io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / arch / powerpc / kernel / traps.c
blob3ec7b443fe6bbabdc511ac8c8773dbb40774600b
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 * Copyright 2007-2010 Freescale Semiconductor, Inc.
6 * Modified by Cort Dougan (cort@cs.nmt.edu)
7 * and Paul Mackerras (paulus@samba.org)
8 */
11 * This file handles the architecture-dependent parts of hardware exceptions
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h> /* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
41 #include <asm/emulated_ops.h>
42 #include <linux/uaccess.h>
43 #include <asm/debugfs.h>
44 #include <asm/io.h>
45 #include <asm/machdep.h>
46 #include <asm/rtas.h>
47 #include <asm/pmc.h>
48 #include <asm/reg.h>
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #include <asm/tm.h>
56 #endif
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
59 #include <asm/rio.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
62 #include <asm/tm.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/hmi.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68 #include <asm/stacktrace.h>
69 #include <asm/nmi.h>
71 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
72 int (*__debugger)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
80 EXPORT_SYMBOL(__debugger);
81 EXPORT_SYMBOL(__debugger_ipi);
82 EXPORT_SYMBOL(__debugger_bpt);
83 EXPORT_SYMBOL(__debugger_sstep);
84 EXPORT_SYMBOL(__debugger_iabr_match);
85 EXPORT_SYMBOL(__debugger_break_match);
86 EXPORT_SYMBOL(__debugger_fault_handler);
87 #endif
89 /* Transactional Memory trap debug */
90 #ifdef TM_DEBUG_SW
91 #define TM_DEBUG(x...) printk(KERN_INFO x)
92 #else
93 #define TM_DEBUG(x...) do { } while(0)
94 #endif
96 static const char *signame(int signr)
98 switch (signr) {
99 case SIGBUS: return "bus error";
100 case SIGFPE: return "floating point exception";
101 case SIGILL: return "illegal instruction";
102 case SIGSEGV: return "segfault";
103 case SIGTRAP: return "unhandled trap";
106 return "unknown signal";
110 * Trap & Exception support
113 #ifdef CONFIG_PMAC_BACKLIGHT
114 static void pmac_backlight_unblank(void)
116 mutex_lock(&pmac_backlight_mutex);
117 if (pmac_backlight) {
118 struct backlight_properties *props;
120 props = &pmac_backlight->props;
121 props->brightness = props->max_brightness;
122 props->power = FB_BLANK_UNBLANK;
123 backlight_update_status(pmac_backlight);
125 mutex_unlock(&pmac_backlight_mutex);
127 #else
128 static inline void pmac_backlight_unblank(void) { }
129 #endif
132 * If oops/die is expected to crash the machine, return true here.
134 * This should not be expected to be 100% accurate, there may be
135 * notifiers registered or other unexpected conditions that may bring
136 * down the kernel. Or if the current process in the kernel is holding
137 * locks or has other critical state, the kernel may become effectively
138 * unusable anyway.
140 bool die_will_crash(void)
142 if (should_fadump_crash())
143 return true;
144 if (kexec_should_crash(current))
145 return true;
146 if (in_interrupt() || panic_on_oops ||
147 !current->pid || is_global_init(current))
148 return true;
150 return false;
153 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
154 static int die_owner = -1;
155 static unsigned int die_nest_count;
156 static int die_counter;
158 extern void panic_flush_kmsg_start(void)
161 * These are mostly taken from kernel/panic.c, but tries to do
162 * relatively minimal work. Don't use delay functions (TB may
163 * be broken), don't crash dump (need to set a firmware log),
164 * don't run notifiers. We do want to get some information to
165 * Linux console.
167 console_verbose();
168 bust_spinlocks(1);
171 extern void panic_flush_kmsg_end(void)
173 printk_safe_flush_on_panic();
174 kmsg_dump(KMSG_DUMP_PANIC);
175 bust_spinlocks(0);
176 debug_locks_off();
177 console_flush_on_panic(CONSOLE_FLUSH_PENDING);
180 static unsigned long oops_begin(struct pt_regs *regs)
182 int cpu;
183 unsigned long flags;
185 oops_enter();
187 /* racy, but better than risking deadlock. */
188 raw_local_irq_save(flags);
189 cpu = smp_processor_id();
190 if (!arch_spin_trylock(&die_lock)) {
191 if (cpu == die_owner)
192 /* nested oops. should stop eventually */;
193 else
194 arch_spin_lock(&die_lock);
196 die_nest_count++;
197 die_owner = cpu;
198 console_verbose();
199 bust_spinlocks(1);
200 if (machine_is(powermac))
201 pmac_backlight_unblank();
202 return flags;
204 NOKPROBE_SYMBOL(oops_begin);
206 static void oops_end(unsigned long flags, struct pt_regs *regs,
207 int signr)
209 bust_spinlocks(0);
210 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
211 die_nest_count--;
212 oops_exit();
213 printk("\n");
214 if (!die_nest_count) {
215 /* Nest count reaches zero, release the lock. */
216 die_owner = -1;
217 arch_spin_unlock(&die_lock);
219 raw_local_irq_restore(flags);
222 * system_reset_excption handles debugger, crash dump, panic, for 0x100
224 if (TRAP(regs) == 0x100)
225 return;
227 crash_fadump(regs, "die oops");
229 if (kexec_should_crash(current))
230 crash_kexec(regs);
232 if (!signr)
233 return;
236 * While our oops output is serialised by a spinlock, output
237 * from panic() called below can race and corrupt it. If we
238 * know we are going to panic, delay for 1 second so we have a
239 * chance to get clean backtraces from all CPUs that are oopsing.
241 if (in_interrupt() || panic_on_oops || !current->pid ||
242 is_global_init(current)) {
243 mdelay(MSEC_PER_SEC);
246 if (panic_on_oops)
247 panic("Fatal exception");
248 do_exit(signr);
250 NOKPROBE_SYMBOL(oops_end);
252 static char *get_mmu_str(void)
254 if (early_radix_enabled())
255 return " MMU=Radix";
256 if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
257 return " MMU=Hash";
258 return "";
261 static int __die(const char *str, struct pt_regs *regs, long err)
263 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
265 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
266 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
267 PAGE_SIZE / 1024, get_mmu_str(),
268 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
269 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
270 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
271 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
272 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
273 ppc_md.name ? ppc_md.name : "");
275 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
276 return 1;
278 print_modules();
279 show_regs(regs);
281 return 0;
283 NOKPROBE_SYMBOL(__die);
285 void die(const char *str, struct pt_regs *regs, long err)
287 unsigned long flags;
290 * system_reset_excption handles debugger, crash dump, panic, for 0x100
292 if (TRAP(regs) != 0x100) {
293 if (debugger(regs))
294 return;
297 flags = oops_begin(regs);
298 if (__die(str, regs, err))
299 err = 0;
300 oops_end(flags, regs, err);
302 NOKPROBE_SYMBOL(die);
304 void user_single_step_report(struct pt_regs *regs)
306 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
309 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
310 unsigned long addr)
312 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
313 DEFAULT_RATELIMIT_BURST);
315 if (!show_unhandled_signals)
316 return;
318 if (!unhandled_signal(current, signr))
319 return;
321 if (!__ratelimit(&rs))
322 return;
324 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
325 current->comm, current->pid, signame(signr), signr,
326 addr, regs->nip, regs->link, code);
328 print_vma_addr(KERN_CONT " in ", regs->nip);
330 pr_cont("\n");
332 show_user_instructions(regs);
335 static bool exception_common(int signr, struct pt_regs *regs, int code,
336 unsigned long addr)
338 if (!user_mode(regs)) {
339 die("Exception in kernel mode", regs, signr);
340 return false;
343 show_signal_msg(signr, regs, code, addr);
345 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
346 local_irq_enable();
348 current->thread.trap_nr = code;
350 return true;
353 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
355 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
356 return;
358 force_sig_pkuerr((void __user *) addr, key);
361 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
363 if (!exception_common(signr, regs, code, addr))
364 return;
366 force_sig_fault(signr, code, (void __user *)addr);
370 * The interrupt architecture has a quirk in that the HV interrupts excluding
371 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
372 * that an interrupt handler must do is save off a GPR into a scratch register,
373 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
374 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
375 * that it is non-reentrant, which leads to random data corruption.
377 * The solution is for NMI interrupts in HV mode to check if they originated
378 * from these critical HV interrupt regions. If so, then mark them not
379 * recoverable.
381 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
382 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
383 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
384 * that would work. However any other guest OS that may have the SPRG live
385 * and MSR[RI]=1 could encounter silent corruption.
387 * Builds that do not support KVM could take this second option to increase
388 * the recoverability of NMIs.
390 void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
392 #ifdef CONFIG_PPC_POWERNV
393 unsigned long kbase = (unsigned long)_stext;
394 unsigned long nip = regs->nip;
396 if (!(regs->msr & MSR_RI))
397 return;
398 if (!(regs->msr & MSR_HV))
399 return;
400 if (regs->msr & MSR_PR)
401 return;
404 * Now test if the interrupt has hit a range that may be using
405 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
406 * problem ranges all run un-relocated. Test real and virt modes
407 * at the same time by droping the high bit of the nip (virt mode
408 * entry points still have the +0x4000 offset).
410 nip &= ~0xc000000000000000ULL;
411 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
412 goto nonrecoverable;
413 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
414 goto nonrecoverable;
415 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
416 goto nonrecoverable;
417 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
418 goto nonrecoverable;
420 /* Trampoline code runs un-relocated so subtract kbase. */
421 if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
422 nip < (unsigned long)(end_real_trampolines - kbase))
423 goto nonrecoverable;
424 if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
425 nip < (unsigned long)(end_virt_trampolines - kbase))
426 goto nonrecoverable;
427 return;
429 nonrecoverable:
430 regs->msr &= ~MSR_RI;
431 #endif
434 void system_reset_exception(struct pt_regs *regs)
436 unsigned long hsrr0, hsrr1;
437 bool saved_hsrrs = false;
438 u8 ftrace_enabled = this_cpu_get_ftrace_enabled();
440 this_cpu_set_ftrace_enabled(0);
442 nmi_enter();
445 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
446 * The system reset interrupt itself may clobber HSRRs (e.g., to call
447 * OPAL), so save them here and restore them before returning.
449 * Machine checks don't need to save HSRRs, as the real mode handler
450 * is careful to avoid them, and the regular handler is not delivered
451 * as an NMI.
453 if (cpu_has_feature(CPU_FTR_HVMODE)) {
454 hsrr0 = mfspr(SPRN_HSRR0);
455 hsrr1 = mfspr(SPRN_HSRR1);
456 saved_hsrrs = true;
459 hv_nmi_check_nonrecoverable(regs);
461 __this_cpu_inc(irq_stat.sreset_irqs);
463 /* See if any machine dependent calls */
464 if (ppc_md.system_reset_exception) {
465 if (ppc_md.system_reset_exception(regs))
466 goto out;
469 if (debugger(regs))
470 goto out;
472 kmsg_dump(KMSG_DUMP_OOPS);
474 * A system reset is a request to dump, so we always send
475 * it through the crashdump code (if fadump or kdump are
476 * registered).
478 crash_fadump(regs, "System Reset");
480 crash_kexec(regs);
483 * We aren't the primary crash CPU. We need to send it
484 * to a holding pattern to avoid it ending up in the panic
485 * code.
487 crash_kexec_secondary(regs);
490 * No debugger or crash dump registered, print logs then
491 * panic.
493 die("System Reset", regs, SIGABRT);
495 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
496 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
497 nmi_panic(regs, "System Reset");
499 out:
500 #ifdef CONFIG_PPC_BOOK3S_64
501 BUG_ON(get_paca()->in_nmi == 0);
502 if (get_paca()->in_nmi > 1)
503 die("Unrecoverable nested System Reset", regs, SIGABRT);
504 #endif
505 /* Must die if the interrupt is not recoverable */
506 if (!(regs->msr & MSR_RI))
507 die("Unrecoverable System Reset", regs, SIGABRT);
509 if (saved_hsrrs) {
510 mtspr(SPRN_HSRR0, hsrr0);
511 mtspr(SPRN_HSRR1, hsrr1);
514 nmi_exit();
516 this_cpu_set_ftrace_enabled(ftrace_enabled);
518 /* What should we do here? We could issue a shutdown or hard reset. */
522 * I/O accesses can cause machine checks on powermacs.
523 * Check if the NIP corresponds to the address of a sync
524 * instruction for which there is an entry in the exception
525 * table.
526 * -- paulus.
528 static inline int check_io_access(struct pt_regs *regs)
530 #ifdef CONFIG_PPC32
531 unsigned long msr = regs->msr;
532 const struct exception_table_entry *entry;
533 unsigned int *nip = (unsigned int *)regs->nip;
535 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
536 && (entry = search_exception_tables(regs->nip)) != NULL) {
538 * Check that it's a sync instruction, or somewhere
539 * in the twi; isync; nop sequence that inb/inw/inl uses.
540 * As the address is in the exception table
541 * we should be able to read the instr there.
542 * For the debug message, we look at the preceding
543 * load or store.
545 if (*nip == PPC_INST_NOP)
546 nip -= 2;
547 else if (*nip == PPC_INST_ISYNC)
548 --nip;
549 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
550 unsigned int rb;
552 --nip;
553 rb = (*nip >> 11) & 0x1f;
554 printk(KERN_DEBUG "%s bad port %lx at %p\n",
555 (*nip & 0x100)? "OUT to": "IN from",
556 regs->gpr[rb] - _IO_BASE, nip);
557 regs->msr |= MSR_RI;
558 regs->nip = extable_fixup(entry);
559 return 1;
562 #endif /* CONFIG_PPC32 */
563 return 0;
566 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
567 /* On 4xx, the reason for the machine check or program exception
568 is in the ESR. */
569 #define get_reason(regs) ((regs)->dsisr)
570 #define REASON_FP ESR_FP
571 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
572 #define REASON_PRIVILEGED ESR_PPR
573 #define REASON_TRAP ESR_PTR
574 #define REASON_PREFIXED 0
575 #define REASON_BOUNDARY 0
577 /* single-step stuff */
578 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
579 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
580 #define clear_br_trace(regs) do {} while(0)
581 #else
582 /* On non-4xx, the reason for the machine check or program
583 exception is in the MSR. */
584 #define get_reason(regs) ((regs)->msr)
585 #define REASON_TM SRR1_PROGTM
586 #define REASON_FP SRR1_PROGFPE
587 #define REASON_ILLEGAL SRR1_PROGILL
588 #define REASON_PRIVILEGED SRR1_PROGPRIV
589 #define REASON_TRAP SRR1_PROGTRAP
590 #define REASON_PREFIXED SRR1_PREFIXED
591 #define REASON_BOUNDARY SRR1_BOUNDARY
593 #define single_stepping(regs) ((regs)->msr & MSR_SE)
594 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
595 #define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
596 #endif
598 #define inst_length(reason) (((reason) & REASON_PREFIXED) ? 8 : 4)
600 #if defined(CONFIG_E500)
601 int machine_check_e500mc(struct pt_regs *regs)
603 unsigned long mcsr = mfspr(SPRN_MCSR);
604 unsigned long pvr = mfspr(SPRN_PVR);
605 unsigned long reason = mcsr;
606 int recoverable = 1;
608 if (reason & MCSR_LD) {
609 recoverable = fsl_rio_mcheck_exception(regs);
610 if (recoverable == 1)
611 goto silent_out;
614 printk("Machine check in kernel mode.\n");
615 printk("Caused by (from MCSR=%lx): ", reason);
617 if (reason & MCSR_MCP)
618 pr_cont("Machine Check Signal\n");
620 if (reason & MCSR_ICPERR) {
621 pr_cont("Instruction Cache Parity Error\n");
624 * This is recoverable by invalidating the i-cache.
626 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
627 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
631 * This will generally be accompanied by an instruction
632 * fetch error report -- only treat MCSR_IF as fatal
633 * if it wasn't due to an L1 parity error.
635 reason &= ~MCSR_IF;
638 if (reason & MCSR_DCPERR_MC) {
639 pr_cont("Data Cache Parity Error\n");
642 * In write shadow mode we auto-recover from the error, but it
643 * may still get logged and cause a machine check. We should
644 * only treat the non-write shadow case as non-recoverable.
646 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
647 * is not implemented but L1 data cache always runs in write
648 * shadow mode. Hence on data cache parity errors HW will
649 * automatically invalidate the L1 Data Cache.
651 if (PVR_VER(pvr) != PVR_VER_E6500) {
652 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
653 recoverable = 0;
657 if (reason & MCSR_L2MMU_MHIT) {
658 pr_cont("Hit on multiple TLB entries\n");
659 recoverable = 0;
662 if (reason & MCSR_NMI)
663 pr_cont("Non-maskable interrupt\n");
665 if (reason & MCSR_IF) {
666 pr_cont("Instruction Fetch Error Report\n");
667 recoverable = 0;
670 if (reason & MCSR_LD) {
671 pr_cont("Load Error Report\n");
672 recoverable = 0;
675 if (reason & MCSR_ST) {
676 pr_cont("Store Error Report\n");
677 recoverable = 0;
680 if (reason & MCSR_LDG) {
681 pr_cont("Guarded Load Error Report\n");
682 recoverable = 0;
685 if (reason & MCSR_TLBSYNC)
686 pr_cont("Simultaneous tlbsync operations\n");
688 if (reason & MCSR_BSL2_ERR) {
689 pr_cont("Level 2 Cache Error\n");
690 recoverable = 0;
693 if (reason & MCSR_MAV) {
694 u64 addr;
696 addr = mfspr(SPRN_MCAR);
697 addr |= (u64)mfspr(SPRN_MCARU) << 32;
699 pr_cont("Machine Check %s Address: %#llx\n",
700 reason & MCSR_MEA ? "Effective" : "Physical", addr);
703 silent_out:
704 mtspr(SPRN_MCSR, mcsr);
705 return mfspr(SPRN_MCSR) == 0 && recoverable;
708 int machine_check_e500(struct pt_regs *regs)
710 unsigned long reason = mfspr(SPRN_MCSR);
712 if (reason & MCSR_BUS_RBERR) {
713 if (fsl_rio_mcheck_exception(regs))
714 return 1;
715 if (fsl_pci_mcheck_exception(regs))
716 return 1;
719 printk("Machine check in kernel mode.\n");
720 printk("Caused by (from MCSR=%lx): ", reason);
722 if (reason & MCSR_MCP)
723 pr_cont("Machine Check Signal\n");
724 if (reason & MCSR_ICPERR)
725 pr_cont("Instruction Cache Parity Error\n");
726 if (reason & MCSR_DCP_PERR)
727 pr_cont("Data Cache Push Parity Error\n");
728 if (reason & MCSR_DCPERR)
729 pr_cont("Data Cache Parity Error\n");
730 if (reason & MCSR_BUS_IAERR)
731 pr_cont("Bus - Instruction Address Error\n");
732 if (reason & MCSR_BUS_RAERR)
733 pr_cont("Bus - Read Address Error\n");
734 if (reason & MCSR_BUS_WAERR)
735 pr_cont("Bus - Write Address Error\n");
736 if (reason & MCSR_BUS_IBERR)
737 pr_cont("Bus - Instruction Data Error\n");
738 if (reason & MCSR_BUS_RBERR)
739 pr_cont("Bus - Read Data Bus Error\n");
740 if (reason & MCSR_BUS_WBERR)
741 pr_cont("Bus - Write Data Bus Error\n");
742 if (reason & MCSR_BUS_IPERR)
743 pr_cont("Bus - Instruction Parity Error\n");
744 if (reason & MCSR_BUS_RPERR)
745 pr_cont("Bus - Read Parity Error\n");
747 return 0;
750 int machine_check_generic(struct pt_regs *regs)
752 return 0;
754 #elif defined(CONFIG_PPC32)
755 int machine_check_generic(struct pt_regs *regs)
757 unsigned long reason = regs->msr;
759 printk("Machine check in kernel mode.\n");
760 printk("Caused by (from SRR1=%lx): ", reason);
761 switch (reason & 0x601F0000) {
762 case 0x80000:
763 pr_cont("Machine check signal\n");
764 break;
765 case 0x40000:
766 case 0x140000: /* 7450 MSS error and TEA */
767 pr_cont("Transfer error ack signal\n");
768 break;
769 case 0x20000:
770 pr_cont("Data parity error signal\n");
771 break;
772 case 0x10000:
773 pr_cont("Address parity error signal\n");
774 break;
775 case 0x20000000:
776 pr_cont("L1 Data Cache error\n");
777 break;
778 case 0x40000000:
779 pr_cont("L1 Instruction Cache error\n");
780 break;
781 case 0x00100000:
782 pr_cont("L2 data cache parity error\n");
783 break;
784 default:
785 pr_cont("Unknown values in msr\n");
787 return 0;
789 #endif /* everything else */
791 void machine_check_exception(struct pt_regs *regs)
793 int recover = 0;
796 * BOOK3S_64 does not call this handler as a non-maskable interrupt
797 * (it uses its own early real-mode handler to handle the MCE proper
798 * and then raises irq_work to call this handler when interrupts are
799 * enabled).
801 * This is silly. The BOOK3S_64 should just call a different function
802 * rather than expecting semantics to magically change. Something
803 * like 'non_nmi_machine_check_exception()', perhaps?
805 const bool nmi = !IS_ENABLED(CONFIG_PPC_BOOK3S_64);
807 if (nmi) nmi_enter();
809 __this_cpu_inc(irq_stat.mce_exceptions);
811 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
813 /* See if any machine dependent calls. In theory, we would want
814 * to call the CPU first, and call the ppc_md. one if the CPU
815 * one returns a positive number. However there is existing code
816 * that assumes the board gets a first chance, so let's keep it
817 * that way for now and fix things later. --BenH.
819 if (ppc_md.machine_check_exception)
820 recover = ppc_md.machine_check_exception(regs);
821 else if (cur_cpu_spec->machine_check)
822 recover = cur_cpu_spec->machine_check(regs);
824 if (recover > 0)
825 goto bail;
827 if (debugger_fault_handler(regs))
828 goto bail;
830 if (check_io_access(regs))
831 goto bail;
833 if (nmi) nmi_exit();
835 die("Machine check", regs, SIGBUS);
837 /* Must die if the interrupt is not recoverable */
838 if (!(regs->msr & MSR_RI))
839 die("Unrecoverable Machine check", regs, SIGBUS);
841 return;
843 bail:
844 if (nmi) nmi_exit();
847 void SMIException(struct pt_regs *regs)
849 die("System Management Interrupt", regs, SIGABRT);
852 #ifdef CONFIG_VSX
853 static void p9_hmi_special_emu(struct pt_regs *regs)
855 unsigned int ra, rb, t, i, sel, instr, rc;
856 const void __user *addr;
857 u8 vbuf[16] __aligned(16), *vdst;
858 unsigned long ea, msr, msr_mask;
859 bool swap;
861 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
862 return;
865 * lxvb16x opcode: 0x7c0006d8
866 * lxvd2x opcode: 0x7c000698
867 * lxvh8x opcode: 0x7c000658
868 * lxvw4x opcode: 0x7c000618
870 if ((instr & 0xfc00073e) != 0x7c000618) {
871 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
872 " instr=%08x\n",
873 smp_processor_id(), current->comm, current->pid,
874 regs->nip, instr);
875 return;
878 /* Grab vector registers into the task struct */
879 msr = regs->msr; /* Grab msr before we flush the bits */
880 flush_vsx_to_thread(current);
881 enable_kernel_altivec();
884 * Is userspace running with a different endian (this is rare but
885 * not impossible)
887 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
889 /* Decode the instruction */
890 ra = (instr >> 16) & 0x1f;
891 rb = (instr >> 11) & 0x1f;
892 t = (instr >> 21) & 0x1f;
893 if (instr & 1)
894 vdst = (u8 *)&current->thread.vr_state.vr[t];
895 else
896 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
898 /* Grab the vector address */
899 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
900 if (is_32bit_task())
901 ea &= 0xfffffffful;
902 addr = (__force const void __user *)ea;
904 /* Check it */
905 if (!access_ok(addr, 16)) {
906 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
907 " instr=%08x addr=%016lx\n",
908 smp_processor_id(), current->comm, current->pid,
909 regs->nip, instr, (unsigned long)addr);
910 return;
913 /* Read the vector */
914 rc = 0;
915 if ((unsigned long)addr & 0xfUL)
916 /* unaligned case */
917 rc = __copy_from_user_inatomic(vbuf, addr, 16);
918 else
919 __get_user_atomic_128_aligned(vbuf, addr, rc);
920 if (rc) {
921 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
922 " instr=%08x addr=%016lx\n",
923 smp_processor_id(), current->comm, current->pid,
924 regs->nip, instr, (unsigned long)addr);
925 return;
928 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
929 " instr=%08x addr=%016lx\n",
930 smp_processor_id(), current->comm, current->pid, regs->nip,
931 instr, (unsigned long) addr);
933 /* Grab instruction "selector" */
934 sel = (instr >> 6) & 3;
937 * Check to make sure the facility is actually enabled. This
938 * could happen if we get a false positive hit.
940 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
941 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
943 msr_mask = MSR_VSX;
944 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
945 msr_mask = MSR_VEC;
946 if (!(msr & msr_mask)) {
947 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
948 " instr=%08x msr:%016lx\n",
949 smp_processor_id(), current->comm, current->pid,
950 regs->nip, instr, msr);
951 return;
954 /* Do logging here before we modify sel based on endian */
955 switch (sel) {
956 case 0: /* lxvw4x */
957 PPC_WARN_EMULATED(lxvw4x, regs);
958 break;
959 case 1: /* lxvh8x */
960 PPC_WARN_EMULATED(lxvh8x, regs);
961 break;
962 case 2: /* lxvd2x */
963 PPC_WARN_EMULATED(lxvd2x, regs);
964 break;
965 case 3: /* lxvb16x */
966 PPC_WARN_EMULATED(lxvb16x, regs);
967 break;
970 #ifdef __LITTLE_ENDIAN__
972 * An LE kernel stores the vector in the task struct as an LE
973 * byte array (effectively swapping both the components and
974 * the content of the components). Those instructions expect
975 * the components to remain in ascending address order, so we
976 * swap them back.
978 * If we are running a BE user space, the expectation is that
979 * of a simple memcpy, so forcing the emulation to look like
980 * a lxvb16x should do the trick.
982 if (swap)
983 sel = 3;
985 switch (sel) {
986 case 0: /* lxvw4x */
987 for (i = 0; i < 4; i++)
988 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
989 break;
990 case 1: /* lxvh8x */
991 for (i = 0; i < 8; i++)
992 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
993 break;
994 case 2: /* lxvd2x */
995 for (i = 0; i < 2; i++)
996 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
997 break;
998 case 3: /* lxvb16x */
999 for (i = 0; i < 16; i++)
1000 vdst[i] = vbuf[15-i];
1001 break;
1003 #else /* __LITTLE_ENDIAN__ */
1004 /* On a big endian kernel, a BE userspace only needs a memcpy */
1005 if (!swap)
1006 sel = 3;
1008 /* Otherwise, we need to swap the content of the components */
1009 switch (sel) {
1010 case 0: /* lxvw4x */
1011 for (i = 0; i < 4; i++)
1012 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1013 break;
1014 case 1: /* lxvh8x */
1015 for (i = 0; i < 8; i++)
1016 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1017 break;
1018 case 2: /* lxvd2x */
1019 for (i = 0; i < 2; i++)
1020 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1021 break;
1022 case 3: /* lxvb16x */
1023 memcpy(vdst, vbuf, 16);
1024 break;
1026 #endif /* !__LITTLE_ENDIAN__ */
1028 /* Go to next instruction */
1029 regs->nip += 4;
1031 #endif /* CONFIG_VSX */
1033 void handle_hmi_exception(struct pt_regs *regs)
1035 struct pt_regs *old_regs;
1037 old_regs = set_irq_regs(regs);
1038 irq_enter();
1040 #ifdef CONFIG_VSX
1041 /* Real mode flagged P9 special emu is needed */
1042 if (local_paca->hmi_p9_special_emu) {
1043 local_paca->hmi_p9_special_emu = 0;
1046 * We don't want to take page faults while doing the
1047 * emulation, we just replay the instruction if necessary.
1049 pagefault_disable();
1050 p9_hmi_special_emu(regs);
1051 pagefault_enable();
1053 #endif /* CONFIG_VSX */
1055 if (ppc_md.handle_hmi_exception)
1056 ppc_md.handle_hmi_exception(regs);
1058 irq_exit();
1059 set_irq_regs(old_regs);
1062 void unknown_exception(struct pt_regs *regs)
1064 enum ctx_state prev_state = exception_enter();
1066 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1067 regs->nip, regs->msr, regs->trap);
1069 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1071 exception_exit(prev_state);
1074 void instruction_breakpoint_exception(struct pt_regs *regs)
1076 enum ctx_state prev_state = exception_enter();
1078 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1079 5, SIGTRAP) == NOTIFY_STOP)
1080 goto bail;
1081 if (debugger_iabr_match(regs))
1082 goto bail;
1083 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1085 bail:
1086 exception_exit(prev_state);
1089 void RunModeException(struct pt_regs *regs)
1091 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1094 void single_step_exception(struct pt_regs *regs)
1096 enum ctx_state prev_state = exception_enter();
1098 clear_single_step(regs);
1099 clear_br_trace(regs);
1101 if (kprobe_post_handler(regs))
1102 return;
1104 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1105 5, SIGTRAP) == NOTIFY_STOP)
1106 goto bail;
1107 if (debugger_sstep(regs))
1108 goto bail;
1110 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1112 bail:
1113 exception_exit(prev_state);
1115 NOKPROBE_SYMBOL(single_step_exception);
1118 * After we have successfully emulated an instruction, we have to
1119 * check if the instruction was being single-stepped, and if so,
1120 * pretend we got a single-step exception. This was pointed out
1121 * by Kumar Gala. -- paulus
1123 static void emulate_single_step(struct pt_regs *regs)
1125 if (single_stepping(regs))
1126 single_step_exception(regs);
1129 static inline int __parse_fpscr(unsigned long fpscr)
1131 int ret = FPE_FLTUNK;
1133 /* Invalid operation */
1134 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1135 ret = FPE_FLTINV;
1137 /* Overflow */
1138 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1139 ret = FPE_FLTOVF;
1141 /* Underflow */
1142 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1143 ret = FPE_FLTUND;
1145 /* Divide by zero */
1146 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1147 ret = FPE_FLTDIV;
1149 /* Inexact result */
1150 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1151 ret = FPE_FLTRES;
1153 return ret;
1156 static void parse_fpe(struct pt_regs *regs)
1158 int code = 0;
1160 flush_fp_to_thread(current);
1162 #ifdef CONFIG_PPC_FPU_REGS
1163 code = __parse_fpscr(current->thread.fp_state.fpscr);
1164 #endif
1166 _exception(SIGFPE, regs, code, regs->nip);
1170 * Illegal instruction emulation support. Originally written to
1171 * provide the PVR to user applications using the mfspr rd, PVR.
1172 * Return non-zero if we can't emulate, or -EFAULT if the associated
1173 * memory access caused an access fault. Return zero on success.
1175 * There are a couple of ways to do this, either "decode" the instruction
1176 * or directly match lots of bits. In this case, matching lots of
1177 * bits is faster and easier.
1180 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1182 u8 rT = (instword >> 21) & 0x1f;
1183 u8 rA = (instword >> 16) & 0x1f;
1184 u8 NB_RB = (instword >> 11) & 0x1f;
1185 u32 num_bytes;
1186 unsigned long EA;
1187 int pos = 0;
1189 /* Early out if we are an invalid form of lswx */
1190 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1191 if ((rT == rA) || (rT == NB_RB))
1192 return -EINVAL;
1194 EA = (rA == 0) ? 0 : regs->gpr[rA];
1196 switch (instword & PPC_INST_STRING_MASK) {
1197 case PPC_INST_LSWX:
1198 case PPC_INST_STSWX:
1199 EA += NB_RB;
1200 num_bytes = regs->xer & 0x7f;
1201 break;
1202 case PPC_INST_LSWI:
1203 case PPC_INST_STSWI:
1204 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1205 break;
1206 default:
1207 return -EINVAL;
1210 while (num_bytes != 0)
1212 u8 val;
1213 u32 shift = 8 * (3 - (pos & 0x3));
1215 /* if process is 32-bit, clear upper 32 bits of EA */
1216 if ((regs->msr & MSR_64BIT) == 0)
1217 EA &= 0xFFFFFFFF;
1219 switch ((instword & PPC_INST_STRING_MASK)) {
1220 case PPC_INST_LSWX:
1221 case PPC_INST_LSWI:
1222 if (get_user(val, (u8 __user *)EA))
1223 return -EFAULT;
1224 /* first time updating this reg,
1225 * zero it out */
1226 if (pos == 0)
1227 regs->gpr[rT] = 0;
1228 regs->gpr[rT] |= val << shift;
1229 break;
1230 case PPC_INST_STSWI:
1231 case PPC_INST_STSWX:
1232 val = regs->gpr[rT] >> shift;
1233 if (put_user(val, (u8 __user *)EA))
1234 return -EFAULT;
1235 break;
1237 /* move EA to next address */
1238 EA += 1;
1239 num_bytes--;
1241 /* manage our position within the register */
1242 if (++pos == 4) {
1243 pos = 0;
1244 if (++rT == 32)
1245 rT = 0;
1249 return 0;
1252 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1254 u32 ra,rs;
1255 unsigned long tmp;
1257 ra = (instword >> 16) & 0x1f;
1258 rs = (instword >> 21) & 0x1f;
1260 tmp = regs->gpr[rs];
1261 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1262 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1263 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1264 regs->gpr[ra] = tmp;
1266 return 0;
1269 static int emulate_isel(struct pt_regs *regs, u32 instword)
1271 u8 rT = (instword >> 21) & 0x1f;
1272 u8 rA = (instword >> 16) & 0x1f;
1273 u8 rB = (instword >> 11) & 0x1f;
1274 u8 BC = (instword >> 6) & 0x1f;
1275 u8 bit;
1276 unsigned long tmp;
1278 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1279 bit = (regs->ccr >> (31 - BC)) & 0x1;
1281 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1283 return 0;
1286 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1287 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1289 /* If we're emulating a load/store in an active transaction, we cannot
1290 * emulate it as the kernel operates in transaction suspended context.
1291 * We need to abort the transaction. This creates a persistent TM
1292 * abort so tell the user what caused it with a new code.
1294 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1295 tm_enable();
1296 tm_abort(cause);
1297 return true;
1299 return false;
1301 #else
1302 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1304 return false;
1306 #endif
1308 static int emulate_instruction(struct pt_regs *regs)
1310 u32 instword;
1311 u32 rd;
1313 if (!user_mode(regs))
1314 return -EINVAL;
1315 CHECK_FULL_REGS(regs);
1317 if (get_user(instword, (u32 __user *)(regs->nip)))
1318 return -EFAULT;
1320 /* Emulate the mfspr rD, PVR. */
1321 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1322 PPC_WARN_EMULATED(mfpvr, regs);
1323 rd = (instword >> 21) & 0x1f;
1324 regs->gpr[rd] = mfspr(SPRN_PVR);
1325 return 0;
1328 /* Emulating the dcba insn is just a no-op. */
1329 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1330 PPC_WARN_EMULATED(dcba, regs);
1331 return 0;
1334 /* Emulate the mcrxr insn. */
1335 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1336 int shift = (instword >> 21) & 0x1c;
1337 unsigned long msk = 0xf0000000UL >> shift;
1339 PPC_WARN_EMULATED(mcrxr, regs);
1340 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1341 regs->xer &= ~0xf0000000UL;
1342 return 0;
1345 /* Emulate load/store string insn. */
1346 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1347 if (tm_abort_check(regs,
1348 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1349 return -EINVAL;
1350 PPC_WARN_EMULATED(string, regs);
1351 return emulate_string_inst(regs, instword);
1354 /* Emulate the popcntb (Population Count Bytes) instruction. */
1355 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1356 PPC_WARN_EMULATED(popcntb, regs);
1357 return emulate_popcntb_inst(regs, instword);
1360 /* Emulate isel (Integer Select) instruction */
1361 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1362 PPC_WARN_EMULATED(isel, regs);
1363 return emulate_isel(regs, instword);
1366 /* Emulate sync instruction variants */
1367 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1368 PPC_WARN_EMULATED(sync, regs);
1369 asm volatile("sync");
1370 return 0;
1373 #ifdef CONFIG_PPC64
1374 /* Emulate the mfspr rD, DSCR. */
1375 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1376 PPC_INST_MFSPR_DSCR_USER) ||
1377 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1378 PPC_INST_MFSPR_DSCR)) &&
1379 cpu_has_feature(CPU_FTR_DSCR)) {
1380 PPC_WARN_EMULATED(mfdscr, regs);
1381 rd = (instword >> 21) & 0x1f;
1382 regs->gpr[rd] = mfspr(SPRN_DSCR);
1383 return 0;
1385 /* Emulate the mtspr DSCR, rD. */
1386 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1387 PPC_INST_MTSPR_DSCR_USER) ||
1388 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1389 PPC_INST_MTSPR_DSCR)) &&
1390 cpu_has_feature(CPU_FTR_DSCR)) {
1391 PPC_WARN_EMULATED(mtdscr, regs);
1392 rd = (instword >> 21) & 0x1f;
1393 current->thread.dscr = regs->gpr[rd];
1394 current->thread.dscr_inherit = 1;
1395 mtspr(SPRN_DSCR, current->thread.dscr);
1396 return 0;
1398 #endif
1400 return -EINVAL;
1403 int is_valid_bugaddr(unsigned long addr)
1405 return is_kernel_addr(addr);
1408 #ifdef CONFIG_MATH_EMULATION
1409 static int emulate_math(struct pt_regs *regs)
1411 int ret;
1412 extern int do_mathemu(struct pt_regs *regs);
1414 ret = do_mathemu(regs);
1415 if (ret >= 0)
1416 PPC_WARN_EMULATED(math, regs);
1418 switch (ret) {
1419 case 0:
1420 emulate_single_step(regs);
1421 return 0;
1422 case 1: {
1423 int code = 0;
1424 code = __parse_fpscr(current->thread.fp_state.fpscr);
1425 _exception(SIGFPE, regs, code, regs->nip);
1426 return 0;
1428 case -EFAULT:
1429 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1430 return 0;
1433 return -1;
1435 #else
1436 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1437 #endif
1439 void program_check_exception(struct pt_regs *regs)
1441 enum ctx_state prev_state = exception_enter();
1442 unsigned int reason = get_reason(regs);
1444 /* We can now get here via a FP Unavailable exception if the core
1445 * has no FPU, in that case the reason flags will be 0 */
1447 if (reason & REASON_FP) {
1448 /* IEEE FP exception */
1449 parse_fpe(regs);
1450 goto bail;
1452 if (reason & REASON_TRAP) {
1453 unsigned long bugaddr;
1454 /* Debugger is first in line to stop recursive faults in
1455 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1456 if (debugger_bpt(regs))
1457 goto bail;
1459 if (kprobe_handler(regs))
1460 goto bail;
1462 /* trap exception */
1463 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1464 == NOTIFY_STOP)
1465 goto bail;
1467 bugaddr = regs->nip;
1469 * Fixup bugaddr for BUG_ON() in real mode
1471 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1472 bugaddr += PAGE_OFFSET;
1474 if (!(regs->msr & MSR_PR) && /* not user-mode */
1475 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1476 regs->nip += 4;
1477 goto bail;
1479 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1480 goto bail;
1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483 if (reason & REASON_TM) {
1484 /* This is a TM "Bad Thing Exception" program check.
1485 * This occurs when:
1486 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1487 * transition in TM states.
1488 * - A trechkpt is attempted when transactional.
1489 * - A treclaim is attempted when non transactional.
1490 * - A tend is illegally attempted.
1491 * - writing a TM SPR when transactional.
1493 * If usermode caused this, it's done something illegal and
1494 * gets a SIGILL slap on the wrist. We call it an illegal
1495 * operand to distinguish from the instruction just being bad
1496 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1497 * illegal /placement/ of a valid instruction.
1499 if (user_mode(regs)) {
1500 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1501 goto bail;
1502 } else {
1503 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1504 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1505 regs->nip, regs->msr, get_paca()->tm_scratch);
1506 die("Unrecoverable exception", regs, SIGABRT);
1509 #endif
1512 * If we took the program check in the kernel skip down to sending a
1513 * SIGILL. The subsequent cases all relate to emulating instructions
1514 * which we should only do for userspace. We also do not want to enable
1515 * interrupts for kernel faults because that might lead to further
1516 * faults, and loose the context of the original exception.
1518 if (!user_mode(regs))
1519 goto sigill;
1521 /* We restore the interrupt state now */
1522 if (!arch_irq_disabled_regs(regs))
1523 local_irq_enable();
1525 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1526 * but there seems to be a hardware bug on the 405GP (RevD)
1527 * that means ESR is sometimes set incorrectly - either to
1528 * ESR_DST (!?) or 0. In the process of chasing this with the
1529 * hardware people - not sure if it can happen on any illegal
1530 * instruction or only on FP instructions, whether there is a
1531 * pattern to occurrences etc. -dgibson 31/Mar/2003
1533 if (!emulate_math(regs))
1534 goto bail;
1536 /* Try to emulate it if we should. */
1537 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1538 switch (emulate_instruction(regs)) {
1539 case 0:
1540 regs->nip += 4;
1541 emulate_single_step(regs);
1542 goto bail;
1543 case -EFAULT:
1544 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1545 goto bail;
1549 sigill:
1550 if (reason & REASON_PRIVILEGED)
1551 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1552 else
1553 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1555 bail:
1556 exception_exit(prev_state);
1558 NOKPROBE_SYMBOL(program_check_exception);
1561 * This occurs when running in hypervisor mode on POWER6 or later
1562 * and an illegal instruction is encountered.
1564 void emulation_assist_interrupt(struct pt_regs *regs)
1566 regs->msr |= REASON_ILLEGAL;
1567 program_check_exception(regs);
1569 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1571 void alignment_exception(struct pt_regs *regs)
1573 enum ctx_state prev_state = exception_enter();
1574 int sig, code, fixed = 0;
1575 unsigned long reason;
1577 /* We restore the interrupt state now */
1578 if (!arch_irq_disabled_regs(regs))
1579 local_irq_enable();
1581 reason = get_reason(regs);
1583 if (reason & REASON_BOUNDARY) {
1584 sig = SIGBUS;
1585 code = BUS_ADRALN;
1586 goto bad;
1589 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1590 goto bail;
1592 /* we don't implement logging of alignment exceptions */
1593 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1594 fixed = fix_alignment(regs);
1596 if (fixed == 1) {
1597 /* skip over emulated instruction */
1598 regs->nip += inst_length(reason);
1599 emulate_single_step(regs);
1600 goto bail;
1603 /* Operand address was bad */
1604 if (fixed == -EFAULT) {
1605 sig = SIGSEGV;
1606 code = SEGV_ACCERR;
1607 } else {
1608 sig = SIGBUS;
1609 code = BUS_ADRALN;
1611 bad:
1612 if (user_mode(regs))
1613 _exception(sig, regs, code, regs->dar);
1614 else
1615 bad_page_fault(regs, regs->dar, sig);
1617 bail:
1618 exception_exit(prev_state);
1621 void StackOverflow(struct pt_regs *regs)
1623 pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1624 current->comm, task_pid_nr(current), regs->gpr[1]);
1625 debugger(regs);
1626 show_regs(regs);
1627 panic("kernel stack overflow");
1630 void stack_overflow_exception(struct pt_regs *regs)
1632 enum ctx_state prev_state = exception_enter();
1634 die("Kernel stack overflow", regs, SIGSEGV);
1636 exception_exit(prev_state);
1639 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1641 enum ctx_state prev_state = exception_enter();
1643 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1644 "%lx at %lx\n", regs->trap, regs->nip);
1645 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1647 exception_exit(prev_state);
1650 void altivec_unavailable_exception(struct pt_regs *regs)
1652 enum ctx_state prev_state = exception_enter();
1654 if (user_mode(regs)) {
1655 /* A user program has executed an altivec instruction,
1656 but this kernel doesn't support altivec. */
1657 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1658 goto bail;
1661 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1662 "%lx at %lx\n", regs->trap, regs->nip);
1663 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1665 bail:
1666 exception_exit(prev_state);
1669 void vsx_unavailable_exception(struct pt_regs *regs)
1671 if (user_mode(regs)) {
1672 /* A user program has executed an vsx instruction,
1673 but this kernel doesn't support vsx. */
1674 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1675 return;
1678 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1679 "%lx at %lx\n", regs->trap, regs->nip);
1680 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1683 #ifdef CONFIG_PPC64
1684 static void tm_unavailable(struct pt_regs *regs)
1686 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1687 if (user_mode(regs)) {
1688 current->thread.load_tm++;
1689 regs->msr |= MSR_TM;
1690 tm_enable();
1691 tm_restore_sprs(&current->thread);
1692 return;
1694 #endif
1695 pr_emerg("Unrecoverable TM Unavailable Exception "
1696 "%lx at %lx\n", regs->trap, regs->nip);
1697 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1700 void facility_unavailable_exception(struct pt_regs *regs)
1702 static char *facility_strings[] = {
1703 [FSCR_FP_LG] = "FPU",
1704 [FSCR_VECVSX_LG] = "VMX/VSX",
1705 [FSCR_DSCR_LG] = "DSCR",
1706 [FSCR_PM_LG] = "PMU SPRs",
1707 [FSCR_BHRB_LG] = "BHRB",
1708 [FSCR_TM_LG] = "TM",
1709 [FSCR_EBB_LG] = "EBB",
1710 [FSCR_TAR_LG] = "TAR",
1711 [FSCR_MSGP_LG] = "MSGP",
1712 [FSCR_SCV_LG] = "SCV",
1713 [FSCR_PREFIX_LG] = "PREFIX",
1715 char *facility = "unknown";
1716 u64 value;
1717 u32 instword, rd;
1718 u8 status;
1719 bool hv;
1721 hv = (TRAP(regs) == 0xf80);
1722 if (hv)
1723 value = mfspr(SPRN_HFSCR);
1724 else
1725 value = mfspr(SPRN_FSCR);
1727 status = value >> 56;
1728 if ((hv || status >= 2) &&
1729 (status < ARRAY_SIZE(facility_strings)) &&
1730 facility_strings[status])
1731 facility = facility_strings[status];
1733 /* We should not have taken this interrupt in kernel */
1734 if (!user_mode(regs)) {
1735 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1736 facility, status, regs->nip);
1737 die("Unexpected facility unavailable exception", regs, SIGABRT);
1740 /* We restore the interrupt state now */
1741 if (!arch_irq_disabled_regs(regs))
1742 local_irq_enable();
1744 if (status == FSCR_DSCR_LG) {
1746 * User is accessing the DSCR register using the problem
1747 * state only SPR number (0x03) either through a mfspr or
1748 * a mtspr instruction. If it is a write attempt through
1749 * a mtspr, then we set the inherit bit. This also allows
1750 * the user to write or read the register directly in the
1751 * future by setting via the FSCR DSCR bit. But in case it
1752 * is a read DSCR attempt through a mfspr instruction, we
1753 * just emulate the instruction instead. This code path will
1754 * always emulate all the mfspr instructions till the user
1755 * has attempted at least one mtspr instruction. This way it
1756 * preserves the same behaviour when the user is accessing
1757 * the DSCR through privilege level only SPR number (0x11)
1758 * which is emulated through illegal instruction exception.
1759 * We always leave HFSCR DSCR set.
1761 if (get_user(instword, (u32 __user *)(regs->nip))) {
1762 pr_err("Failed to fetch the user instruction\n");
1763 return;
1766 /* Write into DSCR (mtspr 0x03, RS) */
1767 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1768 == PPC_INST_MTSPR_DSCR_USER) {
1769 rd = (instword >> 21) & 0x1f;
1770 current->thread.dscr = regs->gpr[rd];
1771 current->thread.dscr_inherit = 1;
1772 current->thread.fscr |= FSCR_DSCR;
1773 mtspr(SPRN_FSCR, current->thread.fscr);
1776 /* Read from DSCR (mfspr RT, 0x03) */
1777 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1778 == PPC_INST_MFSPR_DSCR_USER) {
1779 if (emulate_instruction(regs)) {
1780 pr_err("DSCR based mfspr emulation failed\n");
1781 return;
1783 regs->nip += 4;
1784 emulate_single_step(regs);
1786 return;
1789 if (status == FSCR_TM_LG) {
1791 * If we're here then the hardware is TM aware because it
1792 * generated an exception with FSRM_TM set.
1794 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1795 * told us not to do TM, or the kernel is not built with TM
1796 * support.
1798 * If both of those things are true, then userspace can spam the
1799 * console by triggering the printk() below just by continually
1800 * doing tbegin (or any TM instruction). So in that case just
1801 * send the process a SIGILL immediately.
1803 if (!cpu_has_feature(CPU_FTR_TM))
1804 goto out;
1806 tm_unavailable(regs);
1807 return;
1810 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1811 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1813 out:
1814 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1816 #endif
1818 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1820 void fp_unavailable_tm(struct pt_regs *regs)
1822 /* Note: This does not handle any kind of FP laziness. */
1824 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1825 regs->nip, regs->msr);
1827 /* We can only have got here if the task started using FP after
1828 * beginning the transaction. So, the transactional regs are just a
1829 * copy of the checkpointed ones. But, we still need to recheckpoint
1830 * as we're enabling FP for the process; it will return, abort the
1831 * transaction, and probably retry but now with FP enabled. So the
1832 * checkpointed FP registers need to be loaded.
1834 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1837 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1838 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1840 * At this point, ck{fp,vr}_state contains the exact values we want to
1841 * recheckpoint.
1844 /* Enable FP for the task: */
1845 current->thread.load_fp = 1;
1848 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1850 tm_recheckpoint(&current->thread);
1853 void altivec_unavailable_tm(struct pt_regs *regs)
1855 /* See the comments in fp_unavailable_tm(). This function operates
1856 * the same way.
1859 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1860 "MSR=%lx\n",
1861 regs->nip, regs->msr);
1862 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1863 current->thread.load_vec = 1;
1864 tm_recheckpoint(&current->thread);
1865 current->thread.used_vr = 1;
1868 void vsx_unavailable_tm(struct pt_regs *regs)
1870 /* See the comments in fp_unavailable_tm(). This works similarly,
1871 * though we're loading both FP and VEC registers in here.
1873 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1874 * regs. Either way, set MSR_VSX.
1877 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1878 "MSR=%lx\n",
1879 regs->nip, regs->msr);
1881 current->thread.used_vsr = 1;
1883 /* This reclaims FP and/or VR regs if they're already enabled */
1884 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1886 current->thread.load_vec = 1;
1887 current->thread.load_fp = 1;
1889 tm_recheckpoint(&current->thread);
1891 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1893 void performance_monitor_exception(struct pt_regs *regs)
1895 __this_cpu_inc(irq_stat.pmu_irqs);
1897 perf_irq(regs);
1900 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1901 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1903 int changed = 0;
1905 * Determine the cause of the debug event, clear the
1906 * event flags and send a trap to the handler. Torez
1908 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1909 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1910 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1911 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1912 #endif
1913 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1915 changed |= 0x01;
1916 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1917 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1918 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1920 changed |= 0x01;
1921 } else if (debug_status & DBSR_IAC1) {
1922 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1923 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1924 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1926 changed |= 0x01;
1927 } else if (debug_status & DBSR_IAC2) {
1928 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1929 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1931 changed |= 0x01;
1932 } else if (debug_status & DBSR_IAC3) {
1933 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1934 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1935 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1937 changed |= 0x01;
1938 } else if (debug_status & DBSR_IAC4) {
1939 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1940 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1942 changed |= 0x01;
1945 * At the point this routine was called, the MSR(DE) was turned off.
1946 * Check all other debug flags and see if that bit needs to be turned
1947 * back on or not.
1949 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1950 current->thread.debug.dbcr1))
1951 regs->msr |= MSR_DE;
1952 else
1953 /* Make sure the IDM flag is off */
1954 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1956 if (changed & 0x01)
1957 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1960 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1962 current->thread.debug.dbsr = debug_status;
1964 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1965 * on server, it stops on the target of the branch. In order to simulate
1966 * the server behaviour, we thus restart right away with a single step
1967 * instead of stopping here when hitting a BT
1969 if (debug_status & DBSR_BT) {
1970 regs->msr &= ~MSR_DE;
1972 /* Disable BT */
1973 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1974 /* Clear the BT event */
1975 mtspr(SPRN_DBSR, DBSR_BT);
1977 /* Do the single step trick only when coming from userspace */
1978 if (user_mode(regs)) {
1979 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1980 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1981 regs->msr |= MSR_DE;
1982 return;
1985 if (kprobe_post_handler(regs))
1986 return;
1988 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1989 5, SIGTRAP) == NOTIFY_STOP) {
1990 return;
1992 if (debugger_sstep(regs))
1993 return;
1994 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1995 regs->msr &= ~MSR_DE;
1997 /* Disable instruction completion */
1998 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1999 /* Clear the instruction completion event */
2000 mtspr(SPRN_DBSR, DBSR_IC);
2002 if (kprobe_post_handler(regs))
2003 return;
2005 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2006 5, SIGTRAP) == NOTIFY_STOP) {
2007 return;
2010 if (debugger_sstep(regs))
2011 return;
2013 if (user_mode(regs)) {
2014 current->thread.debug.dbcr0 &= ~DBCR0_IC;
2015 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2016 current->thread.debug.dbcr1))
2017 regs->msr |= MSR_DE;
2018 else
2019 /* Make sure the IDM bit is off */
2020 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2023 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2024 } else
2025 handle_debug(regs, debug_status);
2027 NOKPROBE_SYMBOL(DebugException);
2028 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2030 #ifdef CONFIG_ALTIVEC
2031 void altivec_assist_exception(struct pt_regs *regs)
2033 int err;
2035 if (!user_mode(regs)) {
2036 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2037 " at %lx\n", regs->nip);
2038 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2041 flush_altivec_to_thread(current);
2043 PPC_WARN_EMULATED(altivec, regs);
2044 err = emulate_altivec(regs);
2045 if (err == 0) {
2046 regs->nip += 4; /* skip emulated instruction */
2047 emulate_single_step(regs);
2048 return;
2051 if (err == -EFAULT) {
2052 /* got an error reading the instruction */
2053 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2054 } else {
2055 /* didn't recognize the instruction */
2056 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2057 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2058 "in %s at %lx\n", current->comm, regs->nip);
2059 current->thread.vr_state.vscr.u[3] |= 0x10000;
2062 #endif /* CONFIG_ALTIVEC */
2064 #ifdef CONFIG_FSL_BOOKE
2065 void CacheLockingException(struct pt_regs *regs, unsigned long address,
2066 unsigned long error_code)
2068 /* We treat cache locking instructions from the user
2069 * as priv ops, in the future we could try to do
2070 * something smarter
2072 if (error_code & (ESR_DLK|ESR_ILK))
2073 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2074 return;
2076 #endif /* CONFIG_FSL_BOOKE */
2078 #ifdef CONFIG_SPE
2079 void SPEFloatingPointException(struct pt_regs *regs)
2081 extern int do_spe_mathemu(struct pt_regs *regs);
2082 unsigned long spefscr;
2083 int fpexc_mode;
2084 int code = FPE_FLTUNK;
2085 int err;
2087 /* We restore the interrupt state now */
2088 if (!arch_irq_disabled_regs(regs))
2089 local_irq_enable();
2091 flush_spe_to_thread(current);
2093 spefscr = current->thread.spefscr;
2094 fpexc_mode = current->thread.fpexc_mode;
2096 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2097 code = FPE_FLTOVF;
2099 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2100 code = FPE_FLTUND;
2102 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2103 code = FPE_FLTDIV;
2104 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2105 code = FPE_FLTINV;
2107 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2108 code = FPE_FLTRES;
2110 err = do_spe_mathemu(regs);
2111 if (err == 0) {
2112 regs->nip += 4; /* skip emulated instruction */
2113 emulate_single_step(regs);
2114 return;
2117 if (err == -EFAULT) {
2118 /* got an error reading the instruction */
2119 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2120 } else if (err == -EINVAL) {
2121 /* didn't recognize the instruction */
2122 printk(KERN_ERR "unrecognized spe instruction "
2123 "in %s at %lx\n", current->comm, regs->nip);
2124 } else {
2125 _exception(SIGFPE, regs, code, regs->nip);
2128 return;
2131 void SPEFloatingPointRoundException(struct pt_regs *regs)
2133 extern int speround_handler(struct pt_regs *regs);
2134 int err;
2136 /* We restore the interrupt state now */
2137 if (!arch_irq_disabled_regs(regs))
2138 local_irq_enable();
2140 preempt_disable();
2141 if (regs->msr & MSR_SPE)
2142 giveup_spe(current);
2143 preempt_enable();
2145 regs->nip -= 4;
2146 err = speround_handler(regs);
2147 if (err == 0) {
2148 regs->nip += 4; /* skip emulated instruction */
2149 emulate_single_step(regs);
2150 return;
2153 if (err == -EFAULT) {
2154 /* got an error reading the instruction */
2155 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2156 } else if (err == -EINVAL) {
2157 /* didn't recognize the instruction */
2158 printk(KERN_ERR "unrecognized spe instruction "
2159 "in %s at %lx\n", current->comm, regs->nip);
2160 } else {
2161 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2162 return;
2165 #endif
2168 * We enter here if we get an unrecoverable exception, that is, one
2169 * that happened at a point where the RI (recoverable interrupt) bit
2170 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2171 * we therefore lost state by taking this exception.
2173 void unrecoverable_exception(struct pt_regs *regs)
2175 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2176 regs->trap, regs->nip, regs->msr);
2177 die("Unrecoverable exception", regs, SIGABRT);
2179 NOKPROBE_SYMBOL(unrecoverable_exception);
2181 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2183 * Default handler for a Watchdog exception,
2184 * spins until a reboot occurs
2186 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2188 /* Generic WatchdogHandler, implement your own */
2189 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2190 return;
2193 void WatchdogException(struct pt_regs *regs)
2195 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2196 WatchdogHandler(regs);
2198 #endif
2201 * We enter here if we discover during exception entry that we are
2202 * running in supervisor mode with a userspace value in the stack pointer.
2204 void kernel_bad_stack(struct pt_regs *regs)
2206 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2207 regs->gpr[1], regs->nip);
2208 die("Bad kernel stack pointer", regs, SIGABRT);
2210 NOKPROBE_SYMBOL(kernel_bad_stack);
2212 void __init trap_init(void)
2217 #ifdef CONFIG_PPC_EMULATED_STATS
2219 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2221 struct ppc_emulated ppc_emulated = {
2222 #ifdef CONFIG_ALTIVEC
2223 WARN_EMULATED_SETUP(altivec),
2224 #endif
2225 WARN_EMULATED_SETUP(dcba),
2226 WARN_EMULATED_SETUP(dcbz),
2227 WARN_EMULATED_SETUP(fp_pair),
2228 WARN_EMULATED_SETUP(isel),
2229 WARN_EMULATED_SETUP(mcrxr),
2230 WARN_EMULATED_SETUP(mfpvr),
2231 WARN_EMULATED_SETUP(multiple),
2232 WARN_EMULATED_SETUP(popcntb),
2233 WARN_EMULATED_SETUP(spe),
2234 WARN_EMULATED_SETUP(string),
2235 WARN_EMULATED_SETUP(sync),
2236 WARN_EMULATED_SETUP(unaligned),
2237 #ifdef CONFIG_MATH_EMULATION
2238 WARN_EMULATED_SETUP(math),
2239 #endif
2240 #ifdef CONFIG_VSX
2241 WARN_EMULATED_SETUP(vsx),
2242 #endif
2243 #ifdef CONFIG_PPC64
2244 WARN_EMULATED_SETUP(mfdscr),
2245 WARN_EMULATED_SETUP(mtdscr),
2246 WARN_EMULATED_SETUP(lq_stq),
2247 WARN_EMULATED_SETUP(lxvw4x),
2248 WARN_EMULATED_SETUP(lxvh8x),
2249 WARN_EMULATED_SETUP(lxvd2x),
2250 WARN_EMULATED_SETUP(lxvb16x),
2251 #endif
2254 u32 ppc_warn_emulated;
2256 void ppc_warn_emulated_print(const char *type)
2258 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2259 type);
2262 static int __init ppc_warn_emulated_init(void)
2264 struct dentry *dir;
2265 unsigned int i;
2266 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2268 dir = debugfs_create_dir("emulated_instructions",
2269 powerpc_debugfs_root);
2271 debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2273 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2274 debugfs_create_u32(entries[i].name, 0644, dir,
2275 (u32 *)&entries[i].val.counter);
2277 return 0;
2280 device_initcall(ppc_warn_emulated_init);
2282 #endif /* CONFIG_PPC_EMULATED_STATS */