1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/ia64/kernel/time.c
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * David Mosberger <davidm@hpl.hp.com>
8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
9 * Copyright (C) 1999-2000 VA Linux Systems
10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
13 #include <linux/cpu.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/nmi.h>
21 #include <linux/interrupt.h>
22 #include <linux/efi.h>
23 #include <linux/timex.h>
24 #include <linux/timekeeper_internal.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched/cputime.h>
28 #include <asm/delay.h>
29 #include <asm/hw_irq.h>
30 #include <asm/ptrace.h>
32 #include <asm/sections.h>
34 #include "fsyscall_gtod_data.h"
37 static u64
itc_get_cycles(struct clocksource
*cs
);
39 struct fsyscall_gtod_data_t fsyscall_gtod_data
;
41 struct itc_jitter_data_t itc_jitter_data
;
43 volatile int time_keeper_id
= 0; /* smp_processor_id() of time-keeper */
45 #ifdef CONFIG_IA64_DEBUG_IRQ
47 unsigned long last_cli_ip
;
48 EXPORT_SYMBOL(last_cli_ip
);
52 static struct clocksource clocksource_itc
= {
55 .read
= itc_get_cycles
,
56 .mask
= CLOCKSOURCE_MASK(64),
57 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
59 static struct clocksource
*itc_clocksource
;
61 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
63 #include <linux/kernel_stat.h>
65 extern u64
cycle_to_nsec(u64 cyc
);
67 void vtime_flush(struct task_struct
*tsk
)
69 struct thread_info
*ti
= task_thread_info(tsk
);
73 account_user_time(tsk
, cycle_to_nsec(ti
->utime
));
76 account_guest_time(tsk
, cycle_to_nsec(ti
->gtime
));
79 account_idle_time(cycle_to_nsec(ti
->idle_time
));
82 delta
= cycle_to_nsec(ti
->stime
);
83 account_system_index_time(tsk
, delta
, CPUTIME_SYSTEM
);
86 if (ti
->hardirq_time
) {
87 delta
= cycle_to_nsec(ti
->hardirq_time
);
88 account_system_index_time(tsk
, delta
, CPUTIME_IRQ
);
91 if (ti
->softirq_time
) {
92 delta
= cycle_to_nsec(ti
->softirq_time
);
93 account_system_index_time(tsk
, delta
, CPUTIME_SOFTIRQ
);
100 ti
->hardirq_time
= 0;
101 ti
->softirq_time
= 0;
105 * Called from the context switch with interrupts disabled, to charge all
106 * accumulated times to the current process, and to prepare accounting on
109 void arch_vtime_task_switch(struct task_struct
*prev
)
111 struct thread_info
*pi
= task_thread_info(prev
);
112 struct thread_info
*ni
= task_thread_info(current
);
114 ni
->ac_stamp
= pi
->ac_stamp
;
115 ni
->ac_stime
= ni
->ac_utime
= 0;
119 * Account time for a transition between system, hard irq or soft irq state.
120 * Note that this function is called with interrupts enabled.
122 static __u64
vtime_delta(struct task_struct
*tsk
)
124 struct thread_info
*ti
= task_thread_info(tsk
);
125 __u64 now
, delta_stime
;
127 WARN_ON_ONCE(!irqs_disabled());
129 now
= ia64_get_itc();
130 delta_stime
= now
- ti
->ac_stamp
;
136 void vtime_account_kernel(struct task_struct
*tsk
)
138 struct thread_info
*ti
= task_thread_info(tsk
);
139 __u64 stime
= vtime_delta(tsk
);
141 if (tsk
->flags
& PF_VCPU
)
146 EXPORT_SYMBOL_GPL(vtime_account_kernel
);
148 void vtime_account_idle(struct task_struct
*tsk
)
150 struct thread_info
*ti
= task_thread_info(tsk
);
152 ti
->idle_time
+= vtime_delta(tsk
);
155 void vtime_account_softirq(struct task_struct
*tsk
)
157 struct thread_info
*ti
= task_thread_info(tsk
);
159 ti
->softirq_time
+= vtime_delta(tsk
);
162 void vtime_account_hardirq(struct task_struct
*tsk
)
164 struct thread_info
*ti
= task_thread_info(tsk
);
166 ti
->hardirq_time
+= vtime_delta(tsk
);
169 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
172 timer_interrupt (int irq
, void *dev_id
)
174 unsigned long cur_itm
, new_itm
, ticks
;
176 if (cpu_is_offline(smp_processor_id())) {
180 new_itm
= local_cpu_data
->itm_next
;
181 cur_itm
= ia64_get_itc();
183 if (!time_after(cur_itm
, new_itm
)) {
184 printk(KERN_ERR
"Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
188 ticks
= DIV_ROUND_UP(cur_itm
- new_itm
,
189 local_cpu_data
->itm_delta
);
190 new_itm
+= ticks
* local_cpu_data
->itm_delta
;
193 if (smp_processor_id() != time_keeper_id
)
196 legacy_timer_tick(ticks
);
200 * If we're too close to the next clock tick for
201 * comfort, we increase the safety margin by
202 * intentionally dropping the next tick(s). We do NOT
203 * update itm.next because that would force us to call
204 * xtime_update() which in turn would let our clock run
205 * too fast (with the potentially devastating effect
206 * of losing monotony of time).
208 while (!time_after(new_itm
, ia64_get_itc() + local_cpu_data
->itm_delta
/2))
209 new_itm
+= local_cpu_data
->itm_delta
;
210 ia64_set_itm(new_itm
);
211 /* double check, in case we got hit by a (slow) PMI: */
212 } while (time_after_eq(ia64_get_itc(), new_itm
));
217 * Encapsulate access to the itm structure for SMP.
220 ia64_cpu_local_tick (void)
222 int cpu
= smp_processor_id();
223 unsigned long shift
= 0, delta
;
225 /* arrange for the cycle counter to generate a timer interrupt: */
226 ia64_set_itv(IA64_TIMER_VECTOR
);
228 delta
= local_cpu_data
->itm_delta
;
230 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
234 unsigned long hi
= 1UL << ia64_fls(cpu
);
235 shift
= (2*(cpu
- hi
) + 1) * delta
/hi
/2;
237 local_cpu_data
->itm_next
= ia64_get_itc() + delta
+ shift
;
238 ia64_set_itm(local_cpu_data
->itm_next
);
243 static int __init
nojitter_setup(char *str
)
246 printk("Jitter checking for ITC timers disabled\n");
250 __setup("nojitter", nojitter_setup
);
253 void ia64_init_itm(void)
255 unsigned long platform_base_freq
, itc_freq
;
256 struct pal_freq_ratio itc_ratio
, proc_ratio
;
257 long status
, platform_base_drift
, itc_drift
;
260 * According to SAL v2.6, we need to use a SAL call to determine the platform base
261 * frequency and then a PAL call to determine the frequency ratio between the ITC
262 * and the base frequency.
264 status
= ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM
,
265 &platform_base_freq
, &platform_base_drift
);
267 printk(KERN_ERR
"SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status
));
269 status
= ia64_pal_freq_ratios(&proc_ratio
, NULL
, &itc_ratio
);
271 printk(KERN_ERR
"PAL_FREQ_RATIOS failed with status=%ld\n", status
);
274 /* invent "random" values */
276 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
277 platform_base_freq
= 100000000;
278 platform_base_drift
= -1; /* no drift info */
282 if (platform_base_freq
< 40000000) {
283 printk(KERN_ERR
"Platform base frequency %lu bogus---resetting to 75MHz!\n",
285 platform_base_freq
= 75000000;
286 platform_base_drift
= -1;
289 proc_ratio
.den
= 1; /* avoid division by zero */
291 itc_ratio
.den
= 1; /* avoid division by zero */
293 itc_freq
= (platform_base_freq
*itc_ratio
.num
)/itc_ratio
.den
;
295 local_cpu_data
->itm_delta
= (itc_freq
+ HZ
/2) / HZ
;
296 printk(KERN_DEBUG
"CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
297 "ITC freq=%lu.%03luMHz", smp_processor_id(),
298 platform_base_freq
/ 1000000, (platform_base_freq
/ 1000) % 1000,
299 itc_ratio
.num
, itc_ratio
.den
, itc_freq
/ 1000000, (itc_freq
/ 1000) % 1000);
301 if (platform_base_drift
!= -1) {
302 itc_drift
= platform_base_drift
*itc_ratio
.num
/itc_ratio
.den
;
303 printk("+/-%ldppm\n", itc_drift
);
309 local_cpu_data
->proc_freq
= (platform_base_freq
*proc_ratio
.num
)/proc_ratio
.den
;
310 local_cpu_data
->itc_freq
= itc_freq
;
311 local_cpu_data
->cyc_per_usec
= (itc_freq
+ USEC_PER_SEC
/2) / USEC_PER_SEC
;
312 local_cpu_data
->nsec_per_cyc
= ((NSEC_PER_SEC
<<IA64_NSEC_PER_CYC_SHIFT
)
313 + itc_freq
/2)/itc_freq
;
315 if (!(sal_platform_features
& IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT
)) {
317 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
318 * Jitter compensation requires a cmpxchg which may limit
319 * the scalability of the syscalls for retrieving time.
320 * The ITC synchronization is usually successful to within a few
321 * ITC ticks but this is not a sure thing. If you need to improve
322 * timer performance in SMP situations then boot the kernel with the
323 * "nojitter" option. However, doing so may result in time fluctuating (maybe
324 * even going backward) if the ITC offsets between the individual CPUs
328 itc_jitter_data
.itc_jitter
= 1;
332 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
333 * ITC values may fluctuate significantly between processors.
334 * Clock should not be used for hrtimers. Mark itc as only
335 * useful for boot and testing.
337 * Note that jitter compensation is off! There is no point of
338 * synchronizing ITCs since they may be large differentials
339 * that change over time.
341 * The only way to fix this would be to repeatedly sync the
342 * ITCs. Until that time we have to avoid ITC.
344 clocksource_itc
.rating
= 50;
346 /* avoid softlock up message when cpu is unplug and plugged again. */
347 touch_softlockup_watchdog();
349 /* Setup the CPU local timer tick */
350 ia64_cpu_local_tick();
352 if (!itc_clocksource
) {
353 clocksource_register_hz(&clocksource_itc
,
354 local_cpu_data
->itc_freq
);
355 itc_clocksource
= &clocksource_itc
;
359 static u64
itc_get_cycles(struct clocksource
*cs
)
361 unsigned long lcycle
, now
, ret
;
363 if (!itc_jitter_data
.itc_jitter
)
366 lcycle
= itc_jitter_data
.itc_lastcycle
;
368 if (lcycle
&& time_after(lcycle
, now
))
372 * Keep track of the last timer value returned.
373 * In an SMP environment, you could lose out in contention of
374 * cmpxchg. If so, your cmpxchg returns new value which the
375 * winner of contention updated to. Use the new value instead.
377 ret
= cmpxchg(&itc_jitter_data
.itc_lastcycle
, lcycle
, now
);
378 if (unlikely(ret
!= lcycle
))
384 void read_persistent_clock64(struct timespec64
*ts
)
386 efi_gettimeofday(ts
);
392 register_percpu_irq(IA64_TIMER_VECTOR
, timer_interrupt
, IRQF_IRQPOLL
,
398 * Generic udelay assumes that if preemption is allowed and the thread
399 * migrates to another CPU, that the ITC values are synchronized across
403 ia64_itc_udelay (unsigned long usecs
)
405 unsigned long start
= ia64_get_itc();
406 unsigned long end
= start
+ usecs
*local_cpu_data
->cyc_per_usec
;
408 while (time_before(ia64_get_itc(), end
))
412 void (*ia64_udelay
)(unsigned long usecs
) = &ia64_itc_udelay
;
415 udelay (unsigned long usecs
)
417 (*ia64_udelay
)(usecs
);
419 EXPORT_SYMBOL(udelay
);
421 /* IA64 doesn't cache the timezone */
422 void update_vsyscall_tz(void)
426 void update_vsyscall(struct timekeeper
*tk
)
428 write_seqcount_begin(&fsyscall_gtod_data
.seq
);
430 /* copy vsyscall data */
431 fsyscall_gtod_data
.clk_mask
= tk
->tkr_mono
.mask
;
432 fsyscall_gtod_data
.clk_mult
= tk
->tkr_mono
.mult
;
433 fsyscall_gtod_data
.clk_shift
= tk
->tkr_mono
.shift
;
434 fsyscall_gtod_data
.clk_fsys_mmio
= tk
->tkr_mono
.clock
->archdata
.fsys_mmio
;
435 fsyscall_gtod_data
.clk_cycle_last
= tk
->tkr_mono
.cycle_last
;
437 fsyscall_gtod_data
.wall_time
.sec
= tk
->xtime_sec
;
438 fsyscall_gtod_data
.wall_time
.snsec
= tk
->tkr_mono
.xtime_nsec
;
440 fsyscall_gtod_data
.monotonic_time
.sec
= tk
->xtime_sec
441 + tk
->wall_to_monotonic
.tv_sec
;
442 fsyscall_gtod_data
.monotonic_time
.snsec
= tk
->tkr_mono
.xtime_nsec
443 + ((u64
)tk
->wall_to_monotonic
.tv_nsec
444 << tk
->tkr_mono
.shift
);
447 while (fsyscall_gtod_data
.monotonic_time
.snsec
>=
448 (((u64
)NSEC_PER_SEC
) << tk
->tkr_mono
.shift
)) {
449 fsyscall_gtod_data
.monotonic_time
.snsec
-=
450 ((u64
)NSEC_PER_SEC
) << tk
->tkr_mono
.shift
;
451 fsyscall_gtod_data
.monotonic_time
.sec
++;
454 write_seqcount_end(&fsyscall_gtod_data
.seq
);