1 // SPDX-License-Identifier: GPL-2.0
3 * Routines to emulate some Altivec/VMX instructions, specifically
4 * those that can trap when given denormalized operands in Java mode.
6 #include <linux/kernel.h>
7 #include <linux/errno.h>
8 #include <linux/sched.h>
9 #include <asm/ptrace.h>
10 #include <asm/processor.h>
11 #include <asm/switch_to.h>
12 #include <linux/uaccess.h>
15 /* Functions in vector.S */
16 extern void vaddfp(vector128
*dst
, vector128
*a
, vector128
*b
);
17 extern void vsubfp(vector128
*dst
, vector128
*a
, vector128
*b
);
18 extern void vmaddfp(vector128
*dst
, vector128
*a
, vector128
*b
, vector128
*c
);
19 extern void vnmsubfp(vector128
*dst
, vector128
*a
, vector128
*b
, vector128
*c
);
20 extern void vrefp(vector128
*dst
, vector128
*src
);
21 extern void vrsqrtefp(vector128
*dst
, vector128
*src
);
22 extern void vexptep(vector128
*dst
, vector128
*src
);
24 static unsigned int exp2s
[8] = {
36 * Computes an estimate of 2^x. The `s' argument is the 32-bit
37 * single-precision floating-point representation of x.
39 static unsigned int eexp2(unsigned int s
)
42 unsigned int mant
, frac
;
44 /* extract exponent field from input */
45 exp
= ((s
>> 23) & 0xff) - 127;
47 /* check for NaN input */
48 if (exp
== 128 && (s
& 0x7fffff) != 0)
49 return s
| 0x400000; /* return QNaN */
50 /* 2^-big = 0, 2^+big = +Inf */
51 return (s
& 0x80000000)? 0: 0x7f800000; /* 0 or +Inf */
54 return 0x3f800000; /* 1.0 */
56 /* convert to fixed point integer in 9.23 representation */
57 pwr
= (s
& 0x7fffff) | 0x800000;
65 /* extract integer part, which becomes exponent part of result */
66 exp
= (pwr
>> 23) + 126;
72 /* table lookup on top 3 bits of fraction to get mantissa */
73 mant
= exp2s
[(pwr
>> 20) & 7];
75 /* linear interpolation using remaining 20 bits of fraction */
76 asm("mulhwu %0,%1,%2" : "=r" (frac
)
77 : "r" (pwr
<< 12), "r" (0x172b83ff));
78 asm("mulhwu %0,%1,%2" : "=r" (frac
) : "r" (frac
), "r" (mant
));
82 return mant
+ (exp
<< 23);
84 /* denormalized result */
86 mant
+= 1 << (exp
- 1);
91 * Computes an estimate of log_2(x). The `s' argument is the 32-bit
92 * single-precision floating-point representation of x.
94 static unsigned int elog2(unsigned int s
)
96 int exp
, mant
, lz
, frac
;
100 if (exp
== 0x7f800000) { /* Inf or NaN */
102 s
|= 0x400000; /* turn NaN into QNaN */
105 if ((exp
| mant
) == 0) /* +0 or -0 */
106 return 0xff800000; /* return -Inf */
110 asm("cntlzw %0,%1" : "=r" (lz
) : "r" (mant
));
112 exp
= (-118 - lz
) << 23;
118 if (mant
>= 0xb504f3) { /* 2^0.5 * 2^23 */
119 exp
|= 0x400000; /* 0.5 * 2^23 */
120 asm("mulhwu %0,%1,%2" : "=r" (mant
)
121 : "r" (mant
), "r" (0xb504f334)); /* 2^-0.5 * 2^32 */
123 if (mant
>= 0x9837f0) { /* 2^0.25 * 2^23 */
124 exp
|= 0x200000; /* 0.25 * 2^23 */
125 asm("mulhwu %0,%1,%2" : "=r" (mant
)
126 : "r" (mant
), "r" (0xd744fccb)); /* 2^-0.25 * 2^32 */
128 if (mant
>= 0x8b95c2) { /* 2^0.125 * 2^23 */
129 exp
|= 0x100000; /* 0.125 * 2^23 */
130 asm("mulhwu %0,%1,%2" : "=r" (mant
)
131 : "r" (mant
), "r" (0xeac0c6e8)); /* 2^-0.125 * 2^32 */
133 if (mant
> 0x800000) { /* 1.0 * 2^23 */
134 /* calculate (mant - 1) * 1.381097463 */
135 /* 1.381097463 == 0.125 / (2^0.125 - 1) */
136 asm("mulhwu %0,%1,%2" : "=r" (frac
)
137 : "r" ((mant
- 0x800000) << 1), "r" (0xb0c7cd3a));
140 s
= exp
& 0x80000000;
144 asm("cntlzw %0,%1" : "=r" (lz
) : "r" (exp
));
150 s
+= ((lz
+ 126) << 23) + exp
;
157 static int ctsxs(unsigned int x
, int scale
, unsigned int *vscrp
)
161 exp
= (x
>> 23) & 0xff;
163 if (exp
== 255 && mant
!= 0)
164 return 0; /* NaN -> 0 */
165 exp
= exp
- 127 + scale
;
167 return 0; /* round towards zero */
169 /* saturate, unless the result would be -2^31 */
170 if (x
+ (scale
<< 23) != 0xcf000000)
172 return (x
& 0x80000000)? 0x80000000: 0x7fffffff;
175 mant
= (mant
<< 7) >> (30 - exp
);
176 return (x
& 0x80000000)? -mant
: mant
;
179 static unsigned int ctuxs(unsigned int x
, int scale
, unsigned int *vscrp
)
184 exp
= (x
>> 23) & 0xff;
186 if (exp
== 255 && mant
!= 0)
187 return 0; /* NaN -> 0 */
188 exp
= exp
- 127 + scale
;
190 return 0; /* round towards zero */
191 if (x
& 0x80000000) {
192 /* negative => saturate to 0 */
202 mant
= (mant
<< 8) >> (31 - exp
);
206 /* Round to floating integer, towards 0 */
207 static unsigned int rfiz(unsigned int x
)
211 exp
= ((x
>> 23) & 0xff) - 127;
212 if (exp
== 128 && (x
& 0x7fffff) != 0)
213 return x
| 0x400000; /* NaN -> make it a QNaN */
215 return x
; /* it's an integer already (or Inf) */
217 return x
& 0x80000000; /* |x| < 1.0 rounds to 0 */
218 return x
& ~(0x7fffff >> exp
);
221 /* Round to floating integer, towards +/- Inf */
222 static unsigned int rfii(unsigned int x
)
226 exp
= ((x
>> 23) & 0xff) - 127;
227 if (exp
== 128 && (x
& 0x7fffff) != 0)
228 return x
| 0x400000; /* NaN -> make it a QNaN */
230 return x
; /* it's an integer already (or Inf) */
231 if ((x
& 0x7fffffff) == 0)
232 return x
; /* +/-0 -> +/-0 */
234 /* 0 < |x| < 1.0 rounds to +/- 1.0 */
235 return (x
& 0x80000000) | 0x3f800000;
236 mask
= 0x7fffff >> exp
;
237 /* mantissa overflows into exponent - that's OK,
238 it can't overflow into the sign bit */
239 return (x
+ mask
) & ~mask
;
242 /* Round to floating integer, to nearest */
243 static unsigned int rfin(unsigned int x
)
247 exp
= ((x
>> 23) & 0xff) - 127;
248 if (exp
== 128 && (x
& 0x7fffff) != 0)
249 return x
| 0x400000; /* NaN -> make it a QNaN */
251 return x
; /* it's an integer already (or Inf) */
253 return x
& 0x80000000; /* |x| < 0.5 -> +/-0 */
255 /* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
256 return (x
& 0x80000000) | 0x3f800000;
257 half
= 0x400000 >> exp
;
258 /* add 0.5 to the magnitude and chop off the fraction bits */
259 return (x
+ half
) & ~(0x7fffff >> exp
);
262 int emulate_altivec(struct pt_regs
*regs
)
264 struct ppc_inst instr
;
265 unsigned int i
, word
;
266 unsigned int va
, vb
, vc
, vd
;
269 if (get_user_instr(instr
, (void __user
*)regs
->nip
))
272 word
= ppc_inst_val(instr
);
273 if (ppc_inst_primary_opcode(instr
) != 4)
274 return -EINVAL
; /* not an altivec instruction */
275 vd
= (word
>> 21) & 0x1f;
276 va
= (word
>> 16) & 0x1f;
277 vb
= (word
>> 11) & 0x1f;
278 vc
= (word
>> 6) & 0x1f;
280 vrs
= current
->thread
.vr_state
.vr
;
281 switch (word
& 0x3f) {
285 vaddfp(&vrs
[vd
], &vrs
[va
], &vrs
[vb
]);
288 vsubfp(&vrs
[vd
], &vrs
[va
], &vrs
[vb
]);
291 vrefp(&vrs
[vd
], &vrs
[vb
]);
293 case 5: /* vrsqrtefp */
294 vrsqrtefp(&vrs
[vd
], &vrs
[vb
]);
296 case 6: /* vexptefp */
297 for (i
= 0; i
< 4; ++i
)
298 vrs
[vd
].u
[i
] = eexp2(vrs
[vb
].u
[i
]);
300 case 7: /* vlogefp */
301 for (i
= 0; i
< 4; ++i
)
302 vrs
[vd
].u
[i
] = elog2(vrs
[vb
].u
[i
]);
305 for (i
= 0; i
< 4; ++i
)
306 vrs
[vd
].u
[i
] = rfin(vrs
[vb
].u
[i
]);
309 for (i
= 0; i
< 4; ++i
)
310 vrs
[vd
].u
[i
] = rfiz(vrs
[vb
].u
[i
]);
313 for (i
= 0; i
< 4; ++i
) {
314 u32 x
= vrs
[vb
].u
[i
];
315 x
= (x
& 0x80000000)? rfiz(x
): rfii(x
);
320 for (i
= 0; i
< 4; ++i
) {
321 u32 x
= vrs
[vb
].u
[i
];
322 x
= (x
& 0x80000000)? rfii(x
): rfiz(x
);
326 case 14: /* vctuxs */
327 for (i
= 0; i
< 4; ++i
)
328 vrs
[vd
].u
[i
] = ctuxs(vrs
[vb
].u
[i
], va
,
329 ¤t
->thread
.vr_state
.vscr
.u
[3]);
331 case 15: /* vctsxs */
332 for (i
= 0; i
< 4; ++i
)
333 vrs
[vd
].u
[i
] = ctsxs(vrs
[vb
].u
[i
], va
,
334 ¤t
->thread
.vr_state
.vscr
.u
[3]);
340 case 46: /* vmaddfp */
341 vmaddfp(&vrs
[vd
], &vrs
[va
], &vrs
[vb
], &vrs
[vc
]);
343 case 47: /* vnmsubfp */
344 vnmsubfp(&vrs
[vd
], &vrs
[va
], &vrs
[vb
], &vrs
[vc
]);