1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
23 #include <trace/events/block.h>
25 #include "blk-rq-qos.h"
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
31 #define BIO_INLINE_VECS 4
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
38 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39 static struct biovec_slab bvec_slabs
[BVEC_POOL_NR
] __read_mostly
= {
40 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES
, max
),
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
48 struct bio_set fs_bio_set
;
49 EXPORT_SYMBOL(fs_bio_set
);
52 * Our slab pool management
55 struct kmem_cache
*slab
;
56 unsigned int slab_ref
;
57 unsigned int slab_size
;
60 static DEFINE_MUTEX(bio_slab_lock
);
61 static struct bio_slab
*bio_slabs
;
62 static unsigned int bio_slab_nr
, bio_slab_max
;
64 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
66 unsigned int sz
= sizeof(struct bio
) + extra_size
;
67 struct kmem_cache
*slab
= NULL
;
68 struct bio_slab
*bslab
, *new_bio_slabs
;
69 unsigned int new_bio_slab_max
;
70 unsigned int i
, entry
= -1;
72 mutex_lock(&bio_slab_lock
);
75 while (i
< bio_slab_nr
) {
76 bslab
= &bio_slabs
[i
];
78 if (!bslab
->slab
&& entry
== -1)
80 else if (bslab
->slab_size
== sz
) {
91 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
92 new_bio_slab_max
= bio_slab_max
<< 1;
93 new_bio_slabs
= krealloc(bio_slabs
,
94 new_bio_slab_max
* sizeof(struct bio_slab
),
98 bio_slab_max
= new_bio_slab_max
;
99 bio_slabs
= new_bio_slabs
;
102 entry
= bio_slab_nr
++;
104 bslab
= &bio_slabs
[entry
];
106 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
107 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
108 SLAB_HWCACHE_ALIGN
, NULL
);
114 bslab
->slab_size
= sz
;
116 mutex_unlock(&bio_slab_lock
);
120 static void bio_put_slab(struct bio_set
*bs
)
122 struct bio_slab
*bslab
= NULL
;
125 mutex_lock(&bio_slab_lock
);
127 for (i
= 0; i
< bio_slab_nr
; i
++) {
128 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
129 bslab
= &bio_slabs
[i
];
134 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
137 WARN_ON(!bslab
->slab_ref
);
139 if (--bslab
->slab_ref
)
142 kmem_cache_destroy(bslab
->slab
);
146 mutex_unlock(&bio_slab_lock
);
149 unsigned int bvec_nr_vecs(unsigned short idx
)
151 return bvec_slabs
[--idx
].nr_vecs
;
154 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
160 BIO_BUG_ON(idx
>= BVEC_POOL_NR
);
162 if (idx
== BVEC_POOL_MAX
) {
163 mempool_free(bv
, pool
);
165 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
167 kmem_cache_free(bvs
->slab
, bv
);
171 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
177 * see comment near bvec_array define!
195 case 129 ... BIO_MAX_PAGES
:
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
206 if (*idx
== BVEC_POOL_MAX
) {
208 bvl
= mempool_alloc(pool
, gfp_mask
);
210 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
211 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
218 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
221 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222 * is set, retry with the 1-entry mempool
224 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
225 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
226 *idx
= BVEC_POOL_MAX
;
235 void bio_uninit(struct bio
*bio
)
237 #ifdef CONFIG_BLK_CGROUP
239 blkg_put(bio
->bi_blkg
);
243 if (bio_integrity(bio
))
244 bio_integrity_free(bio
);
246 bio_crypt_free_ctx(bio
);
248 EXPORT_SYMBOL(bio_uninit
);
250 static void bio_free(struct bio
*bio
)
252 struct bio_set
*bs
= bio
->bi_pool
;
258 bvec_free(&bs
->bvec_pool
, bio
->bi_io_vec
, BVEC_POOL_IDX(bio
));
261 * If we have front padding, adjust the bio pointer before freeing
266 mempool_free(p
, &bs
->bio_pool
);
268 /* Bio was allocated by bio_kmalloc() */
274 * Users of this function have their own bio allocation. Subsequently,
275 * they must remember to pair any call to bio_init() with bio_uninit()
276 * when IO has completed, or when the bio is released.
278 void bio_init(struct bio
*bio
, struct bio_vec
*table
,
279 unsigned short max_vecs
)
281 memset(bio
, 0, sizeof(*bio
));
282 atomic_set(&bio
->__bi_remaining
, 1);
283 atomic_set(&bio
->__bi_cnt
, 1);
285 bio
->bi_io_vec
= table
;
286 bio
->bi_max_vecs
= max_vecs
;
288 EXPORT_SYMBOL(bio_init
);
291 * bio_reset - reinitialize a bio
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
300 void bio_reset(struct bio
*bio
)
302 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
306 memset(bio
, 0, BIO_RESET_BYTES
);
307 bio
->bi_flags
= flags
;
308 atomic_set(&bio
->__bi_remaining
, 1);
310 EXPORT_SYMBOL(bio_reset
);
312 static struct bio
*__bio_chain_endio(struct bio
*bio
)
314 struct bio
*parent
= bio
->bi_private
;
316 if (!parent
->bi_status
)
317 parent
->bi_status
= bio
->bi_status
;
322 static void bio_chain_endio(struct bio
*bio
)
324 bio_endio(__bio_chain_endio(bio
));
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
336 * The caller must not set bi_private or bi_end_io in @bio.
338 void bio_chain(struct bio
*bio
, struct bio
*parent
)
340 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
342 bio
->bi_private
= parent
;
343 bio
->bi_end_io
= bio_chain_endio
;
344 bio_inc_remaining(parent
);
346 EXPORT_SYMBOL(bio_chain
);
348 static void bio_alloc_rescue(struct work_struct
*work
)
350 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
354 spin_lock(&bs
->rescue_lock
);
355 bio
= bio_list_pop(&bs
->rescue_list
);
356 spin_unlock(&bs
->rescue_lock
);
361 submit_bio_noacct(bio
);
365 static void punt_bios_to_rescuer(struct bio_set
*bs
)
367 struct bio_list punt
, nopunt
;
370 if (WARN_ON_ONCE(!bs
->rescue_workqueue
))
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
383 bio_list_init(&punt
);
384 bio_list_init(&nopunt
);
386 while ((bio
= bio_list_pop(¤t
->bio_list
[0])))
387 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
388 current
->bio_list
[0] = nopunt
;
390 bio_list_init(&nopunt
);
391 while ((bio
= bio_list_pop(¤t
->bio_list
[1])))
392 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
393 current
->bio_list
[1] = nopunt
;
395 spin_lock(&bs
->rescue_lock
);
396 bio_list_merge(&bs
->rescue_list
, &punt
);
397 spin_unlock(&bs
->rescue_lock
);
399 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
403 * bio_alloc_bioset - allocate a bio for I/O
404 * @gfp_mask: the GFP_* mask given to the slab allocator
405 * @nr_iovecs: number of iovecs to pre-allocate
406 * @bs: the bio_set to allocate from.
409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 * backed by the @bs's mempool.
412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 * always be able to allocate a bio. This is due to the mempool guarantees.
414 * To make this work, callers must never allocate more than 1 bio at a time
415 * from this pool. Callers that need to allocate more than 1 bio must always
416 * submit the previously allocated bio for IO before attempting to allocate
417 * a new one. Failure to do so can cause deadlocks under memory pressure.
419 * Note that when running under submit_bio_noacct() (i.e. any block
420 * driver), bios are not submitted until after you return - see the code in
421 * submit_bio_noacct() that converts recursion into iteration, to prevent
424 * This would normally mean allocating multiple bios under
425 * submit_bio_noacct() would be susceptible to deadlocks, but we have
426 * deadlock avoidance code that resubmits any blocked bios from a rescuer
429 * However, we do not guarantee forward progress for allocations from other
430 * mempools. Doing multiple allocations from the same mempool under
431 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
432 * for per bio allocations.
435 * Pointer to new bio on success, NULL on failure.
437 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, unsigned int nr_iovecs
,
440 gfp_t saved_gfp
= gfp_mask
;
442 unsigned inline_vecs
;
443 struct bio_vec
*bvl
= NULL
;
448 if (nr_iovecs
> UIO_MAXIOV
)
451 p
= kmalloc(struct_size(bio
, bi_inline_vecs
, nr_iovecs
), gfp_mask
);
453 inline_vecs
= nr_iovecs
;
455 /* should not use nobvec bioset for nr_iovecs > 0 */
456 if (WARN_ON_ONCE(!mempool_initialized(&bs
->bvec_pool
) &&
460 * submit_bio_noacct() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath submit_bio_noacct(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
480 if (current
->bio_list
&&
481 (!bio_list_empty(¤t
->bio_list
[0]) ||
482 !bio_list_empty(¤t
->bio_list
[1])) &&
483 bs
->rescue_workqueue
)
484 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
486 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
487 if (!p
&& gfp_mask
!= saved_gfp
) {
488 punt_bios_to_rescuer(bs
);
489 gfp_mask
= saved_gfp
;
490 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
493 front_pad
= bs
->front_pad
;
494 inline_vecs
= BIO_INLINE_VECS
;
501 bio_init(bio
, NULL
, 0);
503 if (nr_iovecs
> inline_vecs
) {
504 unsigned long idx
= 0;
506 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
507 if (!bvl
&& gfp_mask
!= saved_gfp
) {
508 punt_bios_to_rescuer(bs
);
509 gfp_mask
= saved_gfp
;
510 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
516 bio
->bi_flags
|= idx
<< BVEC_POOL_OFFSET
;
517 } else if (nr_iovecs
) {
518 bvl
= bio
->bi_inline_vecs
;
522 bio
->bi_max_vecs
= nr_iovecs
;
523 bio
->bi_io_vec
= bvl
;
527 mempool_free(p
, &bs
->bio_pool
);
530 EXPORT_SYMBOL(bio_alloc_bioset
);
532 void zero_fill_bio_iter(struct bio
*bio
, struct bvec_iter start
)
536 struct bvec_iter iter
;
538 __bio_for_each_segment(bv
, bio
, iter
, start
) {
539 char *data
= bvec_kmap_irq(&bv
, &flags
);
540 memset(data
, 0, bv
.bv_len
);
541 flush_dcache_page(bv
.bv_page
);
542 bvec_kunmap_irq(data
, &flags
);
545 EXPORT_SYMBOL(zero_fill_bio_iter
);
548 * bio_truncate - truncate the bio to small size of @new_size
549 * @bio: the bio to be truncated
550 * @new_size: new size for truncating the bio
553 * Truncate the bio to new size of @new_size. If bio_op(bio) is
554 * REQ_OP_READ, zero the truncated part. This function should only
555 * be used for handling corner cases, such as bio eod.
557 void bio_truncate(struct bio
*bio
, unsigned new_size
)
560 struct bvec_iter iter
;
561 unsigned int done
= 0;
562 bool truncated
= false;
564 if (new_size
>= bio
->bi_iter
.bi_size
)
567 if (bio_op(bio
) != REQ_OP_READ
)
570 bio_for_each_segment(bv
, bio
, iter
) {
571 if (done
+ bv
.bv_len
> new_size
) {
575 offset
= new_size
- done
;
578 zero_user(bv
.bv_page
, offset
, bv
.bv_len
- offset
);
586 * Don't touch bvec table here and make it really immutable, since
587 * fs bio user has to retrieve all pages via bio_for_each_segment_all
588 * in its .end_bio() callback.
590 * It is enough to truncate bio by updating .bi_size since we can make
591 * correct bvec with the updated .bi_size for drivers.
593 bio
->bi_iter
.bi_size
= new_size
;
597 * guard_bio_eod - truncate a BIO to fit the block device
598 * @bio: bio to truncate
600 * This allows us to do IO even on the odd last sectors of a device, even if the
601 * block size is some multiple of the physical sector size.
603 * We'll just truncate the bio to the size of the device, and clear the end of
604 * the buffer head manually. Truly out-of-range accesses will turn into actual
605 * I/O errors, this only handles the "we need to be able to do I/O at the final
608 void guard_bio_eod(struct bio
*bio
)
611 struct block_device
*part
;
614 part
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
616 maxsector
= bdev_nr_sectors(part
);
618 maxsector
= get_capacity(bio
->bi_disk
);
625 * If the *whole* IO is past the end of the device,
626 * let it through, and the IO layer will turn it into
629 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
632 maxsector
-= bio
->bi_iter
.bi_sector
;
633 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
636 bio_truncate(bio
, maxsector
<< 9);
640 * bio_put - release a reference to a bio
641 * @bio: bio to release reference to
644 * Put a reference to a &struct bio, either one you have gotten with
645 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
647 void bio_put(struct bio
*bio
)
649 if (!bio_flagged(bio
, BIO_REFFED
))
652 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
657 if (atomic_dec_and_test(&bio
->__bi_cnt
))
661 EXPORT_SYMBOL(bio_put
);
664 * __bio_clone_fast - clone a bio that shares the original bio's biovec
665 * @bio: destination bio
666 * @bio_src: bio to clone
668 * Clone a &bio. Caller will own the returned bio, but not
669 * the actual data it points to. Reference count of returned
672 * Caller must ensure that @bio_src is not freed before @bio.
674 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
676 BUG_ON(bio
->bi_pool
&& BVEC_POOL_IDX(bio
));
679 * most users will be overriding ->bi_disk with a new target,
680 * so we don't set nor calculate new physical/hw segment counts here
682 bio
->bi_disk
= bio_src
->bi_disk
;
683 bio
->bi_partno
= bio_src
->bi_partno
;
684 bio_set_flag(bio
, BIO_CLONED
);
685 if (bio_flagged(bio_src
, BIO_THROTTLED
))
686 bio_set_flag(bio
, BIO_THROTTLED
);
687 bio
->bi_opf
= bio_src
->bi_opf
;
688 bio
->bi_ioprio
= bio_src
->bi_ioprio
;
689 bio
->bi_write_hint
= bio_src
->bi_write_hint
;
690 bio
->bi_iter
= bio_src
->bi_iter
;
691 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
693 bio_clone_blkg_association(bio
, bio_src
);
694 blkcg_bio_issue_init(bio
);
696 EXPORT_SYMBOL(__bio_clone_fast
);
699 * bio_clone_fast - clone a bio that shares the original bio's biovec
701 * @gfp_mask: allocation priority
702 * @bs: bio_set to allocate from
704 * Like __bio_clone_fast, only also allocates the returned bio
706 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
710 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
714 __bio_clone_fast(b
, bio
);
716 if (bio_crypt_clone(b
, bio
, gfp_mask
) < 0)
719 if (bio_integrity(bio
) &&
720 bio_integrity_clone(b
, bio
, gfp_mask
) < 0)
729 EXPORT_SYMBOL(bio_clone_fast
);
731 const char *bio_devname(struct bio
*bio
, char *buf
)
733 return disk_name(bio
->bi_disk
, bio
->bi_partno
, buf
);
735 EXPORT_SYMBOL(bio_devname
);
737 static inline bool page_is_mergeable(const struct bio_vec
*bv
,
738 struct page
*page
, unsigned int len
, unsigned int off
,
741 size_t bv_end
= bv
->bv_offset
+ bv
->bv_len
;
742 phys_addr_t vec_end_addr
= page_to_phys(bv
->bv_page
) + bv_end
- 1;
743 phys_addr_t page_addr
= page_to_phys(page
);
745 if (vec_end_addr
+ 1 != page_addr
+ off
)
747 if (xen_domain() && !xen_biovec_phys_mergeable(bv
, page
))
750 *same_page
= ((vec_end_addr
& PAGE_MASK
) == page_addr
);
753 return (bv
->bv_page
+ bv_end
/ PAGE_SIZE
) == (page
+ off
/ PAGE_SIZE
);
757 * Try to merge a page into a segment, while obeying the hardware segment
758 * size limit. This is not for normal read/write bios, but for passthrough
759 * or Zone Append operations that we can't split.
761 static bool bio_try_merge_hw_seg(struct request_queue
*q
, struct bio
*bio
,
762 struct page
*page
, unsigned len
,
763 unsigned offset
, bool *same_page
)
765 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
766 unsigned long mask
= queue_segment_boundary(q
);
767 phys_addr_t addr1
= page_to_phys(bv
->bv_page
) + bv
->bv_offset
;
768 phys_addr_t addr2
= page_to_phys(page
) + offset
+ len
- 1;
770 if ((addr1
| mask
) != (addr2
| mask
))
772 if (bv
->bv_len
+ len
> queue_max_segment_size(q
))
774 return __bio_try_merge_page(bio
, page
, len
, offset
, same_page
);
778 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
779 * @q: the target queue
780 * @bio: destination bio
782 * @len: vec entry length
783 * @offset: vec entry offset
784 * @max_sectors: maximum number of sectors that can be added
785 * @same_page: return if the segment has been merged inside the same page
787 * Add a page to a bio while respecting the hardware max_sectors, max_segment
788 * and gap limitations.
790 int bio_add_hw_page(struct request_queue
*q
, struct bio
*bio
,
791 struct page
*page
, unsigned int len
, unsigned int offset
,
792 unsigned int max_sectors
, bool *same_page
)
794 struct bio_vec
*bvec
;
796 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
799 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > max_sectors
)
802 if (bio
->bi_vcnt
> 0) {
803 if (bio_try_merge_hw_seg(q
, bio
, page
, len
, offset
, same_page
))
807 * If the queue doesn't support SG gaps and adding this segment
808 * would create a gap, disallow it.
810 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
811 if (bvec_gap_to_prev(q
, bvec
, offset
))
815 if (bio_full(bio
, len
))
818 if (bio
->bi_vcnt
>= queue_max_segments(q
))
821 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
822 bvec
->bv_page
= page
;
824 bvec
->bv_offset
= offset
;
826 bio
->bi_iter
.bi_size
+= len
;
831 * bio_add_pc_page - attempt to add page to passthrough bio
832 * @q: the target queue
833 * @bio: destination bio
835 * @len: vec entry length
836 * @offset: vec entry offset
838 * Attempt to add a page to the bio_vec maplist. This can fail for a
839 * number of reasons, such as the bio being full or target block device
840 * limitations. The target block device must allow bio's up to PAGE_SIZE,
841 * so it is always possible to add a single page to an empty bio.
843 * This should only be used by passthrough bios.
845 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
846 struct page
*page
, unsigned int len
, unsigned int offset
)
848 bool same_page
= false;
849 return bio_add_hw_page(q
, bio
, page
, len
, offset
,
850 queue_max_hw_sectors(q
), &same_page
);
852 EXPORT_SYMBOL(bio_add_pc_page
);
855 * __bio_try_merge_page - try appending data to an existing bvec.
856 * @bio: destination bio
857 * @page: start page to add
858 * @len: length of the data to add
859 * @off: offset of the data relative to @page
860 * @same_page: return if the segment has been merged inside the same page
862 * Try to add the data at @page + @off to the last bvec of @bio. This is a
863 * useful optimisation for file systems with a block size smaller than the
866 * Warn if (@len, @off) crosses pages in case that @same_page is true.
868 * Return %true on success or %false on failure.
870 bool __bio_try_merge_page(struct bio
*bio
, struct page
*page
,
871 unsigned int len
, unsigned int off
, bool *same_page
)
873 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
876 if (bio
->bi_vcnt
> 0) {
877 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
879 if (page_is_mergeable(bv
, page
, len
, off
, same_page
)) {
880 if (bio
->bi_iter
.bi_size
> UINT_MAX
- len
) {
885 bio
->bi_iter
.bi_size
+= len
;
891 EXPORT_SYMBOL_GPL(__bio_try_merge_page
);
894 * __bio_add_page - add page(s) to a bio in a new segment
895 * @bio: destination bio
896 * @page: start page to add
897 * @len: length of the data to add, may cross pages
898 * @off: offset of the data relative to @page, may cross pages
900 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
901 * that @bio has space for another bvec.
903 void __bio_add_page(struct bio
*bio
, struct page
*page
,
904 unsigned int len
, unsigned int off
)
906 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
908 WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
));
909 WARN_ON_ONCE(bio_full(bio
, len
));
915 bio
->bi_iter
.bi_size
+= len
;
918 if (!bio_flagged(bio
, BIO_WORKINGSET
) && unlikely(PageWorkingset(page
)))
919 bio_set_flag(bio
, BIO_WORKINGSET
);
921 EXPORT_SYMBOL_GPL(__bio_add_page
);
924 * bio_add_page - attempt to add page(s) to bio
925 * @bio: destination bio
926 * @page: start page to add
927 * @len: vec entry length, may cross pages
928 * @offset: vec entry offset relative to @page, may cross pages
930 * Attempt to add page(s) to the bio_vec maplist. This will only fail
931 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
933 int bio_add_page(struct bio
*bio
, struct page
*page
,
934 unsigned int len
, unsigned int offset
)
936 bool same_page
= false;
938 if (!__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
939 if (bio_full(bio
, len
))
941 __bio_add_page(bio
, page
, len
, offset
);
945 EXPORT_SYMBOL(bio_add_page
);
947 void bio_release_pages(struct bio
*bio
, bool mark_dirty
)
949 struct bvec_iter_all iter_all
;
950 struct bio_vec
*bvec
;
952 if (bio_flagged(bio
, BIO_NO_PAGE_REF
))
955 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
956 if (mark_dirty
&& !PageCompound(bvec
->bv_page
))
957 set_page_dirty_lock(bvec
->bv_page
);
958 put_page(bvec
->bv_page
);
961 EXPORT_SYMBOL_GPL(bio_release_pages
);
963 static int __bio_iov_bvec_add_pages(struct bio
*bio
, struct iov_iter
*iter
)
965 const struct bio_vec
*bv
= iter
->bvec
;
969 if (WARN_ON_ONCE(iter
->iov_offset
> bv
->bv_len
))
972 len
= min_t(size_t, bv
->bv_len
- iter
->iov_offset
, iter
->count
);
973 size
= bio_add_page(bio
, bv
->bv_page
, len
,
974 bv
->bv_offset
+ iter
->iov_offset
);
975 if (unlikely(size
!= len
))
977 iov_iter_advance(iter
, size
);
981 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
984 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
985 * @bio: bio to add pages to
986 * @iter: iov iterator describing the region to be mapped
988 * Pins pages from *iter and appends them to @bio's bvec array. The
989 * pages will have to be released using put_page() when done.
990 * For multi-segment *iter, this function only adds pages from the
991 * next non-empty segment of the iov iterator.
993 static int __bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
995 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
996 unsigned short entries_left
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
997 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
998 struct page
**pages
= (struct page
**)bv
;
999 bool same_page
= false;
1005 * Move page array up in the allocated memory for the bio vecs as far as
1006 * possible so that we can start filling biovecs from the beginning
1007 * without overwriting the temporary page array.
1009 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC
< 2);
1010 pages
+= entries_left
* (PAGE_PTRS_PER_BVEC
- 1);
1012 size
= iov_iter_get_pages(iter
, pages
, LONG_MAX
, nr_pages
, &offset
);
1013 if (unlikely(size
<= 0))
1014 return size
? size
: -EFAULT
;
1016 for (left
= size
, i
= 0; left
> 0; left
-= len
, i
++) {
1017 struct page
*page
= pages
[i
];
1019 len
= min_t(size_t, PAGE_SIZE
- offset
, left
);
1021 if (__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
1025 if (WARN_ON_ONCE(bio_full(bio
, len
)))
1027 __bio_add_page(bio
, page
, len
, offset
);
1032 iov_iter_advance(iter
, size
);
1036 static int __bio_iov_append_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
1038 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
1039 unsigned short entries_left
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
1040 struct request_queue
*q
= bio
->bi_disk
->queue
;
1041 unsigned int max_append_sectors
= queue_max_zone_append_sectors(q
);
1042 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
1043 struct page
**pages
= (struct page
**)bv
;
1049 if (WARN_ON_ONCE(!max_append_sectors
))
1053 * Move page array up in the allocated memory for the bio vecs as far as
1054 * possible so that we can start filling biovecs from the beginning
1055 * without overwriting the temporary page array.
1057 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC
< 2);
1058 pages
+= entries_left
* (PAGE_PTRS_PER_BVEC
- 1);
1060 size
= iov_iter_get_pages(iter
, pages
, LONG_MAX
, nr_pages
, &offset
);
1061 if (unlikely(size
<= 0))
1062 return size
? size
: -EFAULT
;
1064 for (left
= size
, i
= 0; left
> 0; left
-= len
, i
++) {
1065 struct page
*page
= pages
[i
];
1066 bool same_page
= false;
1068 len
= min_t(size_t, PAGE_SIZE
- offset
, left
);
1069 if (bio_add_hw_page(q
, bio
, page
, len
, offset
,
1070 max_append_sectors
, &same_page
) != len
) {
1079 iov_iter_advance(iter
, size
- left
);
1084 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1085 * @bio: bio to add pages to
1086 * @iter: iov iterator describing the region to be added
1088 * This takes either an iterator pointing to user memory, or one pointing to
1089 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1090 * map them into the kernel. On IO completion, the caller should put those
1091 * pages. If we're adding kernel pages, and the caller told us it's safe to
1092 * do so, we just have to add the pages to the bio directly. We don't grab an
1093 * extra reference to those pages (the user should already have that), and we
1094 * don't put the page on IO completion. The caller needs to check if the bio is
1095 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1098 * The function tries, but does not guarantee, to pin as many pages as
1099 * fit into the bio, or are requested in @iter, whatever is smaller. If
1100 * MM encounters an error pinning the requested pages, it stops. Error
1101 * is returned only if 0 pages could be pinned.
1103 int bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
1105 const bool is_bvec
= iov_iter_is_bvec(iter
);
1108 if (WARN_ON_ONCE(bio
->bi_vcnt
))
1112 if (bio_op(bio
) == REQ_OP_ZONE_APPEND
) {
1113 if (WARN_ON_ONCE(is_bvec
))
1115 ret
= __bio_iov_append_get_pages(bio
, iter
);
1118 ret
= __bio_iov_bvec_add_pages(bio
, iter
);
1120 ret
= __bio_iov_iter_get_pages(bio
, iter
);
1122 } while (!ret
&& iov_iter_count(iter
) && !bio_full(bio
, 0));
1125 bio_set_flag(bio
, BIO_NO_PAGE_REF
);
1126 return bio
->bi_vcnt
? 0 : ret
;
1128 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages
);
1130 static void submit_bio_wait_endio(struct bio
*bio
)
1132 complete(bio
->bi_private
);
1136 * submit_bio_wait - submit a bio, and wait until it completes
1137 * @bio: The &struct bio which describes the I/O
1139 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1140 * bio_endio() on failure.
1142 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1143 * result in bio reference to be consumed. The caller must drop the reference
1146 int submit_bio_wait(struct bio
*bio
)
1148 DECLARE_COMPLETION_ONSTACK_MAP(done
, bio
->bi_disk
->lockdep_map
);
1149 unsigned long hang_check
;
1151 bio
->bi_private
= &done
;
1152 bio
->bi_end_io
= submit_bio_wait_endio
;
1153 bio
->bi_opf
|= REQ_SYNC
;
1156 /* Prevent hang_check timer from firing at us during very long I/O */
1157 hang_check
= sysctl_hung_task_timeout_secs
;
1159 while (!wait_for_completion_io_timeout(&done
,
1160 hang_check
* (HZ
/2)))
1163 wait_for_completion_io(&done
);
1165 return blk_status_to_errno(bio
->bi_status
);
1167 EXPORT_SYMBOL(submit_bio_wait
);
1170 * bio_advance - increment/complete a bio by some number of bytes
1171 * @bio: bio to advance
1172 * @bytes: number of bytes to complete
1174 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1175 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1176 * be updated on the last bvec as well.
1178 * @bio will then represent the remaining, uncompleted portion of the io.
1180 void bio_advance(struct bio
*bio
, unsigned bytes
)
1182 if (bio_integrity(bio
))
1183 bio_integrity_advance(bio
, bytes
);
1185 bio_crypt_advance(bio
, bytes
);
1186 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
1188 EXPORT_SYMBOL(bio_advance
);
1190 void bio_copy_data_iter(struct bio
*dst
, struct bvec_iter
*dst_iter
,
1191 struct bio
*src
, struct bvec_iter
*src_iter
)
1193 struct bio_vec src_bv
, dst_bv
;
1194 void *src_p
, *dst_p
;
1197 while (src_iter
->bi_size
&& dst_iter
->bi_size
) {
1198 src_bv
= bio_iter_iovec(src
, *src_iter
);
1199 dst_bv
= bio_iter_iovec(dst
, *dst_iter
);
1201 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
1203 src_p
= kmap_atomic(src_bv
.bv_page
);
1204 dst_p
= kmap_atomic(dst_bv
.bv_page
);
1206 memcpy(dst_p
+ dst_bv
.bv_offset
,
1207 src_p
+ src_bv
.bv_offset
,
1210 kunmap_atomic(dst_p
);
1211 kunmap_atomic(src_p
);
1213 flush_dcache_page(dst_bv
.bv_page
);
1215 bio_advance_iter_single(src
, src_iter
, bytes
);
1216 bio_advance_iter_single(dst
, dst_iter
, bytes
);
1219 EXPORT_SYMBOL(bio_copy_data_iter
);
1222 * bio_copy_data - copy contents of data buffers from one bio to another
1224 * @dst: destination bio
1226 * Stops when it reaches the end of either @src or @dst - that is, copies
1227 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1229 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
1231 struct bvec_iter src_iter
= src
->bi_iter
;
1232 struct bvec_iter dst_iter
= dst
->bi_iter
;
1234 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1236 EXPORT_SYMBOL(bio_copy_data
);
1239 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1241 * @src: source bio list
1242 * @dst: destination bio list
1244 * Stops when it reaches the end of either the @src list or @dst list - that is,
1245 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1248 void bio_list_copy_data(struct bio
*dst
, struct bio
*src
)
1250 struct bvec_iter src_iter
= src
->bi_iter
;
1251 struct bvec_iter dst_iter
= dst
->bi_iter
;
1254 if (!src_iter
.bi_size
) {
1259 src_iter
= src
->bi_iter
;
1262 if (!dst_iter
.bi_size
) {
1267 dst_iter
= dst
->bi_iter
;
1270 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1273 EXPORT_SYMBOL(bio_list_copy_data
);
1275 void bio_free_pages(struct bio
*bio
)
1277 struct bio_vec
*bvec
;
1278 struct bvec_iter_all iter_all
;
1280 bio_for_each_segment_all(bvec
, bio
, iter_all
)
1281 __free_page(bvec
->bv_page
);
1283 EXPORT_SYMBOL(bio_free_pages
);
1286 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1287 * for performing direct-IO in BIOs.
1289 * The problem is that we cannot run set_page_dirty() from interrupt context
1290 * because the required locks are not interrupt-safe. So what we can do is to
1291 * mark the pages dirty _before_ performing IO. And in interrupt context,
1292 * check that the pages are still dirty. If so, fine. If not, redirty them
1293 * in process context.
1295 * We special-case compound pages here: normally this means reads into hugetlb
1296 * pages. The logic in here doesn't really work right for compound pages
1297 * because the VM does not uniformly chase down the head page in all cases.
1298 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1299 * handle them at all. So we skip compound pages here at an early stage.
1301 * Note that this code is very hard to test under normal circumstances because
1302 * direct-io pins the pages with get_user_pages(). This makes
1303 * is_page_cache_freeable return false, and the VM will not clean the pages.
1304 * But other code (eg, flusher threads) could clean the pages if they are mapped
1307 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1308 * deferred bio dirtying paths.
1312 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1314 void bio_set_pages_dirty(struct bio
*bio
)
1316 struct bio_vec
*bvec
;
1317 struct bvec_iter_all iter_all
;
1319 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1320 if (!PageCompound(bvec
->bv_page
))
1321 set_page_dirty_lock(bvec
->bv_page
);
1326 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1327 * If they are, then fine. If, however, some pages are clean then they must
1328 * have been written out during the direct-IO read. So we take another ref on
1329 * the BIO and re-dirty the pages in process context.
1331 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1332 * here on. It will run one put_page() against each page and will run one
1333 * bio_put() against the BIO.
1336 static void bio_dirty_fn(struct work_struct
*work
);
1338 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1339 static DEFINE_SPINLOCK(bio_dirty_lock
);
1340 static struct bio
*bio_dirty_list
;
1343 * This runs in process context
1345 static void bio_dirty_fn(struct work_struct
*work
)
1347 struct bio
*bio
, *next
;
1349 spin_lock_irq(&bio_dirty_lock
);
1350 next
= bio_dirty_list
;
1351 bio_dirty_list
= NULL
;
1352 spin_unlock_irq(&bio_dirty_lock
);
1354 while ((bio
= next
) != NULL
) {
1355 next
= bio
->bi_private
;
1357 bio_release_pages(bio
, true);
1362 void bio_check_pages_dirty(struct bio
*bio
)
1364 struct bio_vec
*bvec
;
1365 unsigned long flags
;
1366 struct bvec_iter_all iter_all
;
1368 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1369 if (!PageDirty(bvec
->bv_page
) && !PageCompound(bvec
->bv_page
))
1373 bio_release_pages(bio
, false);
1377 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1378 bio
->bi_private
= bio_dirty_list
;
1379 bio_dirty_list
= bio
;
1380 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1381 schedule_work(&bio_dirty_work
);
1384 static inline bool bio_remaining_done(struct bio
*bio
)
1387 * If we're not chaining, then ->__bi_remaining is always 1 and
1388 * we always end io on the first invocation.
1390 if (!bio_flagged(bio
, BIO_CHAIN
))
1393 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1395 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1396 bio_clear_flag(bio
, BIO_CHAIN
);
1404 * bio_endio - end I/O on a bio
1408 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1409 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1410 * bio unless they own it and thus know that it has an end_io function.
1412 * bio_endio() can be called several times on a bio that has been chained
1413 * using bio_chain(). The ->bi_end_io() function will only be called the
1414 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1415 * generated if BIO_TRACE_COMPLETION is set.
1417 void bio_endio(struct bio
*bio
)
1420 if (!bio_remaining_done(bio
))
1422 if (!bio_integrity_endio(bio
))
1426 rq_qos_done_bio(bio
->bi_disk
->queue
, bio
);
1429 * Need to have a real endio function for chained bios, otherwise
1430 * various corner cases will break (like stacking block devices that
1431 * save/restore bi_end_io) - however, we want to avoid unbounded
1432 * recursion and blowing the stack. Tail call optimization would
1433 * handle this, but compiling with frame pointers also disables
1434 * gcc's sibling call optimization.
1436 if (bio
->bi_end_io
== bio_chain_endio
) {
1437 bio
= __bio_chain_endio(bio
);
1441 if (bio
->bi_disk
&& bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
1442 trace_block_bio_complete(bio
->bi_disk
->queue
, bio
);
1443 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1446 blk_throtl_bio_endio(bio
);
1447 /* release cgroup info */
1450 bio
->bi_end_io(bio
);
1452 EXPORT_SYMBOL(bio_endio
);
1455 * bio_split - split a bio
1456 * @bio: bio to split
1457 * @sectors: number of sectors to split from the front of @bio
1459 * @bs: bio set to allocate from
1461 * Allocates and returns a new bio which represents @sectors from the start of
1462 * @bio, and updates @bio to represent the remaining sectors.
1464 * Unless this is a discard request the newly allocated bio will point
1465 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1466 * neither @bio nor @bs are freed before the split bio.
1468 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1469 gfp_t gfp
, struct bio_set
*bs
)
1473 BUG_ON(sectors
<= 0);
1474 BUG_ON(sectors
>= bio_sectors(bio
));
1476 /* Zone append commands cannot be split */
1477 if (WARN_ON_ONCE(bio_op(bio
) == REQ_OP_ZONE_APPEND
))
1480 split
= bio_clone_fast(bio
, gfp
, bs
);
1484 split
->bi_iter
.bi_size
= sectors
<< 9;
1486 if (bio_integrity(split
))
1487 bio_integrity_trim(split
);
1489 bio_advance(bio
, split
->bi_iter
.bi_size
);
1491 if (bio_flagged(bio
, BIO_TRACE_COMPLETION
))
1492 bio_set_flag(split
, BIO_TRACE_COMPLETION
);
1496 EXPORT_SYMBOL(bio_split
);
1499 * bio_trim - trim a bio
1501 * @offset: number of sectors to trim from the front of @bio
1502 * @size: size we want to trim @bio to, in sectors
1504 void bio_trim(struct bio
*bio
, int offset
, int size
)
1506 /* 'bio' is a cloned bio which we need to trim to match
1507 * the given offset and size.
1511 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1514 bio_advance(bio
, offset
<< 9);
1515 bio
->bi_iter
.bi_size
= size
;
1517 if (bio_integrity(bio
))
1518 bio_integrity_trim(bio
);
1521 EXPORT_SYMBOL_GPL(bio_trim
);
1524 * create memory pools for biovec's in a bio_set.
1525 * use the global biovec slabs created for general use.
1527 int biovec_init_pool(mempool_t
*pool
, int pool_entries
)
1529 struct biovec_slab
*bp
= bvec_slabs
+ BVEC_POOL_MAX
;
1531 return mempool_init_slab_pool(pool
, pool_entries
, bp
->slab
);
1535 * bioset_exit - exit a bioset initialized with bioset_init()
1537 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1540 void bioset_exit(struct bio_set
*bs
)
1542 if (bs
->rescue_workqueue
)
1543 destroy_workqueue(bs
->rescue_workqueue
);
1544 bs
->rescue_workqueue
= NULL
;
1546 mempool_exit(&bs
->bio_pool
);
1547 mempool_exit(&bs
->bvec_pool
);
1549 bioset_integrity_free(bs
);
1552 bs
->bio_slab
= NULL
;
1554 EXPORT_SYMBOL(bioset_exit
);
1557 * bioset_init - Initialize a bio_set
1558 * @bs: pool to initialize
1559 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1560 * @front_pad: Number of bytes to allocate in front of the returned bio
1561 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1562 * and %BIOSET_NEED_RESCUER
1565 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1566 * to ask for a number of bytes to be allocated in front of the bio.
1567 * Front pad allocation is useful for embedding the bio inside
1568 * another structure, to avoid allocating extra data to go with the bio.
1569 * Note that the bio must be embedded at the END of that structure always,
1570 * or things will break badly.
1571 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1572 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1573 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1574 * dispatch queued requests when the mempool runs out of space.
1577 int bioset_init(struct bio_set
*bs
,
1578 unsigned int pool_size
,
1579 unsigned int front_pad
,
1582 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1584 bs
->front_pad
= front_pad
;
1586 spin_lock_init(&bs
->rescue_lock
);
1587 bio_list_init(&bs
->rescue_list
);
1588 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
1590 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
1594 if (mempool_init_slab_pool(&bs
->bio_pool
, pool_size
, bs
->bio_slab
))
1597 if ((flags
& BIOSET_NEED_BVECS
) &&
1598 biovec_init_pool(&bs
->bvec_pool
, pool_size
))
1601 if (!(flags
& BIOSET_NEED_RESCUER
))
1604 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
1605 if (!bs
->rescue_workqueue
)
1613 EXPORT_SYMBOL(bioset_init
);
1616 * Initialize and setup a new bio_set, based on the settings from
1619 int bioset_init_from_src(struct bio_set
*bs
, struct bio_set
*src
)
1624 if (src
->bvec_pool
.min_nr
)
1625 flags
|= BIOSET_NEED_BVECS
;
1626 if (src
->rescue_workqueue
)
1627 flags
|= BIOSET_NEED_RESCUER
;
1629 return bioset_init(bs
, src
->bio_pool
.min_nr
, src
->front_pad
, flags
);
1631 EXPORT_SYMBOL(bioset_init_from_src
);
1633 static void __init
biovec_init_slabs(void)
1637 for (i
= 0; i
< BVEC_POOL_NR
; i
++) {
1639 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
1641 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
1646 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
1647 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
1648 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1652 static int __init
init_bio(void)
1656 bio_slabs
= kcalloc(bio_slab_max
, sizeof(struct bio_slab
),
1659 BUILD_BUG_ON(BIO_FLAG_LAST
> BVEC_POOL_OFFSET
);
1662 panic("bio: can't allocate bios\n");
1664 bio_integrity_init();
1665 biovec_init_slabs();
1667 if (bioset_init(&fs_bio_set
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
))
1668 panic("bio: can't allocate bios\n");
1670 if (bioset_integrity_create(&fs_bio_set
, BIO_POOL_SIZE
))
1671 panic("bio: can't create integrity pool\n");
1675 subsys_initcall(init_bio
);