io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / cpufreq / cppc_cpufreq.c
blob8a482c434ea6ae844305ba9b215223400203b1eb
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
22 #include <asm/unaligned.h>
24 #include <acpi/cppc_acpi.h>
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
29 /* Offset in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED 0x14
33 * This list contains information parsed from per CPU ACPI _CPC and _PSD
34 * structures: e.g. the highest and lowest supported performance, capabilities,
35 * desired performance, level requested etc. Depending on the share_type, not
36 * all CPUs will have an entry in the list.
38 static LIST_HEAD(cpu_data_list);
40 static bool boost_supported;
42 struct cppc_workaround_oem_info {
43 char oem_id[ACPI_OEM_ID_SIZE + 1];
44 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
45 u32 oem_revision;
48 static struct cppc_workaround_oem_info wa_info[] = {
50 .oem_id = "HISI ",
51 .oem_table_id = "HIP07 ",
52 .oem_revision = 0,
53 }, {
54 .oem_id = "HISI ",
55 .oem_table_id = "HIP08 ",
56 .oem_revision = 0,
60 /* Callback function used to retrieve the max frequency from DMI */
61 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
63 const u8 *dmi_data = (const u8 *)dm;
64 u16 *mhz = (u16 *)private;
66 if (dm->type == DMI_ENTRY_PROCESSOR &&
67 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
68 u16 val = (u16)get_unaligned((const u16 *)
69 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
70 *mhz = val > *mhz ? val : *mhz;
74 /* Look up the max frequency in DMI */
75 static u64 cppc_get_dmi_max_khz(void)
77 u16 mhz = 0;
79 dmi_walk(cppc_find_dmi_mhz, &mhz);
82 * Real stupid fallback value, just in case there is no
83 * actual value set.
85 mhz = mhz ? mhz : 1;
87 return (1000 * mhz);
91 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
92 * use them to convert perf to freq and vice versa
94 * If the perf/freq point lies between Nominal and Lowest, we can treat
95 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
96 * and extrapolate the rest
97 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
99 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data,
100 unsigned int perf)
102 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
103 static u64 max_khz;
104 u64 mul, div;
106 if (caps->lowest_freq && caps->nominal_freq) {
107 if (perf >= caps->nominal_perf) {
108 mul = caps->nominal_freq;
109 div = caps->nominal_perf;
110 } else {
111 mul = caps->nominal_freq - caps->lowest_freq;
112 div = caps->nominal_perf - caps->lowest_perf;
114 } else {
115 if (!max_khz)
116 max_khz = cppc_get_dmi_max_khz();
117 mul = max_khz;
118 div = caps->highest_perf;
120 return (u64)perf * mul / div;
123 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data,
124 unsigned int freq)
126 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
127 static u64 max_khz;
128 u64 mul, div;
130 if (caps->lowest_freq && caps->nominal_freq) {
131 if (freq >= caps->nominal_freq) {
132 mul = caps->nominal_perf;
133 div = caps->nominal_freq;
134 } else {
135 mul = caps->lowest_perf;
136 div = caps->lowest_freq;
138 } else {
139 if (!max_khz)
140 max_khz = cppc_get_dmi_max_khz();
141 mul = caps->highest_perf;
142 div = max_khz;
145 return (u64)freq * mul / div;
148 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
149 unsigned int target_freq,
150 unsigned int relation)
153 struct cppc_cpudata *cpu_data = policy->driver_data;
154 unsigned int cpu = policy->cpu;
155 struct cpufreq_freqs freqs;
156 u32 desired_perf;
157 int ret = 0;
159 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq);
160 /* Return if it is exactly the same perf */
161 if (desired_perf == cpu_data->perf_ctrls.desired_perf)
162 return ret;
164 cpu_data->perf_ctrls.desired_perf = desired_perf;
165 freqs.old = policy->cur;
166 freqs.new = target_freq;
168 cpufreq_freq_transition_begin(policy, &freqs);
169 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
170 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
172 if (ret)
173 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
174 cpu, ret);
176 return ret;
179 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
181 cpufreq_verify_within_cpu_limits(policy);
182 return 0;
185 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
187 struct cppc_cpudata *cpu_data = policy->driver_data;
188 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
189 unsigned int cpu = policy->cpu;
190 int ret;
192 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
194 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
195 if (ret)
196 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
197 caps->lowest_perf, cpu, ret);
199 /* Remove CPU node from list and free driver data for policy */
200 free_cpumask_var(cpu_data->shared_cpu_map);
201 list_del(&cpu_data->node);
202 kfree(policy->driver_data);
203 policy->driver_data = NULL;
207 * The PCC subspace describes the rate at which platform can accept commands
208 * on the shared PCC channel (including READs which do not count towards freq
209 * transition requests), so ideally we need to use the PCC values as a fallback
210 * if we don't have a platform specific transition_delay_us
212 #ifdef CONFIG_ARM64
213 #include <asm/cputype.h>
215 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
217 unsigned long implementor = read_cpuid_implementor();
218 unsigned long part_num = read_cpuid_part_number();
219 unsigned int delay_us = 0;
221 switch (implementor) {
222 case ARM_CPU_IMP_QCOM:
223 switch (part_num) {
224 case QCOM_CPU_PART_FALKOR_V1:
225 case QCOM_CPU_PART_FALKOR:
226 delay_us = 10000;
227 break;
228 default:
229 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
230 break;
232 break;
233 default:
234 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
235 break;
238 return delay_us;
241 #else
243 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
245 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
247 #endif
250 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
252 struct cppc_cpudata *cpu_data;
253 int ret;
255 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
256 if (!cpu_data)
257 goto out;
259 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
260 goto free_cpu;
262 ret = acpi_get_psd_map(cpu, cpu_data);
263 if (ret) {
264 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
265 goto free_mask;
268 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
269 if (ret) {
270 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
271 goto free_mask;
274 /* Convert the lowest and nominal freq from MHz to KHz */
275 cpu_data->perf_caps.lowest_freq *= 1000;
276 cpu_data->perf_caps.nominal_freq *= 1000;
278 list_add(&cpu_data->node, &cpu_data_list);
280 return cpu_data;
282 free_mask:
283 free_cpumask_var(cpu_data->shared_cpu_map);
284 free_cpu:
285 kfree(cpu_data);
286 out:
287 return NULL;
290 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
292 unsigned int cpu = policy->cpu;
293 struct cppc_cpudata *cpu_data;
294 struct cppc_perf_caps *caps;
295 int ret;
297 cpu_data = cppc_cpufreq_get_cpu_data(cpu);
298 if (!cpu_data) {
299 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
300 return -ENODEV;
302 caps = &cpu_data->perf_caps;
303 policy->driver_data = cpu_data;
306 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
307 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
309 policy->min = cppc_cpufreq_perf_to_khz(cpu_data,
310 caps->lowest_nonlinear_perf);
311 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
312 caps->nominal_perf);
315 * Set cpuinfo.min_freq to Lowest to make the full range of performance
316 * available if userspace wants to use any perf between lowest & lowest
317 * nonlinear perf
319 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data,
320 caps->lowest_perf);
321 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data,
322 caps->nominal_perf);
324 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
325 policy->shared_type = cpu_data->shared_type;
327 switch (policy->shared_type) {
328 case CPUFREQ_SHARED_TYPE_HW:
329 case CPUFREQ_SHARED_TYPE_NONE:
330 /* Nothing to be done - we'll have a policy for each CPU */
331 break;
332 case CPUFREQ_SHARED_TYPE_ANY:
334 * All CPUs in the domain will share a policy and all cpufreq
335 * operations will use a single cppc_cpudata structure stored
336 * in policy->driver_data.
338 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
339 break;
340 default:
341 pr_debug("Unsupported CPU co-ord type: %d\n",
342 policy->shared_type);
343 return -EFAULT;
347 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
348 * is supported.
350 if (caps->highest_perf > caps->nominal_perf)
351 boost_supported = true;
353 /* Set policy->cur to max now. The governors will adjust later. */
354 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf);
355 cpu_data->perf_ctrls.desired_perf = caps->highest_perf;
357 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
358 if (ret)
359 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
360 caps->highest_perf, cpu, ret);
362 return ret;
365 static inline u64 get_delta(u64 t1, u64 t0)
367 if (t1 > t0 || t0 > ~(u32)0)
368 return t1 - t0;
370 return (u32)t1 - (u32)t0;
373 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu_data,
374 struct cppc_perf_fb_ctrs fb_ctrs_t0,
375 struct cppc_perf_fb_ctrs fb_ctrs_t1)
377 u64 delta_reference, delta_delivered;
378 u64 reference_perf, delivered_perf;
380 reference_perf = fb_ctrs_t0.reference_perf;
382 delta_reference = get_delta(fb_ctrs_t1.reference,
383 fb_ctrs_t0.reference);
384 delta_delivered = get_delta(fb_ctrs_t1.delivered,
385 fb_ctrs_t0.delivered);
387 /* Check to avoid divide-by zero */
388 if (delta_reference || delta_delivered)
389 delivered_perf = (reference_perf * delta_delivered) /
390 delta_reference;
391 else
392 delivered_perf = cpu_data->perf_ctrls.desired_perf;
394 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf);
397 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
399 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
400 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
401 struct cppc_cpudata *cpu_data = policy->driver_data;
402 int ret;
404 cpufreq_cpu_put(policy);
406 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
407 if (ret)
408 return ret;
410 udelay(2); /* 2usec delay between sampling */
412 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
413 if (ret)
414 return ret;
416 return cppc_get_rate_from_fbctrs(cpu_data, fb_ctrs_t0, fb_ctrs_t1);
419 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
421 struct cppc_cpudata *cpu_data = policy->driver_data;
422 struct cppc_perf_caps *caps = &cpu_data->perf_caps;
423 int ret;
425 if (!boost_supported) {
426 pr_err("BOOST not supported by CPU or firmware\n");
427 return -EINVAL;
430 if (state)
431 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
432 caps->highest_perf);
433 else
434 policy->max = cppc_cpufreq_perf_to_khz(cpu_data,
435 caps->nominal_perf);
436 policy->cpuinfo.max_freq = policy->max;
438 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
439 if (ret < 0)
440 return ret;
442 return 0;
445 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
447 struct cppc_cpudata *cpu_data = policy->driver_data;
449 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
451 cpufreq_freq_attr_ro(freqdomain_cpus);
453 static struct freq_attr *cppc_cpufreq_attr[] = {
454 &freqdomain_cpus,
455 NULL,
458 static struct cpufreq_driver cppc_cpufreq_driver = {
459 .flags = CPUFREQ_CONST_LOOPS,
460 .verify = cppc_verify_policy,
461 .target = cppc_cpufreq_set_target,
462 .get = cppc_cpufreq_get_rate,
463 .init = cppc_cpufreq_cpu_init,
464 .stop_cpu = cppc_cpufreq_stop_cpu,
465 .set_boost = cppc_cpufreq_set_boost,
466 .attr = cppc_cpufreq_attr,
467 .name = "cppc_cpufreq",
471 * HISI platform does not support delivered performance counter and
472 * reference performance counter. It can calculate the performance using the
473 * platform specific mechanism. We reuse the desired performance register to
474 * store the real performance calculated by the platform.
476 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
478 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
479 struct cppc_cpudata *cpu_data = policy->driver_data;
480 u64 desired_perf;
481 int ret;
483 cpufreq_cpu_put(policy);
485 ret = cppc_get_desired_perf(cpu, &desired_perf);
486 if (ret < 0)
487 return -EIO;
489 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf);
492 static void cppc_check_hisi_workaround(void)
494 struct acpi_table_header *tbl;
495 acpi_status status = AE_OK;
496 int i;
498 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
499 if (ACPI_FAILURE(status) || !tbl)
500 return;
502 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
503 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
504 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
505 wa_info[i].oem_revision == tbl->oem_revision) {
506 /* Overwrite the get() callback */
507 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
508 break;
512 acpi_put_table(tbl);
515 static int __init cppc_cpufreq_init(void)
517 if ((acpi_disabled) || !acpi_cpc_valid())
518 return -ENODEV;
520 INIT_LIST_HEAD(&cpu_data_list);
522 cppc_check_hisi_workaround();
524 return cpufreq_register_driver(&cppc_cpufreq_driver);
527 static inline void free_cpu_data(void)
529 struct cppc_cpudata *iter, *tmp;
531 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
532 free_cpumask_var(iter->shared_cpu_map);
533 list_del(&iter->node);
534 kfree(iter);
539 static void __exit cppc_cpufreq_exit(void)
541 cpufreq_unregister_driver(&cppc_cpufreq_driver);
543 free_cpu_data();
546 module_exit(cppc_cpufreq_exit);
547 MODULE_AUTHOR("Ashwin Chaugule");
548 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
549 MODULE_LICENSE("GPL");
551 late_initcall(cppc_cpufreq_init);
553 static const struct acpi_device_id cppc_acpi_ids[] __used = {
554 {ACPI_PROCESSOR_DEVICE_HID, },
558 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);