io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / arch / powerpc / kernel / eeh_pe.c
blob845e024321d4718b48293a9aff2025bc3cf541c1
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * The file intends to implement PE based on the information from
4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
5 * All the PEs should be organized as hierarchy tree. The first level
6 * of the tree will be associated to existing PHBs since the particular
7 * PE is only meaningful in one PHB domain.
9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/gfp.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/string.h>
19 #include <asm/pci-bridge.h>
20 #include <asm/ppc-pci.h>
22 static int eeh_pe_aux_size = 0;
23 static LIST_HEAD(eeh_phb_pe);
25 /**
26 * eeh_set_pe_aux_size - Set PE auxillary data size
27 * @size: PE auxillary data size
29 * Set PE auxillary data size
31 void eeh_set_pe_aux_size(int size)
33 if (size < 0)
34 return;
36 eeh_pe_aux_size = size;
39 /**
40 * eeh_pe_alloc - Allocate PE
41 * @phb: PCI controller
42 * @type: PE type
44 * Allocate PE instance dynamically.
46 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
48 struct eeh_pe *pe;
49 size_t alloc_size;
51 alloc_size = sizeof(struct eeh_pe);
52 if (eeh_pe_aux_size) {
53 alloc_size = ALIGN(alloc_size, cache_line_size());
54 alloc_size += eeh_pe_aux_size;
57 /* Allocate PHB PE */
58 pe = kzalloc(alloc_size, GFP_KERNEL);
59 if (!pe) return NULL;
61 /* Initialize PHB PE */
62 pe->type = type;
63 pe->phb = phb;
64 INIT_LIST_HEAD(&pe->child_list);
65 INIT_LIST_HEAD(&pe->edevs);
67 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
68 cache_line_size());
69 return pe;
72 /**
73 * eeh_phb_pe_create - Create PHB PE
74 * @phb: PCI controller
76 * The function should be called while the PHB is detected during
77 * system boot or PCI hotplug in order to create PHB PE.
79 int eeh_phb_pe_create(struct pci_controller *phb)
81 struct eeh_pe *pe;
83 /* Allocate PHB PE */
84 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
85 if (!pe) {
86 pr_err("%s: out of memory!\n", __func__);
87 return -ENOMEM;
90 /* Put it into the list */
91 list_add_tail(&pe->child, &eeh_phb_pe);
93 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
95 return 0;
98 /**
99 * eeh_wait_state - Wait for PE state
100 * @pe: EEH PE
101 * @max_wait: maximal period in millisecond
103 * Wait for the state of associated PE. It might take some time
104 * to retrieve the PE's state.
106 int eeh_wait_state(struct eeh_pe *pe, int max_wait)
108 int ret;
109 int mwait;
112 * According to PAPR, the state of PE might be temporarily
113 * unavailable. Under the circumstance, we have to wait
114 * for indicated time determined by firmware. The maximal
115 * wait time is 5 minutes, which is acquired from the original
116 * EEH implementation. Also, the original implementation
117 * also defined the minimal wait time as 1 second.
119 #define EEH_STATE_MIN_WAIT_TIME (1000)
120 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
122 while (1) {
123 ret = eeh_ops->get_state(pe, &mwait);
125 if (ret != EEH_STATE_UNAVAILABLE)
126 return ret;
128 if (max_wait <= 0) {
129 pr_warn("%s: Timeout when getting PE's state (%d)\n",
130 __func__, max_wait);
131 return EEH_STATE_NOT_SUPPORT;
134 if (mwait < EEH_STATE_MIN_WAIT_TIME) {
135 pr_warn("%s: Firmware returned bad wait value %d\n",
136 __func__, mwait);
137 mwait = EEH_STATE_MIN_WAIT_TIME;
138 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
139 pr_warn("%s: Firmware returned too long wait value %d\n",
140 __func__, mwait);
141 mwait = EEH_STATE_MAX_WAIT_TIME;
144 msleep(min(mwait, max_wait));
145 max_wait -= mwait;
150 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
151 * @phb: PCI controller
153 * The overall PEs form hierarchy tree. The first layer of the
154 * hierarchy tree is composed of PHB PEs. The function is used
155 * to retrieve the corresponding PHB PE according to the given PHB.
157 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
159 struct eeh_pe *pe;
161 list_for_each_entry(pe, &eeh_phb_pe, child) {
163 * Actually, we needn't check the type since
164 * the PE for PHB has been determined when that
165 * was created.
167 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
168 return pe;
171 return NULL;
175 * eeh_pe_next - Retrieve the next PE in the tree
176 * @pe: current PE
177 * @root: root PE
179 * The function is used to retrieve the next PE in the
180 * hierarchy PE tree.
182 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
184 struct list_head *next = pe->child_list.next;
186 if (next == &pe->child_list) {
187 while (1) {
188 if (pe == root)
189 return NULL;
190 next = pe->child.next;
191 if (next != &pe->parent->child_list)
192 break;
193 pe = pe->parent;
197 return list_entry(next, struct eeh_pe, child);
201 * eeh_pe_traverse - Traverse PEs in the specified PHB
202 * @root: root PE
203 * @fn: callback
204 * @flag: extra parameter to callback
206 * The function is used to traverse the specified PE and its
207 * child PEs. The traversing is to be terminated once the
208 * callback returns something other than NULL, or no more PEs
209 * to be traversed.
211 void *eeh_pe_traverse(struct eeh_pe *root,
212 eeh_pe_traverse_func fn, void *flag)
214 struct eeh_pe *pe;
215 void *ret;
217 eeh_for_each_pe(root, pe) {
218 ret = fn(pe, flag);
219 if (ret) return ret;
222 return NULL;
226 * eeh_pe_dev_traverse - Traverse the devices from the PE
227 * @root: EEH PE
228 * @fn: function callback
229 * @flag: extra parameter to callback
231 * The function is used to traverse the devices of the specified
232 * PE and its child PEs.
234 void eeh_pe_dev_traverse(struct eeh_pe *root,
235 eeh_edev_traverse_func fn, void *flag)
237 struct eeh_pe *pe;
238 struct eeh_dev *edev, *tmp;
240 if (!root) {
241 pr_warn("%s: Invalid PE %p\n",
242 __func__, root);
243 return;
246 /* Traverse root PE */
247 eeh_for_each_pe(root, pe)
248 eeh_pe_for_each_dev(pe, edev, tmp)
249 fn(edev, flag);
253 * __eeh_pe_get - Check the PE address
255 * For one particular PE, it can be identified by PE address
256 * or tranditional BDF address. BDF address is composed of
257 * Bus/Device/Function number. The extra data referred by flag
258 * indicates which type of address should be used.
260 static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
262 int *target_pe = flag;
264 /* PHB PEs are special and should be ignored */
265 if (pe->type & EEH_PE_PHB)
266 return NULL;
268 if (*target_pe == pe->addr)
269 return pe;
271 return NULL;
275 * eeh_pe_get - Search PE based on the given address
276 * @phb: PCI controller
277 * @pe_no: PE number
279 * Search the corresponding PE based on the specified address which
280 * is included in the eeh device. The function is used to check if
281 * the associated PE has been created against the PE address. It's
282 * notable that the PE address has 2 format: traditional PE address
283 * which is composed of PCI bus/device/function number, or unified
284 * PE address.
286 struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
288 struct eeh_pe *root = eeh_phb_pe_get(phb);
290 return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
294 * eeh_pe_tree_insert - Add EEH device to parent PE
295 * @edev: EEH device
296 * @new_pe_parent: PE to create additional PEs under
298 * Add EEH device to the PE in edev->pe_config_addr. If a PE already
299 * exists with that address then @edev is added to that PE. Otherwise
300 * a new PE is created and inserted into the PE tree as a child of
301 * @new_pe_parent.
303 * If @new_pe_parent is NULL then the new PE will be inserted under
304 * directly under the the PHB.
306 int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
308 struct pci_controller *hose = edev->controller;
309 struct eeh_pe *pe, *parent;
312 * Search the PE has been existing or not according
313 * to the PE address. If that has been existing, the
314 * PE should be composed of PCI bus and its subordinate
315 * components.
317 pe = eeh_pe_get(hose, edev->pe_config_addr);
318 if (pe) {
319 if (pe->type & EEH_PE_INVALID) {
320 list_add_tail(&edev->entry, &pe->edevs);
321 edev->pe = pe;
323 * We're running to here because of PCI hotplug caused by
324 * EEH recovery. We need clear EEH_PE_INVALID until the top.
326 parent = pe;
327 while (parent) {
328 if (!(parent->type & EEH_PE_INVALID))
329 break;
330 parent->type &= ~EEH_PE_INVALID;
331 parent = parent->parent;
334 eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
335 pe->parent->addr);
336 } else {
337 /* Mark the PE as type of PCI bus */
338 pe->type = EEH_PE_BUS;
339 edev->pe = pe;
341 /* Put the edev to PE */
342 list_add_tail(&edev->entry, &pe->edevs);
343 eeh_edev_dbg(edev, "Added to bus PE\n");
345 return 0;
348 /* Create a new EEH PE */
349 if (edev->physfn)
350 pe = eeh_pe_alloc(hose, EEH_PE_VF);
351 else
352 pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
353 if (!pe) {
354 pr_err("%s: out of memory!\n", __func__);
355 return -ENOMEM;
358 pe->addr = edev->pe_config_addr;
361 * Put the new EEH PE into hierarchy tree. If the parent
362 * can't be found, the newly created PE will be attached
363 * to PHB directly. Otherwise, we have to associate the
364 * PE with its parent.
366 if (!new_pe_parent) {
367 new_pe_parent = eeh_phb_pe_get(hose);
368 if (!new_pe_parent) {
369 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
370 __func__, hose->global_number);
371 edev->pe = NULL;
372 kfree(pe);
373 return -EEXIST;
377 /* link new PE into the tree */
378 pe->parent = new_pe_parent;
379 list_add_tail(&pe->child, &new_pe_parent->child_list);
382 * Put the newly created PE into the child list and
383 * link the EEH device accordingly.
385 list_add_tail(&edev->entry, &pe->edevs);
386 edev->pe = pe;
387 eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
388 new_pe_parent->addr);
390 return 0;
394 * eeh_pe_tree_remove - Remove one EEH device from the associated PE
395 * @edev: EEH device
397 * The PE hierarchy tree might be changed when doing PCI hotplug.
398 * Also, the PCI devices or buses could be removed from the system
399 * during EEH recovery. So we have to call the function remove the
400 * corresponding PE accordingly if necessary.
402 int eeh_pe_tree_remove(struct eeh_dev *edev)
404 struct eeh_pe *pe, *parent, *child;
405 bool keep, recover;
406 int cnt;
408 pe = eeh_dev_to_pe(edev);
409 if (!pe) {
410 eeh_edev_dbg(edev, "No PE found for device.\n");
411 return -EEXIST;
414 /* Remove the EEH device */
415 edev->pe = NULL;
416 list_del(&edev->entry);
419 * Check if the parent PE includes any EEH devices.
420 * If not, we should delete that. Also, we should
421 * delete the parent PE if it doesn't have associated
422 * child PEs and EEH devices.
424 while (1) {
425 parent = pe->parent;
427 /* PHB PEs should never be removed */
428 if (pe->type & EEH_PE_PHB)
429 break;
432 * XXX: KEEP is set while resetting a PE. I don't think it's
433 * ever set without RECOVERING also being set. I could
434 * be wrong though so catch that with a WARN.
436 keep = !!(pe->state & EEH_PE_KEEP);
437 recover = !!(pe->state & EEH_PE_RECOVERING);
438 WARN_ON(keep && !recover);
440 if (!keep && !recover) {
441 if (list_empty(&pe->edevs) &&
442 list_empty(&pe->child_list)) {
443 list_del(&pe->child);
444 kfree(pe);
445 } else {
446 break;
448 } else {
450 * Mark the PE as invalid. At the end of the recovery
451 * process any invalid PEs will be garbage collected.
453 * We need to delay the free()ing of them since we can
454 * remove edev's while traversing the PE tree which
455 * might trigger the removal of a PE and we can't
456 * deal with that (yet).
458 if (list_empty(&pe->edevs)) {
459 cnt = 0;
460 list_for_each_entry(child, &pe->child_list, child) {
461 if (!(child->type & EEH_PE_INVALID)) {
462 cnt++;
463 break;
467 if (!cnt)
468 pe->type |= EEH_PE_INVALID;
469 else
470 break;
474 pe = parent;
477 return 0;
481 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
482 * @pe: EEH PE
484 * We have time stamp for each PE to trace its time of getting
485 * frozen in last hour. The function should be called to update
486 * the time stamp on first error of the specific PE. On the other
487 * handle, we needn't account for errors happened in last hour.
489 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
491 time64_t tstamp;
493 if (!pe) return;
495 if (pe->freeze_count <= 0) {
496 pe->freeze_count = 0;
497 pe->tstamp = ktime_get_seconds();
498 } else {
499 tstamp = ktime_get_seconds();
500 if (tstamp - pe->tstamp > 3600) {
501 pe->tstamp = tstamp;
502 pe->freeze_count = 0;
508 * eeh_pe_state_mark - Mark specified state for PE and its associated device
509 * @pe: EEH PE
511 * EEH error affects the current PE and its child PEs. The function
512 * is used to mark appropriate state for the affected PEs and the
513 * associated devices.
515 void eeh_pe_state_mark(struct eeh_pe *root, int state)
517 struct eeh_pe *pe;
519 eeh_for_each_pe(root, pe)
520 if (!(pe->state & EEH_PE_REMOVED))
521 pe->state |= state;
523 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
526 * eeh_pe_mark_isolated
527 * @pe: EEH PE
529 * Record that a PE has been isolated by marking the PE and it's children as
530 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
531 * as pci_channel_io_frozen.
533 void eeh_pe_mark_isolated(struct eeh_pe *root)
535 struct eeh_pe *pe;
536 struct eeh_dev *edev;
537 struct pci_dev *pdev;
539 eeh_pe_state_mark(root, EEH_PE_ISOLATED);
540 eeh_for_each_pe(root, pe) {
541 list_for_each_entry(edev, &pe->edevs, entry) {
542 pdev = eeh_dev_to_pci_dev(edev);
543 if (pdev)
544 pdev->error_state = pci_channel_io_frozen;
546 /* Block PCI config access if required */
547 if (pe->state & EEH_PE_CFG_RESTRICTED)
548 pe->state |= EEH_PE_CFG_BLOCKED;
551 EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
553 static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
555 int mode = *((int *)flag);
557 edev->mode |= mode;
561 * eeh_pe_dev_state_mark - Mark state for all device under the PE
562 * @pe: EEH PE
564 * Mark specific state for all child devices of the PE.
566 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
568 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
572 * eeh_pe_state_clear - Clear state for the PE
573 * @data: EEH PE
574 * @state: state
575 * @include_passed: include passed-through devices?
577 * The function is used to clear the indicated state from the
578 * given PE. Besides, we also clear the check count of the PE
579 * as well.
581 void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
583 struct eeh_pe *pe;
584 struct eeh_dev *edev, *tmp;
585 struct pci_dev *pdev;
587 eeh_for_each_pe(root, pe) {
588 /* Keep the state of permanently removed PE intact */
589 if (pe->state & EEH_PE_REMOVED)
590 continue;
592 if (!include_passed && eeh_pe_passed(pe))
593 continue;
595 pe->state &= ~state;
598 * Special treatment on clearing isolated state. Clear
599 * check count since last isolation and put all affected
600 * devices to normal state.
602 if (!(state & EEH_PE_ISOLATED))
603 continue;
605 pe->check_count = 0;
606 eeh_pe_for_each_dev(pe, edev, tmp) {
607 pdev = eeh_dev_to_pci_dev(edev);
608 if (!pdev)
609 continue;
611 pdev->error_state = pci_channel_io_normal;
614 /* Unblock PCI config access if required */
615 if (pe->state & EEH_PE_CFG_RESTRICTED)
616 pe->state &= ~EEH_PE_CFG_BLOCKED;
621 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
622 * buses assigned explicitly by firmware, and we probably have
623 * lost that after reset. So we have to delay the check until
624 * the PCI-CFG registers have been restored for the parent
625 * bridge.
627 * Don't use normal PCI-CFG accessors, which probably has been
628 * blocked on normal path during the stage. So we need utilize
629 * eeh operations, which is always permitted.
631 static void eeh_bridge_check_link(struct eeh_dev *edev)
633 int cap;
634 uint32_t val;
635 int timeout = 0;
638 * We only check root port and downstream ports of
639 * PCIe switches
641 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
642 return;
644 eeh_edev_dbg(edev, "Checking PCIe link...\n");
646 /* Check slot status */
647 cap = edev->pcie_cap;
648 eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
649 if (!(val & PCI_EXP_SLTSTA_PDS)) {
650 eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
651 return;
654 /* Check power status if we have the capability */
655 eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
656 if (val & PCI_EXP_SLTCAP_PCP) {
657 eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
658 if (val & PCI_EXP_SLTCTL_PCC) {
659 eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
660 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
661 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
662 eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
663 msleep(2 * 1000);
667 /* Enable link */
668 eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
669 val &= ~PCI_EXP_LNKCTL_LD;
670 eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
672 /* Check link */
673 eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val);
674 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
675 eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
676 msleep(1000);
677 return;
680 /* Wait the link is up until timeout (5s) */
681 timeout = 0;
682 while (timeout < 5000) {
683 msleep(20);
684 timeout += 20;
686 eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
687 if (val & PCI_EXP_LNKSTA_DLLLA)
688 break;
691 if (val & PCI_EXP_LNKSTA_DLLLA)
692 eeh_edev_dbg(edev, "Link up (%s)\n",
693 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
694 else
695 eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
698 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
699 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
701 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
703 int i;
706 * Device BARs: 0x10 - 0x18
707 * Bus numbers and windows: 0x18 - 0x30
709 for (i = 4; i < 13; i++)
710 eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
711 /* Rom: 0x38 */
712 eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
714 /* Cache line & Latency timer: 0xC 0xD */
715 eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
716 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
717 eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
718 SAVED_BYTE(PCI_LATENCY_TIMER));
719 /* Max latency, min grant, interrupt ping and line: 0x3C */
720 eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
722 /* PCI Command: 0x4 */
723 eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
724 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
726 /* Check the PCIe link is ready */
727 eeh_bridge_check_link(edev);
730 static void eeh_restore_device_bars(struct eeh_dev *edev)
732 int i;
733 u32 cmd;
735 for (i = 4; i < 10; i++)
736 eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
737 /* 12 == Expansion ROM Address */
738 eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
740 eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
741 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
742 eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
743 SAVED_BYTE(PCI_LATENCY_TIMER));
745 /* max latency, min grant, interrupt pin and line */
746 eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
749 * Restore PERR & SERR bits, some devices require it,
750 * don't touch the other command bits
752 eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
753 if (edev->config_space[1] & PCI_COMMAND_PARITY)
754 cmd |= PCI_COMMAND_PARITY;
755 else
756 cmd &= ~PCI_COMMAND_PARITY;
757 if (edev->config_space[1] & PCI_COMMAND_SERR)
758 cmd |= PCI_COMMAND_SERR;
759 else
760 cmd &= ~PCI_COMMAND_SERR;
761 eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
765 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
766 * @data: EEH device
767 * @flag: Unused
769 * Loads the PCI configuration space base address registers,
770 * the expansion ROM base address, the latency timer, and etc.
771 * from the saved values in the device node.
773 static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
775 /* Do special restore for bridges */
776 if (edev->mode & EEH_DEV_BRIDGE)
777 eeh_restore_bridge_bars(edev);
778 else
779 eeh_restore_device_bars(edev);
781 if (eeh_ops->restore_config)
782 eeh_ops->restore_config(edev);
786 * eeh_pe_restore_bars - Restore the PCI config space info
787 * @pe: EEH PE
789 * This routine performs a recursive walk to the children
790 * of this device as well.
792 void eeh_pe_restore_bars(struct eeh_pe *pe)
795 * We needn't take the EEH lock since eeh_pe_dev_traverse()
796 * will take that.
798 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
802 * eeh_pe_loc_get - Retrieve location code binding to the given PE
803 * @pe: EEH PE
805 * Retrieve the location code of the given PE. If the primary PE bus
806 * is root bus, we will grab location code from PHB device tree node
807 * or root port. Otherwise, the upstream bridge's device tree node
808 * of the primary PE bus will be checked for the location code.
810 const char *eeh_pe_loc_get(struct eeh_pe *pe)
812 struct pci_bus *bus = eeh_pe_bus_get(pe);
813 struct device_node *dn;
814 const char *loc = NULL;
816 while (bus) {
817 dn = pci_bus_to_OF_node(bus);
818 if (!dn) {
819 bus = bus->parent;
820 continue;
823 if (pci_is_root_bus(bus))
824 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
825 else
826 loc = of_get_property(dn, "ibm,slot-location-code",
827 NULL);
829 if (loc)
830 return loc;
832 bus = bus->parent;
835 return "N/A";
839 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
840 * @pe: EEH PE
842 * Retrieve the PCI bus according to the given PE. Basically,
843 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
844 * primary PCI bus will be retrieved. The parent bus will be
845 * returned for BUS PE. However, we don't have associated PCI
846 * bus for DEVICE PE.
848 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
850 struct eeh_dev *edev;
851 struct pci_dev *pdev;
853 if (pe->type & EEH_PE_PHB)
854 return pe->phb->bus;
856 /* The primary bus might be cached during probe time */
857 if (pe->state & EEH_PE_PRI_BUS)
858 return pe->bus;
860 /* Retrieve the parent PCI bus of first (top) PCI device */
861 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
862 pdev = eeh_dev_to_pci_dev(edev);
863 if (pdev)
864 return pdev->bus;
866 return NULL;