1 // SPDX-License-Identifier: GPL-2.0+
3 * Kernel Probes (KProbes)
5 * Copyright IBM Corp. 2002, 2006
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
10 #include <linux/moduleloader.h>
11 #include <linux/kprobes.h>
12 #include <linux/ptrace.h>
13 #include <linux/preempt.h>
14 #include <linux/stop_machine.h>
15 #include <linux/kdebug.h>
16 #include <linux/uaccess.h>
17 #include <linux/extable.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/hardirq.h>
21 #include <linux/ftrace.h>
22 #include <asm/set_memory.h>
23 #include <asm/sections.h>
27 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
);
28 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
30 struct kretprobe_blackpoint kretprobe_blacklist
[] = { };
32 DEFINE_INSN_CACHE_OPS(s390_insn
);
34 static int insn_page_in_use
;
36 void *alloc_insn_page(void)
40 page
= module_alloc(PAGE_SIZE
);
43 __set_memory((unsigned long) page
, 1, SET_MEMORY_RO
| SET_MEMORY_X
);
47 void free_insn_page(void *page
)
52 static void *alloc_s390_insn_page(void)
54 if (xchg(&insn_page_in_use
, 1) == 1)
56 return &kprobes_insn_page
;
59 static void free_s390_insn_page(void *page
)
61 xchg(&insn_page_in_use
, 0);
64 struct kprobe_insn_cache kprobe_s390_insn_slots
= {
65 .mutex
= __MUTEX_INITIALIZER(kprobe_s390_insn_slots
.mutex
),
66 .alloc
= alloc_s390_insn_page
,
67 .free
= free_s390_insn_page
,
68 .pages
= LIST_HEAD_INIT(kprobe_s390_insn_slots
.pages
),
69 .insn_size
= MAX_INSN_SIZE
,
72 static void copy_instruction(struct kprobe
*p
)
74 kprobe_opcode_t insn
[MAX_INSN_SIZE
];
79 len
= insn_length(*p
->addr
>> 8);
80 memcpy(&insn
, p
->addr
, len
);
82 if (probe_is_insn_relative_long(&insn
[0])) {
84 * For pc-relative instructions in RIL-b or RIL-c format patch
85 * the RI2 displacement field. We have already made sure that
86 * the insn slot for the patched instruction is within the same
87 * 2GB area as the original instruction (either kernel image or
88 * module area). Therefore the new displacement will always fit.
90 disp
= *(s32
*)&insn
[1];
91 addr
= (u64
)(unsigned long)p
->addr
;
92 new_addr
= (u64
)(unsigned long)p
->ainsn
.insn
;
93 new_disp
= ((addr
+ (disp
* 2)) - new_addr
) / 2;
94 *(s32
*)&insn
[1] = new_disp
;
96 s390_kernel_write(p
->ainsn
.insn
, &insn
, len
);
98 NOKPROBE_SYMBOL(copy_instruction
);
100 static inline int is_kernel_addr(void *addr
)
102 return addr
< (void *)_end
;
105 static int s390_get_insn_slot(struct kprobe
*p
)
108 * Get an insn slot that is within the same 2GB area like the original
109 * instruction. That way instructions with a 32bit signed displacement
110 * field can be patched and executed within the insn slot.
112 p
->ainsn
.insn
= NULL
;
113 if (is_kernel_addr(p
->addr
))
114 p
->ainsn
.insn
= get_s390_insn_slot();
115 else if (is_module_addr(p
->addr
))
116 p
->ainsn
.insn
= get_insn_slot();
117 return p
->ainsn
.insn
? 0 : -ENOMEM
;
119 NOKPROBE_SYMBOL(s390_get_insn_slot
);
121 static void s390_free_insn_slot(struct kprobe
*p
)
125 if (is_kernel_addr(p
->addr
))
126 free_s390_insn_slot(p
->ainsn
.insn
, 0);
128 free_insn_slot(p
->ainsn
.insn
, 0);
129 p
->ainsn
.insn
= NULL
;
131 NOKPROBE_SYMBOL(s390_free_insn_slot
);
133 int arch_prepare_kprobe(struct kprobe
*p
)
135 if ((unsigned long) p
->addr
& 0x01)
137 /* Make sure the probe isn't going on a difficult instruction */
138 if (probe_is_prohibited_opcode(p
->addr
))
140 if (s390_get_insn_slot(p
))
145 NOKPROBE_SYMBOL(arch_prepare_kprobe
);
147 struct swap_insn_args
{
149 unsigned int arm_kprobe
: 1;
152 static int swap_instruction(void *data
)
154 struct swap_insn_args
*args
= data
;
155 struct kprobe
*p
= args
->p
;
158 opc
= args
->arm_kprobe
? BREAKPOINT_INSTRUCTION
: p
->opcode
;
159 s390_kernel_write(p
->addr
, &opc
, sizeof(opc
));
162 NOKPROBE_SYMBOL(swap_instruction
);
164 void arch_arm_kprobe(struct kprobe
*p
)
166 struct swap_insn_args args
= {.p
= p
, .arm_kprobe
= 1};
168 stop_machine_cpuslocked(swap_instruction
, &args
, NULL
);
170 NOKPROBE_SYMBOL(arch_arm_kprobe
);
172 void arch_disarm_kprobe(struct kprobe
*p
)
174 struct swap_insn_args args
= {.p
= p
, .arm_kprobe
= 0};
176 stop_machine_cpuslocked(swap_instruction
, &args
, NULL
);
178 NOKPROBE_SYMBOL(arch_disarm_kprobe
);
180 void arch_remove_kprobe(struct kprobe
*p
)
182 s390_free_insn_slot(p
);
184 NOKPROBE_SYMBOL(arch_remove_kprobe
);
186 static void enable_singlestep(struct kprobe_ctlblk
*kcb
,
187 struct pt_regs
*regs
,
190 struct per_regs per_kprobe
;
192 /* Set up the PER control registers %cr9-%cr11 */
193 per_kprobe
.control
= PER_EVENT_IFETCH
;
194 per_kprobe
.start
= ip
;
197 /* Save control regs and psw mask */
198 __ctl_store(kcb
->kprobe_saved_ctl
, 9, 11);
199 kcb
->kprobe_saved_imask
= regs
->psw
.mask
&
200 (PSW_MASK_PER
| PSW_MASK_IO
| PSW_MASK_EXT
);
202 /* Set PER control regs, turns on single step for the given address */
203 __ctl_load(per_kprobe
, 9, 11);
204 regs
->psw
.mask
|= PSW_MASK_PER
;
205 regs
->psw
.mask
&= ~(PSW_MASK_IO
| PSW_MASK_EXT
);
208 NOKPROBE_SYMBOL(enable_singlestep
);
210 static void disable_singlestep(struct kprobe_ctlblk
*kcb
,
211 struct pt_regs
*regs
,
214 /* Restore control regs and psw mask, set new psw address */
215 __ctl_load(kcb
->kprobe_saved_ctl
, 9, 11);
216 regs
->psw
.mask
&= ~PSW_MASK_PER
;
217 regs
->psw
.mask
|= kcb
->kprobe_saved_imask
;
220 NOKPROBE_SYMBOL(disable_singlestep
);
223 * Activate a kprobe by storing its pointer to current_kprobe. The
224 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
225 * two kprobes can be active, see KPROBE_REENTER.
227 static void push_kprobe(struct kprobe_ctlblk
*kcb
, struct kprobe
*p
)
229 kcb
->prev_kprobe
.kp
= __this_cpu_read(current_kprobe
);
230 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
231 __this_cpu_write(current_kprobe
, p
);
233 NOKPROBE_SYMBOL(push_kprobe
);
236 * Deactivate a kprobe by backing up to the previous state. If the
237 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
238 * for any other state prev_kprobe.kp will be NULL.
240 static void pop_kprobe(struct kprobe_ctlblk
*kcb
)
242 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
243 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
245 NOKPROBE_SYMBOL(pop_kprobe
);
247 void arch_prepare_kretprobe(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
249 ri
->ret_addr
= (kprobe_opcode_t
*) regs
->gprs
[14];
252 /* Replace the return addr with trampoline addr */
253 regs
->gprs
[14] = (unsigned long) &kretprobe_trampoline
;
255 NOKPROBE_SYMBOL(arch_prepare_kretprobe
);
257 static void kprobe_reenter_check(struct kprobe_ctlblk
*kcb
, struct kprobe
*p
)
259 switch (kcb
->kprobe_status
) {
260 case KPROBE_HIT_SSDONE
:
261 case KPROBE_HIT_ACTIVE
:
262 kprobes_inc_nmissed_count(p
);
268 * A kprobe on the code path to single step an instruction
269 * is a BUG. The code path resides in the .kprobes.text
270 * section and is executed with interrupts disabled.
272 pr_err("Invalid kprobe detected.\n");
277 NOKPROBE_SYMBOL(kprobe_reenter_check
);
279 static int kprobe_handler(struct pt_regs
*regs
)
281 struct kprobe_ctlblk
*kcb
;
285 * We want to disable preemption for the entire duration of kprobe
286 * processing. That includes the calls to the pre/post handlers
287 * and single stepping the kprobe instruction.
290 kcb
= get_kprobe_ctlblk();
291 p
= get_kprobe((void *)(regs
->psw
.addr
- 2));
294 if (kprobe_running()) {
296 * We have hit a kprobe while another is still
297 * active. This can happen in the pre and post
298 * handler. Single step the instruction of the
299 * new probe but do not call any handler function
300 * of this secondary kprobe.
301 * push_kprobe and pop_kprobe saves and restores
302 * the currently active kprobe.
304 kprobe_reenter_check(kcb
, p
);
306 kcb
->kprobe_status
= KPROBE_REENTER
;
309 * If we have no pre-handler or it returned 0, we
310 * continue with single stepping. If we have a
311 * pre-handler and it returned non-zero, it prepped
312 * for changing execution path, so get out doing
316 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
317 if (p
->pre_handler
&& p
->pre_handler(p
, regs
)) {
319 preempt_enable_no_resched();
322 kcb
->kprobe_status
= KPROBE_HIT_SS
;
324 enable_singlestep(kcb
, regs
, (unsigned long) p
->ainsn
.insn
);
327 * No kprobe at this address and no active kprobe. The trap has
328 * not been caused by a kprobe breakpoint. The race of breakpoint
329 * vs. kprobe remove does not exist because on s390 as we use
330 * stop_machine to arm/disarm the breakpoints.
332 preempt_enable_no_resched();
335 NOKPROBE_SYMBOL(kprobe_handler
);
338 * Function return probe trampoline:
339 * - init_kprobes() establishes a probepoint here
340 * - When the probed function returns, this probe
341 * causes the handlers to fire
343 static void __used
kretprobe_trampoline_holder(void)
345 asm volatile(".global kretprobe_trampoline\n"
346 "kretprobe_trampoline: bcr 0,0\n");
350 * Called when the probe at kretprobe trampoline is hit
352 static int trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
354 regs
->psw
.addr
= __kretprobe_trampoline_handler(regs
, &kretprobe_trampoline
, NULL
);
356 * By returning a non-zero value, we are telling
357 * kprobe_handler() that we don't want the post_handler
358 * to run (and have re-enabled preemption)
362 NOKPROBE_SYMBOL(trampoline_probe_handler
);
365 * Called after single-stepping. p->addr is the address of the
366 * instruction whose first byte has been replaced by the "breakpoint"
367 * instruction. To avoid the SMP problems that can occur when we
368 * temporarily put back the original opcode to single-step, we
369 * single-stepped a copy of the instruction. The address of this
370 * copy is p->ainsn.insn.
372 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
374 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
375 unsigned long ip
= regs
->psw
.addr
;
376 int fixup
= probe_get_fixup_type(p
->ainsn
.insn
);
378 if (fixup
& FIXUP_PSW_NORMAL
)
379 ip
+= (unsigned long) p
->addr
- (unsigned long) p
->ainsn
.insn
;
381 if (fixup
& FIXUP_BRANCH_NOT_TAKEN
) {
382 int ilen
= insn_length(p
->ainsn
.insn
[0] >> 8);
383 if (ip
- (unsigned long) p
->ainsn
.insn
== ilen
)
384 ip
= (unsigned long) p
->addr
+ ilen
;
387 if (fixup
& FIXUP_RETURN_REGISTER
) {
388 int reg
= (p
->ainsn
.insn
[0] & 0xf0) >> 4;
389 regs
->gprs
[reg
] += (unsigned long) p
->addr
-
390 (unsigned long) p
->ainsn
.insn
;
393 disable_singlestep(kcb
, regs
, ip
);
395 NOKPROBE_SYMBOL(resume_execution
);
397 static int post_kprobe_handler(struct pt_regs
*regs
)
399 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
400 struct kprobe
*p
= kprobe_running();
405 if (kcb
->kprobe_status
!= KPROBE_REENTER
&& p
->post_handler
) {
406 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
407 p
->post_handler(p
, regs
, 0);
410 resume_execution(p
, regs
);
412 preempt_enable_no_resched();
415 * if somebody else is singlestepping across a probe point, psw mask
416 * will have PER set, in which case, continue the remaining processing
417 * of do_single_step, as if this is not a probe hit.
419 if (regs
->psw
.mask
& PSW_MASK_PER
)
424 NOKPROBE_SYMBOL(post_kprobe_handler
);
426 static int kprobe_trap_handler(struct pt_regs
*regs
, int trapnr
)
428 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
429 struct kprobe
*p
= kprobe_running();
430 const struct exception_table_entry
*entry
;
432 switch(kcb
->kprobe_status
) {
436 * We are here because the instruction being single
437 * stepped caused a page fault. We reset the current
438 * kprobe and the nip points back to the probe address
439 * and allow the page fault handler to continue as a
442 disable_singlestep(kcb
, regs
, (unsigned long) p
->addr
);
444 preempt_enable_no_resched();
446 case KPROBE_HIT_ACTIVE
:
447 case KPROBE_HIT_SSDONE
:
449 * We increment the nmissed count for accounting,
450 * we can also use npre/npostfault count for accounting
451 * these specific fault cases.
453 kprobes_inc_nmissed_count(p
);
456 * We come here because instructions in the pre/post
457 * handler caused the page_fault, this could happen
458 * if handler tries to access user space by
459 * copy_from_user(), get_user() etc. Let the
460 * user-specified handler try to fix it first.
462 if (p
->fault_handler
&& p
->fault_handler(p
, regs
, trapnr
))
466 * In case the user-specified fault handler returned
467 * zero, try to fix up.
469 entry
= s390_search_extables(regs
->psw
.addr
);
470 if (entry
&& ex_handle(entry
, regs
))
474 * fixup_exception() could not handle it,
475 * Let do_page_fault() fix it.
483 NOKPROBE_SYMBOL(kprobe_trap_handler
);
485 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
489 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
491 ret
= kprobe_trap_handler(regs
, trapnr
);
492 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
493 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
496 NOKPROBE_SYMBOL(kprobe_fault_handler
);
499 * Wrapper routine to for handling exceptions.
501 int kprobe_exceptions_notify(struct notifier_block
*self
,
502 unsigned long val
, void *data
)
504 struct die_args
*args
= (struct die_args
*) data
;
505 struct pt_regs
*regs
= args
->regs
;
506 int ret
= NOTIFY_DONE
;
508 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
513 if (kprobe_handler(regs
))
517 if (post_kprobe_handler(regs
))
521 if (!preemptible() && kprobe_running() &&
522 kprobe_trap_handler(regs
, args
->trapnr
))
529 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
530 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
534 NOKPROBE_SYMBOL(kprobe_exceptions_notify
);
536 static struct kprobe trampoline
= {
537 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
538 .pre_handler
= trampoline_probe_handler
541 int __init
arch_init_kprobes(void)
543 return register_kprobe(&trampoline
);
546 int arch_trampoline_kprobe(struct kprobe
*p
)
548 return p
->addr
== (kprobe_opcode_t
*) &kretprobe_trampoline
;
550 NOKPROBE_SYMBOL(arch_trampoline_kprobe
);