io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / acpi / pptt.c
blob4ae93350b70dec24ef5a3e44dd35ebdee874c897
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
5 * Copyright (C) 2018, ARM
7 * This file implements parsing of the Processor Properties Topology Table
8 * which is optionally used to describe the processor and cache topology.
9 * Due to the relative pointers used throughout the table, this doesn't
10 * leverage the existing subtable parsing in the kernel.
12 * The PPTT structure is an inverted tree, with each node potentially
13 * holding one or two inverted tree data structures describing
14 * the caches available at that level. Each cache structure optionally
15 * contains properties describing the cache at a given level which can be
16 * used to override hardware probed values.
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 u32 pptt_ref)
27 struct acpi_subtable_header *entry;
29 /* there isn't a subtable at reference 0 */
30 if (pptt_ref < sizeof(struct acpi_subtable_header))
31 return NULL;
33 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 return NULL;
36 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
38 if (entry->length == 0)
39 return NULL;
41 if (pptt_ref + entry->length > table_hdr->length)
42 return NULL;
44 return entry;
47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 u32 pptt_ref)
50 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 u32 pptt_ref)
56 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 struct acpi_pptt_processor *node,
61 int resource)
63 u32 *ref;
65 if (resource >= node->number_of_priv_resources)
66 return NULL;
68 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 ref += resource;
71 return fetch_pptt_subtable(table_hdr, *ref);
74 static inline bool acpi_pptt_match_type(int table_type, int type)
76 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
80 /**
81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82 * @table_hdr: Pointer to the head of the PPTT table
83 * @local_level: passed res reflects this cache level
84 * @res: cache resource in the PPTT we want to walk
85 * @found: returns a pointer to the requested level if found
86 * @level: the requested cache level
87 * @type: the requested cache type
89 * Attempt to find a given cache level, while counting the max number
90 * of cache levels for the cache node.
92 * Given a pptt resource, verify that it is a cache node, then walk
93 * down each level of caches, counting how many levels are found
94 * as well as checking the cache type (icache, dcache, unified). If a
95 * level & type match, then we set found, and continue the search.
96 * Once the entire cache branch has been walked return its max
97 * depth.
99 * Return: The cache structure and the level we terminated with.
101 static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102 unsigned int local_level,
103 struct acpi_subtable_header *res,
104 struct acpi_pptt_cache **found,
105 unsigned int level, int type)
107 struct acpi_pptt_cache *cache;
109 if (res->type != ACPI_PPTT_TYPE_CACHE)
110 return 0;
112 cache = (struct acpi_pptt_cache *) res;
113 while (cache) {
114 local_level++;
116 if (local_level == level &&
117 cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118 acpi_pptt_match_type(cache->attributes, type)) {
119 if (*found != NULL && cache != *found)
120 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
122 pr_debug("Found cache @ level %u\n", level);
123 *found = cache;
125 * continue looking at this node's resource list
126 * to verify that we don't find a duplicate
127 * cache node.
130 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
132 return local_level;
135 static struct acpi_pptt_cache *
136 acpi_find_cache_level(struct acpi_table_header *table_hdr,
137 struct acpi_pptt_processor *cpu_node,
138 unsigned int *starting_level, unsigned int level,
139 int type)
141 struct acpi_subtable_header *res;
142 unsigned int number_of_levels = *starting_level;
143 int resource = 0;
144 struct acpi_pptt_cache *ret = NULL;
145 unsigned int local_level;
147 /* walk down from processor node */
148 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
149 resource++;
151 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
152 res, &ret, level, type);
154 * we are looking for the max depth. Since its potentially
155 * possible for a given node to have resources with differing
156 * depths verify that the depth we have found is the largest.
158 if (number_of_levels < local_level)
159 number_of_levels = local_level;
161 if (number_of_levels > *starting_level)
162 *starting_level = number_of_levels;
164 return ret;
168 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
169 * @table_hdr: Pointer to the head of the PPTT table
170 * @cpu_node: processor node we wish to count caches for
172 * Given a processor node containing a processing unit, walk into it and count
173 * how many levels exist solely for it, and then walk up each level until we hit
174 * the root node (ignore the package level because it may be possible to have
175 * caches that exist across packages). Count the number of cache levels that
176 * exist at each level on the way up.
178 * Return: Total number of levels found.
180 static int acpi_count_levels(struct acpi_table_header *table_hdr,
181 struct acpi_pptt_processor *cpu_node)
183 int total_levels = 0;
185 do {
186 acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
187 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
188 } while (cpu_node);
190 return total_levels;
194 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
195 * @table_hdr: Pointer to the head of the PPTT table
196 * @node: passed node is checked to see if its a leaf
198 * Determine if the *node parameter is a leaf node by iterating the
199 * PPTT table, looking for nodes which reference it.
201 * Return: 0 if we find a node referencing the passed node (or table error),
202 * or 1 if we don't.
204 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
205 struct acpi_pptt_processor *node)
207 struct acpi_subtable_header *entry;
208 unsigned long table_end;
209 u32 node_entry;
210 struct acpi_pptt_processor *cpu_node;
211 u32 proc_sz;
213 if (table_hdr->revision > 1)
214 return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
216 table_end = (unsigned long)table_hdr + table_hdr->length;
217 node_entry = ACPI_PTR_DIFF(node, table_hdr);
218 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
219 sizeof(struct acpi_table_pptt));
220 proc_sz = sizeof(struct acpi_pptt_processor *);
222 while ((unsigned long)entry + proc_sz < table_end) {
223 cpu_node = (struct acpi_pptt_processor *)entry;
224 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
225 cpu_node->parent == node_entry)
226 return 0;
227 if (entry->length == 0)
228 return 0;
229 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
230 entry->length);
233 return 1;
237 * acpi_find_processor_node() - Given a PPTT table find the requested processor
238 * @table_hdr: Pointer to the head of the PPTT table
239 * @acpi_cpu_id: CPU we are searching for
241 * Find the subtable entry describing the provided processor.
242 * This is done by iterating the PPTT table looking for processor nodes
243 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
244 * passed into the function. If we find a node that matches this criteria
245 * we verify that its a leaf node in the topology rather than depending
246 * on the valid flag, which doesn't need to be set for leaf nodes.
248 * Return: NULL, or the processors acpi_pptt_processor*
250 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
251 u32 acpi_cpu_id)
253 struct acpi_subtable_header *entry;
254 unsigned long table_end;
255 struct acpi_pptt_processor *cpu_node;
256 u32 proc_sz;
258 table_end = (unsigned long)table_hdr + table_hdr->length;
259 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
260 sizeof(struct acpi_table_pptt));
261 proc_sz = sizeof(struct acpi_pptt_processor *);
263 /* find the processor structure associated with this cpuid */
264 while ((unsigned long)entry + proc_sz < table_end) {
265 cpu_node = (struct acpi_pptt_processor *)entry;
267 if (entry->length == 0) {
268 pr_warn("Invalid zero length subtable\n");
269 break;
271 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
272 acpi_cpu_id == cpu_node->acpi_processor_id &&
273 acpi_pptt_leaf_node(table_hdr, cpu_node)) {
274 return (struct acpi_pptt_processor *)entry;
277 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
278 entry->length);
281 return NULL;
284 static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
285 u32 acpi_cpu_id)
287 int number_of_levels = 0;
288 struct acpi_pptt_processor *cpu;
290 cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
291 if (cpu)
292 number_of_levels = acpi_count_levels(table_hdr, cpu);
294 return number_of_levels;
297 static u8 acpi_cache_type(enum cache_type type)
299 switch (type) {
300 case CACHE_TYPE_DATA:
301 pr_debug("Looking for data cache\n");
302 return ACPI_PPTT_CACHE_TYPE_DATA;
303 case CACHE_TYPE_INST:
304 pr_debug("Looking for instruction cache\n");
305 return ACPI_PPTT_CACHE_TYPE_INSTR;
306 default:
307 case CACHE_TYPE_UNIFIED:
308 pr_debug("Looking for unified cache\n");
310 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
311 * contains the bit pattern that will match both
312 * ACPI unified bit patterns because we use it later
313 * to match both cases.
315 return ACPI_PPTT_CACHE_TYPE_UNIFIED;
319 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
320 u32 acpi_cpu_id,
321 enum cache_type type,
322 unsigned int level,
323 struct acpi_pptt_processor **node)
325 unsigned int total_levels = 0;
326 struct acpi_pptt_cache *found = NULL;
327 struct acpi_pptt_processor *cpu_node;
328 u8 acpi_type = acpi_cache_type(type);
330 pr_debug("Looking for CPU %d's level %u cache type %d\n",
331 acpi_cpu_id, level, acpi_type);
333 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
335 while (cpu_node && !found) {
336 found = acpi_find_cache_level(table_hdr, cpu_node,
337 &total_levels, level, acpi_type);
338 *node = cpu_node;
339 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
342 return found;
346 * update_cache_properties() - Update cacheinfo for the given processor
347 * @this_leaf: Kernel cache info structure being updated
348 * @found_cache: The PPTT node describing this cache instance
349 * @cpu_node: A unique reference to describe this cache instance
351 * The ACPI spec implies that the fields in the cache structures are used to
352 * extend and correct the information probed from the hardware. Lets only
353 * set fields that we determine are VALID.
355 * Return: nothing. Side effect of updating the global cacheinfo
357 static void update_cache_properties(struct cacheinfo *this_leaf,
358 struct acpi_pptt_cache *found_cache,
359 struct acpi_pptt_processor *cpu_node)
361 this_leaf->fw_token = cpu_node;
362 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
363 this_leaf->size = found_cache->size;
364 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
365 this_leaf->coherency_line_size = found_cache->line_size;
366 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
367 this_leaf->number_of_sets = found_cache->number_of_sets;
368 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
369 this_leaf->ways_of_associativity = found_cache->associativity;
370 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
371 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
372 case ACPI_PPTT_CACHE_POLICY_WT:
373 this_leaf->attributes = CACHE_WRITE_THROUGH;
374 break;
375 case ACPI_PPTT_CACHE_POLICY_WB:
376 this_leaf->attributes = CACHE_WRITE_BACK;
377 break;
380 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
381 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
382 case ACPI_PPTT_CACHE_READ_ALLOCATE:
383 this_leaf->attributes |= CACHE_READ_ALLOCATE;
384 break;
385 case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
386 this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
387 break;
388 case ACPI_PPTT_CACHE_RW_ALLOCATE:
389 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
390 this_leaf->attributes |=
391 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
392 break;
396 * If cache type is NOCACHE, then the cache hasn't been specified
397 * via other mechanisms. Update the type if a cache type has been
398 * provided.
400 * Note, we assume such caches are unified based on conventional system
401 * design and known examples. Significant work is required elsewhere to
402 * fully support data/instruction only type caches which are only
403 * specified in PPTT.
405 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
406 found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
407 this_leaf->type = CACHE_TYPE_UNIFIED;
410 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
411 unsigned int cpu)
413 struct acpi_pptt_cache *found_cache;
414 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
415 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
416 struct cacheinfo *this_leaf;
417 unsigned int index = 0;
418 struct acpi_pptt_processor *cpu_node = NULL;
420 while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
421 this_leaf = this_cpu_ci->info_list + index;
422 found_cache = acpi_find_cache_node(table, acpi_cpu_id,
423 this_leaf->type,
424 this_leaf->level,
425 &cpu_node);
426 pr_debug("found = %p %p\n", found_cache, cpu_node);
427 if (found_cache)
428 update_cache_properties(this_leaf,
429 found_cache,
430 cpu_node);
432 index++;
436 static bool flag_identical(struct acpi_table_header *table_hdr,
437 struct acpi_pptt_processor *cpu)
439 struct acpi_pptt_processor *next;
441 /* heterogeneous machines must use PPTT revision > 1 */
442 if (table_hdr->revision < 2)
443 return false;
445 /* Locate the last node in the tree with IDENTICAL set */
446 if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
447 next = fetch_pptt_node(table_hdr, cpu->parent);
448 if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
449 return true;
452 return false;
455 /* Passing level values greater than this will result in search termination */
456 #define PPTT_ABORT_PACKAGE 0xFF
458 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
459 struct acpi_pptt_processor *cpu,
460 int level, int flag)
462 struct acpi_pptt_processor *prev_node;
464 while (cpu && level) {
465 /* special case the identical flag to find last identical */
466 if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
467 if (flag_identical(table_hdr, cpu))
468 break;
469 } else if (cpu->flags & flag)
470 break;
471 pr_debug("level %d\n", level);
472 prev_node = fetch_pptt_node(table_hdr, cpu->parent);
473 if (prev_node == NULL)
474 break;
475 cpu = prev_node;
476 level--;
478 return cpu;
481 static void acpi_pptt_warn_missing(void)
483 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
487 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
488 * @table: Pointer to the head of the PPTT table
489 * @cpu: Kernel logical CPU number
490 * @level: A level that terminates the search
491 * @flag: A flag which terminates the search
493 * Get a unique value given a CPU, and a topology level, that can be
494 * matched to determine which cpus share common topological features
495 * at that level.
497 * Return: Unique value, or -ENOENT if unable to locate CPU
499 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
500 unsigned int cpu, int level, int flag)
502 struct acpi_pptt_processor *cpu_node;
503 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
505 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
506 if (cpu_node) {
507 cpu_node = acpi_find_processor_tag(table, cpu_node,
508 level, flag);
510 * As per specification if the processor structure represents
511 * an actual processor, then ACPI processor ID must be valid.
512 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
513 * should be set if the UID is valid
515 if (level == 0 ||
516 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
517 return cpu_node->acpi_processor_id;
518 return ACPI_PTR_DIFF(cpu_node, table);
520 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
521 cpu, acpi_cpu_id);
522 return -ENOENT;
525 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
527 struct acpi_table_header *table;
528 acpi_status status;
529 int retval;
531 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
532 if (ACPI_FAILURE(status)) {
533 acpi_pptt_warn_missing();
534 return -ENOENT;
536 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
537 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
538 cpu, level, retval);
539 acpi_put_table(table);
541 return retval;
545 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
546 * @cpu: Kernel logical CPU number
547 * @rev: The minimum PPTT revision defining the flag
548 * @flag: The flag itself
550 * Check the node representing a CPU for a given flag.
552 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
553 * the table revision isn't new enough.
554 * 1, any passed flag set
555 * 0, flag unset
557 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
559 struct acpi_table_header *table;
560 acpi_status status;
561 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
562 struct acpi_pptt_processor *cpu_node = NULL;
563 int ret = -ENOENT;
565 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
566 if (ACPI_FAILURE(status)) {
567 acpi_pptt_warn_missing();
568 return ret;
571 if (table->revision >= rev)
572 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
574 if (cpu_node)
575 ret = (cpu_node->flags & flag) != 0;
577 acpi_put_table(table);
579 return ret;
583 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
584 * @cpu: Kernel logical CPU number
586 * Given a logical CPU number, returns the number of levels of cache represented
587 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
588 * indicating we didn't find any cache levels.
590 * Return: Cache levels visible to this core.
592 int acpi_find_last_cache_level(unsigned int cpu)
594 u32 acpi_cpu_id;
595 struct acpi_table_header *table;
596 int number_of_levels = 0;
597 acpi_status status;
599 pr_debug("Cache Setup find last level CPU=%d\n", cpu);
601 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
602 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
603 if (ACPI_FAILURE(status)) {
604 acpi_pptt_warn_missing();
605 } else {
606 number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
607 acpi_put_table(table);
609 pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
611 return number_of_levels;
615 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
616 * @cpu: Kernel logical CPU number
618 * Updates the global cache info provided by cpu_get_cacheinfo()
619 * when there are valid properties in the acpi_pptt_cache nodes. A
620 * successful parse may not result in any updates if none of the
621 * cache levels have any valid flags set. Further, a unique value is
622 * associated with each known CPU cache entry. This unique value
623 * can be used to determine whether caches are shared between CPUs.
625 * Return: -ENOENT on failure to find table, or 0 on success
627 int cache_setup_acpi(unsigned int cpu)
629 struct acpi_table_header *table;
630 acpi_status status;
632 pr_debug("Cache Setup ACPI CPU %d\n", cpu);
634 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
635 if (ACPI_FAILURE(status)) {
636 acpi_pptt_warn_missing();
637 return -ENOENT;
640 cache_setup_acpi_cpu(table, cpu);
641 acpi_put_table(table);
643 return status;
647 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
648 * @cpu: Kernel logical CPU number
650 * Return: 1, a thread
651 * 0, not a thread
652 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
653 * the table revision isn't new enough.
655 int acpi_pptt_cpu_is_thread(unsigned int cpu)
657 return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
661 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
662 * @cpu: Kernel logical CPU number
663 * @level: The topological level for which we would like a unique ID
665 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
666 * /socket/etc. This ID can then be used to group peers, which will have
667 * matching ids.
669 * The search terminates when either the requested level is found or
670 * we reach a root node. Levels beyond the termination point will return the
671 * same unique ID. The unique id for level 0 is the acpi processor id. All
672 * other levels beyond this use a generated value to uniquely identify
673 * a topological feature.
675 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
676 * Otherwise returns a value which represents a unique topological feature.
678 int find_acpi_cpu_topology(unsigned int cpu, int level)
680 return find_acpi_cpu_topology_tag(cpu, level, 0);
684 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
685 * @cpu: Kernel logical CPU number
686 * @level: The cache level for which we would like a unique ID
688 * Determine a unique ID for each unified cache in the system
690 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
691 * Otherwise returns a value which represents a unique topological feature.
693 int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
695 struct acpi_table_header *table;
696 struct acpi_pptt_cache *found_cache;
697 acpi_status status;
698 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
699 struct acpi_pptt_processor *cpu_node = NULL;
700 int ret = -1;
702 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
703 if (ACPI_FAILURE(status)) {
704 acpi_pptt_warn_missing();
705 return -ENOENT;
708 found_cache = acpi_find_cache_node(table, acpi_cpu_id,
709 CACHE_TYPE_UNIFIED,
710 level,
711 &cpu_node);
712 if (found_cache)
713 ret = ACPI_PTR_DIFF(cpu_node, table);
715 acpi_put_table(table);
717 return ret;
721 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
722 * @cpu: Kernel logical CPU number
724 * Determine a topology unique package ID for the given CPU.
725 * This ID can then be used to group peers, which will have matching ids.
727 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
728 * flag set or we reach a root node.
730 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
731 * Otherwise returns a value which represents the package for this CPU.
733 int find_acpi_cpu_topology_package(unsigned int cpu)
735 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
736 ACPI_PPTT_PHYSICAL_PACKAGE);
740 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
741 * @cpu: Kernel logical CPU number
743 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
744 * implementation should have matching tags.
746 * The returned tag can be used to group peers with identical implementation.
748 * The search terminates when a level is found with the identical implementation
749 * flag set or we reach a root node.
751 * Due to limitations in the PPTT data structure, there may be rare situations
752 * where two cores in a heterogeneous machine may be identical, but won't have
753 * the same tag.
755 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
756 * Otherwise returns a value which represents a group of identical cores
757 * similar to this CPU.
759 int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
761 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
762 ACPI_PPTT_ACPI_IDENTICAL);