1 // SPDX-License-Identifier: GPL-2.0
3 * Extensible Firmware Interface
5 * Based on Extensible Firmware Interface Specification version 0.9
8 * Copyright (C) 1999 VA Linux Systems
9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
11 * David Mosberger-Tang <davidm@hpl.hp.com>
12 * Stephane Eranian <eranian@hpl.hp.com>
13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14 * Bjorn Helgaas <bjorn.helgaas@hp.com>
16 * All EFI Runtime Services are not implemented yet as EFI only
17 * supports physical mode addressing on SoftSDV. This is to be fixed
18 * in a future version. --drummond 1999-07-20
20 * Implemented EFI runtime services and virtual mode calls. --davidm
22 * Goutham Rao: <goutham.rao@intel.com>
23 * Skip non-WB memory and ignore empty memory ranges.
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
38 #include <asm/kregs.h>
39 #include <asm/meminit.h>
40 #include <asm/processor.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
47 #define ESI_TABLE_GUID \
48 EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3, \
49 0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
51 static unsigned long mps_phys
= EFI_INVALID_TABLE_ADDR
;
52 static __initdata
unsigned long palo_phys
;
54 unsigned long __initdata esi_phys
= EFI_INVALID_TABLE_ADDR
;
55 unsigned long hcdp_phys
= EFI_INVALID_TABLE_ADDR
;
56 unsigned long sal_systab_phys
= EFI_INVALID_TABLE_ADDR
;
58 static const efi_config_table_type_t arch_tables
[] __initconst
= {
59 {ESI_TABLE_GUID
, &esi_phys
, "ESI" },
60 {HCDP_TABLE_GUID
, &hcdp_phys
, "HCDP" },
61 {MPS_TABLE_GUID
, &mps_phys
, "MPS" },
62 {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID
, &palo_phys
, "PALO" },
63 {SAL_SYSTEM_TABLE_GUID
, &sal_systab_phys
, "SALsystab" },
67 extern efi_status_t
efi_call_phys (void *, ...);
69 static efi_runtime_services_t
*runtime
;
70 static u64 mem_limit
= ~0UL, max_addr
= ~0UL, min_addr
= 0UL;
72 #define efi_call_virt(f, args...) (*(f))(args)
74 #define STUB_GET_TIME(prefix, adjust_arg) \
76 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
78 struct ia64_fpreg fr[6]; \
79 efi_time_cap_t *atc = NULL; \
83 atc = adjust_arg(tc); \
84 ia64_save_scratch_fpregs(fr); \
85 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
86 adjust_arg(tm), atc); \
87 ia64_load_scratch_fpregs(fr); \
91 #define STUB_SET_TIME(prefix, adjust_arg) \
93 prefix##_set_time (efi_time_t *tm) \
95 struct ia64_fpreg fr[6]; \
98 ia64_save_scratch_fpregs(fr); \
99 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
101 ia64_load_scratch_fpregs(fr); \
105 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
106 static efi_status_t \
107 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
110 struct ia64_fpreg fr[6]; \
113 ia64_save_scratch_fpregs(fr); \
114 ret = efi_call_##prefix( \
115 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
116 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
117 ia64_load_scratch_fpregs(fr); \
121 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
122 static efi_status_t \
123 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
125 struct ia64_fpreg fr[6]; \
126 efi_time_t *atm = NULL; \
130 atm = adjust_arg(tm); \
131 ia64_save_scratch_fpregs(fr); \
132 ret = efi_call_##prefix( \
133 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
135 ia64_load_scratch_fpregs(fr); \
139 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
140 static efi_status_t \
141 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
142 unsigned long *data_size, void *data) \
144 struct ia64_fpreg fr[6]; \
149 aattr = adjust_arg(attr); \
150 ia64_save_scratch_fpregs(fr); \
151 ret = efi_call_##prefix( \
152 (efi_get_variable_t *) __va(runtime->get_variable), \
153 adjust_arg(name), adjust_arg(vendor), aattr, \
154 adjust_arg(data_size), adjust_arg(data)); \
155 ia64_load_scratch_fpregs(fr); \
159 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
160 static efi_status_t \
161 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
162 efi_guid_t *vendor) \
164 struct ia64_fpreg fr[6]; \
167 ia64_save_scratch_fpregs(fr); \
168 ret = efi_call_##prefix( \
169 (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
170 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
171 ia64_load_scratch_fpregs(fr); \
175 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
176 static efi_status_t \
177 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
178 u32 attr, unsigned long data_size, \
181 struct ia64_fpreg fr[6]; \
184 ia64_save_scratch_fpregs(fr); \
185 ret = efi_call_##prefix( \
186 (efi_set_variable_t *) __va(runtime->set_variable), \
187 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
189 ia64_load_scratch_fpregs(fr); \
193 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
194 static efi_status_t \
195 prefix##_get_next_high_mono_count (u32 *count) \
197 struct ia64_fpreg fr[6]; \
200 ia64_save_scratch_fpregs(fr); \
201 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
202 __va(runtime->get_next_high_mono_count), \
203 adjust_arg(count)); \
204 ia64_load_scratch_fpregs(fr); \
208 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
210 prefix##_reset_system (int reset_type, efi_status_t status, \
211 unsigned long data_size, efi_char16_t *data) \
213 struct ia64_fpreg fr[6]; \
214 efi_char16_t *adata = NULL; \
217 adata = adjust_arg(data); \
219 ia64_save_scratch_fpregs(fr); \
221 (efi_reset_system_t *) __va(runtime->reset_system), \
222 reset_type, status, data_size, adata); \
223 /* should not return, but just in case... */ \
224 ia64_load_scratch_fpregs(fr); \
227 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
229 STUB_GET_TIME(phys
, phys_ptr
)
230 STUB_SET_TIME(phys
, phys_ptr
)
231 STUB_GET_WAKEUP_TIME(phys
, phys_ptr
)
232 STUB_SET_WAKEUP_TIME(phys
, phys_ptr
)
233 STUB_GET_VARIABLE(phys
, phys_ptr
)
234 STUB_GET_NEXT_VARIABLE(phys
, phys_ptr
)
235 STUB_SET_VARIABLE(phys
, phys_ptr
)
236 STUB_GET_NEXT_HIGH_MONO_COUNT(phys
, phys_ptr
)
237 STUB_RESET_SYSTEM(phys
, phys_ptr
)
241 STUB_GET_TIME(virt
, id
)
242 STUB_SET_TIME(virt
, id
)
243 STUB_GET_WAKEUP_TIME(virt
, id
)
244 STUB_SET_WAKEUP_TIME(virt
, id
)
245 STUB_GET_VARIABLE(virt
, id
)
246 STUB_GET_NEXT_VARIABLE(virt
, id
)
247 STUB_SET_VARIABLE(virt
, id
)
248 STUB_GET_NEXT_HIGH_MONO_COUNT(virt
, id
)
249 STUB_RESET_SYSTEM(virt
, id
)
252 efi_gettimeofday (struct timespec64
*ts
)
256 if ((*efi
.get_time
)(&tm
, NULL
) != EFI_SUCCESS
) {
257 memset(ts
, 0, sizeof(*ts
));
261 ts
->tv_sec
= mktime64(tm
.year
, tm
.month
, tm
.day
,
262 tm
.hour
, tm
.minute
, tm
.second
);
263 ts
->tv_nsec
= tm
.nanosecond
;
267 is_memory_available (efi_memory_desc_t
*md
)
269 if (!(md
->attribute
& EFI_MEMORY_WB
))
273 case EFI_LOADER_CODE
:
274 case EFI_LOADER_DATA
:
275 case EFI_BOOT_SERVICES_CODE
:
276 case EFI_BOOT_SERVICES_DATA
:
277 case EFI_CONVENTIONAL_MEMORY
:
283 typedef struct kern_memdesc
{
289 static kern_memdesc_t
*kern_memmap
;
291 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
294 kmd_end(kern_memdesc_t
*kmd
)
296 return (kmd
->start
+ (kmd
->num_pages
<< EFI_PAGE_SHIFT
));
300 efi_md_end(efi_memory_desc_t
*md
)
302 return (md
->phys_addr
+ efi_md_size(md
));
306 efi_wb(efi_memory_desc_t
*md
)
308 return (md
->attribute
& EFI_MEMORY_WB
);
312 efi_uc(efi_memory_desc_t
*md
)
314 return (md
->attribute
& EFI_MEMORY_UC
);
318 walk (efi_freemem_callback_t callback
, void *arg
, u64 attr
)
321 u64 start
, end
, voff
;
323 voff
= (attr
== EFI_MEMORY_WB
) ? PAGE_OFFSET
: __IA64_UNCACHED_OFFSET
;
324 for (k
= kern_memmap
; k
->start
!= ~0UL; k
++) {
325 if (k
->attribute
!= attr
)
327 start
= PAGE_ALIGN(k
->start
);
328 end
= (k
->start
+ (k
->num_pages
<< EFI_PAGE_SHIFT
)) & PAGE_MASK
;
330 if ((*callback
)(start
+ voff
, end
+ voff
, arg
) < 0)
336 * Walk the EFI memory map and call CALLBACK once for each EFI memory
337 * descriptor that has memory that is available for OS use.
340 efi_memmap_walk (efi_freemem_callback_t callback
, void *arg
)
342 walk(callback
, arg
, EFI_MEMORY_WB
);
346 * Walk the EFI memory map and call CALLBACK once for each EFI memory
347 * descriptor that has memory that is available for uncached allocator.
350 efi_memmap_walk_uc (efi_freemem_callback_t callback
, void *arg
)
352 walk(callback
, arg
, EFI_MEMORY_UC
);
356 * Look for the PAL_CODE region reported by EFI and map it using an
357 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
358 * Abstraction Layer chapter 11 in ADAG
361 efi_get_pal_addr (void)
363 void *efi_map_start
, *efi_map_end
, *p
;
364 efi_memory_desc_t
*md
;
366 int pal_code_count
= 0;
369 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
370 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
371 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
373 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
375 if (md
->type
!= EFI_PAL_CODE
)
378 if (++pal_code_count
> 1) {
379 printk(KERN_ERR
"Too many EFI Pal Code memory ranges, "
380 "dropped @ %llx\n", md
->phys_addr
);
384 * The only ITLB entry in region 7 that is used is the one
385 * installed by __start(). That entry covers a 64MB range.
387 mask
= ~((1 << KERNEL_TR_PAGE_SHIFT
) - 1);
388 vaddr
= PAGE_OFFSET
+ md
->phys_addr
;
391 * We must check that the PAL mapping won't overlap with the
394 * PAL code is guaranteed to be aligned on a power of 2 between
395 * 4k and 256KB and that only one ITR is needed to map it. This
396 * implies that the PAL code is always aligned on its size,
397 * i.e., the closest matching page size supported by the TLB.
398 * Therefore PAL code is guaranteed never to cross a 64MB unless
399 * it is bigger than 64MB (very unlikely!). So for now the
400 * following test is enough to determine whether or not we need
401 * a dedicated ITR for the PAL code.
403 if ((vaddr
& mask
) == (KERNEL_START
& mask
)) {
404 printk(KERN_INFO
"%s: no need to install ITR for PAL code\n",
409 if (efi_md_size(md
) > IA64_GRANULE_SIZE
)
410 panic("Whoa! PAL code size bigger than a granule!");
413 mask
= ~((1 << IA64_GRANULE_SHIFT
) - 1);
415 printk(KERN_INFO
"CPU %d: mapping PAL code "
416 "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
417 smp_processor_id(), md
->phys_addr
,
418 md
->phys_addr
+ efi_md_size(md
),
419 vaddr
& mask
, (vaddr
& mask
) + IA64_GRANULE_SIZE
);
421 return __va(md
->phys_addr
);
423 printk(KERN_WARNING
"%s: no PAL-code memory-descriptor found\n",
429 static u8 __init
palo_checksum(u8
*buffer
, u32 length
)
432 u8
*end
= buffer
+ length
;
435 sum
= (u8
) (sum
+ *(buffer
++));
441 * Parse and handle PALO table which is published at:
442 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
444 static void __init
handle_palo(unsigned long phys_addr
)
446 struct palo_table
*palo
= __va(phys_addr
);
449 if (strncmp(palo
->signature
, PALO_SIG
, sizeof(PALO_SIG
) - 1)) {
450 printk(KERN_INFO
"PALO signature incorrect.\n");
454 checksum
= palo_checksum((u8
*)palo
, palo
->length
);
456 printk(KERN_INFO
"PALO checksum incorrect.\n");
460 setup_ptcg_sem(palo
->max_tlb_purges
, NPTCG_FROM_PALO
);
464 efi_map_pal_code (void)
466 void *pal_vaddr
= efi_get_pal_addr ();
473 * Cannot write to CRx with PSR.ic=1
475 psr
= ia64_clear_ic();
476 ia64_itr(0x1, IA64_TR_PALCODE
,
477 GRANULEROUNDDOWN((unsigned long) pal_vaddr
),
478 pte_val(pfn_pte(__pa(pal_vaddr
) >> PAGE_SHIFT
, PAGE_KERNEL
)),
480 ia64_set_psr(psr
); /* restore psr */
486 const efi_system_table_t
*efi_systab
;
487 void *efi_map_start
, *efi_map_end
;
491 set_bit(EFI_BOOT
, &efi
.flags
);
492 set_bit(EFI_64BIT
, &efi
.flags
);
495 * It's too early to be able to use the standard kernel command line
498 for (cp
= boot_command_line
; *cp
; ) {
499 if (memcmp(cp
, "mem=", 4) == 0) {
500 mem_limit
= memparse(cp
+ 4, &cp
);
501 } else if (memcmp(cp
, "max_addr=", 9) == 0) {
502 max_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
503 } else if (memcmp(cp
, "min_addr=", 9) == 0) {
504 min_addr
= GRANULEROUNDDOWN(memparse(cp
+ 9, &cp
));
506 while (*cp
!= ' ' && *cp
)
513 printk(KERN_INFO
"Ignoring memory below %lluMB\n",
515 if (max_addr
!= ~0UL)
516 printk(KERN_INFO
"Ignoring memory above %lluMB\n",
519 efi_systab
= __va(ia64_boot_param
->efi_systab
);
522 * Verify the EFI Table
524 if (efi_systab
== NULL
)
525 panic("Whoa! Can't find EFI system table.\n");
526 if (efi_systab_check_header(&efi_systab
->hdr
, 1))
527 panic("Whoa! EFI system table signature incorrect\n");
529 efi_systab_report_header(&efi_systab
->hdr
, efi_systab
->fw_vendor
);
531 palo_phys
= EFI_INVALID_TABLE_ADDR
;
533 if (efi_config_parse_tables(__va(efi_systab
->tables
),
534 efi_systab
->nr_tables
,
538 if (palo_phys
!= EFI_INVALID_TABLE_ADDR
)
539 handle_palo(palo_phys
);
541 runtime
= __va(efi_systab
->runtime
);
542 efi
.get_time
= phys_get_time
;
543 efi
.set_time
= phys_set_time
;
544 efi
.get_wakeup_time
= phys_get_wakeup_time
;
545 efi
.set_wakeup_time
= phys_set_wakeup_time
;
546 efi
.get_variable
= phys_get_variable
;
547 efi
.get_next_variable
= phys_get_next_variable
;
548 efi
.set_variable
= phys_set_variable
;
549 efi
.get_next_high_mono_count
= phys_get_next_high_mono_count
;
550 efi
.reset_system
= phys_reset_system
;
552 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
553 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
554 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
557 /* print EFI memory map: */
559 efi_memory_desc_t
*md
;
562 for (i
= 0, p
= efi_map_start
; p
< efi_map_end
;
563 ++i
, p
+= efi_desc_size
)
570 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
572 if ((size
>> 40) > 0) {
575 } else if ((size
>> 30) > 0) {
578 } else if ((size
>> 20) > 0) {
586 printk("mem%02d: %s "
587 "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
588 i
, efi_md_typeattr_format(buf
, sizeof(buf
), md
),
590 md
->phys_addr
+ efi_md_size(md
), size
, unit
);
596 efi_enter_virtual_mode();
600 efi_enter_virtual_mode (void)
602 void *efi_map_start
, *efi_map_end
, *p
;
603 efi_memory_desc_t
*md
;
607 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
608 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
609 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
611 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
613 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
615 * Some descriptors have multiple bits set, so the
616 * order of the tests is relevant.
618 if (md
->attribute
& EFI_MEMORY_WB
) {
619 md
->virt_addr
= (u64
) __va(md
->phys_addr
);
620 } else if (md
->attribute
& EFI_MEMORY_UC
) {
621 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
622 } else if (md
->attribute
& EFI_MEMORY_WC
) {
624 md
->virt_addr
= ia64_remap(md
->phys_addr
,
632 printk(KERN_INFO
"EFI_MEMORY_WC mapping\n");
633 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
635 } else if (md
->attribute
& EFI_MEMORY_WT
) {
637 md
->virt_addr
= ia64_remap(md
->phys_addr
,
645 printk(KERN_INFO
"EFI_MEMORY_WT mapping\n");
646 md
->virt_addr
= (u64
) ioremap(md
->phys_addr
, 0);
652 status
= efi_call_phys(__va(runtime
->set_virtual_address_map
),
653 ia64_boot_param
->efi_memmap_size
,
655 ia64_boot_param
->efi_memdesc_version
,
656 ia64_boot_param
->efi_memmap
);
657 if (status
!= EFI_SUCCESS
) {
658 printk(KERN_WARNING
"warning: unable to switch EFI into "
659 "virtual mode (status=%lu)\n", status
);
663 set_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
666 * Now that EFI is in virtual mode, we call the EFI functions more
669 efi
.get_time
= virt_get_time
;
670 efi
.set_time
= virt_set_time
;
671 efi
.get_wakeup_time
= virt_get_wakeup_time
;
672 efi
.set_wakeup_time
= virt_set_wakeup_time
;
673 efi
.get_variable
= virt_get_variable
;
674 efi
.get_next_variable
= virt_get_next_variable
;
675 efi
.set_variable
= virt_set_variable
;
676 efi
.get_next_high_mono_count
= virt_get_next_high_mono_count
;
677 efi
.reset_system
= virt_reset_system
;
681 * Walk the EFI memory map looking for the I/O port range. There can only be
682 * one entry of this type, other I/O port ranges should be described via ACPI.
685 efi_get_iobase (void)
687 void *efi_map_start
, *efi_map_end
, *p
;
688 efi_memory_desc_t
*md
;
691 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
692 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
693 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
695 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
697 if (md
->type
== EFI_MEMORY_MAPPED_IO_PORT_SPACE
) {
698 if (md
->attribute
& EFI_MEMORY_UC
)
699 return md
->phys_addr
;
705 static struct kern_memdesc
*
706 kern_memory_descriptor (unsigned long phys_addr
)
708 struct kern_memdesc
*md
;
710 for (md
= kern_memmap
; md
->start
!= ~0UL; md
++) {
711 if (phys_addr
- md
->start
< (md
->num_pages
<< EFI_PAGE_SHIFT
))
717 static efi_memory_desc_t
*
718 efi_memory_descriptor (unsigned long phys_addr
)
720 void *efi_map_start
, *efi_map_end
, *p
;
721 efi_memory_desc_t
*md
;
724 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
725 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
726 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
728 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
731 if (phys_addr
- md
->phys_addr
< efi_md_size(md
))
738 efi_memmap_intersects (unsigned long phys_addr
, unsigned long size
)
740 void *efi_map_start
, *efi_map_end
, *p
;
741 efi_memory_desc_t
*md
;
745 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
746 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
747 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
749 end
= phys_addr
+ size
;
751 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
753 if (md
->phys_addr
< end
&& efi_md_end(md
) > phys_addr
)
760 efi_mem_type (unsigned long phys_addr
)
762 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
770 efi_mem_attributes (unsigned long phys_addr
)
772 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
775 return md
->attribute
;
778 EXPORT_SYMBOL(efi_mem_attributes
);
781 efi_mem_attribute (unsigned long phys_addr
, unsigned long size
)
783 unsigned long end
= phys_addr
+ size
;
784 efi_memory_desc_t
*md
= efi_memory_descriptor(phys_addr
);
791 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
792 * the kernel that firmware needs this region mapped.
794 attr
= md
->attribute
& ~EFI_MEMORY_RUNTIME
;
796 unsigned long md_end
= efi_md_end(md
);
801 md
= efi_memory_descriptor(md_end
);
802 if (!md
|| (md
->attribute
& ~EFI_MEMORY_RUNTIME
) != attr
)
805 return 0; /* never reached */
809 kern_mem_attribute (unsigned long phys_addr
, unsigned long size
)
811 unsigned long end
= phys_addr
+ size
;
812 struct kern_memdesc
*md
;
816 * This is a hack for ioremap calls before we set up kern_memmap.
817 * Maybe we should do efi_memmap_init() earlier instead.
820 attr
= efi_mem_attribute(phys_addr
, size
);
821 if (attr
& EFI_MEMORY_WB
)
822 return EFI_MEMORY_WB
;
826 md
= kern_memory_descriptor(phys_addr
);
830 attr
= md
->attribute
;
832 unsigned long md_end
= kmd_end(md
);
837 md
= kern_memory_descriptor(md_end
);
838 if (!md
|| md
->attribute
!= attr
)
841 return 0; /* never reached */
845 valid_phys_addr_range (phys_addr_t phys_addr
, unsigned long size
)
850 * /dev/mem reads and writes use copy_to_user(), which implicitly
851 * uses a granule-sized kernel identity mapping. It's really
852 * only safe to do this for regions in kern_memmap. For more
853 * details, see Documentation/ia64/aliasing.rst.
855 attr
= kern_mem_attribute(phys_addr
, size
);
856 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
862 valid_mmap_phys_addr_range (unsigned long pfn
, unsigned long size
)
864 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
867 attr
= efi_mem_attribute(phys_addr
, size
);
870 * /dev/mem mmap uses normal user pages, so we don't need the entire
871 * granule, but the entire region we're mapping must support the same
874 if (attr
& EFI_MEMORY_WB
|| attr
& EFI_MEMORY_UC
)
878 * Intel firmware doesn't tell us about all the MMIO regions, so
879 * in general we have to allow mmap requests. But if EFI *does*
880 * tell us about anything inside this region, we should deny it.
881 * The user can always map a smaller region to avoid the overlap.
883 if (efi_memmap_intersects(phys_addr
, size
))
890 phys_mem_access_prot(struct file
*file
, unsigned long pfn
, unsigned long size
,
893 unsigned long phys_addr
= pfn
<< PAGE_SHIFT
;
897 * For /dev/mem mmap, we use user mappings, but if the region is
898 * in kern_memmap (and hence may be covered by a kernel mapping),
899 * we must use the same attribute as the kernel mapping.
901 attr
= kern_mem_attribute(phys_addr
, size
);
902 if (attr
& EFI_MEMORY_WB
)
903 return pgprot_cacheable(vma_prot
);
904 else if (attr
& EFI_MEMORY_UC
)
905 return pgprot_noncached(vma_prot
);
908 * Some chipsets don't support UC access to memory. If
909 * WB is supported, we prefer that.
911 if (efi_mem_attribute(phys_addr
, size
) & EFI_MEMORY_WB
)
912 return pgprot_cacheable(vma_prot
);
914 return pgprot_noncached(vma_prot
);
918 efi_uart_console_only(void)
921 char *s
, name
[] = "ConOut";
922 efi_guid_t guid
= EFI_GLOBAL_VARIABLE_GUID
;
923 efi_char16_t
*utf16
, name_utf16
[32];
924 unsigned char data
[1024];
925 unsigned long size
= sizeof(data
);
926 struct efi_generic_dev_path
*hdr
, *end_addr
;
929 /* Convert to UTF-16 */
933 *utf16
++ = *s
++ & 0x7f;
936 status
= efi
.get_variable(name_utf16
, &guid
, NULL
, &size
, data
);
937 if (status
!= EFI_SUCCESS
) {
938 printk(KERN_ERR
"No EFI %s variable?\n", name
);
942 hdr
= (struct efi_generic_dev_path
*) data
;
943 end_addr
= (struct efi_generic_dev_path
*) ((u8
*) data
+ size
);
944 while (hdr
< end_addr
) {
945 if (hdr
->type
== EFI_DEV_MSG
&&
946 hdr
->sub_type
== EFI_DEV_MSG_UART
)
948 else if (hdr
->type
== EFI_DEV_END_PATH
||
949 hdr
->type
== EFI_DEV_END_PATH2
) {
952 if (hdr
->sub_type
== EFI_DEV_END_ENTIRE
)
956 hdr
= (struct efi_generic_dev_path
*)((u8
*) hdr
+ hdr
->length
);
958 printk(KERN_ERR
"Malformed %s value\n", name
);
963 * Look for the first granule aligned memory descriptor memory
964 * that is big enough to hold EFI memory map. Make sure this
965 * descriptor is at least granule sized so it does not get trimmed
967 struct kern_memdesc
*
968 find_memmap_space (void)
970 u64 contig_low
=0, contig_high
=0;
972 void *efi_map_start
, *efi_map_end
, *p
, *q
;
973 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
974 u64 space_needed
, efi_desc_size
;
975 unsigned long total_mem
= 0;
977 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
978 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
979 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
982 * Worst case: we need 3 kernel descriptors for each efi descriptor
983 * (if every entry has a WB part in the middle, and UC head and tail),
984 * plus one for the end marker.
986 space_needed
= sizeof(kern_memdesc_t
) *
987 (3 * (ia64_boot_param
->efi_memmap_size
/efi_desc_size
) + 1);
989 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
994 if (pmd
== NULL
|| !efi_wb(pmd
) ||
995 efi_md_end(pmd
) != md
->phys_addr
) {
996 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
997 contig_high
= efi_md_end(md
);
998 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
999 q
+= efi_desc_size
) {
1001 if (!efi_wb(check_md
))
1003 if (contig_high
!= check_md
->phys_addr
)
1005 contig_high
= efi_md_end(check_md
);
1007 contig_high
= GRANULEROUNDDOWN(contig_high
);
1009 if (!is_memory_available(md
) || md
->type
== EFI_LOADER_DATA
)
1012 /* Round ends inward to granule boundaries */
1013 as
= max(contig_low
, md
->phys_addr
);
1014 ae
= min(contig_high
, efi_md_end(md
));
1016 /* keep within max_addr= and min_addr= command line arg */
1017 as
= max(as
, min_addr
);
1018 ae
= min(ae
, max_addr
);
1022 /* avoid going over mem= command line arg */
1023 if (total_mem
+ (ae
- as
) > mem_limit
)
1024 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1029 if (ae
- as
> space_needed
)
1032 if (p
>= efi_map_end
)
1033 panic("Can't allocate space for kernel memory descriptors");
1039 * Walk the EFI memory map and gather all memory available for kernel
1040 * to use. We can allocate partial granules only if the unavailable
1041 * parts exist, and are WB.
1044 efi_memmap_init(u64
*s
, u64
*e
)
1046 struct kern_memdesc
*k
, *prev
= NULL
;
1047 u64 contig_low
=0, contig_high
=0;
1049 void *efi_map_start
, *efi_map_end
, *p
, *q
;
1050 efi_memory_desc_t
*md
, *pmd
= NULL
, *check_md
;
1052 unsigned long total_mem
= 0;
1054 k
= kern_memmap
= find_memmap_space();
1056 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1057 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1058 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1060 for (p
= efi_map_start
; p
< efi_map_end
; pmd
= md
, p
+= efi_desc_size
) {
1064 (md
->type
== EFI_CONVENTIONAL_MEMORY
||
1065 md
->type
== EFI_BOOT_SERVICES_DATA
)) {
1066 k
->attribute
= EFI_MEMORY_UC
;
1067 k
->start
= md
->phys_addr
;
1068 k
->num_pages
= md
->num_pages
;
1073 if (pmd
== NULL
|| !efi_wb(pmd
) ||
1074 efi_md_end(pmd
) != md
->phys_addr
) {
1075 contig_low
= GRANULEROUNDUP(md
->phys_addr
);
1076 contig_high
= efi_md_end(md
);
1077 for (q
= p
+ efi_desc_size
; q
< efi_map_end
;
1078 q
+= efi_desc_size
) {
1080 if (!efi_wb(check_md
))
1082 if (contig_high
!= check_md
->phys_addr
)
1084 contig_high
= efi_md_end(check_md
);
1086 contig_high
= GRANULEROUNDDOWN(contig_high
);
1088 if (!is_memory_available(md
))
1092 * Round ends inward to granule boundaries
1093 * Give trimmings to uncached allocator
1095 if (md
->phys_addr
< contig_low
) {
1096 lim
= min(efi_md_end(md
), contig_low
);
1098 if (k
> kern_memmap
&&
1099 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1100 kmd_end(k
-1) == md
->phys_addr
) {
1102 (lim
- md
->phys_addr
)
1105 k
->attribute
= EFI_MEMORY_UC
;
1106 k
->start
= md
->phys_addr
;
1107 k
->num_pages
= (lim
- md
->phys_addr
)
1116 if (efi_md_end(md
) > contig_high
) {
1117 lim
= max(md
->phys_addr
, contig_high
);
1119 if (lim
== md
->phys_addr
&& k
> kern_memmap
&&
1120 (k
-1)->attribute
== EFI_MEMORY_UC
&&
1121 kmd_end(k
-1) == md
->phys_addr
) {
1122 (k
-1)->num_pages
+= md
->num_pages
;
1124 k
->attribute
= EFI_MEMORY_UC
;
1126 k
->num_pages
= (efi_md_end(md
) - lim
)
1133 ae
= efi_md_end(md
);
1135 /* keep within max_addr= and min_addr= command line arg */
1136 as
= max(as
, min_addr
);
1137 ae
= min(ae
, max_addr
);
1141 /* avoid going over mem= command line arg */
1142 if (total_mem
+ (ae
- as
) > mem_limit
)
1143 ae
-= total_mem
+ (ae
- as
) - mem_limit
;
1147 if (prev
&& kmd_end(prev
) == md
->phys_addr
) {
1148 prev
->num_pages
+= (ae
- as
) >> EFI_PAGE_SHIFT
;
1149 total_mem
+= ae
- as
;
1152 k
->attribute
= EFI_MEMORY_WB
;
1154 k
->num_pages
= (ae
- as
) >> EFI_PAGE_SHIFT
;
1155 total_mem
+= ae
- as
;
1158 k
->start
= ~0L; /* end-marker */
1160 /* reserve the memory we are using for kern_memmap */
1161 *s
= (u64
)kern_memmap
;
1168 efi_initialize_iomem_resources(struct resource
*code_resource
,
1169 struct resource
*data_resource
,
1170 struct resource
*bss_resource
)
1172 struct resource
*res
;
1173 void *efi_map_start
, *efi_map_end
, *p
;
1174 efi_memory_desc_t
*md
;
1177 unsigned long flags
, desc
;
1179 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1180 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1181 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1185 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1188 if (md
->num_pages
== 0) /* should not happen */
1191 flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
1192 desc
= IORES_DESC_NONE
;
1196 case EFI_MEMORY_MAPPED_IO
:
1197 case EFI_MEMORY_MAPPED_IO_PORT_SPACE
:
1200 case EFI_LOADER_CODE
:
1201 case EFI_LOADER_DATA
:
1202 case EFI_BOOT_SERVICES_DATA
:
1203 case EFI_BOOT_SERVICES_CODE
:
1204 case EFI_CONVENTIONAL_MEMORY
:
1205 if (md
->attribute
& EFI_MEMORY_WP
) {
1206 name
= "System ROM";
1207 flags
|= IORESOURCE_READONLY
;
1208 } else if (md
->attribute
== EFI_MEMORY_UC
) {
1209 name
= "Uncached RAM";
1211 name
= "System RAM";
1212 flags
|= IORESOURCE_SYSRAM
;
1216 case EFI_ACPI_MEMORY_NVS
:
1217 name
= "ACPI Non-volatile Storage";
1218 desc
= IORES_DESC_ACPI_NV_STORAGE
;
1221 case EFI_UNUSABLE_MEMORY
:
1223 flags
|= IORESOURCE_DISABLED
;
1226 case EFI_PERSISTENT_MEMORY
:
1227 name
= "Persistent Memory";
1228 desc
= IORES_DESC_PERSISTENT_MEMORY
;
1231 case EFI_RESERVED_TYPE
:
1232 case EFI_RUNTIME_SERVICES_CODE
:
1233 case EFI_RUNTIME_SERVICES_DATA
:
1234 case EFI_ACPI_RECLAIM_MEMORY
:
1240 if ((res
= kzalloc(sizeof(struct resource
),
1241 GFP_KERNEL
)) == NULL
) {
1243 "failed to allocate resource for iomem\n");
1248 res
->start
= md
->phys_addr
;
1249 res
->end
= md
->phys_addr
+ efi_md_size(md
) - 1;
1253 if (insert_resource(&iomem_resource
, res
) < 0)
1257 * We don't know which region contains
1258 * kernel data so we try it repeatedly and
1259 * let the resource manager test it.
1261 insert_resource(res
, code_resource
);
1262 insert_resource(res
, data_resource
);
1263 insert_resource(res
, bss_resource
);
1265 insert_resource(res
, &efi_memmap_res
);
1266 insert_resource(res
, &boot_param_res
);
1267 if (crashk_res
.end
> crashk_res
.start
)
1268 insert_resource(res
, &crashk_res
);
1275 /* find a block of memory aligned to 64M exclude reserved regions
1276 rsvd_regions are sorted
1278 unsigned long __init
1279 kdump_find_rsvd_region (unsigned long size
, struct rsvd_region
*r
, int n
)
1283 u64 alignment
= 1UL << _PAGE_SIZE_64M
;
1284 void *efi_map_start
, *efi_map_end
, *p
;
1285 efi_memory_desc_t
*md
;
1288 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1289 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1290 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1292 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1296 start
= ALIGN(md
->phys_addr
, alignment
);
1297 end
= efi_md_end(md
);
1298 for (i
= 0; i
< n
; i
++) {
1299 if (__pa(r
[i
].start
) >= start
&& __pa(r
[i
].end
) < end
) {
1300 if (__pa(r
[i
].start
) > start
+ size
)
1302 start
= ALIGN(__pa(r
[i
].end
), alignment
);
1304 __pa(r
[i
+1].start
) < start
+ size
)
1310 if (end
> start
+ size
)
1315 "Cannot reserve 0x%lx byte of memory for crashdump\n", size
);
1320 #ifdef CONFIG_CRASH_DUMP
1321 /* locate the size find a the descriptor at a certain address */
1322 unsigned long __init
1323 vmcore_find_descriptor_size (unsigned long address
)
1325 void *efi_map_start
, *efi_map_end
, *p
;
1326 efi_memory_desc_t
*md
;
1328 unsigned long ret
= 0;
1330 efi_map_start
= __va(ia64_boot_param
->efi_memmap
);
1331 efi_map_end
= efi_map_start
+ ia64_boot_param
->efi_memmap_size
;
1332 efi_desc_size
= ia64_boot_param
->efi_memdesc_size
;
1334 for (p
= efi_map_start
; p
< efi_map_end
; p
+= efi_desc_size
) {
1336 if (efi_wb(md
) && md
->type
== EFI_LOADER_DATA
1337 && md
->phys_addr
== address
) {
1338 ret
= efi_md_size(md
);
1344 printk(KERN_WARNING
"Cannot locate EFI vmcore descriptor\n");
1350 char *efi_systab_show_arch(char *str
)
1352 if (mps_phys
!= EFI_INVALID_TABLE_ADDR
)
1353 str
+= sprintf(str
, "MPS=0x%lx\n", mps_phys
);
1354 if (hcdp_phys
!= EFI_INVALID_TABLE_ADDR
)
1355 str
+= sprintf(str
, "HCDP=0x%lx\n", hcdp_phys
);