1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
20 unsigned long blk_max_low_pfn
;
21 EXPORT_SYMBOL(blk_max_low_pfn
);
23 unsigned long blk_max_pfn
;
25 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
27 q
->rq_timeout
= timeout
;
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
32 * blk_set_default_limits - reset limits to default values
33 * @lim: the queue_limits structure to reset
36 * Returns a queue_limit struct to its default state.
38 void blk_set_default_limits(struct queue_limits
*lim
)
40 lim
->max_segments
= BLK_MAX_SEGMENTS
;
41 lim
->max_discard_segments
= 1;
42 lim
->max_integrity_segments
= 0;
43 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
44 lim
->virt_boundary_mask
= 0;
45 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
46 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
47 lim
->max_dev_sectors
= 0;
48 lim
->chunk_sectors
= 0;
49 lim
->max_write_same_sectors
= 0;
50 lim
->max_write_zeroes_sectors
= 0;
51 lim
->max_zone_append_sectors
= 0;
52 lim
->max_discard_sectors
= 0;
53 lim
->max_hw_discard_sectors
= 0;
54 lim
->discard_granularity
= 0;
55 lim
->discard_alignment
= 0;
56 lim
->discard_misaligned
= 0;
57 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
58 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
59 lim
->alignment_offset
= 0;
62 lim
->zoned
= BLK_ZONED_NONE
;
64 EXPORT_SYMBOL(blk_set_default_limits
);
67 * blk_set_stacking_limits - set default limits for stacking devices
68 * @lim: the queue_limits structure to reset
71 * Returns a queue_limit struct to its default state. Should be used
72 * by stacking drivers like DM that have no internal limits.
74 void blk_set_stacking_limits(struct queue_limits
*lim
)
76 blk_set_default_limits(lim
);
78 /* Inherit limits from component devices */
79 lim
->max_segments
= USHRT_MAX
;
80 lim
->max_discard_segments
= USHRT_MAX
;
81 lim
->max_hw_sectors
= UINT_MAX
;
82 lim
->max_segment_size
= UINT_MAX
;
83 lim
->max_sectors
= UINT_MAX
;
84 lim
->max_dev_sectors
= UINT_MAX
;
85 lim
->max_write_same_sectors
= UINT_MAX
;
86 lim
->max_write_zeroes_sectors
= UINT_MAX
;
87 lim
->max_zone_append_sectors
= UINT_MAX
;
89 EXPORT_SYMBOL(blk_set_stacking_limits
);
92 * blk_queue_bounce_limit - set bounce buffer limit for queue
93 * @q: the request queue for the device
94 * @max_addr: the maximum address the device can handle
97 * Different hardware can have different requirements as to what pages
98 * it can do I/O directly to. A low level driver can call
99 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
100 * buffers for doing I/O to pages residing above @max_addr.
102 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
104 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
107 q
->bounce_gfp
= GFP_NOIO
;
108 #if BITS_PER_LONG == 64
110 * Assume anything <= 4GB can be handled by IOMMU. Actually
111 * some IOMMUs can handle everything, but I don't know of a
112 * way to test this here.
114 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
116 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
118 if (b_pfn
< blk_max_low_pfn
)
120 q
->limits
.bounce_pfn
= b_pfn
;
123 init_emergency_isa_pool();
124 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
125 q
->limits
.bounce_pfn
= b_pfn
;
128 EXPORT_SYMBOL(blk_queue_bounce_limit
);
131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132 * @q: the request queue for the device
133 * @max_hw_sectors: max hardware sectors in the usual 512b unit
136 * Enables a low level driver to set a hard upper limit,
137 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
138 * the device driver based upon the capabilities of the I/O
141 * max_dev_sectors is a hard limit imposed by the storage device for
142 * READ/WRITE requests. It is set by the disk driver.
144 * max_sectors is a soft limit imposed by the block layer for
145 * filesystem type requests. This value can be overridden on a
146 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147 * The soft limit can not exceed max_hw_sectors.
149 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
151 struct queue_limits
*limits
= &q
->limits
;
152 unsigned int max_sectors
;
154 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
155 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
156 printk(KERN_INFO
"%s: set to minimum %d\n",
157 __func__
, max_hw_sectors
);
160 max_hw_sectors
= round_down(max_hw_sectors
,
161 limits
->logical_block_size
>> SECTOR_SHIFT
);
162 limits
->max_hw_sectors
= max_hw_sectors
;
164 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
165 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
166 max_sectors
= round_down(max_sectors
,
167 limits
->logical_block_size
>> SECTOR_SHIFT
);
168 limits
->max_sectors
= max_sectors
;
170 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
172 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
175 * blk_queue_chunk_sectors - set size of the chunk for this queue
176 * @q: the request queue for the device
177 * @chunk_sectors: chunk sectors in the usual 512b unit
180 * If a driver doesn't want IOs to cross a given chunk size, it can set
181 * this limit and prevent merging across chunks. Note that the block layer
182 * must accept a page worth of data at any offset. So if the crossing of
183 * chunks is a hard limitation in the driver, it must still be prepared
184 * to split single page bios.
186 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
188 q
->limits
.chunk_sectors
= chunk_sectors
;
190 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
193 * blk_queue_max_discard_sectors - set max sectors for a single discard
194 * @q: the request queue for the device
195 * @max_discard_sectors: maximum number of sectors to discard
197 void blk_queue_max_discard_sectors(struct request_queue
*q
,
198 unsigned int max_discard_sectors
)
200 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
201 q
->limits
.max_discard_sectors
= max_discard_sectors
;
203 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
206 * blk_queue_max_write_same_sectors - set max sectors for a single write same
207 * @q: the request queue for the device
208 * @max_write_same_sectors: maximum number of sectors to write per command
210 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
211 unsigned int max_write_same_sectors
)
213 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
215 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
218 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
220 * @q: the request queue for the device
221 * @max_write_zeroes_sectors: maximum number of sectors to write per command
223 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
224 unsigned int max_write_zeroes_sectors
)
226 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
228 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
231 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
232 * @q: the request queue for the device
233 * @max_zone_append_sectors: maximum number of sectors to write per command
235 void blk_queue_max_zone_append_sectors(struct request_queue
*q
,
236 unsigned int max_zone_append_sectors
)
238 unsigned int max_sectors
;
240 if (WARN_ON(!blk_queue_is_zoned(q
)))
243 max_sectors
= min(q
->limits
.max_hw_sectors
, max_zone_append_sectors
);
244 max_sectors
= min(q
->limits
.chunk_sectors
, max_sectors
);
247 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
248 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
249 * or the max_hw_sectors limit not set.
251 WARN_ON(!max_sectors
);
253 q
->limits
.max_zone_append_sectors
= max_sectors
;
255 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors
);
258 * blk_queue_max_segments - set max hw segments for a request for this queue
259 * @q: the request queue for the device
260 * @max_segments: max number of segments
263 * Enables a low level driver to set an upper limit on the number of
264 * hw data segments in a request.
266 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
270 printk(KERN_INFO
"%s: set to minimum %d\n",
271 __func__
, max_segments
);
274 q
->limits
.max_segments
= max_segments
;
276 EXPORT_SYMBOL(blk_queue_max_segments
);
279 * blk_queue_max_discard_segments - set max segments for discard requests
280 * @q: the request queue for the device
281 * @max_segments: max number of segments
284 * Enables a low level driver to set an upper limit on the number of
285 * segments in a discard request.
287 void blk_queue_max_discard_segments(struct request_queue
*q
,
288 unsigned short max_segments
)
290 q
->limits
.max_discard_segments
= max_segments
;
292 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
295 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
296 * @q: the request queue for the device
297 * @max_size: max size of segment in bytes
300 * Enables a low level driver to set an upper limit on the size of a
303 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
305 if (max_size
< PAGE_SIZE
) {
306 max_size
= PAGE_SIZE
;
307 printk(KERN_INFO
"%s: set to minimum %d\n",
311 /* see blk_queue_virt_boundary() for the explanation */
312 WARN_ON_ONCE(q
->limits
.virt_boundary_mask
);
314 q
->limits
.max_segment_size
= max_size
;
316 EXPORT_SYMBOL(blk_queue_max_segment_size
);
319 * blk_queue_logical_block_size - set logical block size for the queue
320 * @q: the request queue for the device
321 * @size: the logical block size, in bytes
324 * This should be set to the lowest possible block size that the
325 * storage device can address. The default of 512 covers most
328 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned int size
)
330 struct queue_limits
*limits
= &q
->limits
;
332 limits
->logical_block_size
= size
;
334 if (limits
->physical_block_size
< size
)
335 limits
->physical_block_size
= size
;
337 if (limits
->io_min
< limits
->physical_block_size
)
338 limits
->io_min
= limits
->physical_block_size
;
340 limits
->max_hw_sectors
=
341 round_down(limits
->max_hw_sectors
, size
>> SECTOR_SHIFT
);
342 limits
->max_sectors
=
343 round_down(limits
->max_sectors
, size
>> SECTOR_SHIFT
);
345 EXPORT_SYMBOL(blk_queue_logical_block_size
);
348 * blk_queue_physical_block_size - set physical block size for the queue
349 * @q: the request queue for the device
350 * @size: the physical block size, in bytes
353 * This should be set to the lowest possible sector size that the
354 * hardware can operate on without reverting to read-modify-write
357 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
359 q
->limits
.physical_block_size
= size
;
361 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
362 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
364 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
365 q
->limits
.io_min
= q
->limits
.physical_block_size
;
367 EXPORT_SYMBOL(blk_queue_physical_block_size
);
370 * blk_queue_alignment_offset - set physical block alignment offset
371 * @q: the request queue for the device
372 * @offset: alignment offset in bytes
375 * Some devices are naturally misaligned to compensate for things like
376 * the legacy DOS partition table 63-sector offset. Low-level drivers
377 * should call this function for devices whose first sector is not
380 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
382 q
->limits
.alignment_offset
=
383 offset
& (q
->limits
.physical_block_size
- 1);
384 q
->limits
.misaligned
= 0;
386 EXPORT_SYMBOL(blk_queue_alignment_offset
);
388 void blk_queue_update_readahead(struct request_queue
*q
)
391 * For read-ahead of large files to be effective, we need to read ahead
392 * at least twice the optimal I/O size.
394 q
->backing_dev_info
->ra_pages
=
395 max(queue_io_opt(q
) * 2 / PAGE_SIZE
, VM_READAHEAD_PAGES
);
396 q
->backing_dev_info
->io_pages
=
397 queue_max_sectors(q
) >> (PAGE_SHIFT
- 9);
399 EXPORT_SYMBOL_GPL(blk_queue_update_readahead
);
402 * blk_limits_io_min - set minimum request size for a device
403 * @limits: the queue limits
404 * @min: smallest I/O size in bytes
407 * Some devices have an internal block size bigger than the reported
408 * hardware sector size. This function can be used to signal the
409 * smallest I/O the device can perform without incurring a performance
412 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
414 limits
->io_min
= min
;
416 if (limits
->io_min
< limits
->logical_block_size
)
417 limits
->io_min
= limits
->logical_block_size
;
419 if (limits
->io_min
< limits
->physical_block_size
)
420 limits
->io_min
= limits
->physical_block_size
;
422 EXPORT_SYMBOL(blk_limits_io_min
);
425 * blk_queue_io_min - set minimum request size for the queue
426 * @q: the request queue for the device
427 * @min: smallest I/O size in bytes
430 * Storage devices may report a granularity or preferred minimum I/O
431 * size which is the smallest request the device can perform without
432 * incurring a performance penalty. For disk drives this is often the
433 * physical block size. For RAID arrays it is often the stripe chunk
434 * size. A properly aligned multiple of minimum_io_size is the
435 * preferred request size for workloads where a high number of I/O
436 * operations is desired.
438 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
440 blk_limits_io_min(&q
->limits
, min
);
442 EXPORT_SYMBOL(blk_queue_io_min
);
445 * blk_limits_io_opt - set optimal request size for a device
446 * @limits: the queue limits
447 * @opt: smallest I/O size in bytes
450 * Storage devices may report an optimal I/O size, which is the
451 * device's preferred unit for sustained I/O. This is rarely reported
452 * for disk drives. For RAID arrays it is usually the stripe width or
453 * the internal track size. A properly aligned multiple of
454 * optimal_io_size is the preferred request size for workloads where
455 * sustained throughput is desired.
457 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
459 limits
->io_opt
= opt
;
461 EXPORT_SYMBOL(blk_limits_io_opt
);
464 * blk_queue_io_opt - set optimal request size for the queue
465 * @q: the request queue for the device
466 * @opt: optimal request size in bytes
469 * Storage devices may report an optimal I/O size, which is the
470 * device's preferred unit for sustained I/O. This is rarely reported
471 * for disk drives. For RAID arrays it is usually the stripe width or
472 * the internal track size. A properly aligned multiple of
473 * optimal_io_size is the preferred request size for workloads where
474 * sustained throughput is desired.
476 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
478 blk_limits_io_opt(&q
->limits
, opt
);
479 q
->backing_dev_info
->ra_pages
=
480 max(queue_io_opt(q
) * 2 / PAGE_SIZE
, VM_READAHEAD_PAGES
);
482 EXPORT_SYMBOL(blk_queue_io_opt
);
485 * blk_stack_limits - adjust queue_limits for stacked devices
486 * @t: the stacking driver limits (top device)
487 * @b: the underlying queue limits (bottom, component device)
488 * @start: first data sector within component device
491 * This function is used by stacking drivers like MD and DM to ensure
492 * that all component devices have compatible block sizes and
493 * alignments. The stacking driver must provide a queue_limits
494 * struct (top) and then iteratively call the stacking function for
495 * all component (bottom) devices. The stacking function will
496 * attempt to combine the values and ensure proper alignment.
498 * Returns 0 if the top and bottom queue_limits are compatible. The
499 * top device's block sizes and alignment offsets may be adjusted to
500 * ensure alignment with the bottom device. If no compatible sizes
501 * and alignments exist, -1 is returned and the resulting top
502 * queue_limits will have the misaligned flag set to indicate that
503 * the alignment_offset is undefined.
505 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
508 unsigned int top
, bottom
, alignment
, ret
= 0;
510 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
511 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
512 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
513 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
514 b
->max_write_same_sectors
);
515 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
516 b
->max_write_zeroes_sectors
);
517 t
->max_zone_append_sectors
= min(t
->max_zone_append_sectors
,
518 b
->max_zone_append_sectors
);
519 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
521 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
522 b
->seg_boundary_mask
);
523 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
524 b
->virt_boundary_mask
);
526 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
527 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
528 b
->max_discard_segments
);
529 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
530 b
->max_integrity_segments
);
532 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
533 b
->max_segment_size
);
535 t
->misaligned
|= b
->misaligned
;
537 alignment
= queue_limit_alignment_offset(b
, start
);
539 /* Bottom device has different alignment. Check that it is
540 * compatible with the current top alignment.
542 if (t
->alignment_offset
!= alignment
) {
544 top
= max(t
->physical_block_size
, t
->io_min
)
545 + t
->alignment_offset
;
546 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
548 /* Verify that top and bottom intervals line up */
549 if (max(top
, bottom
) % min(top
, bottom
)) {
555 t
->logical_block_size
= max(t
->logical_block_size
,
556 b
->logical_block_size
);
558 t
->physical_block_size
= max(t
->physical_block_size
,
559 b
->physical_block_size
);
561 t
->io_min
= max(t
->io_min
, b
->io_min
);
562 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
564 /* Set non-power-of-2 compatible chunk_sectors boundary */
565 if (b
->chunk_sectors
)
566 t
->chunk_sectors
= gcd(t
->chunk_sectors
, b
->chunk_sectors
);
568 /* Physical block size a multiple of the logical block size? */
569 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
570 t
->physical_block_size
= t
->logical_block_size
;
575 /* Minimum I/O a multiple of the physical block size? */
576 if (t
->io_min
& (t
->physical_block_size
- 1)) {
577 t
->io_min
= t
->physical_block_size
;
582 /* Optimal I/O a multiple of the physical block size? */
583 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
589 /* chunk_sectors a multiple of the physical block size? */
590 if ((t
->chunk_sectors
<< 9) & (t
->physical_block_size
- 1)) {
591 t
->chunk_sectors
= 0;
596 t
->raid_partial_stripes_expensive
=
597 max(t
->raid_partial_stripes_expensive
,
598 b
->raid_partial_stripes_expensive
);
600 /* Find lowest common alignment_offset */
601 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
602 % max(t
->physical_block_size
, t
->io_min
);
604 /* Verify that new alignment_offset is on a logical block boundary */
605 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
610 /* Discard alignment and granularity */
611 if (b
->discard_granularity
) {
612 alignment
= queue_limit_discard_alignment(b
, start
);
614 if (t
->discard_granularity
!= 0 &&
615 t
->discard_alignment
!= alignment
) {
616 top
= t
->discard_granularity
+ t
->discard_alignment
;
617 bottom
= b
->discard_granularity
+ alignment
;
619 /* Verify that top and bottom intervals line up */
620 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
621 t
->discard_misaligned
= 1;
624 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
625 b
->max_discard_sectors
);
626 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
627 b
->max_hw_discard_sectors
);
628 t
->discard_granularity
= max(t
->discard_granularity
,
629 b
->discard_granularity
);
630 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
631 t
->discard_granularity
;
634 t
->zoned
= max(t
->zoned
, b
->zoned
);
637 EXPORT_SYMBOL(blk_stack_limits
);
640 * disk_stack_limits - adjust queue limits for stacked drivers
641 * @disk: MD/DM gendisk (top)
642 * @bdev: the underlying block device (bottom)
643 * @offset: offset to beginning of data within component device
646 * Merges the limits for a top level gendisk and a bottom level
649 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
652 struct request_queue
*t
= disk
->queue
;
654 if (blk_stack_limits(&t
->limits
, &bdev_get_queue(bdev
)->limits
,
655 get_start_sect(bdev
) + (offset
>> 9)) < 0) {
656 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
658 disk_name(disk
, 0, top
);
659 bdevname(bdev
, bottom
);
661 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
665 blk_queue_update_readahead(disk
->queue
);
667 EXPORT_SYMBOL(disk_stack_limits
);
670 * blk_queue_update_dma_pad - update pad mask
671 * @q: the request queue for the device
674 * Update dma pad mask.
676 * Appending pad buffer to a request modifies the last entry of a
677 * scatter list such that it includes the pad buffer.
679 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
681 if (mask
> q
->dma_pad_mask
)
682 q
->dma_pad_mask
= mask
;
684 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
687 * blk_queue_segment_boundary - set boundary rules for segment merging
688 * @q: the request queue for the device
689 * @mask: the memory boundary mask
691 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
693 if (mask
< PAGE_SIZE
- 1) {
694 mask
= PAGE_SIZE
- 1;
695 printk(KERN_INFO
"%s: set to minimum %lx\n",
699 q
->limits
.seg_boundary_mask
= mask
;
701 EXPORT_SYMBOL(blk_queue_segment_boundary
);
704 * blk_queue_virt_boundary - set boundary rules for bio merging
705 * @q: the request queue for the device
706 * @mask: the memory boundary mask
708 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
710 q
->limits
.virt_boundary_mask
= mask
;
713 * Devices that require a virtual boundary do not support scatter/gather
714 * I/O natively, but instead require a descriptor list entry for each
715 * page (which might not be idential to the Linux PAGE_SIZE). Because
716 * of that they are not limited by our notion of "segment size".
719 q
->limits
.max_segment_size
= UINT_MAX
;
721 EXPORT_SYMBOL(blk_queue_virt_boundary
);
724 * blk_queue_dma_alignment - set dma length and memory alignment
725 * @q: the request queue for the device
726 * @mask: alignment mask
729 * set required memory and length alignment for direct dma transactions.
730 * this is used when building direct io requests for the queue.
733 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
735 q
->dma_alignment
= mask
;
737 EXPORT_SYMBOL(blk_queue_dma_alignment
);
740 * blk_queue_update_dma_alignment - update dma length and memory alignment
741 * @q: the request queue for the device
742 * @mask: alignment mask
745 * update required memory and length alignment for direct dma transactions.
746 * If the requested alignment is larger than the current alignment, then
747 * the current queue alignment is updated to the new value, otherwise it
748 * is left alone. The design of this is to allow multiple objects
749 * (driver, device, transport etc) to set their respective
750 * alignments without having them interfere.
753 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
755 BUG_ON(mask
> PAGE_SIZE
);
757 if (mask
> q
->dma_alignment
)
758 q
->dma_alignment
= mask
;
760 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
763 * blk_set_queue_depth - tell the block layer about the device queue depth
764 * @q: the request queue for the device
765 * @depth: queue depth
768 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
770 q
->queue_depth
= depth
;
771 rq_qos_queue_depth_changed(q
);
773 EXPORT_SYMBOL(blk_set_queue_depth
);
776 * blk_queue_write_cache - configure queue's write cache
777 * @q: the request queue for the device
778 * @wc: write back cache on or off
779 * @fua: device supports FUA writes, if true
781 * Tell the block layer about the write cache of @q.
783 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
786 blk_queue_flag_set(QUEUE_FLAG_WC
, q
);
788 blk_queue_flag_clear(QUEUE_FLAG_WC
, q
);
790 blk_queue_flag_set(QUEUE_FLAG_FUA
, q
);
792 blk_queue_flag_clear(QUEUE_FLAG_FUA
, q
);
794 wbt_set_write_cache(q
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
796 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
799 * blk_queue_required_elevator_features - Set a queue required elevator features
800 * @q: the request queue for the target device
801 * @features: Required elevator features OR'ed together
803 * Tell the block layer that for the device controlled through @q, only the
804 * only elevators that can be used are those that implement at least the set of
805 * features specified by @features.
807 void blk_queue_required_elevator_features(struct request_queue
*q
,
808 unsigned int features
)
810 q
->required_elevator_features
= features
;
812 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features
);
815 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
816 * @q: the request queue for the device
817 * @dev: the device pointer for dma
819 * Tell the block layer about merging the segments by dma map of @q.
821 bool blk_queue_can_use_dma_map_merging(struct request_queue
*q
,
824 unsigned long boundary
= dma_get_merge_boundary(dev
);
829 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
830 blk_queue_virt_boundary(q
, boundary
);
834 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging
);
837 * blk_queue_set_zoned - configure a disk queue zoned model.
838 * @disk: the gendisk of the queue to configure
839 * @model: the zoned model to set
841 * Set the zoned model of the request queue of @disk according to @model.
842 * When @model is BLK_ZONED_HM (host managed), this should be called only
843 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
844 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
845 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
848 void blk_queue_set_zoned(struct gendisk
*disk
, enum blk_zoned_model model
)
853 * Host managed devices are supported only if
854 * CONFIG_BLK_DEV_ZONED is enabled.
856 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED
));
860 * Host aware devices can be treated either as regular block
861 * devices (similar to drive managed devices) or as zoned block
862 * devices to take advantage of the zone command set, similarly
863 * to host managed devices. We try the latter if there are no
864 * partitions and zoned block device support is enabled, else
865 * we do nothing special as far as the block layer is concerned.
867 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED
) ||
868 disk_has_partitions(disk
))
869 model
= BLK_ZONED_NONE
;
873 if (WARN_ON_ONCE(model
!= BLK_ZONED_NONE
))
874 model
= BLK_ZONED_NONE
;
878 disk
->queue
->limits
.zoned
= model
;
880 EXPORT_SYMBOL_GPL(blk_queue_set_zoned
);
882 static int __init
blk_settings_init(void)
884 blk_max_low_pfn
= max_low_pfn
- 1;
885 blk_max_pfn
= max_pfn
- 1;
888 subsys_initcall(blk_settings_init
);