1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * acpi-cpufreq.c - ACPI Processor P-States Driver
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
23 #include <linux/acpi.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
28 #include <acpi/processor.h>
31 #include <asm/processor.h>
32 #include <asm/cpufeature.h>
33 #include <asm/cpu_device_id.h>
35 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
36 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
37 MODULE_LICENSE("GPL");
40 UNDEFINED_CAPABLE
= 0,
41 SYSTEM_INTEL_MSR_CAPABLE
,
42 SYSTEM_AMD_MSR_CAPABLE
,
46 #define INTEL_MSR_RANGE (0xffff)
47 #define AMD_MSR_RANGE (0x7)
48 #define HYGON_MSR_RANGE (0x7)
50 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
52 struct acpi_cpufreq_data
{
54 unsigned int cpu_feature
;
55 unsigned int acpi_perf_cpu
;
56 cpumask_var_t freqdomain_cpus
;
57 void (*cpu_freq_write
)(struct acpi_pct_register
*reg
, u32 val
);
58 u32 (*cpu_freq_read
)(struct acpi_pct_register
*reg
);
61 /* acpi_perf_data is a pointer to percpu data. */
62 static struct acpi_processor_performance __percpu
*acpi_perf_data
;
64 static inline struct acpi_processor_performance
*to_perf_data(struct acpi_cpufreq_data
*data
)
66 return per_cpu_ptr(acpi_perf_data
, data
->acpi_perf_cpu
);
69 static struct cpufreq_driver acpi_cpufreq_driver
;
71 static unsigned int acpi_pstate_strict
;
73 static bool boost_state(unsigned int cpu
)
78 switch (boot_cpu_data
.x86_vendor
) {
79 case X86_VENDOR_INTEL
:
80 rdmsr_on_cpu(cpu
, MSR_IA32_MISC_ENABLE
, &lo
, &hi
);
81 msr
= lo
| ((u64
)hi
<< 32);
82 return !(msr
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
);
83 case X86_VENDOR_HYGON
:
85 rdmsr_on_cpu(cpu
, MSR_K7_HWCR
, &lo
, &hi
);
86 msr
= lo
| ((u64
)hi
<< 32);
87 return !(msr
& MSR_K7_HWCR_CPB_DIS
);
92 static int boost_set_msr(bool enable
)
97 switch (boot_cpu_data
.x86_vendor
) {
98 case X86_VENDOR_INTEL
:
99 msr_addr
= MSR_IA32_MISC_ENABLE
;
100 msr_mask
= MSR_IA32_MISC_ENABLE_TURBO_DISABLE
;
102 case X86_VENDOR_HYGON
:
104 msr_addr
= MSR_K7_HWCR
;
105 msr_mask
= MSR_K7_HWCR_CPB_DIS
;
111 rdmsrl(msr_addr
, val
);
118 wrmsrl(msr_addr
, val
);
122 static void boost_set_msr_each(void *p_en
)
124 bool enable
= (bool) p_en
;
126 boost_set_msr(enable
);
129 static int set_boost(struct cpufreq_policy
*policy
, int val
)
131 on_each_cpu_mask(policy
->cpus
, boost_set_msr_each
,
132 (void *)(long)val
, 1);
133 pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
134 cpumask_pr_args(policy
->cpus
), val
? "en" : "dis");
139 static ssize_t
show_freqdomain_cpus(struct cpufreq_policy
*policy
, char *buf
)
141 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
146 return cpufreq_show_cpus(data
->freqdomain_cpus
, buf
);
149 cpufreq_freq_attr_ro(freqdomain_cpus
);
151 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
152 static ssize_t
store_cpb(struct cpufreq_policy
*policy
, const char *buf
,
156 unsigned int val
= 0;
158 if (!acpi_cpufreq_driver
.set_boost
)
161 ret
= kstrtouint(buf
, 10, &val
);
166 set_boost(policy
, val
);
172 static ssize_t
show_cpb(struct cpufreq_policy
*policy
, char *buf
)
174 return sprintf(buf
, "%u\n", acpi_cpufreq_driver
.boost_enabled
);
177 cpufreq_freq_attr_rw(cpb
);
180 static int check_est_cpu(unsigned int cpuid
)
182 struct cpuinfo_x86
*cpu
= &cpu_data(cpuid
);
184 return cpu_has(cpu
, X86_FEATURE_EST
);
187 static int check_amd_hwpstate_cpu(unsigned int cpuid
)
189 struct cpuinfo_x86
*cpu
= &cpu_data(cpuid
);
191 return cpu_has(cpu
, X86_FEATURE_HW_PSTATE
);
194 static unsigned extract_io(struct cpufreq_policy
*policy
, u32 value
)
196 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
197 struct acpi_processor_performance
*perf
;
200 perf
= to_perf_data(data
);
202 for (i
= 0; i
< perf
->state_count
; i
++) {
203 if (value
== perf
->states
[i
].status
)
204 return policy
->freq_table
[i
].frequency
;
209 static unsigned extract_msr(struct cpufreq_policy
*policy
, u32 msr
)
211 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
212 struct cpufreq_frequency_table
*pos
;
213 struct acpi_processor_performance
*perf
;
215 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
)
216 msr
&= AMD_MSR_RANGE
;
217 else if (boot_cpu_data
.x86_vendor
== X86_VENDOR_HYGON
)
218 msr
&= HYGON_MSR_RANGE
;
220 msr
&= INTEL_MSR_RANGE
;
222 perf
= to_perf_data(data
);
224 cpufreq_for_each_entry(pos
, policy
->freq_table
)
225 if (msr
== perf
->states
[pos
->driver_data
].status
)
226 return pos
->frequency
;
227 return policy
->freq_table
[0].frequency
;
230 static unsigned extract_freq(struct cpufreq_policy
*policy
, u32 val
)
232 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
234 switch (data
->cpu_feature
) {
235 case SYSTEM_INTEL_MSR_CAPABLE
:
236 case SYSTEM_AMD_MSR_CAPABLE
:
237 return extract_msr(policy
, val
);
238 case SYSTEM_IO_CAPABLE
:
239 return extract_io(policy
, val
);
245 static u32
cpu_freq_read_intel(struct acpi_pct_register
*not_used
)
247 u32 val
, dummy __always_unused
;
249 rdmsr(MSR_IA32_PERF_CTL
, val
, dummy
);
253 static void cpu_freq_write_intel(struct acpi_pct_register
*not_used
, u32 val
)
257 rdmsr(MSR_IA32_PERF_CTL
, lo
, hi
);
258 lo
= (lo
& ~INTEL_MSR_RANGE
) | (val
& INTEL_MSR_RANGE
);
259 wrmsr(MSR_IA32_PERF_CTL
, lo
, hi
);
262 static u32
cpu_freq_read_amd(struct acpi_pct_register
*not_used
)
264 u32 val
, dummy __always_unused
;
266 rdmsr(MSR_AMD_PERF_CTL
, val
, dummy
);
270 static void cpu_freq_write_amd(struct acpi_pct_register
*not_used
, u32 val
)
272 wrmsr(MSR_AMD_PERF_CTL
, val
, 0);
275 static u32
cpu_freq_read_io(struct acpi_pct_register
*reg
)
279 acpi_os_read_port(reg
->address
, &val
, reg
->bit_width
);
283 static void cpu_freq_write_io(struct acpi_pct_register
*reg
, u32 val
)
285 acpi_os_write_port(reg
->address
, val
, reg
->bit_width
);
289 struct acpi_pct_register
*reg
;
292 void (*write
)(struct acpi_pct_register
*reg
, u32 val
);
293 u32 (*read
)(struct acpi_pct_register
*reg
);
297 /* Called via smp_call_function_single(), on the target CPU */
298 static void do_drv_read(void *_cmd
)
300 struct drv_cmd
*cmd
= _cmd
;
302 cmd
->val
= cmd
->func
.read(cmd
->reg
);
305 static u32
drv_read(struct acpi_cpufreq_data
*data
, const struct cpumask
*mask
)
307 struct acpi_processor_performance
*perf
= to_perf_data(data
);
308 struct drv_cmd cmd
= {
309 .reg
= &perf
->control_register
,
310 .func
.read
= data
->cpu_freq_read
,
314 err
= smp_call_function_any(mask
, do_drv_read
, &cmd
, 1);
315 WARN_ON_ONCE(err
); /* smp_call_function_any() was buggy? */
319 /* Called via smp_call_function_many(), on the target CPUs */
320 static void do_drv_write(void *_cmd
)
322 struct drv_cmd
*cmd
= _cmd
;
324 cmd
->func
.write(cmd
->reg
, cmd
->val
);
327 static void drv_write(struct acpi_cpufreq_data
*data
,
328 const struct cpumask
*mask
, u32 val
)
330 struct acpi_processor_performance
*perf
= to_perf_data(data
);
331 struct drv_cmd cmd
= {
332 .reg
= &perf
->control_register
,
334 .func
.write
= data
->cpu_freq_write
,
338 this_cpu
= get_cpu();
339 if (cpumask_test_cpu(this_cpu
, mask
))
342 smp_call_function_many(mask
, do_drv_write
, &cmd
, 1);
346 static u32
get_cur_val(const struct cpumask
*mask
, struct acpi_cpufreq_data
*data
)
350 if (unlikely(cpumask_empty(mask
)))
353 val
= drv_read(data
, mask
);
355 pr_debug("%s = %u\n", __func__
, val
);
360 static unsigned int get_cur_freq_on_cpu(unsigned int cpu
)
362 struct acpi_cpufreq_data
*data
;
363 struct cpufreq_policy
*policy
;
365 unsigned int cached_freq
;
367 pr_debug("%s (%d)\n", __func__
, cpu
);
369 policy
= cpufreq_cpu_get_raw(cpu
);
370 if (unlikely(!policy
))
373 data
= policy
->driver_data
;
374 if (unlikely(!data
|| !policy
->freq_table
))
377 cached_freq
= policy
->freq_table
[to_perf_data(data
)->state
].frequency
;
378 freq
= extract_freq(policy
, get_cur_val(cpumask_of(cpu
), data
));
379 if (freq
!= cached_freq
) {
381 * The dreaded BIOS frequency change behind our back.
382 * Force set the frequency on next target call.
387 pr_debug("cur freq = %u\n", freq
);
392 static unsigned int check_freqs(struct cpufreq_policy
*policy
,
393 const struct cpumask
*mask
, unsigned int freq
)
395 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
396 unsigned int cur_freq
;
399 for (i
= 0; i
< 100; i
++) {
400 cur_freq
= extract_freq(policy
, get_cur_val(mask
, data
));
401 if (cur_freq
== freq
)
408 static int acpi_cpufreq_target(struct cpufreq_policy
*policy
,
411 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
412 struct acpi_processor_performance
*perf
;
413 const struct cpumask
*mask
;
414 unsigned int next_perf_state
= 0; /* Index into perf table */
417 if (unlikely(!data
)) {
421 perf
= to_perf_data(data
);
422 next_perf_state
= policy
->freq_table
[index
].driver_data
;
423 if (perf
->state
== next_perf_state
) {
424 if (unlikely(data
->resume
)) {
425 pr_debug("Called after resume, resetting to P%d\n",
429 pr_debug("Already at target state (P%d)\n",
436 * The core won't allow CPUs to go away until the governor has been
437 * stopped, so we can rely on the stability of policy->cpus.
439 mask
= policy
->shared_type
== CPUFREQ_SHARED_TYPE_ANY
?
440 cpumask_of(policy
->cpu
) : policy
->cpus
;
442 drv_write(data
, mask
, perf
->states
[next_perf_state
].control
);
444 if (acpi_pstate_strict
) {
445 if (!check_freqs(policy
, mask
,
446 policy
->freq_table
[index
].frequency
)) {
447 pr_debug("%s (%d)\n", __func__
, policy
->cpu
);
453 perf
->state
= next_perf_state
;
458 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy
*policy
,
459 unsigned int target_freq
)
461 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
462 struct acpi_processor_performance
*perf
;
463 struct cpufreq_frequency_table
*entry
;
464 unsigned int next_perf_state
, next_freq
, index
;
467 * Find the closest frequency above target_freq.
469 if (policy
->cached_target_freq
== target_freq
)
470 index
= policy
->cached_resolved_idx
;
472 index
= cpufreq_table_find_index_dl(policy
, target_freq
);
474 entry
= &policy
->freq_table
[index
];
475 next_freq
= entry
->frequency
;
476 next_perf_state
= entry
->driver_data
;
478 perf
= to_perf_data(data
);
479 if (perf
->state
== next_perf_state
) {
480 if (unlikely(data
->resume
))
486 data
->cpu_freq_write(&perf
->control_register
,
487 perf
->states
[next_perf_state
].control
);
488 perf
->state
= next_perf_state
;
493 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data
*data
, unsigned int cpu
)
495 struct acpi_processor_performance
*perf
;
497 perf
= to_perf_data(data
);
499 /* search the closest match to cpu_khz */
502 unsigned long freqn
= perf
->states
[0].core_frequency
* 1000;
504 for (i
= 0; i
< (perf
->state_count
-1); i
++) {
506 freqn
= perf
->states
[i
+1].core_frequency
* 1000;
507 if ((2 * cpu_khz
) > (freqn
+ freq
)) {
512 perf
->state
= perf
->state_count
-1;
515 /* assume CPU is at P0... */
517 return perf
->states
[0].core_frequency
* 1000;
521 static void free_acpi_perf_data(void)
525 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
526 for_each_possible_cpu(i
)
527 free_cpumask_var(per_cpu_ptr(acpi_perf_data
, i
)
529 free_percpu(acpi_perf_data
);
532 static int cpufreq_boost_online(unsigned int cpu
)
535 * On the CPU_UP path we simply keep the boost-disable flag
536 * in sync with the current global state.
538 return boost_set_msr(acpi_cpufreq_driver
.boost_enabled
);
541 static int cpufreq_boost_down_prep(unsigned int cpu
)
544 * Clear the boost-disable bit on the CPU_DOWN path so that
545 * this cpu cannot block the remaining ones from boosting.
547 return boost_set_msr(1);
551 * acpi_cpufreq_early_init - initialize ACPI P-States library
553 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
554 * in order to determine correct frequency and voltage pairings. We can
555 * do _PDC and _PSD and find out the processor dependency for the
556 * actual init that will happen later...
558 static int __init
acpi_cpufreq_early_init(void)
561 pr_debug("%s\n", __func__
);
563 acpi_perf_data
= alloc_percpu(struct acpi_processor_performance
);
564 if (!acpi_perf_data
) {
565 pr_debug("Memory allocation error for acpi_perf_data.\n");
568 for_each_possible_cpu(i
) {
569 if (!zalloc_cpumask_var_node(
570 &per_cpu_ptr(acpi_perf_data
, i
)->shared_cpu_map
,
571 GFP_KERNEL
, cpu_to_node(i
))) {
573 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
574 free_acpi_perf_data();
579 /* Do initialization in ACPI core */
580 acpi_processor_preregister_performance(acpi_perf_data
);
586 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
587 * or do it in BIOS firmware and won't inform about it to OS. If not
588 * detected, this has a side effect of making CPU run at a different speed
589 * than OS intended it to run at. Detect it and handle it cleanly.
591 static int bios_with_sw_any_bug
;
593 static int sw_any_bug_found(const struct dmi_system_id
*d
)
595 bios_with_sw_any_bug
= 1;
599 static const struct dmi_system_id sw_any_bug_dmi_table
[] = {
601 .callback
= sw_any_bug_found
,
602 .ident
= "Supermicro Server X6DLP",
604 DMI_MATCH(DMI_SYS_VENDOR
, "Supermicro"),
605 DMI_MATCH(DMI_BIOS_VERSION
, "080010"),
606 DMI_MATCH(DMI_PRODUCT_NAME
, "X6DLP"),
612 static int acpi_cpufreq_blacklist(struct cpuinfo_x86
*c
)
614 /* Intel Xeon Processor 7100 Series Specification Update
615 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
616 * AL30: A Machine Check Exception (MCE) Occurring during an
617 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
618 * Both Processor Cores to Lock Up. */
619 if (c
->x86_vendor
== X86_VENDOR_INTEL
) {
620 if ((c
->x86
== 15) &&
621 (c
->x86_model
== 6) &&
622 (c
->x86_stepping
== 8)) {
623 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
631 static int acpi_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
634 unsigned int valid_states
= 0;
635 unsigned int cpu
= policy
->cpu
;
636 struct acpi_cpufreq_data
*data
;
637 unsigned int result
= 0;
638 struct cpuinfo_x86
*c
= &cpu_data(policy
->cpu
);
639 struct acpi_processor_performance
*perf
;
640 struct cpufreq_frequency_table
*freq_table
;
642 static int blacklisted
;
645 pr_debug("%s\n", __func__
);
650 blacklisted
= acpi_cpufreq_blacklist(c
);
655 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
659 if (!zalloc_cpumask_var(&data
->freqdomain_cpus
, GFP_KERNEL
)) {
664 perf
= per_cpu_ptr(acpi_perf_data
, cpu
);
665 data
->acpi_perf_cpu
= cpu
;
666 policy
->driver_data
= data
;
668 if (cpu_has(c
, X86_FEATURE_CONSTANT_TSC
))
669 acpi_cpufreq_driver
.flags
|= CPUFREQ_CONST_LOOPS
;
671 result
= acpi_processor_register_performance(perf
, cpu
);
675 policy
->shared_type
= perf
->shared_type
;
678 * Will let policy->cpus know about dependency only when software
679 * coordination is required.
681 if (policy
->shared_type
== CPUFREQ_SHARED_TYPE_ALL
||
682 policy
->shared_type
== CPUFREQ_SHARED_TYPE_ANY
) {
683 cpumask_copy(policy
->cpus
, perf
->shared_cpu_map
);
685 cpumask_copy(data
->freqdomain_cpus
, perf
->shared_cpu_map
);
688 dmi_check_system(sw_any_bug_dmi_table
);
689 if (bios_with_sw_any_bug
&& !policy_is_shared(policy
)) {
690 policy
->shared_type
= CPUFREQ_SHARED_TYPE_ALL
;
691 cpumask_copy(policy
->cpus
, topology_core_cpumask(cpu
));
694 if (check_amd_hwpstate_cpu(cpu
) && boot_cpu_data
.x86
< 0x19 &&
695 !acpi_pstate_strict
) {
696 cpumask_clear(policy
->cpus
);
697 cpumask_set_cpu(cpu
, policy
->cpus
);
698 cpumask_copy(data
->freqdomain_cpus
,
699 topology_sibling_cpumask(cpu
));
700 policy
->shared_type
= CPUFREQ_SHARED_TYPE_HW
;
701 pr_info_once("overriding BIOS provided _PSD data\n");
705 /* capability check */
706 if (perf
->state_count
<= 1) {
707 pr_debug("No P-States\n");
712 if (perf
->control_register
.space_id
!= perf
->status_register
.space_id
) {
717 switch (perf
->control_register
.space_id
) {
718 case ACPI_ADR_SPACE_SYSTEM_IO
:
719 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
&&
720 boot_cpu_data
.x86
== 0xf) {
721 pr_debug("AMD K8 systems must use native drivers.\n");
725 pr_debug("SYSTEM IO addr space\n");
726 data
->cpu_feature
= SYSTEM_IO_CAPABLE
;
727 data
->cpu_freq_read
= cpu_freq_read_io
;
728 data
->cpu_freq_write
= cpu_freq_write_io
;
730 case ACPI_ADR_SPACE_FIXED_HARDWARE
:
731 pr_debug("HARDWARE addr space\n");
732 if (check_est_cpu(cpu
)) {
733 data
->cpu_feature
= SYSTEM_INTEL_MSR_CAPABLE
;
734 data
->cpu_freq_read
= cpu_freq_read_intel
;
735 data
->cpu_freq_write
= cpu_freq_write_intel
;
738 if (check_amd_hwpstate_cpu(cpu
)) {
739 data
->cpu_feature
= SYSTEM_AMD_MSR_CAPABLE
;
740 data
->cpu_freq_read
= cpu_freq_read_amd
;
741 data
->cpu_freq_write
= cpu_freq_write_amd
;
747 pr_debug("Unknown addr space %d\n",
748 (u32
) (perf
->control_register
.space_id
));
753 freq_table
= kcalloc(perf
->state_count
+ 1, sizeof(*freq_table
),
760 /* detect transition latency */
761 policy
->cpuinfo
.transition_latency
= 0;
762 for (i
= 0; i
< perf
->state_count
; i
++) {
763 if ((perf
->states
[i
].transition_latency
* 1000) >
764 policy
->cpuinfo
.transition_latency
)
765 policy
->cpuinfo
.transition_latency
=
766 perf
->states
[i
].transition_latency
* 1000;
769 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
770 if (perf
->control_register
.space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
&&
771 policy
->cpuinfo
.transition_latency
> 20 * 1000) {
772 policy
->cpuinfo
.transition_latency
= 20 * 1000;
773 pr_info_once("P-state transition latency capped at 20 uS\n");
777 for (i
= 0; i
< perf
->state_count
; i
++) {
778 if (i
> 0 && perf
->states
[i
].core_frequency
>=
779 freq_table
[valid_states
-1].frequency
/ 1000)
782 freq_table
[valid_states
].driver_data
= i
;
783 freq_table
[valid_states
].frequency
=
784 perf
->states
[i
].core_frequency
* 1000;
787 freq_table
[valid_states
].frequency
= CPUFREQ_TABLE_END
;
788 policy
->freq_table
= freq_table
;
791 switch (perf
->control_register
.space_id
) {
792 case ACPI_ADR_SPACE_SYSTEM_IO
:
794 * The core will not set policy->cur, because
795 * cpufreq_driver->get is NULL, so we need to set it here.
796 * However, we have to guess it, because the current speed is
797 * unknown and not detectable via IO ports.
799 policy
->cur
= acpi_cpufreq_guess_freq(data
, policy
->cpu
);
801 case ACPI_ADR_SPACE_FIXED_HARDWARE
:
802 acpi_cpufreq_driver
.get
= get_cur_freq_on_cpu
;
808 /* notify BIOS that we exist */
809 acpi_processor_notify_smm(THIS_MODULE
);
811 pr_debug("CPU%u - ACPI performance management activated.\n", cpu
);
812 for (i
= 0; i
< perf
->state_count
; i
++)
813 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
814 (i
== perf
->state
? '*' : ' '), i
,
815 (u32
) perf
->states
[i
].core_frequency
,
816 (u32
) perf
->states
[i
].power
,
817 (u32
) perf
->states
[i
].transition_latency
);
820 * the first call to ->target() should result in us actually
821 * writing something to the appropriate registers.
825 policy
->fast_switch_possible
= !acpi_pstate_strict
&&
826 !(policy_is_shared(policy
) && policy
->shared_type
!= CPUFREQ_SHARED_TYPE_ANY
);
831 acpi_processor_unregister_performance(cpu
);
833 free_cpumask_var(data
->freqdomain_cpus
);
836 policy
->driver_data
= NULL
;
841 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
843 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
845 pr_debug("%s\n", __func__
);
847 policy
->fast_switch_possible
= false;
848 policy
->driver_data
= NULL
;
849 acpi_processor_unregister_performance(data
->acpi_perf_cpu
);
850 free_cpumask_var(data
->freqdomain_cpus
);
851 kfree(policy
->freq_table
);
857 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy
*policy
)
859 struct acpi_processor_performance
*perf
= per_cpu_ptr(acpi_perf_data
,
862 if (perf
->states
[0].core_frequency
* 1000 != policy
->cpuinfo
.max_freq
)
863 pr_warn(FW_WARN
"P-state 0 is not max freq\n");
866 static int acpi_cpufreq_resume(struct cpufreq_policy
*policy
)
868 struct acpi_cpufreq_data
*data
= policy
->driver_data
;
870 pr_debug("%s\n", __func__
);
877 static struct freq_attr
*acpi_cpufreq_attr
[] = {
878 &cpufreq_freq_attr_scaling_available_freqs
,
880 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
886 static struct cpufreq_driver acpi_cpufreq_driver
= {
887 .verify
= cpufreq_generic_frequency_table_verify
,
888 .target_index
= acpi_cpufreq_target
,
889 .fast_switch
= acpi_cpufreq_fast_switch
,
890 .bios_limit
= acpi_processor_get_bios_limit
,
891 .init
= acpi_cpufreq_cpu_init
,
892 .exit
= acpi_cpufreq_cpu_exit
,
893 .ready
= acpi_cpufreq_cpu_ready
,
894 .resume
= acpi_cpufreq_resume
,
895 .name
= "acpi-cpufreq",
896 .attr
= acpi_cpufreq_attr
,
899 static enum cpuhp_state acpi_cpufreq_online
;
901 static void __init
acpi_cpufreq_boost_init(void)
905 if (!(boot_cpu_has(X86_FEATURE_CPB
) || boot_cpu_has(X86_FEATURE_IDA
))) {
906 pr_debug("Boost capabilities not present in the processor\n");
910 acpi_cpufreq_driver
.set_boost
= set_boost
;
911 acpi_cpufreq_driver
.boost_enabled
= boost_state(0);
914 * This calls the online callback on all online cpu and forces all
915 * MSRs to the same value.
917 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "cpufreq/acpi:online",
918 cpufreq_boost_online
, cpufreq_boost_down_prep
);
920 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
923 acpi_cpufreq_online
= ret
;
926 static void acpi_cpufreq_boost_exit(void)
928 if (acpi_cpufreq_online
> 0)
929 cpuhp_remove_state_nocalls(acpi_cpufreq_online
);
932 static int __init
acpi_cpufreq_init(void)
939 /* don't keep reloading if cpufreq_driver exists */
940 if (cpufreq_get_current_driver())
943 pr_debug("%s\n", __func__
);
945 ret
= acpi_cpufreq_early_init();
949 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
950 /* this is a sysfs file with a strange name and an even stranger
951 * semantic - per CPU instantiation, but system global effect.
952 * Lets enable it only on AMD CPUs for compatibility reasons and
953 * only if configured. This is considered legacy code, which
954 * will probably be removed at some point in the future.
956 if (!check_amd_hwpstate_cpu(0)) {
957 struct freq_attr
**attr
;
959 pr_debug("CPB unsupported, do not expose it\n");
961 for (attr
= acpi_cpufreq_attr
; *attr
; attr
++)
968 acpi_cpufreq_boost_init();
970 ret
= cpufreq_register_driver(&acpi_cpufreq_driver
);
972 free_acpi_perf_data();
973 acpi_cpufreq_boost_exit();
978 static void __exit
acpi_cpufreq_exit(void)
980 pr_debug("%s\n", __func__
);
982 acpi_cpufreq_boost_exit();
984 cpufreq_unregister_driver(&acpi_cpufreq_driver
);
986 free_acpi_perf_data();
989 module_param(acpi_pstate_strict
, uint
, 0644);
990 MODULE_PARM_DESC(acpi_pstate_strict
,
991 "value 0 or non-zero. non-zero -> strict ACPI checks are "
992 "performed during frequency changes.");
994 late_initcall(acpi_cpufreq_init
);
995 module_exit(acpi_cpufreq_exit
);
997 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids
[] = {
998 X86_MATCH_FEATURE(X86_FEATURE_ACPI
, NULL
),
999 X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE
, NULL
),
1002 MODULE_DEVICE_TABLE(x86cpu
, acpi_cpufreq_ids
);
1004 static const struct acpi_device_id __maybe_unused processor_device_ids
[] = {
1005 {ACPI_PROCESSOR_OBJECT_HID
, },
1006 {ACPI_PROCESSOR_DEVICE_HID
, },
1009 MODULE_DEVICE_TABLE(acpi
, processor_device_ids
);
1011 MODULE_ALIAS("acpi");