1 // SPDX-License-Identifier: GPL-2.0
3 * Performance event support for the System z CPU-measurement Sampling Facility
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
26 /* Minimum number of sample-data-block-tables:
27 * At least one table is required for the sampling buffer structure.
28 * A single table contains up to 511 pointers to sample-data-blocks.
30 #define CPUM_SF_MIN_SDBT 1
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33 * A table contains SDB pointers (8 bytes) and one table-link entry
34 * that points to the origin of the next SDBT.
36 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
38 /* Maximum page offset for an SDBT table-link entry:
39 * If this page offset is reached, a table-link entry to the next SDBT
42 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
43 static inline int require_table_link(const void *sdbt
)
45 return ((unsigned long) sdbt
& ~PAGE_MASK
) == CPUM_SF_SDBT_TL_OFFSET
;
48 /* Minimum and maximum sampling buffer sizes:
50 * This number represents the maximum size of the sampling buffer taking
51 * the number of sample-data-block-tables into account. Note that these
52 * numbers apply to the basic-sampling function only.
53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54 * the diagnostic-sampling function is active.
56 * Sampling buffer size Buffer characteristics
57 * ---------------------------------------------------
58 * 64KB == 16 pages (4KB per page)
59 * 1 page for SDB-tables
62 * 32MB == 8192 pages (4KB per page)
63 * 16 pages for SDB-tables
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB
= 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB
= 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR
= 1;
71 unsigned long *sdbt
; /* Sample-data-block-table origin */
72 /* buffer characteristics (required for buffer increments) */
73 unsigned long num_sdb
; /* Number of sample-data-blocks */
74 unsigned long num_sdbt
; /* Number of sample-data-block-tables */
75 unsigned long *tail
; /* last sample-data-block-table */
80 unsigned long head
; /* index of SDB of buffer head */
81 unsigned long alert_mark
; /* index of SDB of alert request position */
82 unsigned long empty_mark
; /* mark of SDB not marked full */
83 unsigned long *sdb_index
; /* SDB address for fast lookup */
84 unsigned long *sdbt_index
; /* SDBT address for fast lookup */
88 /* CPU-measurement sampling information block */
89 struct hws_qsi_info_block qsi
;
90 /* CPU-measurement sampling control block */
91 struct hws_lsctl_request_block lsctl
;
92 struct sf_buffer sfb
; /* Sampling buffer */
93 unsigned int flags
; /* Status flags */
94 struct perf_event
*event
; /* Scheduled perf event */
95 struct perf_output_handle handle
; /* AUX buffer output handle */
97 static DEFINE_PER_CPU(struct cpu_hw_sf
, cpu_hw_sf
);
100 static debug_info_t
*sfdbg
;
103 * sf_disable() - Switch off sampling facility
105 static int sf_disable(void)
107 struct hws_lsctl_request_block sreq
;
109 memset(&sreq
, 0, sizeof(sreq
));
114 * sf_buffer_available() - Check for an allocated sampling buffer
116 static int sf_buffer_available(struct cpu_hw_sf
*cpuhw
)
118 return !!cpuhw
->sfb
.sdbt
;
122 * deallocate sampling facility buffer
124 static void free_sampling_buffer(struct sf_buffer
*sfb
)
126 unsigned long *sdbt
, *curr
;
134 /* Free the SDBT after all SDBs are processed... */
139 /* Process table-link entries */
140 if (is_link_entry(curr
)) {
141 curr
= get_next_sdbt(curr
);
143 free_page((unsigned long) sdbt
);
145 /* If the origin is reached, sampling buffer is freed */
146 if (curr
== sfb
->sdbt
)
151 /* Process SDB pointer */
159 debug_sprintf_event(sfdbg
, 5, "%s: freed sdbt %#lx\n", __func__
,
160 (unsigned long)sfb
->sdbt
);
161 memset(sfb
, 0, sizeof(*sfb
));
164 static int alloc_sample_data_block(unsigned long *sdbt
, gfp_t gfp_flags
)
166 unsigned long sdb
, *trailer
;
168 /* Allocate and initialize sample-data-block */
169 sdb
= get_zeroed_page(gfp_flags
);
172 trailer
= trailer_entry_ptr(sdb
);
173 *trailer
= SDB_TE_ALERT_REQ_MASK
;
175 /* Link SDB into the sample-data-block-table */
182 * realloc_sampling_buffer() - extend sampler memory
184 * Allocates new sample-data-blocks and adds them to the specified sampling
187 * Important: This modifies the sampling buffer and must be called when the
188 * sampling facility is disabled.
190 * Returns zero on success, non-zero otherwise.
192 static int realloc_sampling_buffer(struct sf_buffer
*sfb
,
193 unsigned long num_sdb
, gfp_t gfp_flags
)
196 unsigned long *new, *tail
, *tail_prev
= NULL
;
198 if (!sfb
->sdbt
|| !sfb
->tail
)
201 if (!is_link_entry(sfb
->tail
))
204 /* Append to the existing sampling buffer, overwriting the table-link
206 * The tail variables always points to the "tail" (last and table-link)
207 * entry in an SDB-table.
211 /* Do a sanity check whether the table-link entry points to
212 * the sampling buffer origin.
214 if (sfb
->sdbt
!= get_next_sdbt(tail
)) {
215 debug_sprintf_event(sfdbg
, 3, "%s: "
216 "sampling buffer is not linked: origin %#lx"
217 " tail %#lx\n", __func__
,
218 (unsigned long)sfb
->sdbt
,
219 (unsigned long)tail
);
223 /* Allocate remaining SDBs */
225 for (i
= 0; i
< num_sdb
; i
++) {
226 /* Allocate a new SDB-table if it is full. */
227 if (require_table_link(tail
)) {
228 new = (unsigned long *) get_zeroed_page(gfp_flags
);
234 /* Link current page to tail of chain */
235 *tail
= (unsigned long)(void *) new + 1;
240 /* Allocate a new sample-data-block.
241 * If there is not enough memory, stop the realloc process
242 * and simply use what was allocated. If this is a temporary
243 * issue, a new realloc call (if required) might succeed.
245 rc
= alloc_sample_data_block(tail
, gfp_flags
);
247 /* Undo last SDBT. An SDBT with no SDB at its first
248 * entry but with an SDBT entry instead can not be
249 * handled by the interrupt handler code.
250 * Avoid this situation.
254 free_page((unsigned long) new);
261 tail_prev
= new = NULL
; /* Allocated at least one SBD */
264 /* Link sampling buffer to its origin */
265 *tail
= (unsigned long) sfb
->sdbt
+ 1;
268 debug_sprintf_event(sfdbg
, 4, "%s: new buffer"
269 " settings: sdbt %lu sdb %lu\n", __func__
,
270 sfb
->num_sdbt
, sfb
->num_sdb
);
275 * allocate_sampling_buffer() - allocate sampler memory
277 * Allocates and initializes a sampling buffer structure using the
278 * specified number of sample-data-blocks (SDB). For each allocation,
279 * a 4K page is used. The number of sample-data-block-tables (SDBT)
280 * are calculated from SDBs.
281 * Also set the ALERT_REQ mask in each SDBs trailer.
283 * Returns zero on success, non-zero otherwise.
285 static int alloc_sampling_buffer(struct sf_buffer
*sfb
, unsigned long num_sdb
)
292 /* Allocate the sample-data-block-table origin */
293 sfb
->sdbt
= (unsigned long *) get_zeroed_page(GFP_KERNEL
);
299 /* Link the table origin to point to itself to prepare for
300 * realloc_sampling_buffer() invocation.
302 sfb
->tail
= sfb
->sdbt
;
303 *sfb
->tail
= (unsigned long)(void *) sfb
->sdbt
+ 1;
305 /* Allocate requested number of sample-data-blocks */
306 rc
= realloc_sampling_buffer(sfb
, num_sdb
, GFP_KERNEL
);
308 free_sampling_buffer(sfb
);
309 debug_sprintf_event(sfdbg
, 4, "%s: "
310 "realloc_sampling_buffer failed with rc %i\n",
313 debug_sprintf_event(sfdbg
, 4,
314 "%s: tear %#lx dear %#lx\n", __func__
,
315 (unsigned long)sfb
->sdbt
, (unsigned long)*sfb
->sdbt
);
319 static void sfb_set_limits(unsigned long min
, unsigned long max
)
321 struct hws_qsi_info_block si
;
323 CPUM_SF_MIN_SDB
= min
;
324 CPUM_SF_MAX_SDB
= max
;
326 memset(&si
, 0, sizeof(si
));
328 CPUM_SF_SDB_DIAG_FACTOR
= DIV_ROUND_UP(si
.dsdes
, si
.bsdes
);
331 static unsigned long sfb_max_limit(struct hw_perf_event
*hwc
)
333 return SAMPL_DIAG_MODE(hwc
) ? CPUM_SF_MAX_SDB
* CPUM_SF_SDB_DIAG_FACTOR
337 static unsigned long sfb_pending_allocs(struct sf_buffer
*sfb
,
338 struct hw_perf_event
*hwc
)
341 return SFB_ALLOC_REG(hwc
);
342 if (SFB_ALLOC_REG(hwc
) > sfb
->num_sdb
)
343 return SFB_ALLOC_REG(hwc
) - sfb
->num_sdb
;
347 static int sfb_has_pending_allocs(struct sf_buffer
*sfb
,
348 struct hw_perf_event
*hwc
)
350 return sfb_pending_allocs(sfb
, hwc
) > 0;
353 static void sfb_account_allocs(unsigned long num
, struct hw_perf_event
*hwc
)
355 /* Limit the number of SDBs to not exceed the maximum */
356 num
= min_t(unsigned long, num
, sfb_max_limit(hwc
) - SFB_ALLOC_REG(hwc
));
358 SFB_ALLOC_REG(hwc
) += num
;
361 static void sfb_init_allocs(unsigned long num
, struct hw_perf_event
*hwc
)
363 SFB_ALLOC_REG(hwc
) = 0;
364 sfb_account_allocs(num
, hwc
);
367 static void deallocate_buffers(struct cpu_hw_sf
*cpuhw
)
370 free_sampling_buffer(&cpuhw
->sfb
);
373 static int allocate_buffers(struct cpu_hw_sf
*cpuhw
, struct hw_perf_event
*hwc
)
375 unsigned long n_sdb
, freq
;
378 /* Calculate sampling buffers using 4K pages
380 * 1. The sampling size is 32 bytes for basic sampling. This size
381 * is the same for all machine types. Diagnostic
382 * sampling uses auxlilary data buffer setup which provides the
383 * memory for SDBs using linux common code auxiliary trace
386 * 2. Function alloc_sampling_buffer() sets the Alert Request
387 * Control indicator to trigger a measurement-alert to harvest
388 * sample-data-blocks (SDB). This is done per SDB. This
389 * measurement alert interrupt fires quick enough to handle
390 * one SDB, on very high frequency and work loads there might
391 * be 2 to 3 SBDs available for sample processing.
392 * Currently there is no need for setup alert request on every
393 * n-th page. This is counterproductive as one IRQ triggers
394 * a very high number of samples to be processed at one IRQ.
396 * 3. Use the sampling frequency as input.
397 * Compute the number of SDBs and ensure a minimum
398 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
399 * SDBs to handle a higher sampling rate.
400 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
401 * (one SDB) for every 10000 HZ frequency increment.
403 * 4. Compute the number of sample-data-block-tables (SDBT) and
404 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
407 sample_size
= sizeof(struct hws_basic_entry
);
408 freq
= sample_rate_to_freq(&cpuhw
->qsi
, SAMPL_RATE(hwc
));
409 n_sdb
= CPUM_SF_MIN_SDB
+ DIV_ROUND_UP(freq
, 10000);
411 /* If there is already a sampling buffer allocated, it is very likely
412 * that the sampling facility is enabled too. If the event to be
413 * initialized requires a greater sampling buffer, the allocation must
414 * be postponed. Changing the sampling buffer requires the sampling
415 * facility to be in the disabled state. So, account the number of
416 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
417 * before the event is started.
419 sfb_init_allocs(n_sdb
, hwc
);
420 if (sf_buffer_available(cpuhw
))
423 debug_sprintf_event(sfdbg
, 3,
424 "%s: rate %lu f %lu sdb %lu/%lu"
425 " sample_size %lu cpuhw %p\n", __func__
,
426 SAMPL_RATE(hwc
), freq
, n_sdb
, sfb_max_limit(hwc
),
429 return alloc_sampling_buffer(&cpuhw
->sfb
,
430 sfb_pending_allocs(&cpuhw
->sfb
, hwc
));
433 static unsigned long min_percent(unsigned int percent
, unsigned long base
,
436 return min_t(unsigned long, min
, DIV_ROUND_UP(percent
* base
, 100));
439 static unsigned long compute_sfb_extent(unsigned long ratio
, unsigned long base
)
441 /* Use a percentage-based approach to extend the sampling facility
442 * buffer. Accept up to 5% sample data loss.
443 * Vary the extents between 1% to 5% of the current number of
444 * sample-data-blocks.
449 return min_percent(1, base
, 1);
451 return min_percent(1, base
, 1);
453 return min_percent(2, base
, 2);
455 return min_percent(3, base
, 3);
457 return min_percent(4, base
, 4);
459 return min_percent(5, base
, 8);
462 static void sfb_account_overflows(struct cpu_hw_sf
*cpuhw
,
463 struct hw_perf_event
*hwc
)
465 unsigned long ratio
, num
;
467 if (!OVERFLOW_REG(hwc
))
470 /* The sample_overflow contains the average number of sample data
471 * that has been lost because sample-data-blocks were full.
473 * Calculate the total number of sample data entries that has been
474 * discarded. Then calculate the ratio of lost samples to total samples
475 * per second in percent.
477 ratio
= DIV_ROUND_UP(100 * OVERFLOW_REG(hwc
) * cpuhw
->sfb
.num_sdb
,
478 sample_rate_to_freq(&cpuhw
->qsi
, SAMPL_RATE(hwc
)));
480 /* Compute number of sample-data-blocks */
481 num
= compute_sfb_extent(ratio
, cpuhw
->sfb
.num_sdb
);
483 sfb_account_allocs(num
, hwc
);
485 debug_sprintf_event(sfdbg
, 5, "%s: overflow %llu ratio %lu num %lu\n",
486 __func__
, OVERFLOW_REG(hwc
), ratio
, num
);
487 OVERFLOW_REG(hwc
) = 0;
490 /* extend_sampling_buffer() - Extend sampling buffer
491 * @sfb: Sampling buffer structure (for local CPU)
492 * @hwc: Perf event hardware structure
494 * Use this function to extend the sampling buffer based on the overflow counter
495 * and postponed allocation extents stored in the specified Perf event hardware.
497 * Important: This function disables the sampling facility in order to safely
498 * change the sampling buffer structure. Do not call this function
499 * when the PMU is active.
501 static void extend_sampling_buffer(struct sf_buffer
*sfb
,
502 struct hw_perf_event
*hwc
)
504 unsigned long num
, num_old
;
507 num
= sfb_pending_allocs(sfb
, hwc
);
510 num_old
= sfb
->num_sdb
;
512 /* Disable the sampling facility to reset any states and also
513 * clear pending measurement alerts.
517 /* Extend the sampling buffer.
518 * This memory allocation typically happens in an atomic context when
519 * called by perf. Because this is a reallocation, it is fine if the
520 * new SDB-request cannot be satisfied immediately.
522 rc
= realloc_sampling_buffer(sfb
, num
, GFP_ATOMIC
);
524 debug_sprintf_event(sfdbg
, 5, "%s: realloc failed with rc %i\n",
527 if (sfb_has_pending_allocs(sfb
, hwc
))
528 debug_sprintf_event(sfdbg
, 5, "%s: "
529 "req %lu alloc %lu remaining %lu\n",
530 __func__
, num
, sfb
->num_sdb
- num_old
,
531 sfb_pending_allocs(sfb
, hwc
));
534 /* Number of perf events counting hardware events */
535 static atomic_t num_events
;
536 /* Used to avoid races in calling reserve/release_cpumf_hardware */
537 static DEFINE_MUTEX(pmc_reserve_mutex
);
540 #define PMC_RELEASE 1
541 #define PMC_FAILURE 2
542 static void setup_pmc_cpu(void *flags
)
545 struct cpu_hw_sf
*cpusf
= this_cpu_ptr(&cpu_hw_sf
);
548 switch (*((int *) flags
)) {
550 memset(cpusf
, 0, sizeof(*cpusf
));
551 err
= qsi(&cpusf
->qsi
);
554 cpusf
->flags
|= PMU_F_RESERVED
;
557 pr_err("Switching off the sampling facility failed "
558 "with rc %i\n", err
);
559 debug_sprintf_event(sfdbg
, 5,
560 "%s: initialized: cpuhw %p\n", __func__
,
564 cpusf
->flags
&= ~PMU_F_RESERVED
;
567 pr_err("Switching off the sampling facility failed "
568 "with rc %i\n", err
);
570 deallocate_buffers(cpusf
);
571 debug_sprintf_event(sfdbg
, 5,
572 "%s: released: cpuhw %p\n", __func__
,
577 *((int *) flags
) |= PMC_FAILURE
;
580 static void release_pmc_hardware(void)
582 int flags
= PMC_RELEASE
;
584 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT
);
585 on_each_cpu(setup_pmc_cpu
, &flags
, 1);
588 static int reserve_pmc_hardware(void)
590 int flags
= PMC_INIT
;
592 on_each_cpu(setup_pmc_cpu
, &flags
, 1);
593 if (flags
& PMC_FAILURE
) {
594 release_pmc_hardware();
597 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT
);
602 static void hw_perf_event_destroy(struct perf_event
*event
)
604 /* Release PMC if this is the last perf event */
605 if (!atomic_add_unless(&num_events
, -1, 1)) {
606 mutex_lock(&pmc_reserve_mutex
);
607 if (atomic_dec_return(&num_events
) == 0)
608 release_pmc_hardware();
609 mutex_unlock(&pmc_reserve_mutex
);
613 static void hw_init_period(struct hw_perf_event
*hwc
, u64 period
)
615 hwc
->sample_period
= period
;
616 hwc
->last_period
= hwc
->sample_period
;
617 local64_set(&hwc
->period_left
, hwc
->sample_period
);
620 static unsigned long hw_limit_rate(const struct hws_qsi_info_block
*si
,
623 return clamp_t(unsigned long, rate
,
624 si
->min_sampl_rate
, si
->max_sampl_rate
);
627 static u32
cpumsf_pid_type(struct perf_event
*event
,
628 u32 pid
, enum pid_type type
)
630 struct task_struct
*tsk
;
636 tsk
= find_task_by_pid_ns(pid
, &init_pid_ns
);
640 * Only top level events contain the pid namespace in which
644 event
= event
->parent
;
645 pid
= __task_pid_nr_ns(tsk
, type
, event
->ns
);
647 * See also 1d953111b648
648 * "perf/core: Don't report zero PIDs for exiting tasks".
650 if (!pid
&& !pid_alive(tsk
))
657 static void cpumsf_output_event_pid(struct perf_event
*event
,
658 struct perf_sample_data
*data
,
659 struct pt_regs
*regs
)
662 struct perf_event_header header
;
663 struct perf_output_handle handle
;
666 * Obtain the PID from the basic-sampling data entry and
667 * correct the data->tid_entry.pid value.
669 pid
= data
->tid_entry
.pid
;
671 /* Protect callchain buffers, tasks */
674 perf_prepare_sample(&header
, data
, event
, regs
);
675 if (perf_output_begin(&handle
, data
, event
, header
.size
))
678 /* Update the process ID (see also kernel/events/core.c) */
679 data
->tid_entry
.pid
= cpumsf_pid_type(event
, pid
, PIDTYPE_TGID
);
680 data
->tid_entry
.tid
= cpumsf_pid_type(event
, pid
, PIDTYPE_PID
);
682 perf_output_sample(&handle
, &header
, data
, event
);
683 perf_output_end(&handle
);
688 static unsigned long getrate(bool freq
, unsigned long sample
,
689 struct hws_qsi_info_block
*si
)
694 rate
= freq_to_sample_rate(si
, sample
);
695 rate
= hw_limit_rate(si
, rate
);
697 /* The min/max sampling rates specifies the valid range
698 * of sample periods. If the specified sample period is
699 * out of range, limit the period to the range boundary.
701 rate
= hw_limit_rate(si
, sample
);
703 /* The perf core maintains a maximum sample rate that is
704 * configurable through the sysctl interface. Ensure the
705 * sampling rate does not exceed this value. This also helps
706 * to avoid throttling when pushing samples with
707 * perf_event_overflow().
709 if (sample_rate_to_freq(si
, rate
) >
710 sysctl_perf_event_sample_rate
) {
711 debug_sprintf_event(sfdbg
, 1, "%s: "
712 "Sampling rate exceeds maximum "
713 "perf sample rate\n", __func__
);
720 /* The sampling information (si) contains information about the
721 * min/max sampling intervals and the CPU speed. So calculate the
722 * correct sampling interval and avoid the whole period adjust
725 * Since the CPU Measurement sampling facility can not handle frequency
726 * calculate the sampling interval when frequency is specified using
728 * interval := cpu_speed * 1000000 / sample_freq
730 * Returns errno on bad input and zero on success with parameter interval
731 * set to the correct sampling rate.
733 * Note: This function turns off freq bit to avoid calling function
734 * perf_adjust_period(). This causes frequency adjustment in the common
735 * code part which causes tremendous variations in the counter values.
737 static int __hw_perf_event_init_rate(struct perf_event
*event
,
738 struct hws_qsi_info_block
*si
)
740 struct perf_event_attr
*attr
= &event
->attr
;
741 struct hw_perf_event
*hwc
= &event
->hw
;
745 if (!attr
->sample_freq
)
747 rate
= getrate(attr
->freq
, attr
->sample_freq
, si
);
748 attr
->freq
= 0; /* Don't call perf_adjust_period() */
749 SAMPL_FLAGS(hwc
) |= PERF_CPUM_SF_FREQ_MODE
;
751 rate
= getrate(attr
->freq
, attr
->sample_period
, si
);
755 attr
->sample_period
= rate
;
756 SAMPL_RATE(hwc
) = rate
;
757 hw_init_period(hwc
, SAMPL_RATE(hwc
));
758 debug_sprintf_event(sfdbg
, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
759 __func__
, event
->cpu
, event
->attr
.sample_period
,
760 event
->attr
.freq
, SAMPLE_FREQ_MODE(hwc
));
764 static int __hw_perf_event_init(struct perf_event
*event
)
766 struct cpu_hw_sf
*cpuhw
;
767 struct hws_qsi_info_block si
;
768 struct perf_event_attr
*attr
= &event
->attr
;
769 struct hw_perf_event
*hwc
= &event
->hw
;
772 /* Reserve CPU-measurement sampling facility */
774 if (!atomic_inc_not_zero(&num_events
)) {
775 mutex_lock(&pmc_reserve_mutex
);
776 if (atomic_read(&num_events
) == 0 && reserve_pmc_hardware())
779 atomic_inc(&num_events
);
780 mutex_unlock(&pmc_reserve_mutex
);
782 event
->destroy
= hw_perf_event_destroy
;
787 /* Access per-CPU sampling information (query sampling info) */
789 * The event->cpu value can be -1 to count on every CPU, for example,
790 * when attaching to a task. If this is specified, use the query
791 * sampling info from the current CPU, otherwise use event->cpu to
792 * retrieve the per-CPU information.
793 * Later, cpuhw indicates whether to allocate sampling buffers for a
794 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
796 memset(&si
, 0, sizeof(si
));
798 if (event
->cpu
== -1)
801 /* Event is pinned to a particular CPU, retrieve the per-CPU
802 * sampling structure for accessing the CPU-specific QSI.
804 cpuhw
= &per_cpu(cpu_hw_sf
, event
->cpu
);
808 /* Check sampling facility authorization and, if not authorized,
809 * fall back to other PMUs. It is safe to check any CPU because
810 * the authorization is identical for all configured CPUs.
817 if (si
.ribm
& CPU_MF_SF_RIBM_NOTAV
) {
818 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
823 /* Always enable basic sampling */
824 SAMPL_FLAGS(hwc
) = PERF_CPUM_SF_BASIC_MODE
;
826 /* Check if diagnostic sampling is requested. Deny if the required
827 * sampling authorization is missing.
829 if (attr
->config
== PERF_EVENT_CPUM_SF_DIAG
) {
834 SAMPL_FLAGS(hwc
) |= PERF_CPUM_SF_DIAG_MODE
;
837 /* Check and set other sampling flags */
838 if (attr
->config1
& PERF_CPUM_SF_FULL_BLOCKS
)
839 SAMPL_FLAGS(hwc
) |= PERF_CPUM_SF_FULL_BLOCKS
;
841 err
= __hw_perf_event_init_rate(event
, &si
);
845 /* Initialize sample data overflow accounting */
846 hwc
->extra_reg
.reg
= REG_OVERFLOW
;
847 OVERFLOW_REG(hwc
) = 0;
849 /* Use AUX buffer. No need to allocate it by ourself */
850 if (attr
->config
== PERF_EVENT_CPUM_SF_DIAG
)
853 /* Allocate the per-CPU sampling buffer using the CPU information
854 * from the event. If the event is not pinned to a particular
855 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
856 * buffers for each online CPU.
859 /* Event is pinned to a particular CPU */
860 err
= allocate_buffers(cpuhw
, hwc
);
862 /* Event is not pinned, allocate sampling buffer on
865 for_each_online_cpu(cpu
) {
866 cpuhw
= &per_cpu(cpu_hw_sf
, cpu
);
867 err
= allocate_buffers(cpuhw
, hwc
);
873 /* If PID/TID sampling is active, replace the default overflow
874 * handler to extract and resolve the PIDs from the basic-sampling
877 if (event
->attr
.sample_type
& PERF_SAMPLE_TID
)
878 if (is_default_overflow_handler(event
))
879 event
->overflow_handler
= cpumsf_output_event_pid
;
884 static bool is_callchain_event(struct perf_event
*event
)
886 u64 sample_type
= event
->attr
.sample_type
;
888 return sample_type
& (PERF_SAMPLE_CALLCHAIN
| PERF_SAMPLE_REGS_USER
|
889 PERF_SAMPLE_STACK_USER
);
892 static int cpumsf_pmu_event_init(struct perf_event
*event
)
896 /* No support for taken branch sampling */
897 /* No support for callchain, stacks and registers */
898 if (has_branch_stack(event
) || is_callchain_event(event
))
901 switch (event
->attr
.type
) {
903 if ((event
->attr
.config
!= PERF_EVENT_CPUM_SF
) &&
904 (event
->attr
.config
!= PERF_EVENT_CPUM_SF_DIAG
))
907 case PERF_TYPE_HARDWARE
:
908 /* Support sampling of CPU cycles in addition to the
909 * counter facility. However, the counter facility
910 * is more precise and, hence, restrict this PMU to
911 * sampling events only.
913 if (event
->attr
.config
!= PERF_COUNT_HW_CPU_CYCLES
)
915 if (!is_sampling_event(event
))
922 /* Check online status of the CPU to which the event is pinned */
923 if (event
->cpu
>= 0 && !cpu_online(event
->cpu
))
926 /* Force reset of idle/hv excludes regardless of what the
929 if (event
->attr
.exclude_hv
)
930 event
->attr
.exclude_hv
= 0;
931 if (event
->attr
.exclude_idle
)
932 event
->attr
.exclude_idle
= 0;
934 err
= __hw_perf_event_init(event
);
937 event
->destroy(event
);
941 static void cpumsf_pmu_enable(struct pmu
*pmu
)
943 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
944 struct hw_perf_event
*hwc
;
947 if (cpuhw
->flags
& PMU_F_ENABLED
)
950 if (cpuhw
->flags
& PMU_F_ERR_MASK
)
953 /* Check whether to extent the sampling buffer.
955 * Two conditions trigger an increase of the sampling buffer for a
957 * 1. Postponed buffer allocations from the event initialization.
958 * 2. Sampling overflows that contribute to pending allocations.
960 * Note that the extend_sampling_buffer() function disables the sampling
961 * facility, but it can be fully re-enabled using sampling controls that
962 * have been saved in cpumsf_pmu_disable().
965 hwc
= &cpuhw
->event
->hw
;
966 if (!(SAMPL_DIAG_MODE(hwc
))) {
968 * Account number of overflow-designated
971 sfb_account_overflows(cpuhw
, hwc
);
972 extend_sampling_buffer(&cpuhw
->sfb
, hwc
);
974 /* Rate may be adjusted with ioctl() */
975 cpuhw
->lsctl
.interval
= SAMPL_RATE(&cpuhw
->event
->hw
);
978 /* (Re)enable the PMU and sampling facility */
979 cpuhw
->flags
|= PMU_F_ENABLED
;
982 err
= lsctl(&cpuhw
->lsctl
);
984 cpuhw
->flags
&= ~PMU_F_ENABLED
;
985 pr_err("Loading sampling controls failed: op %i err %i\n",
990 /* Load current program parameter */
991 lpp(&S390_lowcore
.lpp
);
993 debug_sprintf_event(sfdbg
, 6, "%s: es %i cs %i ed %i cd %i "
994 "interval %#lx tear %#lx dear %#lx\n", __func__
,
995 cpuhw
->lsctl
.es
, cpuhw
->lsctl
.cs
, cpuhw
->lsctl
.ed
,
996 cpuhw
->lsctl
.cd
, cpuhw
->lsctl
.interval
,
997 cpuhw
->lsctl
.tear
, cpuhw
->lsctl
.dear
);
1000 static void cpumsf_pmu_disable(struct pmu
*pmu
)
1002 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1003 struct hws_lsctl_request_block inactive
;
1004 struct hws_qsi_info_block si
;
1007 if (!(cpuhw
->flags
& PMU_F_ENABLED
))
1010 if (cpuhw
->flags
& PMU_F_ERR_MASK
)
1013 /* Switch off sampling activation control */
1014 inactive
= cpuhw
->lsctl
;
1018 err
= lsctl(&inactive
);
1020 pr_err("Loading sampling controls failed: op %i err %i\n",
1025 /* Save state of TEAR and DEAR register contents */
1028 /* TEAR/DEAR values are valid only if the sampling facility is
1029 * enabled. Note that cpumsf_pmu_disable() might be called even
1030 * for a disabled sampling facility because cpumsf_pmu_enable()
1031 * controls the enable/disable state.
1034 cpuhw
->lsctl
.tear
= si
.tear
;
1035 cpuhw
->lsctl
.dear
= si
.dear
;
1038 debug_sprintf_event(sfdbg
, 3, "%s: qsi() failed with err %i\n",
1041 cpuhw
->flags
&= ~PMU_F_ENABLED
;
1044 /* perf_exclude_event() - Filter event
1045 * @event: The perf event
1046 * @regs: pt_regs structure
1047 * @sde_regs: Sample-data-entry (sde) regs structure
1049 * Filter perf events according to their exclude specification.
1051 * Return non-zero if the event shall be excluded.
1053 static int perf_exclude_event(struct perf_event
*event
, struct pt_regs
*regs
,
1054 struct perf_sf_sde_regs
*sde_regs
)
1056 if (event
->attr
.exclude_user
&& user_mode(regs
))
1058 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
1060 if (event
->attr
.exclude_guest
&& sde_regs
->in_guest
)
1062 if (event
->attr
.exclude_host
&& !sde_regs
->in_guest
)
1067 /* perf_push_sample() - Push samples to perf
1068 * @event: The perf event
1069 * @sample: Hardware sample data
1071 * Use the hardware sample data to create perf event sample. The sample
1072 * is the pushed to the event subsystem and the function checks for
1073 * possible event overflows. If an event overflow occurs, the PMU is
1076 * Return non-zero if an event overflow occurred.
1078 static int perf_push_sample(struct perf_event
*event
,
1079 struct hws_basic_entry
*basic
)
1082 struct pt_regs regs
;
1083 struct perf_sf_sde_regs
*sde_regs
;
1084 struct perf_sample_data data
;
1086 /* Setup perf sample */
1087 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
1089 /* Setup pt_regs to look like an CPU-measurement external interrupt
1090 * using the Program Request Alert code. The regs.int_parm_long
1091 * field which is unused contains additional sample-data-entry related
1094 memset(®s
, 0, sizeof(regs
));
1095 regs
.int_code
= 0x1407;
1096 regs
.int_parm
= CPU_MF_INT_SF_PRA
;
1097 sde_regs
= (struct perf_sf_sde_regs
*) ®s
.int_parm_long
;
1099 psw_bits(regs
.psw
).ia
= basic
->ia
;
1100 psw_bits(regs
.psw
).dat
= basic
->T
;
1101 psw_bits(regs
.psw
).wait
= basic
->W
;
1102 psw_bits(regs
.psw
).pstate
= basic
->P
;
1103 psw_bits(regs
.psw
).as
= basic
->AS
;
1106 * Use the hardware provided configuration level to decide if the
1107 * sample belongs to a guest or host. If that is not available,
1108 * fall back to the following heuristics:
1109 * A non-zero guest program parameter always indicates a guest
1110 * sample. Some early samples or samples from guests without
1111 * lpp usage would be misaccounted to the host. We use the asn
1112 * value as an addon heuristic to detect most of these guest samples.
1113 * If the value differs from 0xffff (the host value), we assume to
1116 switch (basic
->CL
) {
1117 case 1: /* logical partition */
1118 sde_regs
->in_guest
= 0;
1120 case 2: /* virtual machine */
1121 sde_regs
->in_guest
= 1;
1123 default: /* old machine, use heuristics */
1124 if (basic
->gpp
|| basic
->prim_asn
!= 0xffff)
1125 sde_regs
->in_guest
= 1;
1130 * Store the PID value from the sample-data-entry to be
1131 * processed and resolved by cpumsf_output_event_pid().
1133 data
.tid_entry
.pid
= basic
->hpp
& LPP_PID_MASK
;
1136 if (perf_exclude_event(event
, ®s
, sde_regs
))
1138 if (perf_event_overflow(event
, &data
, ®s
)) {
1140 event
->pmu
->stop(event
, 0);
1142 perf_event_update_userpage(event
);
1147 static void perf_event_count_update(struct perf_event
*event
, u64 count
)
1149 local64_add(count
, &event
->count
);
1152 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1153 * @event: The perf event
1154 * @sdbt: Sample-data-block table
1155 * @overflow: Event overflow counter
1157 * Walks through a sample-data-block and collects sampling data entries that are
1158 * then pushed to the perf event subsystem. Depending on the sampling function,
1159 * there can be either basic-sampling or combined-sampling data entries. A
1160 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1161 * data entry. The sampling function is determined by the flags in the perf
1162 * event hardware structure. The function always works with a combined-sampling
1163 * data entry but ignores the the diagnostic portion if it is not available.
1165 * Note that the implementation focuses on basic-sampling data entries and, if
1166 * such an entry is not valid, the entire combined-sampling data entry is
1169 * The overflow variables counts the number of samples that has been discarded
1170 * due to a perf event overflow.
1172 static void hw_collect_samples(struct perf_event
*event
, unsigned long *sdbt
,
1173 unsigned long long *overflow
)
1175 struct hws_trailer_entry
*te
;
1176 struct hws_basic_entry
*sample
;
1178 te
= (struct hws_trailer_entry
*) trailer_entry_ptr(*sdbt
);
1179 sample
= (struct hws_basic_entry
*) *sdbt
;
1180 while ((unsigned long *) sample
< (unsigned long *) te
) {
1181 /* Check for an empty sample */
1185 /* Update perf event period */
1186 perf_event_count_update(event
, SAMPL_RATE(&event
->hw
));
1188 /* Check whether sample is valid */
1189 if (sample
->def
== 0x0001) {
1190 /* If an event overflow occurred, the PMU is stopped to
1191 * throttle event delivery. Remaining sample data is
1195 /* Check whether sample is consistent */
1196 if (sample
->I
== 0 && sample
->W
== 0) {
1197 /* Deliver sample data to perf */
1198 *overflow
= perf_push_sample(event
,
1202 /* Count discarded samples */
1205 debug_sprintf_event(sfdbg
, 4,
1207 " sampling data entry: te->f %i"
1208 " basic.def %#4x (%p)\n", __func__
,
1209 te
->f
, sample
->def
, sample
);
1210 /* Sample slot is not yet written or other record.
1212 * This condition can occur if the buffer was reused
1213 * from a combined basic- and diagnostic-sampling.
1214 * If only basic-sampling is then active, entries are
1215 * written into the larger diagnostic entries.
1216 * This is typically the case for sample-data-blocks
1217 * that are not full. Stop processing if the first
1218 * invalid format was detected.
1224 /* Reset sample slot and advance to next sample */
1230 /* hw_perf_event_update() - Process sampling buffer
1231 * @event: The perf event
1232 * @flush_all: Flag to also flush partially filled sample-data-blocks
1234 * Processes the sampling buffer and create perf event samples.
1235 * The sampling buffer position are retrieved and saved in the TEAR_REG
1236 * register of the specified perf event.
1238 * Only full sample-data-blocks are processed. Specify the flash_all flag
1239 * to also walk through partially filled sample-data-blocks. It is ignored
1240 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
1241 * enforces the processing of full sample-data-blocks only (trailer entries
1242 * with the block-full-indicator bit set).
1244 static void hw_perf_event_update(struct perf_event
*event
, int flush_all
)
1246 struct hw_perf_event
*hwc
= &event
->hw
;
1247 struct hws_trailer_entry
*te
;
1248 unsigned long *sdbt
;
1249 unsigned long long event_overflow
, sampl_overflow
, num_sdb
, te_flags
;
1253 * AUX buffer is used when in diagnostic sampling mode.
1254 * No perf events/samples are created.
1256 if (SAMPL_DIAG_MODE(&event
->hw
))
1259 if (flush_all
&& SDB_FULL_BLOCKS(hwc
))
1262 sdbt
= (unsigned long *) TEAR_REG(hwc
);
1263 done
= event_overflow
= sampl_overflow
= num_sdb
= 0;
1265 /* Get the trailer entry of the sample-data-block */
1266 te
= (struct hws_trailer_entry
*) trailer_entry_ptr(*sdbt
);
1268 /* Leave loop if no more work to do (block full indicator) */
1275 /* Check the sample overflow count */
1277 /* Account sample overflows and, if a particular limit
1278 * is reached, extend the sampling buffer.
1279 * For details, see sfb_account_overflows().
1281 sampl_overflow
+= te
->overflow
;
1283 /* Timestamps are valid for full sample-data-blocks only */
1284 debug_sprintf_event(sfdbg
, 6, "%s: sdbt %#lx "
1285 "overflow %llu timestamp %#llx\n",
1286 __func__
, (unsigned long)sdbt
, te
->overflow
,
1287 (te
->f
) ? trailer_timestamp(te
) : 0ULL);
1289 /* Collect all samples from a single sample-data-block and
1290 * flag if an (perf) event overflow happened. If so, the PMU
1291 * is stopped and remaining samples will be discarded.
1293 hw_collect_samples(event
, sdbt
, &event_overflow
);
1296 /* Reset trailer (using compare-double-and-swap) */
1298 te_flags
= te
->flags
& ~SDB_TE_BUFFER_FULL_MASK
;
1299 te_flags
|= SDB_TE_ALERT_REQ_MASK
;
1300 } while (!cmpxchg_double(&te
->flags
, &te
->overflow
,
1301 te
->flags
, te
->overflow
,
1304 /* Advance to next sample-data-block */
1306 if (is_link_entry(sdbt
))
1307 sdbt
= get_next_sdbt(sdbt
);
1309 /* Update event hardware registers */
1310 TEAR_REG(hwc
) = (unsigned long) sdbt
;
1312 /* Stop processing sample-data if all samples of the current
1313 * sample-data-block were flushed even if it was not full.
1315 if (flush_all
&& done
)
1319 /* Account sample overflows in the event hardware structure */
1321 OVERFLOW_REG(hwc
) = DIV_ROUND_UP(OVERFLOW_REG(hwc
) +
1322 sampl_overflow
, 1 + num_sdb
);
1324 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1325 * the interrupt rate to an upper limit. Roughly 1000 samples per
1327 * Hitting this limit results in a large number
1328 * of throttled REF_REPORT_THROTTLE entries and the samples
1330 * Slightly increase the interval to avoid hitting this limit.
1332 if (event_overflow
) {
1333 SAMPL_RATE(hwc
) += DIV_ROUND_UP(SAMPL_RATE(hwc
), 10);
1334 debug_sprintf_event(sfdbg
, 1, "%s: rate adjustment %ld\n",
1336 DIV_ROUND_UP(SAMPL_RATE(hwc
), 10));
1339 if (sampl_overflow
|| event_overflow
)
1340 debug_sprintf_event(sfdbg
, 4, "%s: "
1341 "overflows: sample %llu event %llu"
1342 " total %llu num_sdb %llu\n",
1343 __func__
, sampl_overflow
, event_overflow
,
1344 OVERFLOW_REG(hwc
), num_sdb
);
1347 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1348 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1349 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1350 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1353 * Get trailer entry by index of SDB.
1355 static struct hws_trailer_entry
*aux_sdb_trailer(struct aux_buffer
*aux
,
1356 unsigned long index
)
1360 index
= AUX_SDB_INDEX(aux
, index
);
1361 sdb
= aux
->sdb_index
[index
];
1362 return (struct hws_trailer_entry
*)trailer_entry_ptr(sdb
);
1366 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1367 * disabled. Collect the full SDBs in AUX buffer which have not reached
1368 * the point of alert indicator. And ignore the SDBs which are not
1371 * 1. Scan SDBs to see how much data is there and consume them.
1372 * 2. Remove alert indicator in the buffer.
1374 static void aux_output_end(struct perf_output_handle
*handle
)
1376 unsigned long i
, range_scan
, idx
;
1377 struct aux_buffer
*aux
;
1378 struct hws_trailer_entry
*te
;
1380 aux
= perf_get_aux(handle
);
1384 range_scan
= AUX_SDB_NUM_ALERT(aux
);
1385 for (i
= 0, idx
= aux
->head
; i
< range_scan
; i
++, idx
++) {
1386 te
= aux_sdb_trailer(aux
, idx
);
1387 if (!(te
->flags
& SDB_TE_BUFFER_FULL_MASK
))
1390 /* i is num of SDBs which are full */
1391 perf_aux_output_end(handle
, i
<< PAGE_SHIFT
);
1393 /* Remove alert indicators in the buffer */
1394 te
= aux_sdb_trailer(aux
, aux
->alert_mark
);
1395 te
->flags
&= ~SDB_TE_ALERT_REQ_MASK
;
1397 debug_sprintf_event(sfdbg
, 6, "%s: SDBs %ld range %ld head %ld\n",
1398 __func__
, i
, range_scan
, aux
->head
);
1402 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1403 * is first added to the CPU or rescheduled again to the CPU. It is called
1404 * with pmu disabled.
1406 * 1. Reset the trailer of SDBs to get ready for new data.
1407 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1410 static int aux_output_begin(struct perf_output_handle
*handle
,
1411 struct aux_buffer
*aux
,
1412 struct cpu_hw_sf
*cpuhw
)
1414 unsigned long range
;
1415 unsigned long i
, range_scan
, idx
;
1416 unsigned long head
, base
, offset
;
1417 struct hws_trailer_entry
*te
;
1419 if (WARN_ON_ONCE(handle
->head
& ~PAGE_MASK
))
1422 aux
->head
= handle
->head
>> PAGE_SHIFT
;
1423 range
= (handle
->size
+ 1) >> PAGE_SHIFT
;
1428 * SDBs between aux->head and aux->empty_mark are already ready
1429 * for new data. range_scan is num of SDBs not within them.
1431 debug_sprintf_event(sfdbg
, 6,
1432 "%s: range %ld head %ld alert %ld empty %ld\n",
1433 __func__
, range
, aux
->head
, aux
->alert_mark
,
1435 if (range
> AUX_SDB_NUM_EMPTY(aux
)) {
1436 range_scan
= range
- AUX_SDB_NUM_EMPTY(aux
);
1437 idx
= aux
->empty_mark
+ 1;
1438 for (i
= 0; i
< range_scan
; i
++, idx
++) {
1439 te
= aux_sdb_trailer(aux
, idx
);
1440 te
->flags
&= ~(SDB_TE_BUFFER_FULL_MASK
|
1441 SDB_TE_ALERT_REQ_MASK
);
1444 /* Save the position of empty SDBs */
1445 aux
->empty_mark
= aux
->head
+ range
- 1;
1448 /* Set alert indicator */
1449 aux
->alert_mark
= aux
->head
+ range
/2 - 1;
1450 te
= aux_sdb_trailer(aux
, aux
->alert_mark
);
1451 te
->flags
= te
->flags
| SDB_TE_ALERT_REQ_MASK
;
1453 /* Reset hardware buffer head */
1454 head
= AUX_SDB_INDEX(aux
, aux
->head
);
1455 base
= aux
->sdbt_index
[head
/ CPUM_SF_SDB_PER_TABLE
];
1456 offset
= head
% CPUM_SF_SDB_PER_TABLE
;
1457 cpuhw
->lsctl
.tear
= base
+ offset
* sizeof(unsigned long);
1458 cpuhw
->lsctl
.dear
= aux
->sdb_index
[head
];
1460 debug_sprintf_event(sfdbg
, 6, "%s: head %ld alert %ld empty %ld "
1461 "index %ld tear %#lx dear %#lx\n", __func__
,
1462 aux
->head
, aux
->alert_mark
, aux
->empty_mark
,
1463 head
/ CPUM_SF_SDB_PER_TABLE
,
1464 cpuhw
->lsctl
.tear
, cpuhw
->lsctl
.dear
);
1470 * Set alert indicator on SDB at index @alert_index while sampler is running.
1472 * Return true if successfully.
1473 * Return false if full indicator is already set by hardware sampler.
1475 static bool aux_set_alert(struct aux_buffer
*aux
, unsigned long alert_index
,
1476 unsigned long long *overflow
)
1478 unsigned long long orig_overflow
, orig_flags
, new_flags
;
1479 struct hws_trailer_entry
*te
;
1481 te
= aux_sdb_trailer(aux
, alert_index
);
1483 orig_flags
= te
->flags
;
1484 *overflow
= orig_overflow
= te
->overflow
;
1485 if (orig_flags
& SDB_TE_BUFFER_FULL_MASK
) {
1487 * SDB is already set by hardware.
1488 * Abort and try to set somewhere
1493 new_flags
= orig_flags
| SDB_TE_ALERT_REQ_MASK
;
1494 } while (!cmpxchg_double(&te
->flags
, &te
->overflow
,
1495 orig_flags
, orig_overflow
,
1501 * aux_reset_buffer() - Scan and setup SDBs for new samples
1502 * @aux: The AUX buffer to set
1503 * @range: The range of SDBs to scan started from aux->head
1504 * @overflow: Set to overflow count
1506 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1507 * marked as empty, check if it is already set full by the hardware sampler.
1508 * If yes, that means new data is already there before we can set an alert
1509 * indicator. Caller should try to set alert indicator to some position behind.
1511 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1512 * previously and have already been consumed by user space. Reset these SDBs
1513 * (clear full indicator and alert indicator) for new data.
1514 * If aux->alert_mark fall in this area, just set it. Overflow count is
1515 * recorded while scanning.
1517 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1518 * and ready for new samples. So scanning on this area could be skipped.
1520 * Return true if alert indicator is set successfully and false if not.
1522 static bool aux_reset_buffer(struct aux_buffer
*aux
, unsigned long range
,
1523 unsigned long long *overflow
)
1525 unsigned long long orig_overflow
, orig_flags
, new_flags
;
1526 unsigned long i
, range_scan
, idx
, idx_old
;
1527 struct hws_trailer_entry
*te
;
1529 debug_sprintf_event(sfdbg
, 6, "%s: range %ld head %ld alert %ld "
1530 "empty %ld\n", __func__
, range
, aux
->head
,
1531 aux
->alert_mark
, aux
->empty_mark
);
1532 if (range
<= AUX_SDB_NUM_EMPTY(aux
))
1534 * No need to scan. All SDBs in range are marked as empty.
1535 * Just set alert indicator. Should check race with hardware
1538 return aux_set_alert(aux
, aux
->alert_mark
, overflow
);
1540 if (aux
->alert_mark
<= aux
->empty_mark
)
1542 * Set alert indicator on empty SDB. Should check race
1543 * with hardware sampler.
1545 if (!aux_set_alert(aux
, aux
->alert_mark
, overflow
))
1549 * Scan the SDBs to clear full and alert indicator used previously.
1550 * Start scanning from one SDB behind empty_mark. If the new alert
1551 * indicator fall into this range, set it.
1553 range_scan
= range
- AUX_SDB_NUM_EMPTY(aux
);
1554 idx_old
= idx
= aux
->empty_mark
+ 1;
1555 for (i
= 0; i
< range_scan
; i
++, idx
++) {
1556 te
= aux_sdb_trailer(aux
, idx
);
1558 orig_flags
= te
->flags
;
1559 orig_overflow
= te
->overflow
;
1560 new_flags
= orig_flags
& ~SDB_TE_BUFFER_FULL_MASK
;
1561 if (idx
== aux
->alert_mark
)
1562 new_flags
|= SDB_TE_ALERT_REQ_MASK
;
1564 new_flags
&= ~SDB_TE_ALERT_REQ_MASK
;
1565 } while (!cmpxchg_double(&te
->flags
, &te
->overflow
,
1566 orig_flags
, orig_overflow
,
1568 *overflow
+= orig_overflow
;
1571 /* Update empty_mark to new position */
1572 aux
->empty_mark
= aux
->head
+ range
- 1;
1574 debug_sprintf_event(sfdbg
, 6, "%s: range_scan %ld idx %ld..%ld "
1575 "empty %ld\n", __func__
, range_scan
, idx_old
,
1576 idx
- 1, aux
->empty_mark
);
1581 * Measurement alert handler for diagnostic mode sampling.
1583 static void hw_collect_aux(struct cpu_hw_sf
*cpuhw
)
1585 struct aux_buffer
*aux
;
1587 unsigned long range
= 0, size
;
1588 unsigned long long overflow
= 0;
1589 struct perf_output_handle
*handle
= &cpuhw
->handle
;
1590 unsigned long num_sdb
;
1592 aux
= perf_get_aux(handle
);
1593 if (WARN_ON_ONCE(!aux
))
1596 /* Inform user space new data arrived */
1597 size
= AUX_SDB_NUM_ALERT(aux
) << PAGE_SHIFT
;
1598 debug_sprintf_event(sfdbg
, 6, "%s: #alert %ld\n", __func__
,
1599 size
>> PAGE_SHIFT
);
1600 perf_aux_output_end(handle
, size
);
1602 num_sdb
= aux
->sfb
.num_sdb
;
1604 /* Get an output handle */
1605 aux
= perf_aux_output_begin(handle
, cpuhw
->event
);
1606 if (handle
->size
== 0) {
1607 pr_err("The AUX buffer with %lu pages for the "
1608 "diagnostic-sampling mode is full\n",
1610 debug_sprintf_event(sfdbg
, 1,
1611 "%s: AUX buffer used up\n",
1615 if (WARN_ON_ONCE(!aux
))
1618 /* Update head and alert_mark to new position */
1619 aux
->head
= handle
->head
>> PAGE_SHIFT
;
1620 range
= (handle
->size
+ 1) >> PAGE_SHIFT
;
1622 aux
->alert_mark
= aux
->head
;
1624 aux
->alert_mark
= aux
->head
+ range
/2 - 1;
1626 if (aux_reset_buffer(aux
, range
, &overflow
)) {
1631 size
= range
<< PAGE_SHIFT
;
1632 perf_aux_output_end(&cpuhw
->handle
, size
);
1633 pr_err("Sample data caused the AUX buffer with %lu "
1634 "pages to overflow\n", aux
->sfb
.num_sdb
);
1635 debug_sprintf_event(sfdbg
, 1, "%s: head %ld range %ld "
1636 "overflow %lld\n", __func__
,
1637 aux
->head
, range
, overflow
);
1639 size
= AUX_SDB_NUM_ALERT(aux
) << PAGE_SHIFT
;
1640 perf_aux_output_end(&cpuhw
->handle
, size
);
1641 debug_sprintf_event(sfdbg
, 6, "%s: head %ld alert %ld "
1642 "already full, try another\n",
1644 aux
->head
, aux
->alert_mark
);
1649 debug_sprintf_event(sfdbg
, 6, "%s: head %ld alert %ld "
1650 "empty %ld\n", __func__
, aux
->head
,
1651 aux
->alert_mark
, aux
->empty_mark
);
1655 * Callback when freeing AUX buffers.
1657 static void aux_buffer_free(void *data
)
1659 struct aux_buffer
*aux
= data
;
1660 unsigned long i
, num_sdbt
;
1665 /* Free SDBT. SDB is freed by the caller */
1666 num_sdbt
= aux
->sfb
.num_sdbt
;
1667 for (i
= 0; i
< num_sdbt
; i
++)
1668 free_page(aux
->sdbt_index
[i
]);
1670 kfree(aux
->sdbt_index
);
1671 kfree(aux
->sdb_index
);
1674 debug_sprintf_event(sfdbg
, 4, "%s: SDBTs %lu\n", __func__
, num_sdbt
);
1677 static void aux_sdb_init(unsigned long sdb
)
1679 struct hws_trailer_entry
*te
;
1681 te
= (struct hws_trailer_entry
*)trailer_entry_ptr(sdb
);
1683 /* Save clock base */
1685 memcpy(&te
->progusage2
, &tod_clock_base
[1], 8);
1689 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1690 * @event: Event the buffer is setup for, event->cpu == -1 means current
1691 * @pages: Array of pointers to buffer pages passed from perf core
1692 * @nr_pages: Total pages
1693 * @snapshot: Flag for snapshot mode
1695 * This is the callback when setup an event using AUX buffer. Perf tool can
1696 * trigger this by an additional mmap() call on the event. Unlike the buffer
1697 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1698 * the task among online cpus when it is a per-thread event.
1700 * Return the private AUX buffer structure if success or NULL if fails.
1702 static void *aux_buffer_setup(struct perf_event
*event
, void **pages
,
1703 int nr_pages
, bool snapshot
)
1705 struct sf_buffer
*sfb
;
1706 struct aux_buffer
*aux
;
1707 unsigned long *new, *tail
;
1710 if (!nr_pages
|| !pages
)
1713 if (nr_pages
> CPUM_SF_MAX_SDB
* CPUM_SF_SDB_DIAG_FACTOR
) {
1714 pr_err("AUX buffer size (%i pages) is larger than the "
1715 "maximum sampling buffer limit\n",
1718 } else if (nr_pages
< CPUM_SF_MIN_SDB
* CPUM_SF_SDB_DIAG_FACTOR
) {
1719 pr_err("AUX buffer size (%i pages) is less than the "
1720 "minimum sampling buffer limit\n",
1725 /* Allocate aux_buffer struct for the event */
1726 aux
= kzalloc(sizeof(struct aux_buffer
), GFP_KERNEL
);
1731 /* Allocate sdbt_index for fast reference */
1732 n_sdbt
= DIV_ROUND_UP(nr_pages
, CPUM_SF_SDB_PER_TABLE
);
1733 aux
->sdbt_index
= kmalloc_array(n_sdbt
, sizeof(void *), GFP_KERNEL
);
1734 if (!aux
->sdbt_index
)
1737 /* Allocate sdb_index for fast reference */
1738 aux
->sdb_index
= kmalloc_array(nr_pages
, sizeof(void *), GFP_KERNEL
);
1739 if (!aux
->sdb_index
)
1742 /* Allocate the first SDBT */
1744 sfb
->sdbt
= (unsigned long *) get_zeroed_page(GFP_KERNEL
);
1747 aux
->sdbt_index
[sfb
->num_sdbt
++] = (unsigned long)sfb
->sdbt
;
1748 tail
= sfb
->tail
= sfb
->sdbt
;
1751 * Link the provided pages of AUX buffer to SDBT.
1752 * Allocate SDBT if needed.
1754 for (i
= 0; i
< nr_pages
; i
++, tail
++) {
1755 if (require_table_link(tail
)) {
1756 new = (unsigned long *) get_zeroed_page(GFP_KERNEL
);
1759 aux
->sdbt_index
[sfb
->num_sdbt
++] = (unsigned long)new;
1760 /* Link current page to tail of chain */
1761 *tail
= (unsigned long)(void *) new + 1;
1764 /* Tail is the entry in a SDBT */
1765 *tail
= (unsigned long)pages
[i
];
1766 aux
->sdb_index
[i
] = (unsigned long)pages
[i
];
1767 aux_sdb_init((unsigned long)pages
[i
]);
1769 sfb
->num_sdb
= nr_pages
;
1771 /* Link the last entry in the SDBT to the first SDBT */
1772 *tail
= (unsigned long) sfb
->sdbt
+ 1;
1776 * Initial all SDBs are zeroed. Mark it as empty.
1777 * So there is no need to clear the full indicator
1778 * when this event is first added.
1780 aux
->empty_mark
= sfb
->num_sdb
- 1;
1782 debug_sprintf_event(sfdbg
, 4, "%s: SDBTs %lu SDBs %lu\n", __func__
,
1783 sfb
->num_sdbt
, sfb
->num_sdb
);
1788 /* SDBs (AUX buffer pages) are freed by caller */
1789 for (i
= 0; i
< sfb
->num_sdbt
; i
++)
1790 free_page(aux
->sdbt_index
[i
]);
1791 kfree(aux
->sdb_index
);
1793 kfree(aux
->sdbt_index
);
1800 static void cpumsf_pmu_read(struct perf_event
*event
)
1802 /* Nothing to do ... updates are interrupt-driven */
1805 /* Check if the new sampling period/freqeuncy is appropriate.
1807 * Return non-zero on error and zero on passed checks.
1809 static int cpumsf_pmu_check_period(struct perf_event
*event
, u64 value
)
1811 struct hws_qsi_info_block si
;
1815 memset(&si
, 0, sizeof(si
));
1816 if (event
->cpu
== -1) {
1820 /* Event is pinned to a particular CPU, retrieve the per-CPU
1821 * sampling structure for accessing the CPU-specific QSI.
1823 struct cpu_hw_sf
*cpuhw
= &per_cpu(cpu_hw_sf
, event
->cpu
);
1828 do_freq
= !!SAMPLE_FREQ_MODE(&event
->hw
);
1829 rate
= getrate(do_freq
, value
, &si
);
1833 event
->attr
.sample_period
= rate
;
1834 SAMPL_RATE(&event
->hw
) = rate
;
1835 hw_init_period(&event
->hw
, SAMPL_RATE(&event
->hw
));
1836 debug_sprintf_event(sfdbg
, 4, "%s:"
1837 " cpu %d value %#llx period %#llx freq %d\n",
1838 __func__
, event
->cpu
, value
,
1839 event
->attr
.sample_period
, do_freq
);
1843 /* Activate sampling control.
1844 * Next call of pmu_enable() starts sampling.
1846 static void cpumsf_pmu_start(struct perf_event
*event
, int flags
)
1848 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1850 if (WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_STOPPED
)))
1853 if (flags
& PERF_EF_RELOAD
)
1854 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1856 perf_pmu_disable(event
->pmu
);
1857 event
->hw
.state
= 0;
1858 cpuhw
->lsctl
.cs
= 1;
1859 if (SAMPL_DIAG_MODE(&event
->hw
))
1860 cpuhw
->lsctl
.cd
= 1;
1861 perf_pmu_enable(event
->pmu
);
1864 /* Deactivate sampling control.
1865 * Next call of pmu_enable() stops sampling.
1867 static void cpumsf_pmu_stop(struct perf_event
*event
, int flags
)
1869 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1871 if (event
->hw
.state
& PERF_HES_STOPPED
)
1874 perf_pmu_disable(event
->pmu
);
1875 cpuhw
->lsctl
.cs
= 0;
1876 cpuhw
->lsctl
.cd
= 0;
1877 event
->hw
.state
|= PERF_HES_STOPPED
;
1879 if ((flags
& PERF_EF_UPDATE
) && !(event
->hw
.state
& PERF_HES_UPTODATE
)) {
1880 hw_perf_event_update(event
, 1);
1881 event
->hw
.state
|= PERF_HES_UPTODATE
;
1883 perf_pmu_enable(event
->pmu
);
1886 static int cpumsf_pmu_add(struct perf_event
*event
, int flags
)
1888 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1889 struct aux_buffer
*aux
;
1892 if (cpuhw
->flags
& PMU_F_IN_USE
)
1895 if (!SAMPL_DIAG_MODE(&event
->hw
) && !cpuhw
->sfb
.sdbt
)
1899 perf_pmu_disable(event
->pmu
);
1901 event
->hw
.state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
1903 /* Set up sampling controls. Always program the sampling register
1904 * using the SDB-table start. Reset TEAR_REG event hardware register
1905 * that is used by hw_perf_event_update() to store the sampling buffer
1906 * position after samples have been flushed.
1910 cpuhw
->lsctl
.interval
= SAMPL_RATE(&event
->hw
);
1911 if (!SAMPL_DIAG_MODE(&event
->hw
)) {
1912 cpuhw
->lsctl
.tear
= (unsigned long) cpuhw
->sfb
.sdbt
;
1913 cpuhw
->lsctl
.dear
= *(unsigned long *) cpuhw
->sfb
.sdbt
;
1914 TEAR_REG(&event
->hw
) = (unsigned long) cpuhw
->sfb
.sdbt
;
1917 /* Ensure sampling functions are in the disabled state. If disabled,
1918 * switch on sampling enable control. */
1919 if (WARN_ON_ONCE(cpuhw
->lsctl
.es
== 1 || cpuhw
->lsctl
.ed
== 1)) {
1923 if (SAMPL_DIAG_MODE(&event
->hw
)) {
1924 aux
= perf_aux_output_begin(&cpuhw
->handle
, event
);
1929 err
= aux_output_begin(&cpuhw
->handle
, aux
, cpuhw
);
1932 cpuhw
->lsctl
.ed
= 1;
1934 cpuhw
->lsctl
.es
= 1;
1936 /* Set in_use flag and store event */
1937 cpuhw
->event
= event
;
1938 cpuhw
->flags
|= PMU_F_IN_USE
;
1940 if (flags
& PERF_EF_START
)
1941 cpumsf_pmu_start(event
, PERF_EF_RELOAD
);
1943 perf_event_update_userpage(event
);
1944 perf_pmu_enable(event
->pmu
);
1948 static void cpumsf_pmu_del(struct perf_event
*event
, int flags
)
1950 struct cpu_hw_sf
*cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
1952 perf_pmu_disable(event
->pmu
);
1953 cpumsf_pmu_stop(event
, PERF_EF_UPDATE
);
1955 cpuhw
->lsctl
.es
= 0;
1956 cpuhw
->lsctl
.ed
= 0;
1957 cpuhw
->flags
&= ~PMU_F_IN_USE
;
1958 cpuhw
->event
= NULL
;
1960 if (SAMPL_DIAG_MODE(&event
->hw
))
1961 aux_output_end(&cpuhw
->handle
);
1962 perf_event_update_userpage(event
);
1963 perf_pmu_enable(event
->pmu
);
1966 CPUMF_EVENT_ATTR(SF
, SF_CYCLES_BASIC
, PERF_EVENT_CPUM_SF
);
1967 CPUMF_EVENT_ATTR(SF
, SF_CYCLES_BASIC_DIAG
, PERF_EVENT_CPUM_SF_DIAG
);
1969 /* Attribute list for CPU_SF.
1971 * The availablitiy depends on the CPU_MF sampling facility authorization
1972 * for basic + diagnositic samples. This is determined at initialization
1973 * time by the sampling facility device driver.
1974 * If the authorization for basic samples is turned off, it should be
1975 * also turned off for diagnostic sampling.
1977 * During initialization of the device driver, check the authorization
1978 * level for diagnostic sampling and installs the attribute
1979 * file for diagnostic sampling if necessary.
1981 * For now install a placeholder to reference all possible attributes:
1982 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1983 * Add another entry for the final NULL pointer.
1986 SF_CYCLES_BASIC_ATTR_IDX
= 0,
1987 SF_CYCLES_BASIC_DIAG_ATTR_IDX
,
1991 static struct attribute
*cpumsf_pmu_events_attr
[SF_CYCLES_ATTR_MAX
+ 1] = {
1992 [SF_CYCLES_BASIC_ATTR_IDX
] = CPUMF_EVENT_PTR(SF
, SF_CYCLES_BASIC
)
1995 PMU_FORMAT_ATTR(event
, "config:0-63");
1997 static struct attribute
*cpumsf_pmu_format_attr
[] = {
1998 &format_attr_event
.attr
,
2002 static struct attribute_group cpumsf_pmu_events_group
= {
2004 .attrs
= cpumsf_pmu_events_attr
,
2007 static struct attribute_group cpumsf_pmu_format_group
= {
2009 .attrs
= cpumsf_pmu_format_attr
,
2012 static const struct attribute_group
*cpumsf_pmu_attr_groups
[] = {
2013 &cpumsf_pmu_events_group
,
2014 &cpumsf_pmu_format_group
,
2018 static struct pmu cpumf_sampling
= {
2019 .pmu_enable
= cpumsf_pmu_enable
,
2020 .pmu_disable
= cpumsf_pmu_disable
,
2022 .event_init
= cpumsf_pmu_event_init
,
2023 .add
= cpumsf_pmu_add
,
2024 .del
= cpumsf_pmu_del
,
2026 .start
= cpumsf_pmu_start
,
2027 .stop
= cpumsf_pmu_stop
,
2028 .read
= cpumsf_pmu_read
,
2030 .attr_groups
= cpumsf_pmu_attr_groups
,
2032 .setup_aux
= aux_buffer_setup
,
2033 .free_aux
= aux_buffer_free
,
2035 .check_period
= cpumsf_pmu_check_period
,
2038 static void cpumf_measurement_alert(struct ext_code ext_code
,
2039 unsigned int alert
, unsigned long unused
)
2041 struct cpu_hw_sf
*cpuhw
;
2043 if (!(alert
& CPU_MF_INT_SF_MASK
))
2045 inc_irq_stat(IRQEXT_CMS
);
2046 cpuhw
= this_cpu_ptr(&cpu_hw_sf
);
2048 /* Measurement alerts are shared and might happen when the PMU
2049 * is not reserved. Ignore these alerts in this case. */
2050 if (!(cpuhw
->flags
& PMU_F_RESERVED
))
2053 /* The processing below must take care of multiple alert events that
2054 * might be indicated concurrently. */
2056 /* Program alert request */
2057 if (alert
& CPU_MF_INT_SF_PRA
) {
2058 if (cpuhw
->flags
& PMU_F_IN_USE
)
2059 if (SAMPL_DIAG_MODE(&cpuhw
->event
->hw
))
2060 hw_collect_aux(cpuhw
);
2062 hw_perf_event_update(cpuhw
->event
, 0);
2064 WARN_ON_ONCE(!(cpuhw
->flags
& PMU_F_IN_USE
));
2067 /* Report measurement alerts only for non-PRA codes */
2068 if (alert
!= CPU_MF_INT_SF_PRA
)
2069 debug_sprintf_event(sfdbg
, 6, "%s: alert %#x\n", __func__
,
2072 /* Sampling authorization change request */
2073 if (alert
& CPU_MF_INT_SF_SACA
)
2076 /* Loss of sample data due to high-priority machine activities */
2077 if (alert
& CPU_MF_INT_SF_LSDA
) {
2078 pr_err("Sample data was lost\n");
2079 cpuhw
->flags
|= PMU_F_ERR_LSDA
;
2083 /* Invalid sampling buffer entry */
2084 if (alert
& (CPU_MF_INT_SF_IAE
|CPU_MF_INT_SF_ISE
)) {
2085 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2087 cpuhw
->flags
|= PMU_F_ERR_IBE
;
2092 static int cpusf_pmu_setup(unsigned int cpu
, int flags
)
2094 /* Ignore the notification if no events are scheduled on the PMU.
2095 * This might be racy...
2097 if (!atomic_read(&num_events
))
2100 local_irq_disable();
2101 setup_pmc_cpu(&flags
);
2106 static int s390_pmu_sf_online_cpu(unsigned int cpu
)
2108 return cpusf_pmu_setup(cpu
, PMC_INIT
);
2111 static int s390_pmu_sf_offline_cpu(unsigned int cpu
)
2113 return cpusf_pmu_setup(cpu
, PMC_RELEASE
);
2116 static int param_get_sfb_size(char *buffer
, const struct kernel_param
*kp
)
2118 if (!cpum_sf_avail())
2120 return sprintf(buffer
, "%lu,%lu", CPUM_SF_MIN_SDB
, CPUM_SF_MAX_SDB
);
2123 static int param_set_sfb_size(const char *val
, const struct kernel_param
*kp
)
2126 unsigned long min
, max
;
2128 if (!cpum_sf_avail())
2130 if (!val
|| !strlen(val
))
2133 /* Valid parameter values: "min,max" or "max" */
2134 min
= CPUM_SF_MIN_SDB
;
2135 max
= CPUM_SF_MAX_SDB
;
2136 if (strchr(val
, ','))
2137 rc
= (sscanf(val
, "%lu,%lu", &min
, &max
) == 2) ? 0 : -EINVAL
;
2139 rc
= kstrtoul(val
, 10, &max
);
2141 if (min
< 2 || min
>= max
|| max
> get_num_physpages())
2146 sfb_set_limits(min
, max
);
2147 pr_info("The sampling buffer limits have changed to: "
2148 "min %lu max %lu (diag %lu)\n",
2149 CPUM_SF_MIN_SDB
, CPUM_SF_MAX_SDB
, CPUM_SF_SDB_DIAG_FACTOR
);
2153 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2154 static const struct kernel_param_ops param_ops_sfb_size
= {
2155 .set
= param_set_sfb_size
,
2156 .get
= param_get_sfb_size
,
2159 #define RS_INIT_FAILURE_QSI 0x0001
2160 #define RS_INIT_FAILURE_BSDES 0x0002
2161 #define RS_INIT_FAILURE_ALRT 0x0003
2162 #define RS_INIT_FAILURE_PERF 0x0004
2163 static void __init
pr_cpumsf_err(unsigned int reason
)
2165 pr_err("Sampling facility support for perf is not available: "
2166 "reason %#x\n", reason
);
2169 static int __init
init_cpum_sampling_pmu(void)
2171 struct hws_qsi_info_block si
;
2174 if (!cpum_sf_avail())
2177 memset(&si
, 0, sizeof(si
));
2179 pr_cpumsf_err(RS_INIT_FAILURE_QSI
);
2183 if (!si
.as
&& !si
.ad
)
2186 if (si
.bsdes
!= sizeof(struct hws_basic_entry
)) {
2187 pr_cpumsf_err(RS_INIT_FAILURE_BSDES
);
2192 sfb_set_limits(CPUM_SF_MIN_SDB
, CPUM_SF_MAX_SDB
);
2193 /* Sampling of diagnostic data authorized,
2194 * install event into attribute list of PMU device.
2196 cpumsf_pmu_events_attr
[SF_CYCLES_BASIC_DIAG_ATTR_IDX
] =
2197 CPUMF_EVENT_PTR(SF
, SF_CYCLES_BASIC_DIAG
);
2200 sfdbg
= debug_register(KMSG_COMPONENT
, 2, 1, 80);
2202 pr_err("Registering for s390dbf failed\n");
2205 debug_register_view(sfdbg
, &debug_sprintf_view
);
2207 err
= register_external_irq(EXT_IRQ_MEASURE_ALERT
,
2208 cpumf_measurement_alert
);
2210 pr_cpumsf_err(RS_INIT_FAILURE_ALRT
);
2211 debug_unregister(sfdbg
);
2215 err
= perf_pmu_register(&cpumf_sampling
, "cpum_sf", PERF_TYPE_RAW
);
2217 pr_cpumsf_err(RS_INIT_FAILURE_PERF
);
2218 unregister_external_irq(EXT_IRQ_MEASURE_ALERT
,
2219 cpumf_measurement_alert
);
2220 debug_unregister(sfdbg
);
2224 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE
, "perf/s390/sf:online",
2225 s390_pmu_sf_online_cpu
, s390_pmu_sf_offline_cpu
);
2230 arch_initcall(init_cpum_sampling_pmu
);
2231 core_param(cpum_sfb_size
, CPUM_SF_MAX_SDB
, sfb_size
, 0644);