1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel support for the ptrace() and syscall tracing interfaces.
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
11 * Derived from the x86 and Alpha versions.
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/security.h>
22 #include <linux/audit.h>
23 #include <linux/signal.h>
24 #include <linux/regset.h>
25 #include <linux/elf.h>
26 #include <linux/tracehook.h>
28 #include <asm/processor.h>
29 #include <asm/ptrace_offsets.h>
31 #include <linux/uaccess.h>
32 #include <asm/unwind.h>
37 * Bits in the PSR that we allow ptrace() to change:
38 * be, up, ac, mfl, mfh (the user mask; five bits total)
39 * db (debug breakpoint fault; one bit)
40 * id (instruction debug fault disable; one bit)
41 * dd (data debug fault disable; one bit)
42 * ri (restart instruction; two bits)
43 * is (instruction set; one bit)
45 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
46 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
48 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
49 #define PFM_MASK MASK(38)
51 #define PTRACE_DEBUG 0
54 # define dprintk(format...) printk(format)
57 # define dprintk(format...)
60 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
63 in_syscall (struct pt_regs
*pt
)
65 return (long) pt
->cr_ifs
>= 0;
69 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
70 * bitset where bit i is set iff the NaT bit of register i is set.
73 ia64_get_scratch_nat_bits (struct pt_regs
*pt
, unsigned long scratch_unat
)
75 # define GET_BITS(first, last, unat) \
77 unsigned long bit = ia64_unat_pos(&pt->r##first); \
78 unsigned long nbits = (last - first + 1); \
79 unsigned long mask = MASK(nbits) << first; \
82 dist = 64 + bit - first; \
85 ia64_rotr(unat, dist) & mask; \
90 * Registers that are stored consecutively in struct pt_regs
91 * can be handled in parallel. If the register order in
92 * struct_pt_regs changes, this code MUST be updated.
94 val
= GET_BITS( 1, 1, scratch_unat
);
95 val
|= GET_BITS( 2, 3, scratch_unat
);
96 val
|= GET_BITS(12, 13, scratch_unat
);
97 val
|= GET_BITS(14, 14, scratch_unat
);
98 val
|= GET_BITS(15, 15, scratch_unat
);
99 val
|= GET_BITS( 8, 11, scratch_unat
);
100 val
|= GET_BITS(16, 31, scratch_unat
);
107 * Set the NaT bits for the scratch registers according to NAT and
108 * return the resulting unat (assuming the scratch registers are
112 ia64_put_scratch_nat_bits (struct pt_regs
*pt
, unsigned long nat
)
114 # define PUT_BITS(first, last, nat) \
116 unsigned long bit = ia64_unat_pos(&pt->r##first); \
117 unsigned long nbits = (last - first + 1); \
118 unsigned long mask = MASK(nbits) << first; \
121 dist = 64 + bit - first; \
123 dist = bit - first; \
124 ia64_rotl(nat & mask, dist); \
126 unsigned long scratch_unat
;
129 * Registers that are stored consecutively in struct pt_regs
130 * can be handled in parallel. If the register order in
131 * struct_pt_regs changes, this code MUST be updated.
133 scratch_unat
= PUT_BITS( 1, 1, nat
);
134 scratch_unat
|= PUT_BITS( 2, 3, nat
);
135 scratch_unat
|= PUT_BITS(12, 13, nat
);
136 scratch_unat
|= PUT_BITS(14, 14, nat
);
137 scratch_unat
|= PUT_BITS(15, 15, nat
);
138 scratch_unat
|= PUT_BITS( 8, 11, nat
);
139 scratch_unat
|= PUT_BITS(16, 31, nat
);
146 #define IA64_MLX_TEMPLATE 0x2
147 #define IA64_MOVL_OPCODE 6
150 ia64_increment_ip (struct pt_regs
*regs
)
152 unsigned long w0
, ri
= ia64_psr(regs
)->ri
+ 1;
157 } else if (ri
== 2) {
158 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
159 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
161 * rfi'ing to slot 2 of an MLX bundle causes
162 * an illegal operation fault. We don't want
169 ia64_psr(regs
)->ri
= ri
;
173 ia64_decrement_ip (struct pt_regs
*regs
)
175 unsigned long w0
, ri
= ia64_psr(regs
)->ri
- 1;
177 if (ia64_psr(regs
)->ri
== 0) {
180 get_user(w0
, (char __user
*) regs
->cr_iip
+ 0);
181 if (((w0
>> 1) & 0xf) == IA64_MLX_TEMPLATE
) {
183 * rfi'ing to slot 2 of an MLX bundle causes
184 * an illegal operation fault. We don't want
190 ia64_psr(regs
)->ri
= ri
;
194 * This routine is used to read an rnat bits that are stored on the
195 * kernel backing store. Since, in general, the alignment of the user
196 * and kernel are different, this is not completely trivial. In
197 * essence, we need to construct the user RNAT based on up to two
198 * kernel RNAT values and/or the RNAT value saved in the child's
203 * +--------+ <-- lowest address
210 * | slot01 | > child_regs->ar_rnat
212 * | slot02 | / kernel rbs
213 * +--------+ +--------+
214 * <- child_regs->ar_bspstore | slot61 | <-- krbs
215 * +- - - - + +--------+
217 * +- - - - + +--------+
219 * +- - - - + +--------+
221 * +- - - - + +--------+
226 * | slot01 | > child_stack->ar_rnat
230 * <--- child_stack->ar_bspstore
232 * The way to think of this code is as follows: bit 0 in the user rnat
233 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
234 * value. The kernel rnat value holding this bit is stored in
235 * variable rnat0. rnat1 is loaded with the kernel rnat value that
236 * form the upper bits of the user rnat value.
240 * o when reading the rnat "below" the first rnat slot on the kernel
241 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
242 * merged in from pt->ar_rnat.
244 * o when reading the rnat "above" the last rnat slot on the kernel
245 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
248 get_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
249 unsigned long *krbs
, unsigned long *urnat_addr
,
250 unsigned long *urbs_end
)
252 unsigned long rnat0
= 0, rnat1
= 0, urnat
= 0, *slot0_kaddr
;
253 unsigned long umask
= 0, mask
, m
;
254 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
255 long num_regs
, nbits
;
258 pt
= task_pt_regs(task
);
259 kbsp
= (unsigned long *) sw
->ar_bspstore
;
260 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
262 if (urbs_end
< urnat_addr
)
263 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_end
);
268 * First, figure out which bit number slot 0 in user-land maps
269 * to in the kernel rnat. Do this by figuring out how many
270 * register slots we're beyond the user's backingstore and
271 * then computing the equivalent address in kernel space.
273 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
274 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
275 shift
= ia64_rse_slot_num(slot0_kaddr
);
276 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
277 rnat0_kaddr
= rnat1_kaddr
- 64;
279 if (ubspstore
+ 63 > urnat_addr
) {
280 /* some bits need to be merged in from pt->ar_rnat */
281 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
282 urnat
= (pt
->ar_rnat
& umask
);
289 if (rnat0_kaddr
>= kbsp
)
291 else if (rnat0_kaddr
> krbs
)
292 rnat0
= *rnat0_kaddr
;
293 urnat
|= (rnat0
& m
) >> shift
;
295 m
= mask
>> (63 - shift
);
296 if (rnat1_kaddr
>= kbsp
)
298 else if (rnat1_kaddr
> krbs
)
299 rnat1
= *rnat1_kaddr
;
300 urnat
|= (rnat1
& m
) << (63 - shift
);
305 * The reverse of get_rnat.
308 put_rnat (struct task_struct
*task
, struct switch_stack
*sw
,
309 unsigned long *krbs
, unsigned long *urnat_addr
, unsigned long urnat
,
310 unsigned long *urbs_end
)
312 unsigned long rnat0
= 0, rnat1
= 0, *slot0_kaddr
, umask
= 0, mask
, m
;
313 unsigned long *kbsp
, *ubspstore
, *rnat0_kaddr
, *rnat1_kaddr
, shift
;
314 long num_regs
, nbits
;
316 unsigned long cfm
, *urbs_kargs
;
318 pt
= task_pt_regs(task
);
319 kbsp
= (unsigned long *) sw
->ar_bspstore
;
320 ubspstore
= (unsigned long *) pt
->ar_bspstore
;
322 urbs_kargs
= urbs_end
;
323 if (in_syscall(pt
)) {
325 * If entered via syscall, don't allow user to set rnat bits
329 urbs_kargs
= ia64_rse_skip_regs(urbs_end
, -(cfm
& 0x7f));
332 if (urbs_kargs
>= urnat_addr
)
335 if ((urnat_addr
- 63) >= urbs_kargs
)
337 nbits
= ia64_rse_num_regs(urnat_addr
- 63, urbs_kargs
);
342 * First, figure out which bit number slot 0 in user-land maps
343 * to in the kernel rnat. Do this by figuring out how many
344 * register slots we're beyond the user's backingstore and
345 * then computing the equivalent address in kernel space.
347 num_regs
= ia64_rse_num_regs(ubspstore
, urnat_addr
+ 1);
348 slot0_kaddr
= ia64_rse_skip_regs(krbs
, num_regs
);
349 shift
= ia64_rse_slot_num(slot0_kaddr
);
350 rnat1_kaddr
= ia64_rse_rnat_addr(slot0_kaddr
);
351 rnat0_kaddr
= rnat1_kaddr
- 64;
353 if (ubspstore
+ 63 > urnat_addr
) {
354 /* some bits need to be place in pt->ar_rnat: */
355 umask
= MASK(ia64_rse_slot_num(ubspstore
)) & mask
;
356 pt
->ar_rnat
= (pt
->ar_rnat
& ~umask
) | (urnat
& umask
);
362 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
363 * rnat slot is ignored. so we don't have to clear it here.
365 rnat0
= (urnat
<< shift
);
367 if (rnat0_kaddr
>= kbsp
)
368 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat0
& m
);
369 else if (rnat0_kaddr
> krbs
)
370 *rnat0_kaddr
= ((*rnat0_kaddr
& ~m
) | (rnat0
& m
));
372 rnat1
= (urnat
>> (63 - shift
));
373 m
= mask
>> (63 - shift
);
374 if (rnat1_kaddr
>= kbsp
)
375 sw
->ar_rnat
= (sw
->ar_rnat
& ~m
) | (rnat1
& m
);
376 else if (rnat1_kaddr
> krbs
)
377 *rnat1_kaddr
= ((*rnat1_kaddr
& ~m
) | (rnat1
& m
));
381 on_kernel_rbs (unsigned long addr
, unsigned long bspstore
,
382 unsigned long urbs_end
)
384 unsigned long *rnat_addr
= ia64_rse_rnat_addr((unsigned long *)
386 return (addr
>= bspstore
&& addr
<= (unsigned long) rnat_addr
);
390 * Read a word from the user-level backing store of task CHILD. ADDR
391 * is the user-level address to read the word from, VAL a pointer to
392 * the return value, and USER_BSP gives the end of the user-level
393 * backing store (i.e., it's the address that would be in ar.bsp after
394 * the user executed a "cover" instruction).
396 * This routine takes care of accessing the kernel register backing
397 * store for those registers that got spilled there. It also takes
398 * care of calculating the appropriate RNaT collection words.
401 ia64_peek (struct task_struct
*child
, struct switch_stack
*child_stack
,
402 unsigned long user_rbs_end
, unsigned long addr
, long *val
)
404 unsigned long *bspstore
, *krbs
, regnum
, *laddr
, *urbs_end
, *rnat_addr
;
405 struct pt_regs
*child_regs
;
409 urbs_end
= (long *) user_rbs_end
;
410 laddr
= (unsigned long *) addr
;
411 child_regs
= task_pt_regs(child
);
412 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
413 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
414 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
415 (unsigned long) urbs_end
))
418 * Attempt to read the RBS in an area that's actually
419 * on the kernel RBS => read the corresponding bits in
422 rnat_addr
= ia64_rse_rnat_addr(laddr
);
423 ret
= get_rnat(child
, child_stack
, krbs
, rnat_addr
, urbs_end
);
425 if (laddr
== rnat_addr
) {
426 /* return NaT collection word itself */
431 if (((1UL << ia64_rse_slot_num(laddr
)) & ret
) != 0) {
433 * It is implementation dependent whether the
434 * data portion of a NaT value gets saved on a
435 * st8.spill or RSE spill (e.g., see EAS 2.6,
436 * 4.4.4.6 Register Spill and Fill). To get
437 * consistent behavior across all possible
438 * IA-64 implementations, we return zero in
445 if (laddr
< urbs_end
) {
447 * The desired word is on the kernel RBS and
450 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
451 *val
= *ia64_rse_skip_regs(krbs
, regnum
);
455 copied
= access_process_vm(child
, addr
, &ret
, sizeof(ret
), FOLL_FORCE
);
456 if (copied
!= sizeof(ret
))
463 ia64_poke (struct task_struct
*child
, struct switch_stack
*child_stack
,
464 unsigned long user_rbs_end
, unsigned long addr
, long val
)
466 unsigned long *bspstore
, *krbs
, regnum
, *laddr
;
467 unsigned long *urbs_end
= (long *) user_rbs_end
;
468 struct pt_regs
*child_regs
;
470 laddr
= (unsigned long *) addr
;
471 child_regs
= task_pt_regs(child
);
472 bspstore
= (unsigned long *) child_regs
->ar_bspstore
;
473 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
474 if (on_kernel_rbs(addr
, (unsigned long) bspstore
,
475 (unsigned long) urbs_end
))
478 * Attempt to write the RBS in an area that's actually
479 * on the kernel RBS => write the corresponding bits
482 if (ia64_rse_is_rnat_slot(laddr
))
483 put_rnat(child
, child_stack
, krbs
, laddr
, val
,
486 if (laddr
< urbs_end
) {
487 regnum
= ia64_rse_num_regs(bspstore
, laddr
);
488 *ia64_rse_skip_regs(krbs
, regnum
) = val
;
491 } else if (access_process_vm(child
, addr
, &val
, sizeof(val
),
492 FOLL_FORCE
| FOLL_WRITE
)
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
507 ia64_get_user_rbs_end (struct task_struct
*child
, struct pt_regs
*pt
,
510 unsigned long *krbs
, *bspstore
, cfm
= pt
->cr_ifs
;
513 krbs
= (unsigned long *) child
+ IA64_RBS_OFFSET
/8;
514 bspstore
= (unsigned long *) pt
->ar_bspstore
;
515 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
518 ndirty
+= (cfm
& 0x7f);
520 cfm
&= ~(1UL << 63); /* clear valid bit */
524 return (unsigned long) ia64_rse_skip_regs(bspstore
, ndirty
);
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
535 ia64_sync_user_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
536 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
538 unsigned long addr
, val
;
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
543 ret
= ia64_peek(child
, sw
, user_rbs_end
, addr
, &val
);
546 if (access_process_vm(child
, addr
, &val
, sizeof(val
),
547 FOLL_FORCE
| FOLL_WRITE
)
555 ia64_sync_kernel_rbs (struct task_struct
*child
, struct switch_stack
*sw
,
556 unsigned long user_rbs_start
, unsigned long user_rbs_end
)
558 unsigned long addr
, val
;
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr
= user_rbs_start
; addr
< user_rbs_end
; addr
+= 8) {
563 if (access_process_vm(child
, addr
, &val
, sizeof(val
),
568 ret
= ia64_poke(child
, sw
, user_rbs_end
, addr
, val
);
575 typedef long (*syncfunc_t
)(struct task_struct
*, struct switch_stack
*,
576 unsigned long, unsigned long);
578 static void do_sync_rbs(struct unw_frame_info
*info
, void *arg
)
581 unsigned long urbs_end
;
584 if (unw_unwind_to_user(info
) < 0)
586 pt
= task_pt_regs(info
->task
);
587 urbs_end
= ia64_get_user_rbs_end(info
->task
, pt
, NULL
);
589 fn(info
->task
, info
->sw
, pt
->ar_bspstore
, urbs_end
);
593 * when a thread is stopped (ptraced), debugger might change thread's user
594 * stack (change memory directly), and we must avoid the RSE stored in kernel
595 * to override user stack (user space's RSE is newer than kernel's in the
596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
597 * task is stopped, so user RSE has updated data. we then copy user RSE to
598 * kernel after the task is resummed from traced stop and kernel will use the
599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600 * synchronize user RSE to kernel.
602 void ia64_ptrace_stop(void)
604 if (test_and_set_tsk_thread_flag(current
, TIF_RESTORE_RSE
))
606 set_notify_resume(current
);
607 unw_init_running(do_sync_rbs
, ia64_sync_user_rbs
);
611 * This is called to read back the register backing store.
613 void ia64_sync_krbs(void)
615 clear_tsk_thread_flag(current
, TIF_RESTORE_RSE
);
617 unw_init_running(do_sync_rbs
, ia64_sync_kernel_rbs
);
621 * After PTRACE_ATTACH, a thread's register backing store area in user
622 * space is assumed to contain correct data whenever the thread is
623 * stopped. arch_ptrace_stop takes care of this on tracing stops.
624 * But if the child was already stopped for job control when we attach
625 * to it, then it might not ever get into ptrace_stop by the time we
626 * want to examine the user memory containing the RBS.
629 ptrace_attach_sync_user_rbs (struct task_struct
*child
)
632 struct unw_frame_info info
;
635 * If the child is in TASK_STOPPED, we need to change that to
636 * TASK_TRACED momentarily while we operate on it. This ensures
637 * that the child won't be woken up and return to user mode while
638 * we are doing the sync. (It can only be woken up for SIGKILL.)
641 read_lock(&tasklist_lock
);
642 if (child
->sighand
) {
643 spin_lock_irq(&child
->sighand
->siglock
);
644 if (child
->state
== TASK_STOPPED
&&
645 !test_and_set_tsk_thread_flag(child
, TIF_RESTORE_RSE
)) {
646 set_notify_resume(child
);
648 child
->state
= TASK_TRACED
;
651 spin_unlock_irq(&child
->sighand
->siglock
);
653 read_unlock(&tasklist_lock
);
658 unw_init_from_blocked_task(&info
, child
);
659 do_sync_rbs(&info
, ia64_sync_user_rbs
);
662 * Now move the child back into TASK_STOPPED if it should be in a
663 * job control stop, so that SIGCONT can be used to wake it up.
665 read_lock(&tasklist_lock
);
666 if (child
->sighand
) {
667 spin_lock_irq(&child
->sighand
->siglock
);
668 if (child
->state
== TASK_TRACED
&&
669 (child
->signal
->flags
& SIGNAL_STOP_STOPPED
)) {
670 child
->state
= TASK_STOPPED
;
672 spin_unlock_irq(&child
->sighand
->siglock
);
674 read_unlock(&tasklist_lock
);
678 * Write f32-f127 back to task->thread.fph if it has been modified.
681 ia64_flush_fph (struct task_struct
*task
)
683 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
686 * Prevent migrating this task while
687 * we're fiddling with the FPU state
690 if (ia64_is_local_fpu_owner(task
) && psr
->mfh
) {
692 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
693 ia64_save_fpu(&task
->thread
.fph
[0]);
699 * Sync the fph state of the task so that it can be manipulated
700 * through thread.fph. If necessary, f32-f127 are written back to
701 * thread.fph or, if the fph state hasn't been used before, thread.fph
702 * is cleared to zeroes. Also, access to f32-f127 is disabled to
703 * ensure that the task picks up the state from thread.fph when it
707 ia64_sync_fph (struct task_struct
*task
)
709 struct ia64_psr
*psr
= ia64_psr(task_pt_regs(task
));
711 ia64_flush_fph(task
);
712 if (!(task
->thread
.flags
& IA64_THREAD_FPH_VALID
)) {
713 task
->thread
.flags
|= IA64_THREAD_FPH_VALID
;
714 memset(&task
->thread
.fph
, 0, sizeof(task
->thread
.fph
));
721 * Change the machine-state of CHILD such that it will return via the normal
722 * kernel exit-path, rather than the syscall-exit path.
725 convert_to_non_syscall (struct task_struct
*child
, struct pt_regs
*pt
,
728 struct unw_frame_info info
, prev_info
;
729 unsigned long ip
, sp
, pr
;
731 unw_init_from_blocked_task(&info
, child
);
734 if (unw_unwind(&info
) < 0)
737 unw_get_sp(&info
, &sp
);
738 if ((long)((unsigned long)child
+ IA64_STK_OFFSET
- sp
)
739 < IA64_PT_REGS_SIZE
) {
740 dprintk("ptrace.%s: ran off the top of the kernel "
741 "stack\n", __func__
);
744 if (unw_get_pr (&prev_info
, &pr
) < 0) {
745 unw_get_rp(&prev_info
, &ip
);
746 dprintk("ptrace.%s: failed to read "
747 "predicate register (ip=0x%lx)\n",
751 if (unw_is_intr_frame(&info
)
752 && (pr
& (1UL << PRED_USER_STACK
)))
757 * Note: at the time of this call, the target task is blocked
758 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
759 * (aka, "pLvSys") we redirect execution from
760 * .work_pending_syscall_end to .work_processed_kernel.
762 unw_get_pr(&prev_info
, &pr
);
763 pr
&= ~((1UL << PRED_SYSCALL
) | (1UL << PRED_LEAVE_SYSCALL
));
764 pr
|= (1UL << PRED_NON_SYSCALL
);
765 unw_set_pr(&prev_info
, pr
);
767 pt
->cr_ifs
= (1UL << 63) | cfm
;
769 * Clear the memory that is NOT written on syscall-entry to
770 * ensure we do not leak kernel-state to user when execution
776 memset(&pt
->r16
, 0, 16*8); /* clear r16-r31 */
777 memset(&pt
->f6
, 0, 6*16); /* clear f6-f11 */
785 access_nat_bits (struct task_struct
*child
, struct pt_regs
*pt
,
786 struct unw_frame_info
*info
,
787 unsigned long *data
, int write_access
)
789 unsigned long regnum
, nat_bits
, scratch_unat
, dummy
= 0;
794 scratch_unat
= ia64_put_scratch_nat_bits(pt
, nat_bits
);
795 if (unw_set_ar(info
, UNW_AR_UNAT
, scratch_unat
) < 0) {
796 dprintk("ptrace: failed to set ar.unat\n");
799 for (regnum
= 4; regnum
<= 7; ++regnum
) {
800 unw_get_gr(info
, regnum
, &dummy
, &nat
);
801 unw_set_gr(info
, regnum
, dummy
,
802 (nat_bits
>> regnum
) & 1);
805 if (unw_get_ar(info
, UNW_AR_UNAT
, &scratch_unat
) < 0) {
806 dprintk("ptrace: failed to read ar.unat\n");
809 nat_bits
= ia64_get_scratch_nat_bits(pt
, scratch_unat
);
810 for (regnum
= 4; regnum
<= 7; ++regnum
) {
811 unw_get_gr(info
, regnum
, &dummy
, &nat
);
812 nat_bits
|= (nat
!= 0) << regnum
;
820 access_elf_reg(struct task_struct
*target
, struct unw_frame_info
*info
,
821 unsigned long addr
, unsigned long *data
, int write_access
);
824 ptrace_getregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
826 unsigned long psr
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
;
827 struct unw_frame_info info
;
828 struct ia64_fpreg fpval
;
829 struct switch_stack
*sw
;
831 long ret
, retval
= 0;
835 if (!access_ok(ppr
, sizeof(struct pt_all_user_regs
)))
838 pt
= task_pt_regs(child
);
839 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
840 unw_init_from_blocked_task(&info
, child
);
841 if (unw_unwind_to_user(&info
) < 0) {
845 if (((unsigned long) ppr
& 0x7) != 0) {
846 dprintk("ptrace:unaligned register address %p\n", ppr
);
850 if (access_elf_reg(child
, &info
, ELF_CR_IPSR_OFFSET
, &psr
, 0) < 0 ||
851 access_elf_reg(child
, &info
, ELF_AR_EC_OFFSET
, &ec
, 0) < 0 ||
852 access_elf_reg(child
, &info
, ELF_AR_LC_OFFSET
, &lc
, 0) < 0 ||
853 access_elf_reg(child
, &info
, ELF_AR_RNAT_OFFSET
, &rnat
, 0) < 0 ||
854 access_elf_reg(child
, &info
, ELF_AR_BSP_OFFSET
, &bsp
, 0) < 0 ||
855 access_elf_reg(child
, &info
, ELF_CFM_OFFSET
, &cfm
, 0) < 0 ||
856 access_elf_reg(child
, &info
, ELF_NAT_OFFSET
, &nat_bits
, 0) < 0)
861 retval
|= __put_user(pt
->cr_iip
, &ppr
->cr_iip
);
862 retval
|= __put_user(psr
, &ppr
->cr_ipsr
);
866 retval
|= __put_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
867 retval
|= __put_user(pt
->ar_rsc
, &ppr
->ar
[PT_AUR_RSC
]);
868 retval
|= __put_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
869 retval
|= __put_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
870 retval
|= __put_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
871 retval
|= __put_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
873 retval
|= __put_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
874 retval
|= __put_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
875 retval
|= __put_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
876 retval
|= __put_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
877 retval
|= __put_user(cfm
, &ppr
->cfm
);
881 retval
|= __copy_to_user(&ppr
->gr
[1], &pt
->r1
, sizeof(long));
882 retval
|= __copy_to_user(&ppr
->gr
[2], &pt
->r2
, sizeof(long) *2);
886 for (i
= 4; i
< 8; i
++) {
887 if (unw_access_gr(&info
, i
, &val
, &nat
, 0) < 0)
889 retval
|= __put_user(val
, &ppr
->gr
[i
]);
894 retval
|= __copy_to_user(&ppr
->gr
[8], &pt
->r8
, sizeof(long) * 4);
898 retval
|= __copy_to_user(&ppr
->gr
[12], &pt
->r12
, sizeof(long) * 2);
899 retval
|= __copy_to_user(&ppr
->gr
[14], &pt
->r14
, sizeof(long));
900 retval
|= __copy_to_user(&ppr
->gr
[15], &pt
->r15
, sizeof(long));
904 retval
|= __copy_to_user(&ppr
->gr
[16], &pt
->r16
, sizeof(long) * 16);
908 retval
|= __put_user(pt
->b0
, &ppr
->br
[0]);
912 for (i
= 1; i
< 6; i
++) {
913 if (unw_access_br(&info
, i
, &val
, 0) < 0)
915 __put_user(val
, &ppr
->br
[i
]);
920 retval
|= __put_user(pt
->b6
, &ppr
->br
[6]);
921 retval
|= __put_user(pt
->b7
, &ppr
->br
[7]);
925 for (i
= 2; i
< 6; i
++) {
926 if (unw_get_fr(&info
, i
, &fpval
) < 0)
928 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
933 retval
|= __copy_to_user(&ppr
->fr
[6], &pt
->f6
,
934 sizeof(struct ia64_fpreg
) * 6);
936 /* fp scratch regs(12-15) */
938 retval
|= __copy_to_user(&ppr
->fr
[12], &sw
->f12
,
939 sizeof(struct ia64_fpreg
) * 4);
943 for (i
= 16; i
< 32; i
++) {
944 if (unw_get_fr(&info
, i
, &fpval
) < 0)
946 retval
|= __copy_to_user(&ppr
->fr
[i
], &fpval
, sizeof (fpval
));
951 ia64_flush_fph(child
);
952 retval
|= __copy_to_user(&ppr
->fr
[32], &child
->thread
.fph
,
953 sizeof(ppr
->fr
[32]) * 96);
957 retval
|= __put_user(pt
->pr
, &ppr
->pr
);
961 retval
|= __put_user(nat_bits
, &ppr
->nat
);
963 ret
= retval
? -EIO
: 0;
968 ptrace_setregs (struct task_struct
*child
, struct pt_all_user_regs __user
*ppr
)
970 unsigned long psr
, rsc
, ec
, lc
, rnat
, bsp
, cfm
, nat_bits
, val
= 0;
971 struct unw_frame_info info
;
972 struct switch_stack
*sw
;
973 struct ia64_fpreg fpval
;
978 memset(&fpval
, 0, sizeof(fpval
));
980 if (!access_ok(ppr
, sizeof(struct pt_all_user_regs
)))
983 pt
= task_pt_regs(child
);
984 sw
= (struct switch_stack
*) (child
->thread
.ksp
+ 16);
985 unw_init_from_blocked_task(&info
, child
);
986 if (unw_unwind_to_user(&info
) < 0) {
990 if (((unsigned long) ppr
& 0x7) != 0) {
991 dprintk("ptrace:unaligned register address %p\n", ppr
);
997 retval
|= __get_user(pt
->cr_iip
, &ppr
->cr_iip
);
998 retval
|= __get_user(psr
, &ppr
->cr_ipsr
);
1002 retval
|= __get_user(pt
->ar_pfs
, &ppr
->ar
[PT_AUR_PFS
]);
1003 retval
|= __get_user(rsc
, &ppr
->ar
[PT_AUR_RSC
]);
1004 retval
|= __get_user(pt
->ar_bspstore
, &ppr
->ar
[PT_AUR_BSPSTORE
]);
1005 retval
|= __get_user(pt
->ar_unat
, &ppr
->ar
[PT_AUR_UNAT
]);
1006 retval
|= __get_user(pt
->ar_ccv
, &ppr
->ar
[PT_AUR_CCV
]);
1007 retval
|= __get_user(pt
->ar_fpsr
, &ppr
->ar
[PT_AUR_FPSR
]);
1009 retval
|= __get_user(ec
, &ppr
->ar
[PT_AUR_EC
]);
1010 retval
|= __get_user(lc
, &ppr
->ar
[PT_AUR_LC
]);
1011 retval
|= __get_user(rnat
, &ppr
->ar
[PT_AUR_RNAT
]);
1012 retval
|= __get_user(bsp
, &ppr
->ar
[PT_AUR_BSP
]);
1013 retval
|= __get_user(cfm
, &ppr
->cfm
);
1017 retval
|= __copy_from_user(&pt
->r1
, &ppr
->gr
[1], sizeof(long));
1018 retval
|= __copy_from_user(&pt
->r2
, &ppr
->gr
[2], sizeof(long) * 2);
1022 for (i
= 4; i
< 8; i
++) {
1023 retval
|= __get_user(val
, &ppr
->gr
[i
]);
1024 /* NaT bit will be set via PT_NAT_BITS: */
1025 if (unw_set_gr(&info
, i
, val
, 0) < 0)
1031 retval
|= __copy_from_user(&pt
->r8
, &ppr
->gr
[8], sizeof(long) * 4);
1035 retval
|= __copy_from_user(&pt
->r12
, &ppr
->gr
[12], sizeof(long) * 2);
1036 retval
|= __copy_from_user(&pt
->r14
, &ppr
->gr
[14], sizeof(long));
1037 retval
|= __copy_from_user(&pt
->r15
, &ppr
->gr
[15], sizeof(long));
1041 retval
|= __copy_from_user(&pt
->r16
, &ppr
->gr
[16], sizeof(long) * 16);
1045 retval
|= __get_user(pt
->b0
, &ppr
->br
[0]);
1049 for (i
= 1; i
< 6; i
++) {
1050 retval
|= __get_user(val
, &ppr
->br
[i
]);
1051 unw_set_br(&info
, i
, val
);
1056 retval
|= __get_user(pt
->b6
, &ppr
->br
[6]);
1057 retval
|= __get_user(pt
->b7
, &ppr
->br
[7]);
1061 for (i
= 2; i
< 6; i
++) {
1062 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
], sizeof(fpval
));
1063 if (unw_set_fr(&info
, i
, fpval
) < 0)
1069 retval
|= __copy_from_user(&pt
->f6
, &ppr
->fr
[6],
1070 sizeof(ppr
->fr
[6]) * 6);
1072 /* fp scratch regs(12-15) */
1074 retval
|= __copy_from_user(&sw
->f12
, &ppr
->fr
[12],
1075 sizeof(ppr
->fr
[12]) * 4);
1079 for (i
= 16; i
< 32; i
++) {
1080 retval
|= __copy_from_user(&fpval
, &ppr
->fr
[i
],
1082 if (unw_set_fr(&info
, i
, fpval
) < 0)
1088 ia64_sync_fph(child
);
1089 retval
|= __copy_from_user(&child
->thread
.fph
, &ppr
->fr
[32],
1090 sizeof(ppr
->fr
[32]) * 96);
1094 retval
|= __get_user(pt
->pr
, &ppr
->pr
);
1098 retval
|= __get_user(nat_bits
, &ppr
->nat
);
1100 retval
|= access_elf_reg(child
, &info
, ELF_CR_IPSR_OFFSET
, &psr
, 1);
1101 retval
|= access_elf_reg(child
, &info
, ELF_AR_RSC_OFFSET
, &rsc
, 1);
1102 retval
|= access_elf_reg(child
, &info
, ELF_AR_EC_OFFSET
, &ec
, 1);
1103 retval
|= access_elf_reg(child
, &info
, ELF_AR_LC_OFFSET
, &lc
, 1);
1104 retval
|= access_elf_reg(child
, &info
, ELF_AR_RNAT_OFFSET
, &rnat
, 1);
1105 retval
|= access_elf_reg(child
, &info
, ELF_AR_BSP_OFFSET
, &bsp
, 1);
1106 retval
|= access_elf_reg(child
, &info
, ELF_CFM_OFFSET
, &cfm
, 1);
1107 retval
|= access_elf_reg(child
, &info
, ELF_NAT_OFFSET
, &nat_bits
, 1);
1109 return retval
? -EIO
: 0;
1113 user_enable_single_step (struct task_struct
*child
)
1115 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1117 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1122 user_enable_block_step (struct task_struct
*child
)
1124 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1126 set_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1131 user_disable_single_step (struct task_struct
*child
)
1133 struct ia64_psr
*child_psr
= ia64_psr(task_pt_regs(child
));
1135 /* make sure the single step/taken-branch trap bits are not set: */
1136 clear_tsk_thread_flag(child
, TIF_SINGLESTEP
);
1142 * Called by kernel/ptrace.c when detaching..
1144 * Make sure the single step bit is not set.
1147 ptrace_disable (struct task_struct
*child
)
1149 user_disable_single_step(child
);
1153 access_uarea (struct task_struct
*child
, unsigned long addr
,
1154 unsigned long *data
, int write_access
);
1157 arch_ptrace (struct task_struct
*child
, long request
,
1158 unsigned long addr
, unsigned long data
)
1161 case PTRACE_PEEKTEXT
:
1162 case PTRACE_PEEKDATA
:
1163 /* read word at location addr */
1164 if (ptrace_access_vm(child
, addr
, &data
, sizeof(data
),
1168 /* ensure return value is not mistaken for error code */
1169 force_successful_syscall_return();
1172 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1173 * by the generic ptrace_request().
1176 case PTRACE_PEEKUSR
:
1177 /* read the word at addr in the USER area */
1178 if (access_uarea(child
, addr
, &data
, 0) < 0)
1180 /* ensure return value is not mistaken for error code */
1181 force_successful_syscall_return();
1184 case PTRACE_POKEUSR
:
1185 /* write the word at addr in the USER area */
1186 if (access_uarea(child
, addr
, &data
, 1) < 0)
1190 case PTRACE_OLD_GETSIGINFO
:
1191 /* for backwards-compatibility */
1192 return ptrace_request(child
, PTRACE_GETSIGINFO
, addr
, data
);
1194 case PTRACE_OLD_SETSIGINFO
:
1195 /* for backwards-compatibility */
1196 return ptrace_request(child
, PTRACE_SETSIGINFO
, addr
, data
);
1198 case PTRACE_GETREGS
:
1199 return ptrace_getregs(child
,
1200 (struct pt_all_user_regs __user
*) data
);
1202 case PTRACE_SETREGS
:
1203 return ptrace_setregs(child
,
1204 (struct pt_all_user_regs __user
*) data
);
1207 return ptrace_request(child
, request
, addr
, data
);
1212 /* "asmlinkage" so the input arguments are preserved... */
1215 syscall_trace_enter (long arg0
, long arg1
, long arg2
, long arg3
,
1216 long arg4
, long arg5
, long arg6
, long arg7
,
1217 struct pt_regs regs
)
1219 if (test_thread_flag(TIF_SYSCALL_TRACE
))
1220 if (tracehook_report_syscall_entry(®s
))
1223 /* copy user rbs to kernel rbs */
1224 if (test_thread_flag(TIF_RESTORE_RSE
))
1228 audit_syscall_entry(regs
.r15
, arg0
, arg1
, arg2
, arg3
);
1233 /* "asmlinkage" so the input arguments are preserved... */
1236 syscall_trace_leave (long arg0
, long arg1
, long arg2
, long arg3
,
1237 long arg4
, long arg5
, long arg6
, long arg7
,
1238 struct pt_regs regs
)
1242 audit_syscall_exit(®s
);
1244 step
= test_thread_flag(TIF_SINGLESTEP
);
1245 if (step
|| test_thread_flag(TIF_SYSCALL_TRACE
))
1246 tracehook_report_syscall_exit(®s
, step
);
1248 /* copy user rbs to kernel rbs */
1249 if (test_thread_flag(TIF_RESTORE_RSE
))
1253 /* Utrace implementation starts here */
1261 const void __user
*ubuf
;
1264 struct regset_getset
{
1265 struct task_struct
*target
;
1266 const struct user_regset
*regset
;
1268 struct regset_get get
;
1269 struct regset_set set
;
1276 static const ptrdiff_t pt_offsets
[32] =
1278 #define R(n) offsetof(struct pt_regs, r##n)
1279 [0] = -1, R(1), R(2), R(3),
1280 [4] = -1, [5] = -1, [6] = -1, [7] = -1,
1281 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1282 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1283 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1288 access_elf_gpreg(struct task_struct
*target
, struct unw_frame_info
*info
,
1289 unsigned long addr
, unsigned long *data
, int write_access
)
1291 struct pt_regs
*pt
= task_pt_regs(target
);
1292 unsigned reg
= addr
/ sizeof(unsigned long);
1293 ptrdiff_t d
= pt_offsets
[reg
];
1296 unsigned long *ptr
= (void *)pt
+ d
;
1305 /* read NaT bit first: */
1306 unsigned long dummy
;
1307 int ret
= unw_get_gr(info
, reg
, &dummy
, &nat
);
1311 return unw_access_gr(info
, reg
, data
, &nat
, write_access
);
1316 access_elf_breg(struct task_struct
*target
, struct unw_frame_info
*info
,
1317 unsigned long addr
, unsigned long *data
, int write_access
)
1320 unsigned long *ptr
= NULL
;
1322 pt
= task_pt_regs(target
);
1324 case ELF_BR_OFFSET(0):
1327 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1328 return unw_access_br(info
, (addr
- ELF_BR_OFFSET(0))/8,
1329 data
, write_access
);
1330 case ELF_BR_OFFSET(6):
1333 case ELF_BR_OFFSET(7):
1344 access_elf_areg(struct task_struct
*target
, struct unw_frame_info
*info
,
1345 unsigned long addr
, unsigned long *data
, int write_access
)
1348 unsigned long cfm
, urbs_end
;
1349 unsigned long *ptr
= NULL
;
1351 pt
= task_pt_regs(target
);
1352 if (addr
>= ELF_AR_RSC_OFFSET
&& addr
<= ELF_AR_SSD_OFFSET
) {
1354 case ELF_AR_RSC_OFFSET
:
1357 pt
->ar_rsc
= *data
| (3 << 2);
1361 case ELF_AR_BSP_OFFSET
:
1363 * By convention, we use PT_AR_BSP to refer to
1364 * the end of the user-level backing store.
1365 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1366 * to get the real value of ar.bsp at the time
1367 * the kernel was entered.
1369 * Furthermore, when changing the contents of
1370 * PT_AR_BSP (or PT_CFM) while the task is
1371 * blocked in a system call, convert the state
1372 * so that the non-system-call exit
1373 * path is used. This ensures that the proper
1374 * state will be picked up when resuming
1375 * execution. However, it *also* means that
1376 * once we write PT_AR_BSP/PT_CFM, it won't be
1377 * possible to modify the syscall arguments of
1378 * the pending system call any longer. This
1379 * shouldn't be an issue because modifying
1380 * PT_AR_BSP/PT_CFM generally implies that
1381 * we're either abandoning the pending system
1382 * call or that we defer it's re-execution
1383 * (e.g., due to GDB doing an inferior
1386 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1388 if (*data
!= urbs_end
) {
1390 convert_to_non_syscall(target
,
1394 * Simulate user-level write
1398 pt
->ar_bspstore
= *data
;
1403 case ELF_AR_BSPSTORE_OFFSET
:
1404 ptr
= &pt
->ar_bspstore
;
1406 case ELF_AR_RNAT_OFFSET
:
1409 case ELF_AR_CCV_OFFSET
:
1412 case ELF_AR_UNAT_OFFSET
:
1415 case ELF_AR_FPSR_OFFSET
:
1418 case ELF_AR_PFS_OFFSET
:
1421 case ELF_AR_LC_OFFSET
:
1422 return unw_access_ar(info
, UNW_AR_LC
, data
,
1424 case ELF_AR_EC_OFFSET
:
1425 return unw_access_ar(info
, UNW_AR_EC
, data
,
1427 case ELF_AR_CSD_OFFSET
:
1430 case ELF_AR_SSD_OFFSET
:
1433 } else if (addr
>= ELF_CR_IIP_OFFSET
&& addr
<= ELF_CR_IPSR_OFFSET
) {
1435 case ELF_CR_IIP_OFFSET
:
1438 case ELF_CFM_OFFSET
:
1439 urbs_end
= ia64_get_user_rbs_end(target
, pt
, &cfm
);
1441 if (((cfm
^ *data
) & PFM_MASK
) != 0) {
1443 convert_to_non_syscall(target
,
1446 pt
->cr_ifs
= ((pt
->cr_ifs
& ~PFM_MASK
)
1447 | (*data
& PFM_MASK
));
1452 case ELF_CR_IPSR_OFFSET
:
1454 unsigned long tmp
= *data
;
1455 /* psr.ri==3 is a reserved value: SDM 2:25 */
1456 if ((tmp
& IA64_PSR_RI
) == IA64_PSR_RI
)
1457 tmp
&= ~IA64_PSR_RI
;
1458 pt
->cr_ipsr
= ((tmp
& IPSR_MASK
)
1459 | (pt
->cr_ipsr
& ~IPSR_MASK
));
1461 *data
= (pt
->cr_ipsr
& IPSR_MASK
);
1464 } else if (addr
== ELF_NAT_OFFSET
)
1465 return access_nat_bits(target
, pt
, info
,
1466 data
, write_access
);
1467 else if (addr
== ELF_PR_OFFSET
)
1481 access_elf_reg(struct task_struct
*target
, struct unw_frame_info
*info
,
1482 unsigned long addr
, unsigned long *data
, int write_access
)
1484 if (addr
>= ELF_GR_OFFSET(1) && addr
<= ELF_GR_OFFSET(31))
1485 return access_elf_gpreg(target
, info
, addr
, data
, write_access
);
1486 else if (addr
>= ELF_BR_OFFSET(0) && addr
<= ELF_BR_OFFSET(7))
1487 return access_elf_breg(target
, info
, addr
, data
, write_access
);
1489 return access_elf_areg(target
, info
, addr
, data
, write_access
);
1492 struct regset_membuf
{
1497 static void do_gpregs_get(struct unw_frame_info
*info
, void *arg
)
1499 struct regset_membuf
*dst
= arg
;
1500 struct membuf to
= dst
->to
;
1504 if (unw_unwind_to_user(info
) < 0)
1510 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1511 * predicate registers (p0-p63)
1514 * ar.rsc ar.bsp ar.bspstore ar.rnat
1515 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1520 membuf_zero(&to
, 8);
1521 for (n
= 8; to
.left
&& n
< ELF_AR_END_OFFSET
; n
+= 8) {
1522 if (access_elf_reg(info
->task
, info
, n
, ®
, 0) < 0) {
1526 membuf_store(&to
, reg
);
1530 static void do_gpregs_set(struct unw_frame_info
*info
, void *arg
)
1532 struct regset_getset
*dst
= arg
;
1534 if (unw_unwind_to_user(info
) < 0)
1540 if (dst
->pos
< ELF_GR_OFFSET(1)) {
1541 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1544 0, ELF_GR_OFFSET(1));
1549 while (dst
->count
&& dst
->pos
< ELF_AR_END_OFFSET
) {
1550 unsigned int n
, from
, to
;
1554 to
= from
+ sizeof(tmp
);
1555 if (to
> ELF_AR_END_OFFSET
)
1556 to
= ELF_AR_END_OFFSET
;
1557 /* get up to 16 values */
1558 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1559 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1563 /* now copy them into registers */
1564 for (n
= 0; from
< dst
->pos
; from
+= sizeof(elf_greg_t
), n
++)
1565 if (access_elf_reg(dst
->target
, info
, from
,
1573 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1575 static void do_fpregs_get(struct unw_frame_info
*info
, void *arg
)
1577 struct task_struct
*task
= info
->task
;
1578 struct regset_membuf
*dst
= arg
;
1579 struct membuf to
= dst
->to
;
1583 if (unw_unwind_to_user(info
) < 0)
1586 /* Skip pos 0 and 1 */
1587 membuf_zero(&to
, 2 * sizeof(elf_fpreg_t
));
1590 for (n
= 2; to
.left
&& n
< 32; n
++) {
1591 if (unw_get_fr(info
, n
, ®
)) {
1595 membuf_write(&to
, ®
, sizeof(reg
));
1602 ia64_flush_fph(task
);
1603 if (task
->thread
.flags
& IA64_THREAD_FPH_VALID
)
1604 membuf_write(&to
, &task
->thread
.fph
, 96 * sizeof(reg
));
1606 membuf_zero(&to
, 96 * sizeof(reg
));
1609 static void do_fpregs_set(struct unw_frame_info
*info
, void *arg
)
1611 struct regset_getset
*dst
= arg
;
1612 elf_fpreg_t fpreg
, tmp
[30];
1613 int index
, start
, end
;
1615 if (unw_unwind_to_user(info
) < 0)
1618 /* Skip pos 0 and 1 */
1619 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(2)) {
1620 dst
->ret
= user_regset_copyin_ignore(&dst
->pos
, &dst
->count
,
1623 0, ELF_FP_OFFSET(2));
1624 if (dst
->count
== 0 || dst
->ret
)
1629 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(32)) {
1631 end
= min(((unsigned int)ELF_FP_OFFSET(32)),
1632 dst
->pos
+ dst
->count
);
1633 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1634 &dst
->u
.set
.kbuf
, &dst
->u
.set
.ubuf
, tmp
,
1635 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1639 if (start
& 0xF) { /* only write high part */
1640 if (unw_get_fr(info
, start
/ sizeof(elf_fpreg_t
),
1645 tmp
[start
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[0]
1649 if (end
& 0xF) { /* only write low part */
1650 if (unw_get_fr(info
, end
/ sizeof(elf_fpreg_t
),
1655 tmp
[end
/ sizeof(elf_fpreg_t
) - 2].u
.bits
[1]
1657 end
= (end
+ 0xF) & ~0xFUL
;
1660 for ( ; start
< end
; start
+= sizeof(elf_fpreg_t
)) {
1661 index
= start
/ sizeof(elf_fpreg_t
);
1662 if (unw_set_fr(info
, index
, tmp
[index
- 2])) {
1667 if (dst
->ret
|| dst
->count
== 0)
1672 if (dst
->count
> 0 && dst
->pos
< ELF_FP_OFFSET(128)) {
1673 ia64_sync_fph(dst
->target
);
1674 dst
->ret
= user_regset_copyin(&dst
->pos
, &dst
->count
,
1677 &dst
->target
->thread
.fph
,
1678 ELF_FP_OFFSET(32), -1);
1683 unwind_and_call(void (*call
)(struct unw_frame_info
*, void *),
1684 struct task_struct
*target
, void *data
)
1686 if (target
== current
)
1687 unw_init_running(call
, data
);
1689 struct unw_frame_info info
;
1690 memset(&info
, 0, sizeof(info
));
1691 unw_init_from_blocked_task(&info
, target
);
1692 (*call
)(&info
, data
);
1697 do_regset_call(void (*call
)(struct unw_frame_info
*, void *),
1698 struct task_struct
*target
,
1699 const struct user_regset
*regset
,
1700 unsigned int pos
, unsigned int count
,
1701 const void *kbuf
, const void __user
*ubuf
)
1703 struct regset_getset info
= { .target
= target
, .regset
= regset
,
1704 .pos
= pos
, .count
= count
,
1705 .u
.set
= { .kbuf
= kbuf
, .ubuf
= ubuf
},
1707 unwind_and_call(call
, target
, &info
);
1712 gpregs_get(struct task_struct
*target
,
1713 const struct user_regset
*regset
,
1716 struct regset_membuf info
= {.to
= to
};
1717 unwind_and_call(do_gpregs_get
, target
, &info
);
1721 static int gpregs_set(struct task_struct
*target
,
1722 const struct user_regset
*regset
,
1723 unsigned int pos
, unsigned int count
,
1724 const void *kbuf
, const void __user
*ubuf
)
1726 return do_regset_call(do_gpregs_set
, target
, regset
, pos
, count
,
1730 static void do_gpregs_writeback(struct unw_frame_info
*info
, void *arg
)
1732 do_sync_rbs(info
, ia64_sync_user_rbs
);
1736 * This is called to write back the register backing store.
1737 * ptrace does this before it stops, so that a tracer reading the user
1738 * memory after the thread stops will get the current register data.
1741 gpregs_writeback(struct task_struct
*target
,
1742 const struct user_regset
*regset
,
1745 if (test_and_set_tsk_thread_flag(target
, TIF_RESTORE_RSE
))
1747 set_notify_resume(target
);
1748 return do_regset_call(do_gpregs_writeback
, target
, regset
, 0, 0,
1753 fpregs_active(struct task_struct
*target
, const struct user_regset
*regset
)
1755 return (target
->thread
.flags
& IA64_THREAD_FPH_VALID
) ? 128 : 32;
1758 static int fpregs_get(struct task_struct
*target
,
1759 const struct user_regset
*regset
,
1762 struct regset_membuf info
= {.to
= to
};
1763 unwind_and_call(do_fpregs_get
, target
, &info
);
1767 static int fpregs_set(struct task_struct
*target
,
1768 const struct user_regset
*regset
,
1769 unsigned int pos
, unsigned int count
,
1770 const void *kbuf
, const void __user
*ubuf
)
1772 return do_regset_call(do_fpregs_set
, target
, regset
, pos
, count
,
1777 access_uarea(struct task_struct
*child
, unsigned long addr
,
1778 unsigned long *data
, int write_access
)
1780 unsigned int pos
= -1; /* an invalid value */
1781 unsigned long *ptr
, regnum
;
1783 if ((addr
& 0x7) != 0) {
1784 dprintk("ptrace: unaligned register address 0x%lx\n", addr
);
1787 if ((addr
>= PT_NAT_BITS
+ 8 && addr
< PT_F2
) ||
1788 (addr
>= PT_R7
+ 8 && addr
< PT_B1
) ||
1789 (addr
>= PT_AR_LC
+ 8 && addr
< PT_CR_IPSR
) ||
1790 (addr
>= PT_AR_SSD
+ 8 && addr
< PT_DBR
)) {
1791 dprintk("ptrace: rejecting access to register "
1792 "address 0x%lx\n", addr
);
1797 case PT_F32
... (PT_F127
+ 15):
1798 pos
= addr
- PT_F32
+ ELF_FP_OFFSET(32);
1800 case PT_F2
... (PT_F5
+ 15):
1801 pos
= addr
- PT_F2
+ ELF_FP_OFFSET(2);
1803 case PT_F10
... (PT_F31
+ 15):
1804 pos
= addr
- PT_F10
+ ELF_FP_OFFSET(10);
1806 case PT_F6
... (PT_F9
+ 15):
1807 pos
= addr
- PT_F6
+ ELF_FP_OFFSET(6);
1812 unsigned reg
= pos
/ sizeof(elf_fpreg_t
);
1813 int which_half
= (pos
/ sizeof(unsigned long)) & 1;
1815 if (reg
< 32) { /* fr2-fr31 */
1816 struct unw_frame_info info
;
1819 memset(&info
, 0, sizeof(info
));
1820 unw_init_from_blocked_task(&info
, child
);
1821 if (unw_unwind_to_user(&info
) < 0)
1824 if (unw_get_fr(&info
, reg
, &fpreg
))
1827 fpreg
.u
.bits
[which_half
] = *data
;
1828 if (unw_set_fr(&info
, reg
, fpreg
))
1831 *data
= fpreg
.u
.bits
[which_half
];
1834 elf_fpreg_t
*p
= &child
->thread
.fph
[reg
- 32];
1835 unsigned long *bits
= &p
->u
.bits
[which_half
];
1837 ia64_sync_fph(child
);
1840 else if (child
->thread
.flags
& IA64_THREAD_FPH_VALID
)
1850 pos
= ELF_NAT_OFFSET
;
1852 case PT_R4
... PT_R7
:
1853 pos
= addr
- PT_R4
+ ELF_GR_OFFSET(4);
1855 case PT_B1
... PT_B5
:
1856 pos
= addr
- PT_B1
+ ELF_BR_OFFSET(1);
1859 pos
= ELF_AR_EC_OFFSET
;
1862 pos
= ELF_AR_LC_OFFSET
;
1865 pos
= ELF_CR_IPSR_OFFSET
;
1868 pos
= ELF_CR_IIP_OFFSET
;
1871 pos
= ELF_CFM_OFFSET
;
1874 pos
= ELF_AR_UNAT_OFFSET
;
1877 pos
= ELF_AR_PFS_OFFSET
;
1880 pos
= ELF_AR_RSC_OFFSET
;
1883 pos
= ELF_AR_RNAT_OFFSET
;
1885 case PT_AR_BSPSTORE
:
1886 pos
= ELF_AR_BSPSTORE_OFFSET
;
1889 pos
= ELF_PR_OFFSET
;
1892 pos
= ELF_BR_OFFSET(6);
1895 pos
= ELF_AR_BSP_OFFSET
;
1897 case PT_R1
... PT_R3
:
1898 pos
= addr
- PT_R1
+ ELF_GR_OFFSET(1);
1900 case PT_R12
... PT_R15
:
1901 pos
= addr
- PT_R12
+ ELF_GR_OFFSET(12);
1903 case PT_R8
... PT_R11
:
1904 pos
= addr
- PT_R8
+ ELF_GR_OFFSET(8);
1906 case PT_R16
... PT_R31
:
1907 pos
= addr
- PT_R16
+ ELF_GR_OFFSET(16);
1910 pos
= ELF_AR_CCV_OFFSET
;
1913 pos
= ELF_AR_FPSR_OFFSET
;
1916 pos
= ELF_BR_OFFSET(0);
1919 pos
= ELF_BR_OFFSET(7);
1922 pos
= ELF_AR_CSD_OFFSET
;
1925 pos
= ELF_AR_SSD_OFFSET
;
1930 struct unw_frame_info info
;
1932 memset(&info
, 0, sizeof(info
));
1933 unw_init_from_blocked_task(&info
, child
);
1934 if (unw_unwind_to_user(&info
) < 0)
1937 return access_elf_reg(child
, &info
, pos
, data
, write_access
);
1940 /* access debug registers */
1941 if (addr
>= PT_IBR
) {
1942 regnum
= (addr
- PT_IBR
) >> 3;
1943 ptr
= &child
->thread
.ibr
[0];
1945 regnum
= (addr
- PT_DBR
) >> 3;
1946 ptr
= &child
->thread
.dbr
[0];
1950 dprintk("ptrace: rejecting access to register "
1951 "address 0x%lx\n", addr
);
1955 if (!(child
->thread
.flags
& IA64_THREAD_DBG_VALID
)) {
1956 child
->thread
.flags
|= IA64_THREAD_DBG_VALID
;
1957 memset(child
->thread
.dbr
, 0,
1958 sizeof(child
->thread
.dbr
));
1959 memset(child
->thread
.ibr
, 0,
1960 sizeof(child
->thread
.ibr
));
1965 if ((regnum
& 1) && write_access
) {
1966 /* don't let the user set kernel-level breakpoints: */
1967 *ptr
= *data
& ~(7UL << 56);
1977 static const struct user_regset native_regsets
[] = {
1979 .core_note_type
= NT_PRSTATUS
,
1981 .size
= sizeof(elf_greg_t
), .align
= sizeof(elf_greg_t
),
1982 .regset_get
= gpregs_get
, .set
= gpregs_set
,
1983 .writeback
= gpregs_writeback
1986 .core_note_type
= NT_PRFPREG
,
1988 .size
= sizeof(elf_fpreg_t
), .align
= sizeof(elf_fpreg_t
),
1989 .regset_get
= fpregs_get
, .set
= fpregs_set
, .active
= fpregs_active
1993 static const struct user_regset_view user_ia64_view
= {
1995 .e_machine
= EM_IA_64
,
1996 .regsets
= native_regsets
, .n
= ARRAY_SIZE(native_regsets
)
1999 const struct user_regset_view
*task_user_regset_view(struct task_struct
*tsk
)
2001 return &user_ia64_view
;
2004 struct syscall_get_set_args
{
2007 unsigned long *args
;
2008 struct pt_regs
*regs
;
2012 static void syscall_get_set_args_cb(struct unw_frame_info
*info
, void *data
)
2014 struct syscall_get_set_args
*args
= data
;
2015 struct pt_regs
*pt
= args
->regs
;
2016 unsigned long *krbs
, cfm
, ndirty
;
2019 if (unw_unwind_to_user(info
) < 0)
2023 krbs
= (unsigned long *)info
->task
+ IA64_RBS_OFFSET
/8;
2024 ndirty
= ia64_rse_num_regs(krbs
, krbs
+ (pt
->loadrs
>> 19));
2028 count
= min_t(int, args
->n
, cfm
& 0x7f);
2030 for (i
= 0; i
< count
; i
++) {
2032 *ia64_rse_skip_regs(krbs
, ndirty
+ i
+ args
->i
) =
2035 args
->args
[i
] = *ia64_rse_skip_regs(krbs
,
2036 ndirty
+ i
+ args
->i
);
2040 while (i
< args
->n
) {
2047 void ia64_syscall_get_set_arguments(struct task_struct
*task
,
2048 struct pt_regs
*regs
, unsigned long *args
, int rw
)
2050 struct syscall_get_set_args data
= {
2058 if (task
== current
)
2059 unw_init_running(syscall_get_set_args_cb
, &data
);
2061 struct unw_frame_info ufi
;
2062 memset(&ufi
, 0, sizeof(ufi
));
2063 unw_init_from_blocked_task(&ufi
, task
);
2064 syscall_get_set_args_cb(&ufi
, &data
);