1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
38 #include <asm/ptrace.h>
39 #include <linux/atomic.h>
41 #include <asm/hw_irq.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/dbell.h>
48 #include <asm/machdep.h>
49 #include <asm/cputhreads.h>
50 #include <asm/cputable.h>
52 #include <asm/vdso_datapage.h>
57 #include <asm/debug.h>
58 #include <asm/kexec.h>
59 #include <asm/asm-prototypes.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
66 #define DBG(fmt...) udbg_printf(fmt)
71 #ifdef CONFIG_HOTPLUG_CPU
72 /* State of each CPU during hotplug phases */
73 static DEFINE_PER_CPU(int, cpu_state
) = { 0 };
76 struct task_struct
*secondary_current
;
78 bool coregroup_enabled
;
79 bool thread_group_shares_l2
;
81 DEFINE_PER_CPU(cpumask_var_t
, cpu_sibling_map
);
82 DEFINE_PER_CPU(cpumask_var_t
, cpu_smallcore_map
);
83 DEFINE_PER_CPU(cpumask_var_t
, cpu_l2_cache_map
);
84 DEFINE_PER_CPU(cpumask_var_t
, cpu_core_map
);
85 DEFINE_PER_CPU(cpumask_var_t
, cpu_coregroup_map
);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map
);
88 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map
);
89 EXPORT_PER_CPU_SYMBOL(cpu_core_map
);
90 EXPORT_SYMBOL_GPL(has_big_cores
);
93 #ifdef CONFIG_SCHED_SMT
101 #define MAX_THREAD_LIST_SIZE 8
102 #define THREAD_GROUP_SHARE_L1 1
103 #define THREAD_GROUP_SHARE_L2 2
104 struct thread_groups
{
105 unsigned int property
;
106 unsigned int nr_groups
;
107 unsigned int threads_per_group
;
108 unsigned int thread_list
[MAX_THREAD_LIST_SIZE
];
111 /* Maximum number of properties that groups of threads within a core can share */
112 #define MAX_THREAD_GROUP_PROPERTIES 2
114 struct thread_groups_list
{
115 unsigned int nr_properties
;
116 struct thread_groups property_tgs
[MAX_THREAD_GROUP_PROPERTIES
];
119 static struct thread_groups_list tgl
[NR_CPUS
] __initdata
;
121 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
122 * the set its siblings that share the L1-cache.
124 DEFINE_PER_CPU(cpumask_var_t
, thread_group_l1_cache_map
);
127 * On some big-cores system, thread_group_l2_cache_map for each CPU
128 * corresponds to the set its siblings within the core that share the
131 DEFINE_PER_CPU(cpumask_var_t
, thread_group_l2_cache_map
);
133 /* SMP operations for this machine */
134 struct smp_ops_t
*smp_ops
;
136 /* Can't be static due to PowerMac hackery */
137 volatile unsigned int cpu_callin_map
[NR_CPUS
];
139 int smt_enabled_at_boot
= 1;
142 * Returns 1 if the specified cpu should be brought up during boot.
143 * Used to inhibit booting threads if they've been disabled or
144 * limited on the command line
146 int smp_generic_cpu_bootable(unsigned int nr
)
148 /* Special case - we inhibit secondary thread startup
149 * during boot if the user requests it.
151 if (system_state
< SYSTEM_RUNNING
&& cpu_has_feature(CPU_FTR_SMT
)) {
152 if (!smt_enabled_at_boot
&& cpu_thread_in_core(nr
) != 0)
154 if (smt_enabled_at_boot
155 && cpu_thread_in_core(nr
) >= smt_enabled_at_boot
)
164 int smp_generic_kick_cpu(int nr
)
166 if (nr
< 0 || nr
>= nr_cpu_ids
)
170 * The processor is currently spinning, waiting for the
171 * cpu_start field to become non-zero After we set cpu_start,
172 * the processor will continue on to secondary_start
174 if (!paca_ptrs
[nr
]->cpu_start
) {
175 paca_ptrs
[nr
]->cpu_start
= 1;
180 #ifdef CONFIG_HOTPLUG_CPU
182 * Ok it's not there, so it might be soft-unplugged, let's
183 * try to bring it back
185 generic_set_cpu_up(nr
);
187 smp_send_reschedule(nr
);
188 #endif /* CONFIG_HOTPLUG_CPU */
192 #endif /* CONFIG_PPC64 */
194 static irqreturn_t
call_function_action(int irq
, void *data
)
196 generic_smp_call_function_interrupt();
200 static irqreturn_t
reschedule_action(int irq
, void *data
)
206 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
207 static irqreturn_t
tick_broadcast_ipi_action(int irq
, void *data
)
209 timer_broadcast_interrupt();
214 #ifdef CONFIG_NMI_IPI
215 static irqreturn_t
nmi_ipi_action(int irq
, void *data
)
217 smp_handle_nmi_ipi(get_irq_regs());
222 static irq_handler_t smp_ipi_action
[] = {
223 [PPC_MSG_CALL_FUNCTION
] = call_function_action
,
224 [PPC_MSG_RESCHEDULE
] = reschedule_action
,
225 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
226 [PPC_MSG_TICK_BROADCAST
] = tick_broadcast_ipi_action
,
228 #ifdef CONFIG_NMI_IPI
229 [PPC_MSG_NMI_IPI
] = nmi_ipi_action
,
234 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
235 * than going through the call function infrastructure, and strongly
236 * serialized, so it is more appropriate for debugging.
238 const char *smp_ipi_name
[] = {
239 [PPC_MSG_CALL_FUNCTION
] = "ipi call function",
240 [PPC_MSG_RESCHEDULE
] = "ipi reschedule",
241 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
242 [PPC_MSG_TICK_BROADCAST
] = "ipi tick-broadcast",
244 #ifdef CONFIG_NMI_IPI
245 [PPC_MSG_NMI_IPI
] = "nmi ipi",
249 /* optional function to request ipi, for controllers with >= 4 ipis */
250 int smp_request_message_ipi(int virq
, int msg
)
254 if (msg
< 0 || msg
> PPC_MSG_NMI_IPI
)
256 #ifndef CONFIG_NMI_IPI
257 if (msg
== PPC_MSG_NMI_IPI
)
261 err
= request_irq(virq
, smp_ipi_action
[msg
],
262 IRQF_PERCPU
| IRQF_NO_THREAD
| IRQF_NO_SUSPEND
,
263 smp_ipi_name
[msg
], NULL
);
264 WARN(err
< 0, "unable to request_irq %d for %s (rc %d)\n",
265 virq
, smp_ipi_name
[msg
], err
);
270 #ifdef CONFIG_PPC_SMP_MUXED_IPI
271 struct cpu_messages
{
272 long messages
; /* current messages */
274 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages
, ipi_message
);
276 void smp_muxed_ipi_set_message(int cpu
, int msg
)
278 struct cpu_messages
*info
= &per_cpu(ipi_message
, cpu
);
279 char *message
= (char *)&info
->messages
;
282 * Order previous accesses before accesses in the IPI handler.
288 void smp_muxed_ipi_message_pass(int cpu
, int msg
)
290 smp_muxed_ipi_set_message(cpu
, msg
);
293 * cause_ipi functions are required to include a full barrier
294 * before doing whatever causes the IPI.
296 smp_ops
->cause_ipi(cpu
);
299 #ifdef __BIG_ENDIAN__
300 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
302 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
305 irqreturn_t
smp_ipi_demux(void)
307 mb(); /* order any irq clear */
309 return smp_ipi_demux_relaxed();
312 /* sync-free variant. Callers should ensure synchronization */
313 irqreturn_t
smp_ipi_demux_relaxed(void)
315 struct cpu_messages
*info
;
318 info
= this_cpu_ptr(&ipi_message
);
320 all
= xchg(&info
->messages
, 0);
321 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
323 * Must check for PPC_MSG_RM_HOST_ACTION messages
324 * before PPC_MSG_CALL_FUNCTION messages because when
325 * a VM is destroyed, we call kick_all_cpus_sync()
326 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
327 * messages have completed before we free any VCPUs.
329 if (all
& IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION
))
330 kvmppc_xics_ipi_action();
332 if (all
& IPI_MESSAGE(PPC_MSG_CALL_FUNCTION
))
333 generic_smp_call_function_interrupt();
334 if (all
& IPI_MESSAGE(PPC_MSG_RESCHEDULE
))
336 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
337 if (all
& IPI_MESSAGE(PPC_MSG_TICK_BROADCAST
))
338 timer_broadcast_interrupt();
340 #ifdef CONFIG_NMI_IPI
341 if (all
& IPI_MESSAGE(PPC_MSG_NMI_IPI
))
342 nmi_ipi_action(0, NULL
);
344 } while (info
->messages
);
348 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
350 static inline void do_message_pass(int cpu
, int msg
)
352 if (smp_ops
->message_pass
)
353 smp_ops
->message_pass(cpu
, msg
);
354 #ifdef CONFIG_PPC_SMP_MUXED_IPI
356 smp_muxed_ipi_message_pass(cpu
, msg
);
360 void smp_send_reschedule(int cpu
)
363 do_message_pass(cpu
, PPC_MSG_RESCHEDULE
);
365 EXPORT_SYMBOL_GPL(smp_send_reschedule
);
367 void arch_send_call_function_single_ipi(int cpu
)
369 do_message_pass(cpu
, PPC_MSG_CALL_FUNCTION
);
372 void arch_send_call_function_ipi_mask(const struct cpumask
*mask
)
376 for_each_cpu(cpu
, mask
)
377 do_message_pass(cpu
, PPC_MSG_CALL_FUNCTION
);
380 #ifdef CONFIG_NMI_IPI
385 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
386 * a running system. They can be used for crash, debug, halt/reboot, etc.
388 * The IPI call waits with interrupts disabled until all targets enter the
389 * NMI handler, then returns. Subsequent IPIs can be issued before targets
390 * have returned from their handlers, so there is no guarantee about
391 * concurrency or re-entrancy.
393 * A new NMI can be issued before all targets exit the handler.
395 * The IPI call may time out without all targets entering the NMI handler.
396 * In that case, there is some logic to recover (and ignore subsequent
397 * NMI interrupts that may eventually be raised), but the platform interrupt
398 * handler may not be able to distinguish this from other exception causes,
399 * which may cause a crash.
402 static atomic_t __nmi_ipi_lock
= ATOMIC_INIT(0);
403 static struct cpumask nmi_ipi_pending_mask
;
404 static bool nmi_ipi_busy
= false;
405 static void (*nmi_ipi_function
)(struct pt_regs
*) = NULL
;
407 static void nmi_ipi_lock_start(unsigned long *flags
)
409 raw_local_irq_save(*flags
);
411 while (atomic_cmpxchg(&__nmi_ipi_lock
, 0, 1) == 1) {
412 raw_local_irq_restore(*flags
);
413 spin_until_cond(atomic_read(&__nmi_ipi_lock
) == 0);
414 raw_local_irq_save(*flags
);
419 static void nmi_ipi_lock(void)
421 while (atomic_cmpxchg(&__nmi_ipi_lock
, 0, 1) == 1)
422 spin_until_cond(atomic_read(&__nmi_ipi_lock
) == 0);
425 static void nmi_ipi_unlock(void)
428 WARN_ON(atomic_read(&__nmi_ipi_lock
) != 1);
429 atomic_set(&__nmi_ipi_lock
, 0);
432 static void nmi_ipi_unlock_end(unsigned long *flags
)
435 raw_local_irq_restore(*flags
);
439 * Platform NMI handler calls this to ack
441 int smp_handle_nmi_ipi(struct pt_regs
*regs
)
443 void (*fn
)(struct pt_regs
*) = NULL
;
445 int me
= raw_smp_processor_id();
449 * Unexpected NMIs are possible here because the interrupt may not
450 * be able to distinguish NMI IPIs from other types of NMIs, or
451 * because the caller may have timed out.
453 nmi_ipi_lock_start(&flags
);
454 if (cpumask_test_cpu(me
, &nmi_ipi_pending_mask
)) {
455 cpumask_clear_cpu(me
, &nmi_ipi_pending_mask
);
456 fn
= READ_ONCE(nmi_ipi_function
);
460 nmi_ipi_unlock_end(&flags
);
468 static void do_smp_send_nmi_ipi(int cpu
, bool safe
)
470 if (!safe
&& smp_ops
->cause_nmi_ipi
&& smp_ops
->cause_nmi_ipi(cpu
))
474 do_message_pass(cpu
, PPC_MSG_NMI_IPI
);
478 for_each_online_cpu(c
) {
479 if (c
== raw_smp_processor_id())
481 do_message_pass(c
, PPC_MSG_NMI_IPI
);
487 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
488 * - fn is the target callback function.
489 * - delay_us > 0 is the delay before giving up waiting for targets to
490 * begin executing the handler, == 0 specifies indefinite delay.
492 static int __smp_send_nmi_ipi(int cpu
, void (*fn
)(struct pt_regs
*),
493 u64 delay_us
, bool safe
)
496 int me
= raw_smp_processor_id();
500 BUG_ON(cpu
< 0 && cpu
!= NMI_IPI_ALL_OTHERS
);
502 if (unlikely(!smp_ops
))
505 nmi_ipi_lock_start(&flags
);
506 while (nmi_ipi_busy
) {
507 nmi_ipi_unlock_end(&flags
);
508 spin_until_cond(!nmi_ipi_busy
);
509 nmi_ipi_lock_start(&flags
);
512 nmi_ipi_function
= fn
;
514 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask
));
518 cpumask_copy(&nmi_ipi_pending_mask
, cpu_online_mask
);
519 cpumask_clear_cpu(me
, &nmi_ipi_pending_mask
);
521 cpumask_set_cpu(cpu
, &nmi_ipi_pending_mask
);
526 /* Interrupts remain hard disabled */
528 do_smp_send_nmi_ipi(cpu
, safe
);
531 /* nmi_ipi_busy is set here, so unlock/lock is okay */
532 while (!cpumask_empty(&nmi_ipi_pending_mask
)) {
543 if (!cpumask_empty(&nmi_ipi_pending_mask
)) {
544 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
546 cpumask_clear(&nmi_ipi_pending_mask
);
549 nmi_ipi_function
= NULL
;
550 nmi_ipi_busy
= false;
552 nmi_ipi_unlock_end(&flags
);
557 int smp_send_nmi_ipi(int cpu
, void (*fn
)(struct pt_regs
*), u64 delay_us
)
559 return __smp_send_nmi_ipi(cpu
, fn
, delay_us
, false);
562 int smp_send_safe_nmi_ipi(int cpu
, void (*fn
)(struct pt_regs
*), u64 delay_us
)
564 return __smp_send_nmi_ipi(cpu
, fn
, delay_us
, true);
566 #endif /* CONFIG_NMI_IPI */
568 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
569 void tick_broadcast(const struct cpumask
*mask
)
573 for_each_cpu(cpu
, mask
)
574 do_message_pass(cpu
, PPC_MSG_TICK_BROADCAST
);
578 #ifdef CONFIG_DEBUGGER
579 void debugger_ipi_callback(struct pt_regs
*regs
)
584 void smp_send_debugger_break(void)
586 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS
, debugger_ipi_callback
, 1000000);
590 #ifdef CONFIG_KEXEC_CORE
591 void crash_send_ipi(void (*crash_ipi_callback
)(struct pt_regs
*))
595 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS
, crash_ipi_callback
, 1000000);
596 if (kdump_in_progress() && crash_wake_offline
) {
597 for_each_present_cpu(cpu
) {
601 * crash_ipi_callback will wait for
602 * all cpus, including offline CPUs.
603 * We don't care about nmi_ipi_function.
604 * Offline cpus will jump straight into
605 * crash_ipi_callback, we can skip the
606 * entire NMI dance and waiting for
607 * cpus to clear pending mask, etc.
609 do_smp_send_nmi_ipi(cpu
, false);
615 #ifdef CONFIG_NMI_IPI
616 static void nmi_stop_this_cpu(struct pt_regs
*regs
)
619 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
626 void smp_send_stop(void)
628 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS
, nmi_stop_this_cpu
, 1000000);
631 #else /* CONFIG_NMI_IPI */
633 static void stop_this_cpu(void *dummy
)
641 void smp_send_stop(void)
643 static bool stopped
= false;
646 * Prevent waiting on csd lock from a previous smp_send_stop.
647 * This is racy, but in general callers try to do the right
648 * thing and only fire off one smp_send_stop (e.g., see
656 smp_call_function(stop_this_cpu
, NULL
, 0);
658 #endif /* CONFIG_NMI_IPI */
660 struct task_struct
*current_set
[NR_CPUS
];
662 static void smp_store_cpu_info(int id
)
664 per_cpu(cpu_pvr
, id
) = mfspr(SPRN_PVR
);
665 #ifdef CONFIG_PPC_FSL_BOOK3E
666 per_cpu(next_tlbcam_idx
, id
)
667 = (mfspr(SPRN_TLB1CFG
) & TLBnCFG_N_ENTRY
) - 1;
672 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
673 * rather than just passing around the cpumask we pass around a function that
674 * returns the that cpumask for the given CPU.
676 static void set_cpus_related(int i
, int j
, struct cpumask
*(*get_cpumask
)(int))
678 cpumask_set_cpu(i
, get_cpumask(j
));
679 cpumask_set_cpu(j
, get_cpumask(i
));
682 #ifdef CONFIG_HOTPLUG_CPU
683 static void set_cpus_unrelated(int i
, int j
,
684 struct cpumask
*(*get_cpumask
)(int))
686 cpumask_clear_cpu(i
, get_cpumask(j
));
687 cpumask_clear_cpu(j
, get_cpumask(i
));
692 * Extends set_cpus_related. Instead of setting one CPU at a time in
693 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
695 static void or_cpumasks_related(int i
, int j
, struct cpumask
*(*srcmask
)(int),
696 struct cpumask
*(*dstmask
)(int))
698 struct cpumask
*mask
;
702 for_each_cpu(k
, srcmask(i
))
703 cpumask_or(dstmask(k
), dstmask(k
), mask
);
709 for_each_cpu(k
, srcmask(j
))
710 cpumask_or(dstmask(k
), dstmask(k
), mask
);
714 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
715 * property for the CPU device node @dn and stores
716 * the parsed output in the thread_groups_list
719 * @dn: The device node of the CPU device.
720 * @tglp: Pointer to a thread group list structure into which the parsed
721 * output of "ibm,thread-groups" is stored.
723 * ibm,thread-groups[0..N-1] array defines which group of threads in
724 * the CPU-device node can be grouped together based on the property.
726 * This array can represent thread groupings for multiple properties.
728 * ibm,thread-groups[i + 0] tells us the property based on which the
729 * threads are being grouped together. If this value is 1, it implies
730 * that the threads in the same group share L1, translation cache. If
731 * the value is 2, it implies that the threads in the same group share
734 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
735 * property ibm,thread-groups[i]
737 * ibm,thread-groups[i+2] tells us the number of threads in each such
739 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
741 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
742 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
746 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
747 * This can be decomposed up into two consecutive arrays:
748 * a) [1,2,4,8,10,12,14,9,11,13,15]
749 * b) [2,2,4,8,10,12,14,9,11,13,15]
753 * a) provides information of Property "1" being shared by "2" groups,
754 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
755 * the first group is {8,10,12,14} and the
756 * "ibm,ppc-interrupt-server#s" of the second group is
757 * {9,11,13,15}. Property "1" is indicative of the thread in the
758 * group sharing L1 cache, translation cache and Instruction Data
761 * b) provides information of Property "2" being shared by "2" groups,
762 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
763 * the first group is {8,10,12,14} and the
764 * "ibm,ppc-interrupt-server#s" of the second group is
765 * {9,11,13,15}. Property "2" indicates that the threads in each
766 * group share the L2-cache.
768 * Returns 0 on success, -EINVAL if the property does not exist,
769 * -ENODATA if property does not have a value, and -EOVERFLOW if the
770 * property data isn't large enough.
772 static int parse_thread_groups(struct device_node
*dn
,
773 struct thread_groups_list
*tglp
)
775 unsigned int property_idx
= 0;
776 u32
*thread_group_array
;
777 size_t total_threads
;
782 count
= of_property_count_u32_elems(dn
, "ibm,thread-groups");
783 thread_group_array
= kcalloc(count
, sizeof(u32
), GFP_KERNEL
);
784 ret
= of_property_read_u32_array(dn
, "ibm,thread-groups",
785 thread_group_array
, count
);
789 while (i
< count
&& property_idx
< MAX_THREAD_GROUP_PROPERTIES
) {
791 struct thread_groups
*tg
= &tglp
->property_tgs
[property_idx
++];
793 tg
->property
= thread_group_array
[i
];
794 tg
->nr_groups
= thread_group_array
[i
+ 1];
795 tg
->threads_per_group
= thread_group_array
[i
+ 2];
796 total_threads
= tg
->nr_groups
* tg
->threads_per_group
;
798 thread_list
= &thread_group_array
[i
+ 3];
800 for (j
= 0; j
< total_threads
; j
++)
801 tg
->thread_list
[j
] = thread_list
[j
];
802 i
= i
+ 3 + total_threads
;
805 tglp
->nr_properties
= property_idx
;
808 kfree(thread_group_array
);
813 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
814 * that @cpu belongs to.
816 * @cpu : The logical CPU whose thread group is being searched.
817 * @tg : The thread-group structure of the CPU node which @cpu belongs
820 * Returns the index to tg->thread_list that points to the the start
821 * of the thread_group that @cpu belongs to.
823 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
826 static int get_cpu_thread_group_start(int cpu
, struct thread_groups
*tg
)
828 int hw_cpu_id
= get_hard_smp_processor_id(cpu
);
831 for (i
= 0; i
< tg
->nr_groups
; i
++) {
832 int group_start
= i
* tg
->threads_per_group
;
834 for (j
= 0; j
< tg
->threads_per_group
; j
++) {
835 int idx
= group_start
+ j
;
837 if (tg
->thread_list
[idx
] == hw_cpu_id
)
845 static struct thread_groups
*__init
get_thread_groups(int cpu
,
849 struct device_node
*dn
= of_get_cpu_node(cpu
, NULL
);
850 struct thread_groups_list
*cpu_tgl
= &tgl
[cpu
];
851 struct thread_groups
*tg
= NULL
;
860 if (!cpu_tgl
->nr_properties
) {
861 *err
= parse_thread_groups(dn
, cpu_tgl
);
866 for (i
= 0; i
< cpu_tgl
->nr_properties
; i
++) {
867 if (cpu_tgl
->property_tgs
[i
].property
== group_property
) {
868 tg
= &cpu_tgl
->property_tgs
[i
];
880 static int __init
init_thread_group_cache_map(int cpu
, int cache_property
)
883 int first_thread
= cpu_first_thread_sibling(cpu
);
884 int i
, cpu_group_start
= -1, err
= 0;
885 struct thread_groups
*tg
= NULL
;
886 cpumask_var_t
*mask
= NULL
;
888 if (cache_property
!= THREAD_GROUP_SHARE_L1
&&
889 cache_property
!= THREAD_GROUP_SHARE_L2
)
892 tg
= get_thread_groups(cpu
, cache_property
, &err
);
896 cpu_group_start
= get_cpu_thread_group_start(cpu
, tg
);
898 if (unlikely(cpu_group_start
== -1)) {
903 if (cache_property
== THREAD_GROUP_SHARE_L1
)
904 mask
= &per_cpu(thread_group_l1_cache_map
, cpu
);
905 else if (cache_property
== THREAD_GROUP_SHARE_L2
)
906 mask
= &per_cpu(thread_group_l2_cache_map
, cpu
);
908 zalloc_cpumask_var_node(mask
, GFP_KERNEL
, cpu_to_node(cpu
));
910 for (i
= first_thread
; i
< first_thread
+ threads_per_core
; i
++) {
911 int i_group_start
= get_cpu_thread_group_start(i
, tg
);
913 if (unlikely(i_group_start
== -1)) {
918 if (i_group_start
== cpu_group_start
)
919 cpumask_set_cpu(i
, *mask
);
925 static bool shared_caches
;
927 #ifdef CONFIG_SCHED_SMT
928 /* cpumask of CPUs with asymmetric SMT dependency */
929 static int powerpc_smt_flags(void)
931 int flags
= SD_SHARE_CPUCAPACITY
| SD_SHARE_PKG_RESOURCES
;
933 if (cpu_has_feature(CPU_FTR_ASYM_SMT
)) {
934 printk_once(KERN_INFO
"Enabling Asymmetric SMT scheduling\n");
935 flags
|= SD_ASYM_PACKING
;
942 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
943 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
944 * since the migrated task remains cache hot. We want to take advantage of this
945 * at the scheduler level so an extra topology level is required.
947 static int powerpc_shared_cache_flags(void)
949 return SD_SHARE_PKG_RESOURCES
;
953 * We can't just pass cpu_l2_cache_mask() directly because
954 * returns a non-const pointer and the compiler barfs on that.
956 static const struct cpumask
*shared_cache_mask(int cpu
)
958 return per_cpu(cpu_l2_cache_map
, cpu
);
961 #ifdef CONFIG_SCHED_SMT
962 static const struct cpumask
*smallcore_smt_mask(int cpu
)
964 return cpu_smallcore_mask(cpu
);
968 static struct cpumask
*cpu_coregroup_mask(int cpu
)
970 return per_cpu(cpu_coregroup_map
, cpu
);
973 static bool has_coregroup_support(void)
975 return coregroup_enabled
;
978 static const struct cpumask
*cpu_mc_mask(int cpu
)
980 return cpu_coregroup_mask(cpu
);
983 static struct sched_domain_topology_level powerpc_topology
[] = {
984 #ifdef CONFIG_SCHED_SMT
985 { cpu_smt_mask
, powerpc_smt_flags
, SD_INIT_NAME(SMT
) },
987 { shared_cache_mask
, powerpc_shared_cache_flags
, SD_INIT_NAME(CACHE
) },
988 { cpu_mc_mask
, SD_INIT_NAME(MC
) },
989 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
993 static int __init
init_big_cores(void)
997 for_each_possible_cpu(cpu
) {
998 int err
= init_thread_group_cache_map(cpu
, THREAD_GROUP_SHARE_L1
);
1003 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map
, cpu
),
1008 has_big_cores
= true;
1010 for_each_possible_cpu(cpu
) {
1011 int err
= init_thread_group_cache_map(cpu
, THREAD_GROUP_SHARE_L2
);
1017 thread_group_shares_l2
= true;
1018 pr_debug("L2 cache only shared by the threads in the small core\n");
1022 void __init
smp_prepare_cpus(unsigned int max_cpus
)
1026 DBG("smp_prepare_cpus\n");
1029 * setup_cpu may need to be called on the boot cpu. We havent
1030 * spun any cpus up but lets be paranoid.
1032 BUG_ON(boot_cpuid
!= smp_processor_id());
1034 /* Fixup boot cpu */
1035 smp_store_cpu_info(boot_cpuid
);
1036 cpu_callin_map
[boot_cpuid
] = 1;
1038 for_each_possible_cpu(cpu
) {
1039 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map
, cpu
),
1040 GFP_KERNEL
, cpu_to_node(cpu
));
1041 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map
, cpu
),
1042 GFP_KERNEL
, cpu_to_node(cpu
));
1043 zalloc_cpumask_var_node(&per_cpu(cpu_core_map
, cpu
),
1044 GFP_KERNEL
, cpu_to_node(cpu
));
1045 if (has_coregroup_support())
1046 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map
, cpu
),
1047 GFP_KERNEL
, cpu_to_node(cpu
));
1049 #ifdef CONFIG_NEED_MULTIPLE_NODES
1051 * numa_node_id() works after this.
1053 if (cpu_present(cpu
)) {
1054 set_cpu_numa_node(cpu
, numa_cpu_lookup_table
[cpu
]);
1055 set_cpu_numa_mem(cpu
,
1056 local_memory_node(numa_cpu_lookup_table
[cpu
]));
1060 * cpu_core_map is now more updated and exists only since
1061 * its been exported for long. It only will have a snapshot
1064 cpumask_copy(per_cpu(cpu_core_map
, cpu
), cpu_cpu_mask(cpu
));
1067 /* Init the cpumasks so the boot CPU is related to itself */
1068 cpumask_set_cpu(boot_cpuid
, cpu_sibling_mask(boot_cpuid
));
1069 cpumask_set_cpu(boot_cpuid
, cpu_l2_cache_mask(boot_cpuid
));
1071 if (has_coregroup_support())
1072 cpumask_set_cpu(boot_cpuid
, cpu_coregroup_mask(boot_cpuid
));
1075 if (has_big_cores
) {
1076 cpumask_set_cpu(boot_cpuid
,
1077 cpu_smallcore_mask(boot_cpuid
));
1080 if (smp_ops
&& smp_ops
->probe
)
1084 void smp_prepare_boot_cpu(void)
1086 BUG_ON(smp_processor_id() != boot_cpuid
);
1088 paca_ptrs
[boot_cpuid
]->__current
= current
;
1090 set_numa_node(numa_cpu_lookup_table
[boot_cpuid
]);
1091 current_set
[boot_cpuid
] = current
;
1094 #ifdef CONFIG_HOTPLUG_CPU
1096 int generic_cpu_disable(void)
1098 unsigned int cpu
= smp_processor_id();
1100 if (cpu
== boot_cpuid
)
1103 set_cpu_online(cpu
, false);
1105 vdso_data
->processorCount
--;
1107 /* Update affinity of all IRQs previously aimed at this CPU */
1108 irq_migrate_all_off_this_cpu();
1111 * Depending on the details of the interrupt controller, it's possible
1112 * that one of the interrupts we just migrated away from this CPU is
1113 * actually already pending on this CPU. If we leave it in that state
1114 * the interrupt will never be EOI'ed, and will never fire again. So
1115 * temporarily enable interrupts here, to allow any pending interrupt to
1116 * be received (and EOI'ed), before we take this CPU offline.
1120 local_irq_disable();
1125 void generic_cpu_die(unsigned int cpu
)
1129 for (i
= 0; i
< 100; i
++) {
1131 if (is_cpu_dead(cpu
))
1135 printk(KERN_ERR
"CPU%d didn't die...\n", cpu
);
1138 void generic_set_cpu_dead(unsigned int cpu
)
1140 per_cpu(cpu_state
, cpu
) = CPU_DEAD
;
1144 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1145 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1146 * which makes the delay in generic_cpu_die() not happen.
1148 void generic_set_cpu_up(unsigned int cpu
)
1150 per_cpu(cpu_state
, cpu
) = CPU_UP_PREPARE
;
1153 int generic_check_cpu_restart(unsigned int cpu
)
1155 return per_cpu(cpu_state
, cpu
) == CPU_UP_PREPARE
;
1158 int is_cpu_dead(unsigned int cpu
)
1160 return per_cpu(cpu_state
, cpu
) == CPU_DEAD
;
1163 static bool secondaries_inhibited(void)
1165 return kvm_hv_mode_active();
1168 #else /* HOTPLUG_CPU */
1170 #define secondaries_inhibited() 0
1174 static void cpu_idle_thread_init(unsigned int cpu
, struct task_struct
*idle
)
1177 paca_ptrs
[cpu
]->__current
= idle
;
1178 paca_ptrs
[cpu
]->kstack
= (unsigned long)task_stack_page(idle
) +
1179 THREAD_SIZE
- STACK_FRAME_OVERHEAD
;
1182 secondary_current
= current_set
[cpu
] = idle
;
1185 int __cpu_up(unsigned int cpu
, struct task_struct
*tidle
)
1190 * Don't allow secondary threads to come online if inhibited
1192 if (threads_per_core
> 1 && secondaries_inhibited() &&
1193 cpu_thread_in_subcore(cpu
))
1196 if (smp_ops
== NULL
||
1197 (smp_ops
->cpu_bootable
&& !smp_ops
->cpu_bootable(cpu
)))
1200 cpu_idle_thread_init(cpu
, tidle
);
1203 * The platform might need to allocate resources prior to bringing
1206 if (smp_ops
->prepare_cpu
) {
1207 rc
= smp_ops
->prepare_cpu(cpu
);
1212 /* Make sure callin-map entry is 0 (can be leftover a CPU
1215 cpu_callin_map
[cpu
] = 0;
1217 /* The information for processor bringup must
1218 * be written out to main store before we release
1224 DBG("smp: kicking cpu %d\n", cpu
);
1225 rc
= smp_ops
->kick_cpu(cpu
);
1227 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu
, rc
);
1232 * wait to see if the cpu made a callin (is actually up).
1233 * use this value that I found through experimentation.
1236 if (system_state
< SYSTEM_RUNNING
)
1237 for (c
= 50000; c
&& !cpu_callin_map
[cpu
]; c
--)
1239 #ifdef CONFIG_HOTPLUG_CPU
1242 * CPUs can take much longer to come up in the
1243 * hotplug case. Wait five seconds.
1245 for (c
= 5000; c
&& !cpu_callin_map
[cpu
]; c
--)
1249 if (!cpu_callin_map
[cpu
]) {
1250 printk(KERN_ERR
"Processor %u is stuck.\n", cpu
);
1254 DBG("Processor %u found.\n", cpu
);
1256 if (smp_ops
->give_timebase
)
1257 smp_ops
->give_timebase();
1259 /* Wait until cpu puts itself in the online & active maps */
1260 spin_until_cond(cpu_online(cpu
));
1265 /* Return the value of the reg property corresponding to the given
1268 int cpu_to_core_id(int cpu
)
1270 struct device_node
*np
;
1274 np
= of_get_cpu_node(cpu
, NULL
);
1278 reg
= of_get_property(np
, "reg", NULL
);
1282 id
= be32_to_cpup(reg
);
1287 EXPORT_SYMBOL_GPL(cpu_to_core_id
);
1289 /* Helper routines for cpu to core mapping */
1290 int cpu_core_index_of_thread(int cpu
)
1292 return cpu
>> threads_shift
;
1294 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread
);
1296 int cpu_first_thread_of_core(int core
)
1298 return core
<< threads_shift
;
1300 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core
);
1302 /* Must be called when no change can occur to cpu_present_mask,
1303 * i.e. during cpu online or offline.
1305 static struct device_node
*cpu_to_l2cache(int cpu
)
1307 struct device_node
*np
;
1308 struct device_node
*cache
;
1310 if (!cpu_present(cpu
))
1313 np
= of_get_cpu_node(cpu
, NULL
);
1317 cache
= of_find_next_cache_node(np
);
1324 static bool update_mask_by_l2(int cpu
, cpumask_var_t
*mask
)
1326 struct cpumask
*(*submask_fn
)(int) = cpu_sibling_mask
;
1327 struct device_node
*l2_cache
, *np
;
1331 submask_fn
= cpu_smallcore_mask
;
1334 * If the threads in a thread-group share L2 cache, then the
1335 * L2-mask can be obtained from thread_group_l2_cache_map.
1337 if (thread_group_shares_l2
) {
1338 cpumask_set_cpu(cpu
, cpu_l2_cache_mask(cpu
));
1340 for_each_cpu(i
, per_cpu(thread_group_l2_cache_map
, cpu
)) {
1342 set_cpus_related(i
, cpu
, cpu_l2_cache_mask
);
1345 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1346 if (!cpumask_equal(submask_fn(cpu
), cpu_l2_cache_mask(cpu
)) &&
1347 !cpumask_subset(submask_fn(cpu
), cpu_l2_cache_mask(cpu
))) {
1348 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1355 l2_cache
= cpu_to_l2cache(cpu
);
1356 if (!l2_cache
|| !*mask
) {
1357 /* Assume only core siblings share cache with this CPU */
1358 for_each_cpu(i
, submask_fn(cpu
))
1359 set_cpus_related(cpu
, i
, cpu_l2_cache_mask
);
1364 cpumask_and(*mask
, cpu_online_mask
, cpu_cpu_mask(cpu
));
1366 /* Update l2-cache mask with all the CPUs that are part of submask */
1367 or_cpumasks_related(cpu
, cpu
, submask_fn
, cpu_l2_cache_mask
);
1369 /* Skip all CPUs already part of current CPU l2-cache mask */
1370 cpumask_andnot(*mask
, *mask
, cpu_l2_cache_mask(cpu
));
1372 for_each_cpu(i
, *mask
) {
1374 * when updating the marks the current CPU has not been marked
1375 * online, but we need to update the cache masks
1377 np
= cpu_to_l2cache(i
);
1379 /* Skip all CPUs already part of current CPU l2-cache */
1380 if (np
== l2_cache
) {
1381 or_cpumasks_related(cpu
, i
, submask_fn
, cpu_l2_cache_mask
);
1382 cpumask_andnot(*mask
, *mask
, submask_fn(i
));
1384 cpumask_andnot(*mask
, *mask
, cpu_l2_cache_mask(i
));
1389 of_node_put(l2_cache
);
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 static void remove_cpu_from_masks(int cpu
)
1397 struct cpumask
*(*mask_fn
)(int) = cpu_sibling_mask
;
1401 mask_fn
= cpu_l2_cache_mask
;
1403 for_each_cpu(i
, mask_fn(cpu
)) {
1404 set_cpus_unrelated(cpu
, i
, cpu_l2_cache_mask
);
1405 set_cpus_unrelated(cpu
, i
, cpu_sibling_mask
);
1407 set_cpus_unrelated(cpu
, i
, cpu_smallcore_mask
);
1410 if (has_coregroup_support()) {
1411 for_each_cpu(i
, cpu_coregroup_mask(cpu
))
1412 set_cpus_unrelated(cpu
, i
, cpu_coregroup_mask
);
1417 static inline void add_cpu_to_smallcore_masks(int cpu
)
1424 cpumask_set_cpu(cpu
, cpu_smallcore_mask(cpu
));
1426 for_each_cpu(i
, per_cpu(thread_group_l1_cache_map
, cpu
)) {
1428 set_cpus_related(i
, cpu
, cpu_smallcore_mask
);
1432 static void update_coregroup_mask(int cpu
, cpumask_var_t
*mask
)
1434 struct cpumask
*(*submask_fn
)(int) = cpu_sibling_mask
;
1435 int coregroup_id
= cpu_to_coregroup_id(cpu
);
1439 submask_fn
= cpu_l2_cache_mask
;
1442 /* Assume only siblings are part of this CPU's coregroup */
1443 for_each_cpu(i
, submask_fn(cpu
))
1444 set_cpus_related(cpu
, i
, cpu_coregroup_mask
);
1449 cpumask_and(*mask
, cpu_online_mask
, cpu_cpu_mask(cpu
));
1451 /* Update coregroup mask with all the CPUs that are part of submask */
1452 or_cpumasks_related(cpu
, cpu
, submask_fn
, cpu_coregroup_mask
);
1454 /* Skip all CPUs already part of coregroup mask */
1455 cpumask_andnot(*mask
, *mask
, cpu_coregroup_mask(cpu
));
1457 for_each_cpu(i
, *mask
) {
1458 /* Skip all CPUs not part of this coregroup */
1459 if (coregroup_id
== cpu_to_coregroup_id(i
)) {
1460 or_cpumasks_related(cpu
, i
, submask_fn
, cpu_coregroup_mask
);
1461 cpumask_andnot(*mask
, *mask
, submask_fn(i
));
1463 cpumask_andnot(*mask
, *mask
, cpu_coregroup_mask(i
));
1468 static void add_cpu_to_masks(int cpu
)
1470 int first_thread
= cpu_first_thread_sibling(cpu
);
1475 * This CPU will not be in the online mask yet so we need to manually
1476 * add it to it's own thread sibling mask.
1478 cpumask_set_cpu(cpu
, cpu_sibling_mask(cpu
));
1480 for (i
= first_thread
; i
< first_thread
+ threads_per_core
; i
++)
1482 set_cpus_related(i
, cpu
, cpu_sibling_mask
);
1484 add_cpu_to_smallcore_masks(cpu
);
1486 /* In CPU-hotplug path, hence use GFP_ATOMIC */
1487 alloc_cpumask_var_node(&mask
, GFP_ATOMIC
, cpu_to_node(cpu
));
1488 update_mask_by_l2(cpu
, &mask
);
1490 if (has_coregroup_support())
1491 update_coregroup_mask(cpu
, &mask
);
1493 free_cpumask_var(mask
);
1496 /* Activate a secondary processor. */
1497 void start_secondary(void *unused
)
1499 unsigned int cpu
= raw_smp_processor_id();
1502 current
->active_mm
= &init_mm
;
1504 smp_store_cpu_info(cpu
);
1505 set_dec(tb_ticks_per_jiffy
);
1506 rcu_cpu_starting(cpu
);
1508 cpu_callin_map
[cpu
] = 1;
1510 if (smp_ops
->setup_cpu
)
1511 smp_ops
->setup_cpu(cpu
);
1512 if (smp_ops
->take_timebase
)
1513 smp_ops
->take_timebase();
1515 secondary_cpu_time_init();
1518 if (system_state
== SYSTEM_RUNNING
)
1519 vdso_data
->processorCount
++;
1523 /* Update topology CPU masks */
1524 add_cpu_to_masks(cpu
);
1527 * Check for any shared caches. Note that this must be done on a
1528 * per-core basis because one core in the pair might be disabled.
1530 if (!shared_caches
) {
1531 struct cpumask
*(*sibling_mask
)(int) = cpu_sibling_mask
;
1532 struct cpumask
*mask
= cpu_l2_cache_mask(cpu
);
1535 sibling_mask
= cpu_smallcore_mask
;
1537 if (cpumask_weight(mask
) > cpumask_weight(sibling_mask(cpu
)))
1538 shared_caches
= true;
1541 set_numa_node(numa_cpu_lookup_table
[cpu
]);
1542 set_numa_mem(local_memory_node(numa_cpu_lookup_table
[cpu
]));
1545 notify_cpu_starting(cpu
);
1546 set_cpu_online(cpu
, true);
1548 boot_init_stack_canary();
1552 /* We can enable ftrace for secondary cpus now */
1553 this_cpu_enable_ftrace();
1555 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE
);
1560 int setup_profiling_timer(unsigned int multiplier
)
1565 static void fixup_topology(void)
1569 #ifdef CONFIG_SCHED_SMT
1570 if (has_big_cores
) {
1571 pr_info("Big cores detected but using small core scheduling\n");
1572 powerpc_topology
[smt_idx
].mask
= smallcore_smt_mask
;
1576 if (!has_coregroup_support())
1577 powerpc_topology
[mc_idx
].mask
= powerpc_topology
[cache_idx
].mask
;
1580 * Try to consolidate topology levels here instead of
1581 * allowing scheduler to degenerate.
1582 * - Dont consolidate if masks are different.
1583 * - Dont consolidate if sd_flags exists and are different.
1585 for (i
= 1; i
<= die_idx
; i
++) {
1586 if (powerpc_topology
[i
].mask
!= powerpc_topology
[i
- 1].mask
)
1589 if (powerpc_topology
[i
].sd_flags
&& powerpc_topology
[i
- 1].sd_flags
&&
1590 powerpc_topology
[i
].sd_flags
!= powerpc_topology
[i
- 1].sd_flags
)
1593 if (!powerpc_topology
[i
- 1].sd_flags
)
1594 powerpc_topology
[i
- 1].sd_flags
= powerpc_topology
[i
].sd_flags
;
1596 powerpc_topology
[i
].mask
= powerpc_topology
[i
+ 1].mask
;
1597 powerpc_topology
[i
].sd_flags
= powerpc_topology
[i
+ 1].sd_flags
;
1598 #ifdef CONFIG_SCHED_DEBUG
1599 powerpc_topology
[i
].name
= powerpc_topology
[i
+ 1].name
;
1604 void __init
smp_cpus_done(unsigned int max_cpus
)
1607 * We are running pinned to the boot CPU, see rest_init().
1609 if (smp_ops
&& smp_ops
->setup_cpu
)
1610 smp_ops
->setup_cpu(boot_cpuid
);
1612 if (smp_ops
&& smp_ops
->bringup_done
)
1613 smp_ops
->bringup_done();
1615 dump_numa_cpu_topology();
1618 set_sched_topology(powerpc_topology
);
1621 #ifdef CONFIG_HOTPLUG_CPU
1622 int __cpu_disable(void)
1624 int cpu
= smp_processor_id();
1627 if (!smp_ops
->cpu_disable
)
1630 this_cpu_disable_ftrace();
1632 err
= smp_ops
->cpu_disable();
1636 /* Update sibling maps */
1637 remove_cpu_from_masks(cpu
);
1642 void __cpu_die(unsigned int cpu
)
1644 if (smp_ops
->cpu_die
)
1645 smp_ops
->cpu_die(cpu
);
1648 void arch_cpu_idle_dead(void)
1650 sched_preempt_enable_no_resched();
1653 * Disable on the down path. This will be re-enabled by
1654 * start_secondary() via start_secondary_resume() below
1656 this_cpu_disable_ftrace();
1658 if (smp_ops
->cpu_offline_self
)
1659 smp_ops
->cpu_offline_self();
1661 /* If we return, we re-enter start_secondary */
1662 start_secondary_resume();