io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / arch / powerpc / crypto / sha1-spe-glue.c
blobb1e577cbf00ca73c4460818722f8ab5f54c928f6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Glue code for SHA-1 implementation for SPE instructions (PPC)
5 * Based on generic implementation.
7 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
8 */
10 #include <crypto/internal/hash.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/types.h>
15 #include <crypto/sha1.h>
16 #include <asm/byteorder.h>
17 #include <asm/switch_to.h>
18 #include <linux/hardirq.h>
21 * MAX_BYTES defines the number of bytes that are allowed to be processed
22 * between preempt_disable() and preempt_enable(). SHA1 takes ~1000
23 * operations per 64 bytes. e500 cores can issue two arithmetic instructions
24 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
25 * Thus 2KB of input data will need an estimated maximum of 18,000 cycles.
26 * Headroom for cache misses included. Even with the low end model clocked
27 * at 667 MHz this equals to a critical time window of less than 27us.
30 #define MAX_BYTES 2048
32 extern void ppc_spe_sha1_transform(u32 *state, const u8 *src, u32 blocks);
34 static void spe_begin(void)
36 /* We just start SPE operations and will save SPE registers later. */
37 preempt_disable();
38 enable_kernel_spe();
41 static void spe_end(void)
43 disable_kernel_spe();
44 /* reenable preemption */
45 preempt_enable();
48 static inline void ppc_sha1_clear_context(struct sha1_state *sctx)
50 int count = sizeof(struct sha1_state) >> 2;
51 u32 *ptr = (u32 *)sctx;
53 /* make sure we can clear the fast way */
54 BUILD_BUG_ON(sizeof(struct sha1_state) % 4);
55 do { *ptr++ = 0; } while (--count);
58 static int ppc_spe_sha1_init(struct shash_desc *desc)
60 struct sha1_state *sctx = shash_desc_ctx(desc);
62 sctx->state[0] = SHA1_H0;
63 sctx->state[1] = SHA1_H1;
64 sctx->state[2] = SHA1_H2;
65 sctx->state[3] = SHA1_H3;
66 sctx->state[4] = SHA1_H4;
67 sctx->count = 0;
69 return 0;
72 static int ppc_spe_sha1_update(struct shash_desc *desc, const u8 *data,
73 unsigned int len)
75 struct sha1_state *sctx = shash_desc_ctx(desc);
76 const unsigned int offset = sctx->count & 0x3f;
77 const unsigned int avail = 64 - offset;
78 unsigned int bytes;
79 const u8 *src = data;
81 if (avail > len) {
82 sctx->count += len;
83 memcpy((char *)sctx->buffer + offset, src, len);
84 return 0;
87 sctx->count += len;
89 if (offset) {
90 memcpy((char *)sctx->buffer + offset, src, avail);
92 spe_begin();
93 ppc_spe_sha1_transform(sctx->state, (const u8 *)sctx->buffer, 1);
94 spe_end();
96 len -= avail;
97 src += avail;
100 while (len > 63) {
101 bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
102 bytes = bytes & ~0x3f;
104 spe_begin();
105 ppc_spe_sha1_transform(sctx->state, src, bytes >> 6);
106 spe_end();
108 src += bytes;
109 len -= bytes;
112 memcpy((char *)sctx->buffer, src, len);
113 return 0;
116 static int ppc_spe_sha1_final(struct shash_desc *desc, u8 *out)
118 struct sha1_state *sctx = shash_desc_ctx(desc);
119 const unsigned int offset = sctx->count & 0x3f;
120 char *p = (char *)sctx->buffer + offset;
121 int padlen;
122 __be64 *pbits = (__be64 *)(((char *)&sctx->buffer) + 56);
123 __be32 *dst = (__be32 *)out;
125 padlen = 55 - offset;
126 *p++ = 0x80;
128 spe_begin();
130 if (padlen < 0) {
131 memset(p, 0x00, padlen + sizeof (u64));
132 ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1);
133 p = (char *)sctx->buffer;
134 padlen = 56;
137 memset(p, 0, padlen);
138 *pbits = cpu_to_be64(sctx->count << 3);
139 ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1);
141 spe_end();
143 dst[0] = cpu_to_be32(sctx->state[0]);
144 dst[1] = cpu_to_be32(sctx->state[1]);
145 dst[2] = cpu_to_be32(sctx->state[2]);
146 dst[3] = cpu_to_be32(sctx->state[3]);
147 dst[4] = cpu_to_be32(sctx->state[4]);
149 ppc_sha1_clear_context(sctx);
150 return 0;
153 static int ppc_spe_sha1_export(struct shash_desc *desc, void *out)
155 struct sha1_state *sctx = shash_desc_ctx(desc);
157 memcpy(out, sctx, sizeof(*sctx));
158 return 0;
161 static int ppc_spe_sha1_import(struct shash_desc *desc, const void *in)
163 struct sha1_state *sctx = shash_desc_ctx(desc);
165 memcpy(sctx, in, sizeof(*sctx));
166 return 0;
169 static struct shash_alg alg = {
170 .digestsize = SHA1_DIGEST_SIZE,
171 .init = ppc_spe_sha1_init,
172 .update = ppc_spe_sha1_update,
173 .final = ppc_spe_sha1_final,
174 .export = ppc_spe_sha1_export,
175 .import = ppc_spe_sha1_import,
176 .descsize = sizeof(struct sha1_state),
177 .statesize = sizeof(struct sha1_state),
178 .base = {
179 .cra_name = "sha1",
180 .cra_driver_name= "sha1-ppc-spe",
181 .cra_priority = 300,
182 .cra_blocksize = SHA1_BLOCK_SIZE,
183 .cra_module = THIS_MODULE,
187 static int __init ppc_spe_sha1_mod_init(void)
189 return crypto_register_shash(&alg);
192 static void __exit ppc_spe_sha1_mod_fini(void)
194 crypto_unregister_shash(&alg);
197 module_init(ppc_spe_sha1_mod_init);
198 module_exit(ppc_spe_sha1_mod_fini);
200 MODULE_LICENSE("GPL");
201 MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, SPE optimized");
203 MODULE_ALIAS_CRYPTO("sha1");
204 MODULE_ALIAS_CRYPTO("sha1-ppc-spe");