io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / arch / s390 / mm / fault.c
blobb8210103de14f575b5503bcad5c4b945440ae90c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/gmap.h>
37 #include <asm/irq.h>
38 #include <asm/mmu_context.h>
39 #include <asm/facility.h>
40 #include <asm/uv.h>
41 #include "../kernel/entry.h"
43 #define __FAIL_ADDR_MASK -4096L
44 #define __SUBCODE_MASK 0x0600
45 #define __PF_RES_FIELD 0x8000000000000000ULL
47 #define VM_FAULT_BADCONTEXT ((__force vm_fault_t) 0x010000)
48 #define VM_FAULT_BADMAP ((__force vm_fault_t) 0x020000)
49 #define VM_FAULT_BADACCESS ((__force vm_fault_t) 0x040000)
50 #define VM_FAULT_SIGNAL ((__force vm_fault_t) 0x080000)
51 #define VM_FAULT_PFAULT ((__force vm_fault_t) 0x100000)
53 enum fault_type {
54 KERNEL_FAULT,
55 USER_FAULT,
56 GMAP_FAULT,
59 static unsigned long store_indication __read_mostly;
61 static int __init fault_init(void)
63 if (test_facility(75))
64 store_indication = 0xc00;
65 return 0;
67 early_initcall(fault_init);
70 * Find out which address space caused the exception.
72 static enum fault_type get_fault_type(struct pt_regs *regs)
74 unsigned long trans_exc_code;
76 trans_exc_code = regs->int_parm_long & 3;
77 if (likely(trans_exc_code == 0)) {
78 /* primary space exception */
79 if (user_mode(regs))
80 return USER_FAULT;
81 if (!IS_ENABLED(CONFIG_PGSTE))
82 return KERNEL_FAULT;
83 if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
84 return GMAP_FAULT;
85 return KERNEL_FAULT;
87 if (trans_exc_code == 2)
88 return USER_FAULT;
89 if (trans_exc_code == 1) {
90 /* access register mode, not used in the kernel */
91 return USER_FAULT;
93 /* home space exception -> access via kernel ASCE */
94 return KERNEL_FAULT;
97 static int bad_address(void *p)
99 unsigned long dummy;
101 return get_kernel_nofault(dummy, (unsigned long *)p);
104 static void dump_pagetable(unsigned long asce, unsigned long address)
106 unsigned long *table = __va(asce & _ASCE_ORIGIN);
108 pr_alert("AS:%016lx ", asce);
109 switch (asce & _ASCE_TYPE_MASK) {
110 case _ASCE_TYPE_REGION1:
111 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
112 if (bad_address(table))
113 goto bad;
114 pr_cont("R1:%016lx ", *table);
115 if (*table & _REGION_ENTRY_INVALID)
116 goto out;
117 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
118 fallthrough;
119 case _ASCE_TYPE_REGION2:
120 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
121 if (bad_address(table))
122 goto bad;
123 pr_cont("R2:%016lx ", *table);
124 if (*table & _REGION_ENTRY_INVALID)
125 goto out;
126 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
127 fallthrough;
128 case _ASCE_TYPE_REGION3:
129 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
130 if (bad_address(table))
131 goto bad;
132 pr_cont("R3:%016lx ", *table);
133 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
134 goto out;
135 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
136 fallthrough;
137 case _ASCE_TYPE_SEGMENT:
138 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
139 if (bad_address(table))
140 goto bad;
141 pr_cont("S:%016lx ", *table);
142 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
143 goto out;
144 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
146 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
147 if (bad_address(table))
148 goto bad;
149 pr_cont("P:%016lx ", *table);
150 out:
151 pr_cont("\n");
152 return;
153 bad:
154 pr_cont("BAD\n");
157 static void dump_fault_info(struct pt_regs *regs)
159 unsigned long asce;
161 pr_alert("Failing address: %016lx TEID: %016lx\n",
162 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
163 pr_alert("Fault in ");
164 switch (regs->int_parm_long & 3) {
165 case 3:
166 pr_cont("home space ");
167 break;
168 case 2:
169 pr_cont("secondary space ");
170 break;
171 case 1:
172 pr_cont("access register ");
173 break;
174 case 0:
175 pr_cont("primary space ");
176 break;
178 pr_cont("mode while using ");
179 switch (get_fault_type(regs)) {
180 case USER_FAULT:
181 asce = S390_lowcore.user_asce;
182 pr_cont("user ");
183 break;
184 case GMAP_FAULT:
185 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
186 pr_cont("gmap ");
187 break;
188 case KERNEL_FAULT:
189 asce = S390_lowcore.kernel_asce;
190 pr_cont("kernel ");
191 break;
192 default:
193 unreachable();
195 pr_cont("ASCE.\n");
196 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
199 int show_unhandled_signals = 1;
201 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
203 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
204 return;
205 if (!unhandled_signal(current, signr))
206 return;
207 if (!printk_ratelimit())
208 return;
209 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
210 regs->int_code & 0xffff, regs->int_code >> 17);
211 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
212 printk(KERN_CONT "\n");
213 if (is_mm_fault)
214 dump_fault_info(regs);
215 show_regs(regs);
219 * Send SIGSEGV to task. This is an external routine
220 * to keep the stack usage of do_page_fault small.
222 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
224 report_user_fault(regs, SIGSEGV, 1);
225 force_sig_fault(SIGSEGV, si_code,
226 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
229 const struct exception_table_entry *s390_search_extables(unsigned long addr)
231 const struct exception_table_entry *fixup;
233 fixup = search_extable(__start_dma_ex_table,
234 __stop_dma_ex_table - __start_dma_ex_table,
235 addr);
236 if (!fixup)
237 fixup = search_exception_tables(addr);
238 return fixup;
241 static noinline void do_no_context(struct pt_regs *regs)
243 const struct exception_table_entry *fixup;
245 /* Are we prepared to handle this kernel fault? */
246 fixup = s390_search_extables(regs->psw.addr);
247 if (fixup && ex_handle(fixup, regs))
248 return;
251 * Oops. The kernel tried to access some bad page. We'll have to
252 * terminate things with extreme prejudice.
254 if (get_fault_type(regs) == KERNEL_FAULT)
255 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
256 " in virtual kernel address space\n");
257 else
258 printk(KERN_ALERT "Unable to handle kernel paging request"
259 " in virtual user address space\n");
260 dump_fault_info(regs);
261 die(regs, "Oops");
262 do_exit(SIGKILL);
265 static noinline void do_low_address(struct pt_regs *regs)
267 /* Low-address protection hit in kernel mode means
268 NULL pointer write access in kernel mode. */
269 if (regs->psw.mask & PSW_MASK_PSTATE) {
270 /* Low-address protection hit in user mode 'cannot happen'. */
271 die (regs, "Low-address protection");
272 do_exit(SIGKILL);
275 do_no_context(regs);
278 static noinline void do_sigbus(struct pt_regs *regs)
281 * Send a sigbus, regardless of whether we were in kernel
282 * or user mode.
284 force_sig_fault(SIGBUS, BUS_ADRERR,
285 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
288 static noinline int signal_return(struct pt_regs *regs)
290 u16 instruction;
291 int rc;
293 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
294 if (rc)
295 return rc;
296 if (instruction == 0x0a77) {
297 set_pt_regs_flag(regs, PIF_SYSCALL);
298 regs->int_code = 0x00040077;
299 return 0;
300 } else if (instruction == 0x0aad) {
301 set_pt_regs_flag(regs, PIF_SYSCALL);
302 regs->int_code = 0x000400ad;
303 return 0;
305 return -EACCES;
308 static noinline void do_fault_error(struct pt_regs *regs, int access,
309 vm_fault_t fault)
311 int si_code;
313 switch (fault) {
314 case VM_FAULT_BADACCESS:
315 if (access == VM_EXEC && signal_return(regs) == 0)
316 break;
317 fallthrough;
318 case VM_FAULT_BADMAP:
319 /* Bad memory access. Check if it is kernel or user space. */
320 if (user_mode(regs)) {
321 /* User mode accesses just cause a SIGSEGV */
322 si_code = (fault == VM_FAULT_BADMAP) ?
323 SEGV_MAPERR : SEGV_ACCERR;
324 do_sigsegv(regs, si_code);
325 break;
327 fallthrough;
328 case VM_FAULT_BADCONTEXT:
329 case VM_FAULT_PFAULT:
330 do_no_context(regs);
331 break;
332 case VM_FAULT_SIGNAL:
333 if (!user_mode(regs))
334 do_no_context(regs);
335 break;
336 default: /* fault & VM_FAULT_ERROR */
337 if (fault & VM_FAULT_OOM) {
338 if (!user_mode(regs))
339 do_no_context(regs);
340 else
341 pagefault_out_of_memory();
342 } else if (fault & VM_FAULT_SIGSEGV) {
343 /* Kernel mode? Handle exceptions or die */
344 if (!user_mode(regs))
345 do_no_context(regs);
346 else
347 do_sigsegv(regs, SEGV_MAPERR);
348 } else if (fault & VM_FAULT_SIGBUS) {
349 /* Kernel mode? Handle exceptions or die */
350 if (!user_mode(regs))
351 do_no_context(regs);
352 else
353 do_sigbus(regs);
354 } else
355 BUG();
356 break;
361 * This routine handles page faults. It determines the address,
362 * and the problem, and then passes it off to one of the appropriate
363 * routines.
365 * interruption code (int_code):
366 * 04 Protection -> Write-Protection (suppression)
367 * 10 Segment translation -> Not present (nullification)
368 * 11 Page translation -> Not present (nullification)
369 * 3b Region third trans. -> Not present (nullification)
371 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
373 struct gmap *gmap;
374 struct task_struct *tsk;
375 struct mm_struct *mm;
376 struct vm_area_struct *vma;
377 enum fault_type type;
378 unsigned long trans_exc_code;
379 unsigned long address;
380 unsigned int flags;
381 vm_fault_t fault;
383 tsk = current;
385 * The instruction that caused the program check has
386 * been nullified. Don't signal single step via SIGTRAP.
388 clear_pt_regs_flag(regs, PIF_PER_TRAP);
390 if (kprobe_page_fault(regs, 14))
391 return 0;
393 mm = tsk->mm;
394 trans_exc_code = regs->int_parm_long;
397 * Verify that the fault happened in user space, that
398 * we are not in an interrupt and that there is a
399 * user context.
401 fault = VM_FAULT_BADCONTEXT;
402 type = get_fault_type(regs);
403 switch (type) {
404 case KERNEL_FAULT:
405 goto out;
406 case USER_FAULT:
407 case GMAP_FAULT:
408 if (faulthandler_disabled() || !mm)
409 goto out;
410 break;
413 address = trans_exc_code & __FAIL_ADDR_MASK;
414 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
415 flags = FAULT_FLAG_DEFAULT;
416 if (user_mode(regs))
417 flags |= FAULT_FLAG_USER;
418 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
419 flags |= FAULT_FLAG_WRITE;
420 mmap_read_lock(mm);
422 gmap = NULL;
423 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
424 gmap = (struct gmap *) S390_lowcore.gmap;
425 current->thread.gmap_addr = address;
426 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
427 current->thread.gmap_int_code = regs->int_code & 0xffff;
428 address = __gmap_translate(gmap, address);
429 if (address == -EFAULT) {
430 fault = VM_FAULT_BADMAP;
431 goto out_up;
433 if (gmap->pfault_enabled)
434 flags |= FAULT_FLAG_RETRY_NOWAIT;
437 retry:
438 fault = VM_FAULT_BADMAP;
439 vma = find_vma(mm, address);
440 if (!vma)
441 goto out_up;
443 if (unlikely(vma->vm_start > address)) {
444 if (!(vma->vm_flags & VM_GROWSDOWN))
445 goto out_up;
446 if (expand_stack(vma, address))
447 goto out_up;
451 * Ok, we have a good vm_area for this memory access, so
452 * we can handle it..
454 fault = VM_FAULT_BADACCESS;
455 if (unlikely(!(vma->vm_flags & access)))
456 goto out_up;
458 if (is_vm_hugetlb_page(vma))
459 address &= HPAGE_MASK;
461 * If for any reason at all we couldn't handle the fault,
462 * make sure we exit gracefully rather than endlessly redo
463 * the fault.
465 fault = handle_mm_fault(vma, address, flags, regs);
466 if (fault_signal_pending(fault, regs)) {
467 fault = VM_FAULT_SIGNAL;
468 if (flags & FAULT_FLAG_RETRY_NOWAIT)
469 goto out_up;
470 goto out;
472 if (unlikely(fault & VM_FAULT_ERROR))
473 goto out_up;
475 if (flags & FAULT_FLAG_ALLOW_RETRY) {
476 if (fault & VM_FAULT_RETRY) {
477 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
478 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
479 /* FAULT_FLAG_RETRY_NOWAIT has been set,
480 * mmap_lock has not been released */
481 current->thread.gmap_pfault = 1;
482 fault = VM_FAULT_PFAULT;
483 goto out_up;
485 flags &= ~FAULT_FLAG_RETRY_NOWAIT;
486 flags |= FAULT_FLAG_TRIED;
487 mmap_read_lock(mm);
488 goto retry;
491 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
492 address = __gmap_link(gmap, current->thread.gmap_addr,
493 address);
494 if (address == -EFAULT) {
495 fault = VM_FAULT_BADMAP;
496 goto out_up;
498 if (address == -ENOMEM) {
499 fault = VM_FAULT_OOM;
500 goto out_up;
503 fault = 0;
504 out_up:
505 mmap_read_unlock(mm);
506 out:
507 return fault;
510 void do_protection_exception(struct pt_regs *regs)
512 unsigned long trans_exc_code;
513 int access;
514 vm_fault_t fault;
516 trans_exc_code = regs->int_parm_long;
518 * Protection exceptions are suppressing, decrement psw address.
519 * The exception to this rule are aborted transactions, for these
520 * the PSW already points to the correct location.
522 if (!(regs->int_code & 0x200))
523 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
525 * Check for low-address protection. This needs to be treated
526 * as a special case because the translation exception code
527 * field is not guaranteed to contain valid data in this case.
529 if (unlikely(!(trans_exc_code & 4))) {
530 do_low_address(regs);
531 return;
533 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
534 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
535 (regs->psw.addr & PAGE_MASK);
536 access = VM_EXEC;
537 fault = VM_FAULT_BADACCESS;
538 } else {
539 access = VM_WRITE;
540 fault = do_exception(regs, access);
542 if (unlikely(fault))
543 do_fault_error(regs, access, fault);
545 NOKPROBE_SYMBOL(do_protection_exception);
547 void do_dat_exception(struct pt_regs *regs)
549 int access;
550 vm_fault_t fault;
552 access = VM_ACCESS_FLAGS;
553 fault = do_exception(regs, access);
554 if (unlikely(fault))
555 do_fault_error(regs, access, fault);
557 NOKPROBE_SYMBOL(do_dat_exception);
559 #ifdef CONFIG_PFAULT
561 * 'pfault' pseudo page faults routines.
563 static int pfault_disable;
565 static int __init nopfault(char *str)
567 pfault_disable = 1;
568 return 1;
571 __setup("nopfault", nopfault);
573 struct pfault_refbk {
574 u16 refdiagc;
575 u16 reffcode;
576 u16 refdwlen;
577 u16 refversn;
578 u64 refgaddr;
579 u64 refselmk;
580 u64 refcmpmk;
581 u64 reserved;
582 } __attribute__ ((packed, aligned(8)));
584 static struct pfault_refbk pfault_init_refbk = {
585 .refdiagc = 0x258,
586 .reffcode = 0,
587 .refdwlen = 5,
588 .refversn = 2,
589 .refgaddr = __LC_LPP,
590 .refselmk = 1ULL << 48,
591 .refcmpmk = 1ULL << 48,
592 .reserved = __PF_RES_FIELD
595 int pfault_init(void)
597 int rc;
599 if (pfault_disable)
600 return -1;
601 diag_stat_inc(DIAG_STAT_X258);
602 asm volatile(
603 " diag %1,%0,0x258\n"
604 "0: j 2f\n"
605 "1: la %0,8\n"
606 "2:\n"
607 EX_TABLE(0b,1b)
608 : "=d" (rc)
609 : "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
610 return rc;
613 static struct pfault_refbk pfault_fini_refbk = {
614 .refdiagc = 0x258,
615 .reffcode = 1,
616 .refdwlen = 5,
617 .refversn = 2,
620 void pfault_fini(void)
623 if (pfault_disable)
624 return;
625 diag_stat_inc(DIAG_STAT_X258);
626 asm volatile(
627 " diag %0,0,0x258\n"
628 "0: nopr %%r7\n"
629 EX_TABLE(0b,0b)
630 : : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
633 static DEFINE_SPINLOCK(pfault_lock);
634 static LIST_HEAD(pfault_list);
636 #define PF_COMPLETE 0x0080
639 * The mechanism of our pfault code: if Linux is running as guest, runs a user
640 * space process and the user space process accesses a page that the host has
641 * paged out we get a pfault interrupt.
643 * This allows us, within the guest, to schedule a different process. Without
644 * this mechanism the host would have to suspend the whole virtual cpu until
645 * the page has been paged in.
647 * So when we get such an interrupt then we set the state of the current task
648 * to uninterruptible and also set the need_resched flag. Both happens within
649 * interrupt context(!). If we later on want to return to user space we
650 * recognize the need_resched flag and then call schedule(). It's not very
651 * obvious how this works...
653 * Of course we have a lot of additional fun with the completion interrupt (->
654 * host signals that a page of a process has been paged in and the process can
655 * continue to run). This interrupt can arrive on any cpu and, since we have
656 * virtual cpus, actually appear before the interrupt that signals that a page
657 * is missing.
659 static void pfault_interrupt(struct ext_code ext_code,
660 unsigned int param32, unsigned long param64)
662 struct task_struct *tsk;
663 __u16 subcode;
664 pid_t pid;
667 * Get the external interruption subcode & pfault initial/completion
668 * signal bit. VM stores this in the 'cpu address' field associated
669 * with the external interrupt.
671 subcode = ext_code.subcode;
672 if ((subcode & 0xff00) != __SUBCODE_MASK)
673 return;
674 inc_irq_stat(IRQEXT_PFL);
675 /* Get the token (= pid of the affected task). */
676 pid = param64 & LPP_PID_MASK;
677 rcu_read_lock();
678 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
679 if (tsk)
680 get_task_struct(tsk);
681 rcu_read_unlock();
682 if (!tsk)
683 return;
684 spin_lock(&pfault_lock);
685 if (subcode & PF_COMPLETE) {
686 /* signal bit is set -> a page has been swapped in by VM */
687 if (tsk->thread.pfault_wait == 1) {
688 /* Initial interrupt was faster than the completion
689 * interrupt. pfault_wait is valid. Set pfault_wait
690 * back to zero and wake up the process. This can
691 * safely be done because the task is still sleeping
692 * and can't produce new pfaults. */
693 tsk->thread.pfault_wait = 0;
694 list_del(&tsk->thread.list);
695 wake_up_process(tsk);
696 put_task_struct(tsk);
697 } else {
698 /* Completion interrupt was faster than initial
699 * interrupt. Set pfault_wait to -1 so the initial
700 * interrupt doesn't put the task to sleep.
701 * If the task is not running, ignore the completion
702 * interrupt since it must be a leftover of a PFAULT
703 * CANCEL operation which didn't remove all pending
704 * completion interrupts. */
705 if (tsk->state == TASK_RUNNING)
706 tsk->thread.pfault_wait = -1;
708 } else {
709 /* signal bit not set -> a real page is missing. */
710 if (WARN_ON_ONCE(tsk != current))
711 goto out;
712 if (tsk->thread.pfault_wait == 1) {
713 /* Already on the list with a reference: put to sleep */
714 goto block;
715 } else if (tsk->thread.pfault_wait == -1) {
716 /* Completion interrupt was faster than the initial
717 * interrupt (pfault_wait == -1). Set pfault_wait
718 * back to zero and exit. */
719 tsk->thread.pfault_wait = 0;
720 } else {
721 /* Initial interrupt arrived before completion
722 * interrupt. Let the task sleep.
723 * An extra task reference is needed since a different
724 * cpu may set the task state to TASK_RUNNING again
725 * before the scheduler is reached. */
726 get_task_struct(tsk);
727 tsk->thread.pfault_wait = 1;
728 list_add(&tsk->thread.list, &pfault_list);
729 block:
730 /* Since this must be a userspace fault, there
731 * is no kernel task state to trample. Rely on the
732 * return to userspace schedule() to block. */
733 __set_current_state(TASK_UNINTERRUPTIBLE);
734 set_tsk_need_resched(tsk);
735 set_preempt_need_resched();
738 out:
739 spin_unlock(&pfault_lock);
740 put_task_struct(tsk);
743 static int pfault_cpu_dead(unsigned int cpu)
745 struct thread_struct *thread, *next;
746 struct task_struct *tsk;
748 spin_lock_irq(&pfault_lock);
749 list_for_each_entry_safe(thread, next, &pfault_list, list) {
750 thread->pfault_wait = 0;
751 list_del(&thread->list);
752 tsk = container_of(thread, struct task_struct, thread);
753 wake_up_process(tsk);
754 put_task_struct(tsk);
756 spin_unlock_irq(&pfault_lock);
757 return 0;
760 static int __init pfault_irq_init(void)
762 int rc;
764 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
765 if (rc)
766 goto out_extint;
767 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
768 if (rc)
769 goto out_pfault;
770 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
771 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
772 NULL, pfault_cpu_dead);
773 return 0;
775 out_pfault:
776 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
777 out_extint:
778 pfault_disable = 1;
779 return rc;
781 early_initcall(pfault_irq_init);
783 #endif /* CONFIG_PFAULT */
785 #if IS_ENABLED(CONFIG_PGSTE)
786 void do_secure_storage_access(struct pt_regs *regs)
788 unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
789 struct vm_area_struct *vma;
790 struct mm_struct *mm;
791 struct page *page;
792 int rc;
794 switch (get_fault_type(regs)) {
795 case USER_FAULT:
796 mm = current->mm;
797 mmap_read_lock(mm);
798 vma = find_vma(mm, addr);
799 if (!vma) {
800 mmap_read_unlock(mm);
801 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
802 break;
804 page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
805 if (IS_ERR_OR_NULL(page)) {
806 mmap_read_unlock(mm);
807 break;
809 if (arch_make_page_accessible(page))
810 send_sig(SIGSEGV, current, 0);
811 put_page(page);
812 mmap_read_unlock(mm);
813 break;
814 case KERNEL_FAULT:
815 page = phys_to_page(addr);
816 if (unlikely(!try_get_page(page)))
817 break;
818 rc = arch_make_page_accessible(page);
819 put_page(page);
820 if (rc)
821 BUG();
822 break;
823 case GMAP_FAULT:
824 default:
825 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
826 WARN_ON_ONCE(1);
829 NOKPROBE_SYMBOL(do_secure_storage_access);
831 void do_non_secure_storage_access(struct pt_regs *regs)
833 unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
834 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
836 if (get_fault_type(regs) != GMAP_FAULT) {
837 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
838 WARN_ON_ONCE(1);
839 return;
842 if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
843 send_sig(SIGSEGV, current, 0);
845 NOKPROBE_SYMBOL(do_non_secure_storage_access);
847 void do_secure_storage_violation(struct pt_regs *regs)
850 * Either KVM messed up the secure guest mapping or the same
851 * page is mapped into multiple secure guests.
853 * This exception is only triggered when a guest 2 is running
854 * and can therefore never occur in kernel context.
856 printk_ratelimited(KERN_WARNING
857 "Secure storage violation in task: %s, pid %d\n",
858 current->comm, current->pid);
859 send_sig(SIGSEGV, current, 0);
862 #else
863 void do_secure_storage_access(struct pt_regs *regs)
865 default_trap_handler(regs);
868 void do_non_secure_storage_access(struct pt_regs *regs)
870 default_trap_handler(regs);
873 void do_secure_storage_violation(struct pt_regs *regs)
875 default_trap_handler(regs);
877 #endif