1648 /* Get exclusive access to the page ... */
1649 error = lock_page_killable(page);
1650 if (unlikely(error))
1651 goto readpage_error;
1653 page_not_up_to_date_locked:
1654 /* Did it get truncated before we got the lock? */
1655 if (!page->mapping) {
1656 unlock_page(page);
1657 page_cache_release(page);
1658 continue;
1661 /* Did somebody else fill it already? */
1662 if (PageUptodate(page)) {
1663 unlock_page(page);
1664 goto page_ok;
1667 readpage:
1669 * A previous I/O error may have been due to temporary
1670 * failures, eg. multipath errors.
1671 * PG_error will be set again if readpage fails.
1673 ClearPageError(page);
1674 /* Start the actual read. The read will unlock the page. */
1675 error = mapping->a_ops->readpage(filp, page);
1677 if (unlikely(error)) {
1678 if (error == AOP_TRUNCATED_PAGE) {
1679 page_cache_release(page);
1680 error = 0;
1681 goto find_page;
1683 goto readpage_error;
1686 if (!PageUptodate(page)) {
1687 error = lock_page_killable(page);
1688 if (unlikely(error))
1689 goto readpage_error;
1690 if (!PageUptodate(page)) {
1691 if (page->mapping == NULL) {
1693 * invalidate_mapping_pages got it
1695 unlock_page(page);
1696 page_cache_release(page);
1697 goto find_page;
1699 unlock_page(page);
1700 shrink_readahead_size_eio(filp, ra);
1701 error = -EIO;
1702 goto readpage_error;
1704 unlock_page(page);
1707 goto page_ok;
1709 readpage_error:
1710 /* UHHUH! A synchronous read error occurred. Report it */
1711 page_cache_release(page);
1712 goto out;
1714 no_cached_page:
1716 * Ok, it wasn't cached, so we need to create a new
1717 * page..
1719 page = page_cache_alloc_cold(mapping);
1720 if (!page) {
1721 error = -ENOMEM;
1722 goto out;
1724 error = add_to_page_cache_lru(page, mapping, index,
1725 mapping_gfp_constraint(mapping, GFP_KERNEL));
1726 if (error) {
1727 page_cache_release(page);
1728 if (error == -EEXIST) {
1729 error = 0;
1730 goto find_page;
1732 goto out;
1734 goto readpage;
1737 out:
1738 ra->prev_pos = prev_index;
1739 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1740 ra->prev_pos |= prev_offset;
1742 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1743 file_accessed(filp);
1744 return written ? written : error;
1748 * generic_file_read_iter - generic filesystem read routine
1749 * @iocb: kernel I/O control block
1750 * @iter: destination for the data read
1752 * This is the "read_iter()" routine for all filesystems
1753 * that can use the page cache directly.
1755 ssize_t
1756 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1758 struct file *file = iocb->ki_filp;
1759 ssize_t retval = 0;
1760 loff_t *ppos = &iocb->ki_pos;
1761 loff_t pos = *ppos;
1763 if (iocb->ki_flags & IOCB_DIRECT) {
1764 struct address_space *mapping = file->f_mapping;
1765 struct inode *inode = mapping->host;
1766 size_t count = iov_iter_count(iter);
1767 loff_t size;
1769 if (!count)
1770 goto out; /* skip atime */
1771 size = i_size_read(inode);
1772 retval = filemap_write_and_wait_range(mapping, pos,
1773 pos + count - 1);
1774 if (!retval) {
1775 struct iov_iter data = *iter;
1776 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1779 if (retval > 0) {
1780 *ppos = pos + retval;
1781 iov_iter_advance(iter, retval);
1785 * Btrfs can have a short DIO read if we encounter
1786 * compressed extents, so if there was an error, or if
1787 * we've already read everything we wanted to, or if
1788 * there was a short read because we hit EOF, go ahead
1789 * and return. Otherwise fallthrough to buffered io for
1790 * the rest of the read. Buffered reads will not work for
1791 * DAX files, so don't bother trying.
1793 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1794 IS_DAX(inode)) {
1795 file_accessed(file);
1796 goto out;
1800 retval = do_generic_file_read(file, ppos, iter, retval);
1801 out:
1802 return retval;
1804 EXPORT_SYMBOL(generic_file_read_iter);
1806 #ifdef CONFIG_MMU
1808 * page_cache_read - adds requested page to the page cache if not already there
1809 * @file: file to read
1810 * @offset: page index
1812 * This adds the requested page to the page cache if it isn't already there,
1813 * and schedules an I/O to read in its contents from disk.
1815 static int page_cache_read(struct file *file, pgoff_t offset)
1817 struct address_space *mapping = file->f_mapping;
1818 struct page *page;
1819 int ret;
1821 do {
1822 page = page_cache_alloc_cold(mapping);
1823 if (!page)
1824 return -ENOMEM;
1826 ret = add_to_page_cache_lru(page, mapping, offset,
1827 mapping_gfp_constraint(mapping, GFP_KERNEL));
1828 if (ret == 0)
1829 ret = mapping->a_ops->readpage(file, page);
1830 else if (ret == -EEXIST)
1831 ret = 0; /* losing race to add is OK */
1833 page_cache_release(page);
1835 } while (ret == AOP_TRUNCATED_PAGE);
1837 return ret;
1840 #define MMAP_LOTSAMISS (100)
1843 * Synchronous readahead happens when we don't even find
1844 * a page in the page cache at all.
1846 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1847 struct file_ra_state *ra,
1848 struct file *file,
1849 pgoff_t offset)
1851 struct address_space *mapping = file->f_mapping;
1853 /* If we don't want any read-ahead, don't bother */
1854 if (vma->vm_flags & VM_RAND_READ)
1855 return;
1856 if (!ra->ra_pages)
1857 return;
1859 if (vma->vm_flags & VM_SEQ_READ) {
1860 page_cache_sync_readahead(mapping, ra, file, offset,
1861 ra->ra_pages);
1862 return;
1865 /* Avoid banging the cache line if not needed */
1866 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1867 ra->mmap_miss++;
1870 * Do we miss much more than hit in this file? If so,
1871 * stop bothering with read-ahead. It will only hurt.
1873 if (ra->mmap_miss > MMAP_LOTSAMISS)
1874 return;
1877 * mmap read-around
1879 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1880 ra->size = ra->ra_pages;
1881 ra->async_size = ra->ra_pages / 4;
1882 ra_submit(ra, mapping, file);
1886 * Asynchronous readahead happens when we find the page and PG_readahead,
1887 * so we want to possibly extend the readahead further..
1889 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1890 struct file_ra_state *ra,
1891 struct file *file,
1892 struct page *page,
1893 pgoff_t offset)
1895 struct address_space *mapping = file->f_mapping;
1897 /* If we don't want any read-ahead, don't bother */
1898 if (vma->vm_flags & VM_RAND_READ)
1899 return;
1900 if (ra->mmap_miss > 0)
1901 ra->mmap_miss--;
1902 if (PageReadahead(page))
1903 page_cache_async_readahead(mapping, ra, file,
1904 page, offset, ra->ra_pages);
1908 * filemap_fault - read in file data for page fault handling
1909 * @vma: vma in which the fault was taken
1910 * @vmf: struct vm_fault containing details of the fault
1912 * filemap_fault() is invoked via the vma operations vector for a
1913 * mapped memory region to read in file data during a page fault.
1915 * The goto's are kind of ugly, but this streamlines the normal case of having
1916 * it in the page cache, and handles the special cases reasonably without
1917 * having a lot of duplicated code.
1919 * vma->vm_mm->mmap_sem must be held on entry.
1921 * If our return value has VM_FAULT_RETRY set, it's because
1922 * lock_page_or_retry() returned 0.
1923 * The mmap_sem has usually been released in this case.
1924 * See __lock_page_or_retry() for the exception.
1926 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1927 * has not been released.
1929 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1931 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1933 int error;
1934 struct file *file = vma->vm_file;
1935 struct address_space *mapping = file->f_mapping;
1936 struct file_ra_state *ra = &file->f_ra;
1937 struct inode *inode = mapping->host;
1938 pgoff_t offset = vmf->pgoff;
1939 struct page *page;
1940 loff_t size;
1941 int ret = 0;
1943 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1944 if (offset >= size >> PAGE_CACHE_SHIFT)
1945 return VM_FAULT_SIGBUS;
1948 * Do we have something in the page cache already?
1950 page = find_get_page(mapping, offset);
1951 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1953 * We found the page, so try async readahead before
1954 * waiting for the lock.
1956 do_async_mmap_readahead(vma, ra, file, page, offset);
1957 } else if (!page) {
1958 /* No page in the page cache at all */
1959 do_sync_mmap_readahead(vma, ra, file, offset);
1960 count_vm_event(PGMAJFAULT);
1961 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1962 ret = VM_FAULT_MAJOR;
1963 retry_find:
1964 page = find_get_page(mapping, offset);
1965 if (!page)
1966 goto no_cached_page;
1969 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1970 page_cache_release(page);
1971 return ret | VM_FAULT_RETRY;
1974 /* Did it get truncated? */
1975 if (unlikely(page->mapping != mapping)) {
1976 unlock_page(page);
1977 put_page(page);
1978 goto retry_find;
1980 VM_BUG_ON_PAGE(page->index != offset, page);
1983 * We have a locked page in the page cache, now we need to check
1984 * that it's up-to-date. If not, it is going to be due to an error.
1986 if (unlikely(!PageUptodate(page)))
1987 goto page_not_uptodate;
1990 * Found the page and have a reference on it.
1991 * We must recheck i_size under page lock.
1993 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1994 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1995 unlock_page(page);
1996 page_cache_release(page);
1997 return VM_FAULT_SIGBUS;
2000 vmf->page = page;
2001 return ret | VM_FAULT_LOCKED;
2003 no_cached_page:
2005 * We're only likely to ever get here if MADV_RANDOM is in
2006 * effect.
2008 error = page_cache_read(file, offset);
2011 * The page we want has now been added to the page cache.
2012 * In the unlikely event that someone removed it in the
2013 * meantime, we'll just come back here and read it again.
2015 if (error >= 0)
2016 goto retry_find;
2019 * An error return from page_cache_read can result if the
2020 * system is low on memory, or a problem occurs while trying
2021 * to schedule I/O.
2023 if (error == -ENOMEM)
2024 return VM_FAULT_OOM;
2025 return VM_FAULT_SIGBUS;
2027 page_not_uptodate:
2029 * Umm, take care of errors if the page isn't up-to-date.
2030 * Try to re-read it _once_. We do this synchronously,
2031 * because there really aren't any performance issues here
2032 * and we need to check for errors.
2034 ClearPageError(page);
2035 error = mapping->a_ops->readpage(file, page);
2036 if (!error) {
2037 wait_on_page_locked(page);
2038 if (!PageUptodate(page))
2039 error = -EIO;
2041 page_cache_release(page);
2043 if (!error || error == AOP_TRUNCATED_PAGE)
2044 goto retry_find;
2046 /* Things didn't work out. Return zero to tell the mm layer so. */
2047 shrink_readahead_size_eio(file, ra);
2048 return VM_FAULT_SIGBUS;
2050 EXPORT_SYMBOL(filemap_fault);
2052 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2054 struct radix_tree_iter iter;
2055 void **slot;
2056 struct file *file = vma->vm_file;
2057 struct address_space *mapping = file->f_mapping;
2058 loff_t size;
2059 struct page *page;
2060 unsigned long address = (unsigned long) vmf->virtual_address;
2061 unsigned long addr;
2062 pte_t *pte;
2064 rcu_read_lock();
2065 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2066 if (iter.index > vmf->max_pgoff)
2067 break;
2068 repeat:
2069 page = radix_tree_deref_slot(slot);
2070 if (unlikely(!page))
2071 goto next;
2072 if (radix_tree_exception(page)) {
2073 if (radix_tree_deref_retry(page))
2074 break;
2075 else
2076 goto next;
2079 if (!page_cache_get_speculative(page))
2080 goto repeat;
2082 /* Has the page moved? */
2083 if (unlikely(page != *slot)) {
2084 page_cache_release(page);
2085 goto repeat;
2088 if (!PageUptodate(page) ||
2089 PageReadahead(page) ||
2090 PageHWPoison(page))
2091 goto skip;
2092 if (!trylock_page(page))
2093 goto skip;
2095 if (page->mapping != mapping || !PageUptodate(page))
2096 goto unlock;
2098 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2099 if (page->index >= size >> PAGE_CACHE_SHIFT)
2100 goto unlock;
2102 pte = vmf->pte + page->index - vmf->pgoff;
2103 if (!pte_none(*pte))
2104 goto unlock;
2106 if (file->f_ra.mmap_miss > 0)
2107 file->f_ra.mmap_miss--;
2108 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2109 do_set_pte(vma, addr, page, pte, false, false);
2110 unlock_page(page);
2111 goto next;
2112 unlock:
2113 unlock_page(page);
2114 skip:
2115 page_cache_release(page);
2116 next:
2117 if (iter.index == vmf->max_pgoff)
2118 break;
2120 rcu_read_unlock();
2122 EXPORT_SYMBOL(filemap_map_pages);
2124 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2126 struct page *page = vmf->page;
2127 struct inode *inode = file_inode(vma->vm_file);
2128 int ret = VM_FAULT_LOCKED;
2130 sb_start_pagefault(inode->i_sb);
2131 file_update_time(vma->vm_file);
2132 lock_page(page);
2133 if (page->mapping != inode->i_mapping) {
2134 unlock_page(page);
2135 ret = VM_FAULT_NOPAGE;
2136 goto out;
2139 * We mark the page dirty already here so that when freeze is in
2140 * progress, we are guaranteed that writeback during freezing will
2141 * see the dirty page and writeprotect it again.
2143 set_page_dirty(page);
2144 wait_for_stable_page(page);
2145 out:
2146 sb_end_pagefault(inode->i_sb);
2147 return ret;
2149 EXPORT_SYMBOL(filemap_page_mkwrite);
2151 const struct vm_operations_struct generic_file_vm_ops = {
2152 .fault = filemap_fault,
2153 .map_pages = filemap_map_pages,
2154 .page_mkwrite = filemap_page_mkwrite,
2157 /* This is used for a general mmap of a disk file */
2159 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2161 struct address_space *mapping = file->f_mapping;
2163 if (!mapping->a_ops->readpage)
2164 return -ENOEXEC;
2165 file_accessed(file);
2166 vma->vm_ops = &generic_file_vm_ops;
2167 return 0;
2171 * This is for filesystems which do not implement ->writepage.
2173 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2175 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2176 return -EINVAL;
2177 return generic_file_mmap(file, vma);
2179 #else
2180 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2182 return -ENOSYS;
2184 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2186 return -ENOSYS;
2188 #endif /* CONFIG_MMU */
2190 EXPORT_SYMBOL(generic_file_mmap);
2191 EXPORT_SYMBOL(generic_file_readonly_mmap);
2193 static struct page *wait_on_page_read(struct page *page)
2195 if (!IS_ERR(page)) {
2196 wait_on_page_locked(page);
2197 if (!PageUptodate(page)) {
2198 page_cache_release(page);
2199 page = ERR_PTR(-EIO);
2202 return page;
2205 static struct page *__read_cache_page(struct address_space *mapping,
2206 pgoff_t index,
2207 int (*filler)(void *, struct page *),
2208 void *data,
2209 gfp_t gfp)
2211 struct page *page;
2212 int err;
2213 repeat:
2214 page = find_get_page(mapping, index);
2215 if (!page) {
2216 page = __page_cache_alloc(gfp | __GFP_COLD);
2217 if (!page)
2218 return ERR_PTR(-ENOMEM);
2219 err = add_to_page_cache_lru(page, mapping, index, gfp);
2220 if (unlikely(err)) {
2221 page_cache_release(page);
2222 if (err == -EEXIST)
2223 goto repeat;
2224 /* Presumably ENOMEM for radix tree node */
2225 return ERR_PTR(err);
2227 err = filler(data, page);
2228 if (err < 0) {
2229 page_cache_release(page);
2230 page = ERR_PTR(err);
2231 } else {
2232 page = wait_on_page_read(page);
2235 return page;
2238 static struct page *do_read_cache_page(struct address_space *mapping,
2239 pgoff_t index,
2240 int (*filler)(void *, struct page *),
2241 void *data,
2242 gfp_t gfp)
2245 struct page *page;
2246 int err;
2248 retry:
2249 page = __read_cache_page(mapping, index, filler, data, gfp);
2250 if (IS_ERR(page))
2251 return page;
2252 if (PageUptodate(page))
2253 goto out;
2255 lock_page(page);
2256 if (!page->mapping) {
2257 unlock_page(page);
2258 page_cache_release(page);
2259 goto retry;
2261 if (PageUptodate(page)) {
2262 unlock_page(page);
2263 goto out;
2265 err = filler(data, page);
2266 if (err < 0) {
2267 page_cache_release(page);
2268 return ERR_PTR(err);
2269 } else {
2270 page = wait_on_page_read(page);
2271 if (IS_ERR(page))
2272 return page;
2274 out:
2275 mark_page_accessed(page);
2276 return page;
2280 * read_cache_page - read into page cache, fill it if needed
2281 * @mapping: the page's address_space
2282 * @index: the page index
2283 * @filler: function to perform the read
2284 * @data: first arg to filler(data, page) function, often left as NULL
2286 * Read into the page cache. If a page already exists, and PageUptodate() is
2287 * not set, try to fill the page and wait for it to become unlocked.
2289 * If the page does not get brought uptodate, return -EIO.
2291 struct page *read_cache_page(struct address_space *mapping,
2292 pgoff_t index,
2293 int (*filler)(void *, struct page *),
2294 void *data)
2296 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2298 EXPORT_SYMBOL(read_cache_page);
2301 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2302 * @mapping: the page's address_space
2303 * @index: the page index
2304 * @gfp: the page allocator flags to use if allocating
2306 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2307 * any new page allocations done using the specified allocation flags.
2309 * If the page does not get brought uptodate, return -EIO.
2311 struct page *read_cache_page_gfp(struct address_space *mapping,
2312 pgoff_t index,
2313 gfp_t gfp)
2315 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2317 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2319 EXPORT_SYMBOL(read_cache_page_gfp);
2322 * Performs necessary checks before doing a write
2324 * Can adjust writing position or amount of bytes to write.
2325 * Returns appropriate error code that caller should return or
2326 * zero in case that write should be allowed.
2328 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2330 struct file *file = iocb->ki_filp;
2331 struct inode *inode = file->f_mapping->host;
2332 unsigned long limit = rlimit(RLIMIT_FSIZE);
2333 loff_t pos;
2335 if (!iov_iter_count(from))
2336 return 0;
2338 /* FIXME: this is for backwards compatibility with 2.4 */
2339 if (iocb->ki_flags & IOCB_APPEND)
2340 iocb->ki_pos = i_size_read(inode);
2342 pos = iocb->ki_pos;
2344 if (limit != RLIM_INFINITY) {
2345 if (iocb->ki_pos >= limit) {
2346 send_sig(SIGXFSZ, current, 0);
2347 return -EFBIG;
2349 iov_iter_truncate(from, limit - (unsigned long)pos);
2353 * LFS rule
2355 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2356 !(file->f_flags & O_LARGEFILE))) {
2357 if (pos >= MAX_NON_LFS)
2358 return -EFBIG;
2359 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2363 * Are we about to exceed the fs block limit ?
2365 * If we have written data it becomes a short write. If we have
2366 * exceeded without writing data we send a signal and return EFBIG.
2367 * Linus frestrict idea will clean these up nicely..
2369 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2370 return -EFBIG;
2372 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2373 return iov_iter_count(from);
2375 EXPORT_SYMBOL(generic_write_checks);
2377 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2378 loff_t pos, unsigned len, unsigned flags,
2379 struct page **pagep, void **fsdata)
2381 const struct address_space_operations *aops = mapping->a_ops;
2383 return aops->write_begin(file, mapping, pos, len, flags,
2384 pagep, fsdata);
2386 EXPORT_SYMBOL(pagecache_write_begin);
2388 int pagecache_write_end(struct file *file, struct address_space *mapping,
2389 loff_t pos, unsigned len, unsigned copied,
2390 struct page *page, void *fsdata)
2392 const struct address_space_operations *aops = mapping->a_ops;
2394 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2396 EXPORT_SYMBOL(pagecache_write_end);
2398 ssize_t
2399 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2401 struct file *file = iocb->ki_filp;
2402 struct address_space *mapping = file->f_mapping;
2403 struct inode *inode = mapping->host;
2404 ssize_t written;
2405 size_t write_len;
2406 pgoff_t end;
2407 struct iov_iter data;
2409 write_len = iov_iter_count(from);
2410 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2412 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2413 if (written)
2414 goto out;
2417 * After a write we want buffered reads to be sure to go to disk to get
2418 * the new data. We invalidate clean cached page from the region we're
2419 * about to write. We do this *before* the write so that we can return
2420 * without clobbering -EIOCBQUEUED from ->direct_IO().
2422 if (mapping->nrpages) {
2423 written = invalidate_inode_pages2_range(mapping,
2424 pos >> PAGE_CACHE_SHIFT, end);
2426 * If a page can not be invalidated, return 0 to fall back
2427 * to buffered write.
2429 if (written) {
2430 if (written == -EBUSY)
2431 return 0;
2432 goto out;
2436 data = *from;
2437 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2440 * Finally, try again to invalidate clean pages which might have been
2441 * cached by non-direct readahead, or faulted in by get_user_pages()
2442 * if the source of the write was an mmap'ed region of the file
2443 * we're writing. Either one is a pretty crazy thing to do,
2444 * so we don't support it 100%. If this invalidation
2445 * fails, tough, the write still worked...
2447 if (mapping->nrpages) {
2448 invalidate_inode_pages2_range(mapping,
2449 pos >> PAGE_CACHE_SHIFT, end);
2452 if (written > 0) {
2453 pos += written;
2454 iov_iter_advance(from, written);
2455 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2456 i_size_write(inode, pos);
2457 mark_inode_dirty(inode);
2459 iocb->ki_pos = pos;
2461 out:
2462 return written;
2464 EXPORT_SYMBOL(generic_file_direct_write);
2467 * Find or create a page at the given pagecache position. Return the locked
2468 * page. This function is specifically for buffered writes.
2470 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2471 pgoff_t index, unsigned flags)
2473 struct page *page;
2474 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2476 if (flags & AOP_FLAG_NOFS)
2477 fgp_flags |= FGP_NOFS;
2479 page = pagecache_get_page(mapping, index, fgp_flags,
2480 mapping_gfp_mask(mapping));
2481 if (page)
2482 wait_for_stable_page(page);
2484 return page;
2486 EXPORT_SYMBOL(grab_cache_page_write_begin);
2488 ssize_t generic_perform_write(struct file *file,
2489 struct iov_iter *i, loff_t pos)
2491 struct address_space *mapping = file->f_mapping;
2492 const struct address_space_operations *a_ops = mapping->a_ops;
2493 long status = 0;
2494 ssize_t written = 0;
2495 unsigned int flags = 0;
2498 * Copies from kernel address space cannot fail (NFSD is a big user).
2500 if (!iter_is_iovec(i))
2501 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2503 do {
2504 struct page *page;
2505 unsigned long offset; /* Offset into pagecache page */
2506 unsigned long bytes; /* Bytes to write to page */
2507 size_t copied; /* Bytes copied from user */
2508 void *fsdata;
2510 offset = (pos & (PAGE_CACHE_SIZE - 1));
2511 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2512 iov_iter_count(i));
2514 again:
2516 * Bring in the user page that we will copy from _first_.
2517 * Otherwise there's a nasty deadlock on copying from the
2518 * same page as we're writing to, without it being marked
2519 * up-to-date.
2521 * Not only is this an optimisation, but it is also required
2522 * to check that the address is actually valid, when atomic
2523 * usercopies are used, below.
2525 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2526 status = -EFAULT;
2527 break;
2530 if (fatal_signal_pending(current)) {
2531 status = -EINTR;
2532 break;
2535 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2536 &page, &fsdata);
2537 if (unlikely(status < 0))
2538 break;
2540 if (mapping_writably_mapped(mapping))
2541 flush_dcache_page(page);
2543 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2544 flush_dcache_page(page);
2546 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2547 page, fsdata);
2548 if (unlikely(status < 0))
2549 break;
2550 copied = status;
2552 cond_resched();
2554 iov_iter_advance(i, copied);
2555 if (unlikely(copied == 0)) {
2557 * If we were unable to copy any data at all, we must
2558 * fall back to a single segment length write.
2560 * If we didn't fallback here, we could livelock
2561 * because not all segments in the iov can be copied at
2562 * once without a pagefault.
2564 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2565 iov_iter_single_seg_count(i));
2566 goto again;
2568 pos += copied;
2569 written += copied;
2571 balance_dirty_pages_ratelimited(mapping);
2572 } while (iov_iter_count(i));
2574 return written ? written : status;
2576 EXPORT_SYMBOL(generic_perform_write);
2579 * __generic_file_write_iter - write data to a file
2580 * @iocb: IO state structure (file, offset, etc.)
2581 * @from: iov_iter with data to write
2583 * This function does all the work needed for actually writing data to a
2584 * file. It does all basic checks, removes SUID from the file, updates
2585 * modification times and calls proper subroutines depending on whether we
2586 * do direct IO or a standard buffered write.
2588 * It expects i_mutex to be grabbed unless we work on a block device or similar
2589 * object which does not need locking at all.
2591 * This function does *not* take care of syncing data in case of O_SYNC write.
2592 * A caller has to handle it. This is mainly due to the fact that we want to
2593 * avoid syncing under i_mutex.
2595 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2597 struct file *file = iocb->ki_filp;
2598 struct address_space * mapping = file->f_mapping;
2599 struct inode *inode = mapping->host;
2600 ssize_t written = 0;
2601 ssize_t err;
2602 ssize_t status;
2604 /* We can write back this queue in page reclaim */
2605 current->backing_dev_info = inode_to_bdi(inode);
2606 err = file_remove_privs(file);
2607 if (err)
2608 goto out;
2610 err = file_update_time(file);
2611 if (err)
2612 goto out;
2614 if (iocb->ki_flags & IOCB_DIRECT) {
2615 loff_t pos, endbyte;
2617 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2619 * If the write stopped short of completing, fall back to
2620 * buffered writes. Some filesystems do this for writes to
2621 * holes, for example. For DAX files, a buffered write will
2622 * not succeed (even if it did, DAX does not handle dirty
2623 * page-cache pages correctly).
2625 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2626 goto out;
2628 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2630 * If generic_perform_write() returned a synchronous error
2631 * then we want to return the number of bytes which were
2632 * direct-written, or the error code if that was zero. Note
2633 * that this differs from normal direct-io semantics, which
2634 * will return -EFOO even if some bytes were written.
2636 if (unlikely(status < 0)) {
2637 err = status;
2638 goto out;
2641 * We need to ensure that the page cache pages are written to
2642 * disk and invalidated to preserve the expected O_DIRECT
2643 * semantics.
2645 endbyte = pos + status - 1;
2646 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2647 if (err == 0) {
2648 iocb->ki_pos = endbyte + 1;
2649 written += status;
2650 invalidate_mapping_pages(mapping,
2651 pos >> PAGE_CACHE_SHIFT,
2652 endbyte >> PAGE_CACHE_SHIFT);
2653 } else {
2655 * We don't know how much we wrote, so just return
2656 * the number of bytes which were direct-written
2659 } else {
2660 written = generic_perform_write(file, from, iocb->ki_pos);
2661 if (likely(written > 0))
2662 iocb->ki_pos += written;
2664 out:
2665 current->backing_dev_info = NULL;
2666 return written ? written : err;
2668 EXPORT_SYMBOL(__generic_file_write_iter);
2671 * generic_file_write_iter - write data to a file
2672 * @iocb: IO state structure
2673 * @from: iov_iter with data to write
2675 * This is a wrapper around __generic_file_write_iter() to be used by most
2676 * filesystems. It takes care of syncing the file in case of O_SYNC file
2677 * and acquires i_mutex as needed.
2679 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2681 struct file *file = iocb->ki_filp;
2682 struct inode *inode = file->f_mapping->host;
2683 ssize_t ret;
2685 mutex_lock(&inode->i_mutex);
2686 ret = generic_write_checks(iocb, from);
2687 if (ret > 0)
2688 ret = __generic_file_write_iter(iocb, from);
2689 mutex_unlock(&inode->i_mutex);
2691 if (ret > 0) {
2692 ssize_t err;
2694 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2695 if (err < 0)
2696 ret = err;
2698 return ret;
2700 EXPORT_SYMBOL(generic_file_write_iter);
2703 * try_to_release_page() - release old fs-specific metadata on a page
2705 * @page: the page which the kernel is trying to free
2706 * @gfp_mask: memory allocation flags (and I/O mode)
2708 * The address_space is to try to release any data against the page
2709 * (presumably at page->private). If the release was successful, return `1'.
2710 * Otherwise return zero.
2712 * This may also be called if PG_fscache is set on a page, indicating that the
2713 * page is known to the local caching routines.
2715 * The @gfp_mask argument specifies whether I/O may be performed to release
2716 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2719 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2721 struct address_space * const mapping = page->mapping;
2723 BUG_ON(!PageLocked(page));
2724 if (PageWriteback(page))
2725 return 0;
2727 if (mapping && mapping->a_ops->releasepage)
2728 return mapping->a_ops->releasepage(page, gfp_mask);
2729 return try_to_free_buffers(page);
2732 EXPORT_SYMBOL(try_to_release_page);