io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / dma / mv_xor.c
blob23b232b5751844f8329a1f4c62fd3294e5de5391
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * offload engine driver for the Marvell XOR engine
4 * Copyright (C) 2007, 2008, Marvell International Ltd.
5 */
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/memory.h>
16 #include <linux/clk.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/irqdomain.h>
20 #include <linux/cpumask.h>
21 #include <linux/platform_data/dma-mv_xor.h>
23 #include "dmaengine.h"
24 #include "mv_xor.h"
26 enum mv_xor_type {
27 XOR_ORION,
28 XOR_ARMADA_38X,
29 XOR_ARMADA_37XX,
32 enum mv_xor_mode {
33 XOR_MODE_IN_REG,
34 XOR_MODE_IN_DESC,
37 static void mv_xor_issue_pending(struct dma_chan *chan);
39 #define to_mv_xor_chan(chan) \
40 container_of(chan, struct mv_xor_chan, dmachan)
42 #define to_mv_xor_slot(tx) \
43 container_of(tx, struct mv_xor_desc_slot, async_tx)
45 #define mv_chan_to_devp(chan) \
46 ((chan)->dmadev.dev)
48 static void mv_desc_init(struct mv_xor_desc_slot *desc,
49 dma_addr_t addr, u32 byte_count,
50 enum dma_ctrl_flags flags)
52 struct mv_xor_desc *hw_desc = desc->hw_desc;
54 hw_desc->status = XOR_DESC_DMA_OWNED;
55 hw_desc->phy_next_desc = 0;
56 /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
57 hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ?
58 XOR_DESC_EOD_INT_EN : 0;
59 hw_desc->phy_dest_addr = addr;
60 hw_desc->byte_count = byte_count;
63 static void mv_desc_set_mode(struct mv_xor_desc_slot *desc)
65 struct mv_xor_desc *hw_desc = desc->hw_desc;
67 switch (desc->type) {
68 case DMA_XOR:
69 case DMA_INTERRUPT:
70 hw_desc->desc_command |= XOR_DESC_OPERATION_XOR;
71 break;
72 case DMA_MEMCPY:
73 hw_desc->desc_command |= XOR_DESC_OPERATION_MEMCPY;
74 break;
75 default:
76 BUG();
77 return;
81 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
82 u32 next_desc_addr)
84 struct mv_xor_desc *hw_desc = desc->hw_desc;
85 BUG_ON(hw_desc->phy_next_desc);
86 hw_desc->phy_next_desc = next_desc_addr;
89 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
90 int index, dma_addr_t addr)
92 struct mv_xor_desc *hw_desc = desc->hw_desc;
93 hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
94 if (desc->type == DMA_XOR)
95 hw_desc->desc_command |= (1 << index);
98 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
100 return readl_relaxed(XOR_CURR_DESC(chan));
103 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
104 u32 next_desc_addr)
106 writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
109 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
111 u32 val = readl_relaxed(XOR_INTR_MASK(chan));
112 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
113 writel_relaxed(val, XOR_INTR_MASK(chan));
116 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
118 u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
119 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
120 return intr_cause;
123 static void mv_chan_clear_eoc_cause(struct mv_xor_chan *chan)
125 u32 val;
127 val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED;
128 val = ~(val << (chan->idx * 16));
129 dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
130 writel_relaxed(val, XOR_INTR_CAUSE(chan));
133 static void mv_chan_clear_err_status(struct mv_xor_chan *chan)
135 u32 val = 0xFFFF0000 >> (chan->idx * 16);
136 writel_relaxed(val, XOR_INTR_CAUSE(chan));
139 static void mv_chan_set_mode(struct mv_xor_chan *chan,
140 u32 op_mode)
142 u32 config = readl_relaxed(XOR_CONFIG(chan));
144 config &= ~0x7;
145 config |= op_mode;
147 #if defined(__BIG_ENDIAN)
148 config |= XOR_DESCRIPTOR_SWAP;
149 #else
150 config &= ~XOR_DESCRIPTOR_SWAP;
151 #endif
153 writel_relaxed(config, XOR_CONFIG(chan));
156 static void mv_chan_activate(struct mv_xor_chan *chan)
158 dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
160 /* writel ensures all descriptors are flushed before activation */
161 writel(BIT(0), XOR_ACTIVATION(chan));
164 static char mv_chan_is_busy(struct mv_xor_chan *chan)
166 u32 state = readl_relaxed(XOR_ACTIVATION(chan));
168 state = (state >> 4) & 0x3;
170 return (state == 1) ? 1 : 0;
174 * mv_chan_start_new_chain - program the engine to operate on new
175 * chain headed by sw_desc
176 * Caller must hold &mv_chan->lock while calling this function
178 static void mv_chan_start_new_chain(struct mv_xor_chan *mv_chan,
179 struct mv_xor_desc_slot *sw_desc)
181 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
182 __func__, __LINE__, sw_desc);
184 /* set the hardware chain */
185 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
187 mv_chan->pending++;
188 mv_xor_issue_pending(&mv_chan->dmachan);
191 static dma_cookie_t
192 mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
193 struct mv_xor_chan *mv_chan,
194 dma_cookie_t cookie)
196 BUG_ON(desc->async_tx.cookie < 0);
198 if (desc->async_tx.cookie > 0) {
199 cookie = desc->async_tx.cookie;
201 dma_descriptor_unmap(&desc->async_tx);
202 /* call the callback (must not sleep or submit new
203 * operations to this channel)
205 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
208 /* run dependent operations */
209 dma_run_dependencies(&desc->async_tx);
211 return cookie;
214 static int
215 mv_chan_clean_completed_slots(struct mv_xor_chan *mv_chan)
217 struct mv_xor_desc_slot *iter, *_iter;
219 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
220 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
221 node) {
223 if (async_tx_test_ack(&iter->async_tx)) {
224 list_move_tail(&iter->node, &mv_chan->free_slots);
225 if (!list_empty(&iter->sg_tx_list)) {
226 list_splice_tail_init(&iter->sg_tx_list,
227 &mv_chan->free_slots);
231 return 0;
234 static int
235 mv_desc_clean_slot(struct mv_xor_desc_slot *desc,
236 struct mv_xor_chan *mv_chan)
238 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
239 __func__, __LINE__, desc, desc->async_tx.flags);
241 /* the client is allowed to attach dependent operations
242 * until 'ack' is set
244 if (!async_tx_test_ack(&desc->async_tx)) {
245 /* move this slot to the completed_slots */
246 list_move_tail(&desc->node, &mv_chan->completed_slots);
247 if (!list_empty(&desc->sg_tx_list)) {
248 list_splice_tail_init(&desc->sg_tx_list,
249 &mv_chan->completed_slots);
251 } else {
252 list_move_tail(&desc->node, &mv_chan->free_slots);
253 if (!list_empty(&desc->sg_tx_list)) {
254 list_splice_tail_init(&desc->sg_tx_list,
255 &mv_chan->free_slots);
259 return 0;
262 /* This function must be called with the mv_xor_chan spinlock held */
263 static void mv_chan_slot_cleanup(struct mv_xor_chan *mv_chan)
265 struct mv_xor_desc_slot *iter, *_iter;
266 dma_cookie_t cookie = 0;
267 int busy = mv_chan_is_busy(mv_chan);
268 u32 current_desc = mv_chan_get_current_desc(mv_chan);
269 int current_cleaned = 0;
270 struct mv_xor_desc *hw_desc;
272 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
273 dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
274 mv_chan_clean_completed_slots(mv_chan);
276 /* free completed slots from the chain starting with
277 * the oldest descriptor
280 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
281 node) {
283 /* clean finished descriptors */
284 hw_desc = iter->hw_desc;
285 if (hw_desc->status & XOR_DESC_SUCCESS) {
286 cookie = mv_desc_run_tx_complete_actions(iter, mv_chan,
287 cookie);
289 /* done processing desc, clean slot */
290 mv_desc_clean_slot(iter, mv_chan);
292 /* break if we did cleaned the current */
293 if (iter->async_tx.phys == current_desc) {
294 current_cleaned = 1;
295 break;
297 } else {
298 if (iter->async_tx.phys == current_desc) {
299 current_cleaned = 0;
300 break;
305 if ((busy == 0) && !list_empty(&mv_chan->chain)) {
306 if (current_cleaned) {
308 * current descriptor cleaned and removed, run
309 * from list head
311 iter = list_entry(mv_chan->chain.next,
312 struct mv_xor_desc_slot,
313 node);
314 mv_chan_start_new_chain(mv_chan, iter);
315 } else {
316 if (!list_is_last(&iter->node, &mv_chan->chain)) {
318 * descriptors are still waiting after
319 * current, trigger them
321 iter = list_entry(iter->node.next,
322 struct mv_xor_desc_slot,
323 node);
324 mv_chan_start_new_chain(mv_chan, iter);
325 } else {
327 * some descriptors are still waiting
328 * to be cleaned
330 tasklet_schedule(&mv_chan->irq_tasklet);
335 if (cookie > 0)
336 mv_chan->dmachan.completed_cookie = cookie;
339 static void mv_xor_tasklet(struct tasklet_struct *t)
341 struct mv_xor_chan *chan = from_tasklet(chan, t, irq_tasklet);
343 spin_lock(&chan->lock);
344 mv_chan_slot_cleanup(chan);
345 spin_unlock(&chan->lock);
348 static struct mv_xor_desc_slot *
349 mv_chan_alloc_slot(struct mv_xor_chan *mv_chan)
351 struct mv_xor_desc_slot *iter;
353 spin_lock_bh(&mv_chan->lock);
355 if (!list_empty(&mv_chan->free_slots)) {
356 iter = list_first_entry(&mv_chan->free_slots,
357 struct mv_xor_desc_slot,
358 node);
360 list_move_tail(&iter->node, &mv_chan->allocated_slots);
362 spin_unlock_bh(&mv_chan->lock);
364 /* pre-ack descriptor */
365 async_tx_ack(&iter->async_tx);
366 iter->async_tx.cookie = -EBUSY;
368 return iter;
372 spin_unlock_bh(&mv_chan->lock);
374 /* try to free some slots if the allocation fails */
375 tasklet_schedule(&mv_chan->irq_tasklet);
377 return NULL;
380 /************************ DMA engine API functions ****************************/
381 static dma_cookie_t
382 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
384 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
385 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
386 struct mv_xor_desc_slot *old_chain_tail;
387 dma_cookie_t cookie;
388 int new_hw_chain = 1;
390 dev_dbg(mv_chan_to_devp(mv_chan),
391 "%s sw_desc %p: async_tx %p\n",
392 __func__, sw_desc, &sw_desc->async_tx);
394 spin_lock_bh(&mv_chan->lock);
395 cookie = dma_cookie_assign(tx);
397 if (list_empty(&mv_chan->chain))
398 list_move_tail(&sw_desc->node, &mv_chan->chain);
399 else {
400 new_hw_chain = 0;
402 old_chain_tail = list_entry(mv_chan->chain.prev,
403 struct mv_xor_desc_slot,
404 node);
405 list_move_tail(&sw_desc->node, &mv_chan->chain);
407 dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n",
408 &old_chain_tail->async_tx.phys);
410 /* fix up the hardware chain */
411 mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys);
413 /* if the channel is not busy */
414 if (!mv_chan_is_busy(mv_chan)) {
415 u32 current_desc = mv_chan_get_current_desc(mv_chan);
417 * and the curren desc is the end of the chain before
418 * the append, then we need to start the channel
420 if (current_desc == old_chain_tail->async_tx.phys)
421 new_hw_chain = 1;
425 if (new_hw_chain)
426 mv_chan_start_new_chain(mv_chan, sw_desc);
428 spin_unlock_bh(&mv_chan->lock);
430 return cookie;
433 /* returns the number of allocated descriptors */
434 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
436 void *virt_desc;
437 dma_addr_t dma_desc;
438 int idx;
439 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
440 struct mv_xor_desc_slot *slot = NULL;
441 int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
443 /* Allocate descriptor slots */
444 idx = mv_chan->slots_allocated;
445 while (idx < num_descs_in_pool) {
446 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
447 if (!slot) {
448 dev_info(mv_chan_to_devp(mv_chan),
449 "channel only initialized %d descriptor slots",
450 idx);
451 break;
453 virt_desc = mv_chan->dma_desc_pool_virt;
454 slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE;
456 dma_async_tx_descriptor_init(&slot->async_tx, chan);
457 slot->async_tx.tx_submit = mv_xor_tx_submit;
458 INIT_LIST_HEAD(&slot->node);
459 INIT_LIST_HEAD(&slot->sg_tx_list);
460 dma_desc = mv_chan->dma_desc_pool;
461 slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE;
462 slot->idx = idx++;
464 spin_lock_bh(&mv_chan->lock);
465 mv_chan->slots_allocated = idx;
466 list_add_tail(&slot->node, &mv_chan->free_slots);
467 spin_unlock_bh(&mv_chan->lock);
470 dev_dbg(mv_chan_to_devp(mv_chan),
471 "allocated %d descriptor slots\n",
472 mv_chan->slots_allocated);
474 return mv_chan->slots_allocated ? : -ENOMEM;
478 * Check if source or destination is an PCIe/IO address (non-SDRAM) and add
479 * a new MBus window if necessary. Use a cache for these check so that
480 * the MMIO mapped registers don't have to be accessed for this check
481 * to speed up this process.
483 static int mv_xor_add_io_win(struct mv_xor_chan *mv_chan, u32 addr)
485 struct mv_xor_device *xordev = mv_chan->xordev;
486 void __iomem *base = mv_chan->mmr_high_base;
487 u32 win_enable;
488 u32 size;
489 u8 target, attr;
490 int ret;
491 int i;
493 /* Nothing needs to get done for the Armada 3700 */
494 if (xordev->xor_type == XOR_ARMADA_37XX)
495 return 0;
498 * Loop over the cached windows to check, if the requested area
499 * is already mapped. If this the case, nothing needs to be done
500 * and we can return.
502 for (i = 0; i < WINDOW_COUNT; i++) {
503 if (addr >= xordev->win_start[i] &&
504 addr <= xordev->win_end[i]) {
505 /* Window is already mapped */
506 return 0;
511 * The window is not mapped, so we need to create the new mapping
514 /* If no IO window is found that addr has to be located in SDRAM */
515 ret = mvebu_mbus_get_io_win_info(addr, &size, &target, &attr);
516 if (ret < 0)
517 return 0;
520 * Mask the base addr 'addr' according to 'size' read back from the
521 * MBus window. Otherwise we might end up with an address located
522 * somewhere in the middle of this area here.
524 size -= 1;
525 addr &= ~size;
528 * Reading one of both enabled register is enough, as they are always
529 * programmed to the identical values
531 win_enable = readl(base + WINDOW_BAR_ENABLE(0));
533 /* Set 'i' to the first free window to write the new values to */
534 i = ffs(~win_enable) - 1;
535 if (i >= WINDOW_COUNT)
536 return -ENOMEM;
538 writel((addr & 0xffff0000) | (attr << 8) | target,
539 base + WINDOW_BASE(i));
540 writel(size & 0xffff0000, base + WINDOW_SIZE(i));
542 /* Fill the caching variables for later use */
543 xordev->win_start[i] = addr;
544 xordev->win_end[i] = addr + size;
546 win_enable |= (1 << i);
547 win_enable |= 3 << (16 + (2 * i));
548 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
549 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
551 return 0;
554 static struct dma_async_tx_descriptor *
555 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
556 unsigned int src_cnt, size_t len, unsigned long flags)
558 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
559 struct mv_xor_desc_slot *sw_desc;
560 int ret;
562 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
563 return NULL;
565 BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
567 dev_dbg(mv_chan_to_devp(mv_chan),
568 "%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
569 __func__, src_cnt, len, &dest, flags);
571 /* Check if a new window needs to get added for 'dest' */
572 ret = mv_xor_add_io_win(mv_chan, dest);
573 if (ret)
574 return NULL;
576 sw_desc = mv_chan_alloc_slot(mv_chan);
577 if (sw_desc) {
578 sw_desc->type = DMA_XOR;
579 sw_desc->async_tx.flags = flags;
580 mv_desc_init(sw_desc, dest, len, flags);
581 if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
582 mv_desc_set_mode(sw_desc);
583 while (src_cnt--) {
584 /* Check if a new window needs to get added for 'src' */
585 ret = mv_xor_add_io_win(mv_chan, src[src_cnt]);
586 if (ret)
587 return NULL;
588 mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]);
592 dev_dbg(mv_chan_to_devp(mv_chan),
593 "%s sw_desc %p async_tx %p \n",
594 __func__, sw_desc, &sw_desc->async_tx);
595 return sw_desc ? &sw_desc->async_tx : NULL;
598 static struct dma_async_tx_descriptor *
599 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
600 size_t len, unsigned long flags)
603 * A MEMCPY operation is identical to an XOR operation with only
604 * a single source address.
606 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
609 static struct dma_async_tx_descriptor *
610 mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
612 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
613 dma_addr_t src, dest;
614 size_t len;
616 src = mv_chan->dummy_src_addr;
617 dest = mv_chan->dummy_dst_addr;
618 len = MV_XOR_MIN_BYTE_COUNT;
621 * We implement the DMA_INTERRUPT operation as a minimum sized
622 * XOR operation with a single dummy source address.
624 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
627 static void mv_xor_free_chan_resources(struct dma_chan *chan)
629 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
630 struct mv_xor_desc_slot *iter, *_iter;
631 int in_use_descs = 0;
633 spin_lock_bh(&mv_chan->lock);
635 mv_chan_slot_cleanup(mv_chan);
637 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
638 node) {
639 in_use_descs++;
640 list_move_tail(&iter->node, &mv_chan->free_slots);
642 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
643 node) {
644 in_use_descs++;
645 list_move_tail(&iter->node, &mv_chan->free_slots);
647 list_for_each_entry_safe(iter, _iter, &mv_chan->allocated_slots,
648 node) {
649 in_use_descs++;
650 list_move_tail(&iter->node, &mv_chan->free_slots);
652 list_for_each_entry_safe_reverse(
653 iter, _iter, &mv_chan->free_slots, node) {
654 list_del(&iter->node);
655 kfree(iter);
656 mv_chan->slots_allocated--;
659 dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
660 __func__, mv_chan->slots_allocated);
661 spin_unlock_bh(&mv_chan->lock);
663 if (in_use_descs)
664 dev_err(mv_chan_to_devp(mv_chan),
665 "freeing %d in use descriptors!\n", in_use_descs);
669 * mv_xor_status - poll the status of an XOR transaction
670 * @chan: XOR channel handle
671 * @cookie: XOR transaction identifier
672 * @txstate: XOR transactions state holder (or NULL)
674 static enum dma_status mv_xor_status(struct dma_chan *chan,
675 dma_cookie_t cookie,
676 struct dma_tx_state *txstate)
678 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
679 enum dma_status ret;
681 ret = dma_cookie_status(chan, cookie, txstate);
682 if (ret == DMA_COMPLETE)
683 return ret;
685 spin_lock_bh(&mv_chan->lock);
686 mv_chan_slot_cleanup(mv_chan);
687 spin_unlock_bh(&mv_chan->lock);
689 return dma_cookie_status(chan, cookie, txstate);
692 static void mv_chan_dump_regs(struct mv_xor_chan *chan)
694 u32 val;
696 val = readl_relaxed(XOR_CONFIG(chan));
697 dev_err(mv_chan_to_devp(chan), "config 0x%08x\n", val);
699 val = readl_relaxed(XOR_ACTIVATION(chan));
700 dev_err(mv_chan_to_devp(chan), "activation 0x%08x\n", val);
702 val = readl_relaxed(XOR_INTR_CAUSE(chan));
703 dev_err(mv_chan_to_devp(chan), "intr cause 0x%08x\n", val);
705 val = readl_relaxed(XOR_INTR_MASK(chan));
706 dev_err(mv_chan_to_devp(chan), "intr mask 0x%08x\n", val);
708 val = readl_relaxed(XOR_ERROR_CAUSE(chan));
709 dev_err(mv_chan_to_devp(chan), "error cause 0x%08x\n", val);
711 val = readl_relaxed(XOR_ERROR_ADDR(chan));
712 dev_err(mv_chan_to_devp(chan), "error addr 0x%08x\n", val);
715 static void mv_chan_err_interrupt_handler(struct mv_xor_chan *chan,
716 u32 intr_cause)
718 if (intr_cause & XOR_INT_ERR_DECODE) {
719 dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n");
720 return;
723 dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n",
724 chan->idx, intr_cause);
726 mv_chan_dump_regs(chan);
727 WARN_ON(1);
730 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
732 struct mv_xor_chan *chan = data;
733 u32 intr_cause = mv_chan_get_intr_cause(chan);
735 dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
737 if (intr_cause & XOR_INTR_ERRORS)
738 mv_chan_err_interrupt_handler(chan, intr_cause);
740 tasklet_schedule(&chan->irq_tasklet);
742 mv_chan_clear_eoc_cause(chan);
744 return IRQ_HANDLED;
747 static void mv_xor_issue_pending(struct dma_chan *chan)
749 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
751 if (mv_chan->pending >= MV_XOR_THRESHOLD) {
752 mv_chan->pending = 0;
753 mv_chan_activate(mv_chan);
758 * Perform a transaction to verify the HW works.
761 static int mv_chan_memcpy_self_test(struct mv_xor_chan *mv_chan)
763 int i, ret;
764 void *src, *dest;
765 dma_addr_t src_dma, dest_dma;
766 struct dma_chan *dma_chan;
767 dma_cookie_t cookie;
768 struct dma_async_tx_descriptor *tx;
769 struct dmaengine_unmap_data *unmap;
770 int err = 0;
772 src = kmalloc(PAGE_SIZE, GFP_KERNEL);
773 if (!src)
774 return -ENOMEM;
776 dest = kzalloc(PAGE_SIZE, GFP_KERNEL);
777 if (!dest) {
778 kfree(src);
779 return -ENOMEM;
782 /* Fill in src buffer */
783 for (i = 0; i < PAGE_SIZE; i++)
784 ((u8 *) src)[i] = (u8)i;
786 dma_chan = &mv_chan->dmachan;
787 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
788 err = -ENODEV;
789 goto out;
792 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL);
793 if (!unmap) {
794 err = -ENOMEM;
795 goto free_resources;
798 src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src),
799 offset_in_page(src), PAGE_SIZE,
800 DMA_TO_DEVICE);
801 unmap->addr[0] = src_dma;
803 ret = dma_mapping_error(dma_chan->device->dev, src_dma);
804 if (ret) {
805 err = -ENOMEM;
806 goto free_resources;
808 unmap->to_cnt = 1;
810 dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest),
811 offset_in_page(dest), PAGE_SIZE,
812 DMA_FROM_DEVICE);
813 unmap->addr[1] = dest_dma;
815 ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
816 if (ret) {
817 err = -ENOMEM;
818 goto free_resources;
820 unmap->from_cnt = 1;
821 unmap->len = PAGE_SIZE;
823 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
824 PAGE_SIZE, 0);
825 if (!tx) {
826 dev_err(dma_chan->device->dev,
827 "Self-test cannot prepare operation, disabling\n");
828 err = -ENODEV;
829 goto free_resources;
832 cookie = mv_xor_tx_submit(tx);
833 if (dma_submit_error(cookie)) {
834 dev_err(dma_chan->device->dev,
835 "Self-test submit error, disabling\n");
836 err = -ENODEV;
837 goto free_resources;
840 mv_xor_issue_pending(dma_chan);
841 async_tx_ack(tx);
842 msleep(1);
844 if (mv_xor_status(dma_chan, cookie, NULL) !=
845 DMA_COMPLETE) {
846 dev_err(dma_chan->device->dev,
847 "Self-test copy timed out, disabling\n");
848 err = -ENODEV;
849 goto free_resources;
852 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
853 PAGE_SIZE, DMA_FROM_DEVICE);
854 if (memcmp(src, dest, PAGE_SIZE)) {
855 dev_err(dma_chan->device->dev,
856 "Self-test copy failed compare, disabling\n");
857 err = -ENODEV;
858 goto free_resources;
861 free_resources:
862 dmaengine_unmap_put(unmap);
863 mv_xor_free_chan_resources(dma_chan);
864 out:
865 kfree(src);
866 kfree(dest);
867 return err;
870 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
871 static int
872 mv_chan_xor_self_test(struct mv_xor_chan *mv_chan)
874 int i, src_idx, ret;
875 struct page *dest;
876 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
877 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
878 dma_addr_t dest_dma;
879 struct dma_async_tx_descriptor *tx;
880 struct dmaengine_unmap_data *unmap;
881 struct dma_chan *dma_chan;
882 dma_cookie_t cookie;
883 u8 cmp_byte = 0;
884 u32 cmp_word;
885 int err = 0;
886 int src_count = MV_XOR_NUM_SRC_TEST;
888 for (src_idx = 0; src_idx < src_count; src_idx++) {
889 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
890 if (!xor_srcs[src_idx]) {
891 while (src_idx--)
892 __free_page(xor_srcs[src_idx]);
893 return -ENOMEM;
897 dest = alloc_page(GFP_KERNEL);
898 if (!dest) {
899 while (src_idx--)
900 __free_page(xor_srcs[src_idx]);
901 return -ENOMEM;
904 /* Fill in src buffers */
905 for (src_idx = 0; src_idx < src_count; src_idx++) {
906 u8 *ptr = page_address(xor_srcs[src_idx]);
907 for (i = 0; i < PAGE_SIZE; i++)
908 ptr[i] = (1 << src_idx);
911 for (src_idx = 0; src_idx < src_count; src_idx++)
912 cmp_byte ^= (u8) (1 << src_idx);
914 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
915 (cmp_byte << 8) | cmp_byte;
917 memset(page_address(dest), 0, PAGE_SIZE);
919 dma_chan = &mv_chan->dmachan;
920 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
921 err = -ENODEV;
922 goto out;
925 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1,
926 GFP_KERNEL);
927 if (!unmap) {
928 err = -ENOMEM;
929 goto free_resources;
932 /* test xor */
933 for (i = 0; i < src_count; i++) {
934 unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
935 0, PAGE_SIZE, DMA_TO_DEVICE);
936 dma_srcs[i] = unmap->addr[i];
937 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]);
938 if (ret) {
939 err = -ENOMEM;
940 goto free_resources;
942 unmap->to_cnt++;
945 unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
946 DMA_FROM_DEVICE);
947 dest_dma = unmap->addr[src_count];
948 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]);
949 if (ret) {
950 err = -ENOMEM;
951 goto free_resources;
953 unmap->from_cnt = 1;
954 unmap->len = PAGE_SIZE;
956 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
957 src_count, PAGE_SIZE, 0);
958 if (!tx) {
959 dev_err(dma_chan->device->dev,
960 "Self-test cannot prepare operation, disabling\n");
961 err = -ENODEV;
962 goto free_resources;
965 cookie = mv_xor_tx_submit(tx);
966 if (dma_submit_error(cookie)) {
967 dev_err(dma_chan->device->dev,
968 "Self-test submit error, disabling\n");
969 err = -ENODEV;
970 goto free_resources;
973 mv_xor_issue_pending(dma_chan);
974 async_tx_ack(tx);
975 msleep(8);
977 if (mv_xor_status(dma_chan, cookie, NULL) !=
978 DMA_COMPLETE) {
979 dev_err(dma_chan->device->dev,
980 "Self-test xor timed out, disabling\n");
981 err = -ENODEV;
982 goto free_resources;
985 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
986 PAGE_SIZE, DMA_FROM_DEVICE);
987 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
988 u32 *ptr = page_address(dest);
989 if (ptr[i] != cmp_word) {
990 dev_err(dma_chan->device->dev,
991 "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
992 i, ptr[i], cmp_word);
993 err = -ENODEV;
994 goto free_resources;
998 free_resources:
999 dmaengine_unmap_put(unmap);
1000 mv_xor_free_chan_resources(dma_chan);
1001 out:
1002 src_idx = src_count;
1003 while (src_idx--)
1004 __free_page(xor_srcs[src_idx]);
1005 __free_page(dest);
1006 return err;
1009 static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
1011 struct dma_chan *chan, *_chan;
1012 struct device *dev = mv_chan->dmadev.dev;
1014 dma_async_device_unregister(&mv_chan->dmadev);
1016 dma_free_coherent(dev, MV_XOR_POOL_SIZE,
1017 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1018 dma_unmap_single(dev, mv_chan->dummy_src_addr,
1019 MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1020 dma_unmap_single(dev, mv_chan->dummy_dst_addr,
1021 MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1023 list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
1024 device_node) {
1025 list_del(&chan->device_node);
1028 free_irq(mv_chan->irq, mv_chan);
1030 return 0;
1033 static struct mv_xor_chan *
1034 mv_xor_channel_add(struct mv_xor_device *xordev,
1035 struct platform_device *pdev,
1036 int idx, dma_cap_mask_t cap_mask, int irq)
1038 int ret = 0;
1039 struct mv_xor_chan *mv_chan;
1040 struct dma_device *dma_dev;
1042 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1043 if (!mv_chan)
1044 return ERR_PTR(-ENOMEM);
1046 mv_chan->idx = idx;
1047 mv_chan->irq = irq;
1048 if (xordev->xor_type == XOR_ORION)
1049 mv_chan->op_in_desc = XOR_MODE_IN_REG;
1050 else
1051 mv_chan->op_in_desc = XOR_MODE_IN_DESC;
1053 dma_dev = &mv_chan->dmadev;
1054 dma_dev->dev = &pdev->dev;
1055 mv_chan->xordev = xordev;
1058 * These source and destination dummy buffers are used to implement
1059 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
1060 * Hence, we only need to map the buffers at initialization-time.
1062 mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev,
1063 mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1064 mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev,
1065 mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1067 /* allocate coherent memory for hardware descriptors
1068 * note: writecombine gives slightly better performance, but
1069 * requires that we explicitly flush the writes
1071 mv_chan->dma_desc_pool_virt =
1072 dma_alloc_wc(&pdev->dev, MV_XOR_POOL_SIZE, &mv_chan->dma_desc_pool,
1073 GFP_KERNEL);
1074 if (!mv_chan->dma_desc_pool_virt)
1075 return ERR_PTR(-ENOMEM);
1077 /* discover transaction capabilites from the platform data */
1078 dma_dev->cap_mask = cap_mask;
1080 INIT_LIST_HEAD(&dma_dev->channels);
1082 /* set base routines */
1083 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1084 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1085 dma_dev->device_tx_status = mv_xor_status;
1086 dma_dev->device_issue_pending = mv_xor_issue_pending;
1088 /* set prep routines based on capability */
1089 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1090 dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt;
1091 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1092 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1093 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1094 dma_dev->max_xor = 8;
1095 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1098 mv_chan->mmr_base = xordev->xor_base;
1099 mv_chan->mmr_high_base = xordev->xor_high_base;
1100 tasklet_setup(&mv_chan->irq_tasklet, mv_xor_tasklet);
1102 /* clear errors before enabling interrupts */
1103 mv_chan_clear_err_status(mv_chan);
1105 ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
1106 0, dev_name(&pdev->dev), mv_chan);
1107 if (ret)
1108 goto err_free_dma;
1110 mv_chan_unmask_interrupts(mv_chan);
1112 if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
1113 mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_IN_DESC);
1114 else
1115 mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_XOR);
1117 spin_lock_init(&mv_chan->lock);
1118 INIT_LIST_HEAD(&mv_chan->chain);
1119 INIT_LIST_HEAD(&mv_chan->completed_slots);
1120 INIT_LIST_HEAD(&mv_chan->free_slots);
1121 INIT_LIST_HEAD(&mv_chan->allocated_slots);
1122 mv_chan->dmachan.device = dma_dev;
1123 dma_cookie_init(&mv_chan->dmachan);
1125 list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1127 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1128 ret = mv_chan_memcpy_self_test(mv_chan);
1129 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1130 if (ret)
1131 goto err_free_irq;
1134 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1135 ret = mv_chan_xor_self_test(mv_chan);
1136 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1137 if (ret)
1138 goto err_free_irq;
1141 dev_info(&pdev->dev, "Marvell XOR (%s): ( %s%s%s)\n",
1142 mv_chan->op_in_desc ? "Descriptor Mode" : "Registers Mode",
1143 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1144 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1145 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1147 ret = dma_async_device_register(dma_dev);
1148 if (ret)
1149 goto err_free_irq;
1151 return mv_chan;
1153 err_free_irq:
1154 free_irq(mv_chan->irq, mv_chan);
1155 err_free_dma:
1156 dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1157 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1158 return ERR_PTR(ret);
1161 static void
1162 mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1163 const struct mbus_dram_target_info *dram)
1165 void __iomem *base = xordev->xor_high_base;
1166 u32 win_enable = 0;
1167 int i;
1169 for (i = 0; i < 8; i++) {
1170 writel(0, base + WINDOW_BASE(i));
1171 writel(0, base + WINDOW_SIZE(i));
1172 if (i < 4)
1173 writel(0, base + WINDOW_REMAP_HIGH(i));
1176 for (i = 0; i < dram->num_cs; i++) {
1177 const struct mbus_dram_window *cs = dram->cs + i;
1179 writel((cs->base & 0xffff0000) |
1180 (cs->mbus_attr << 8) |
1181 dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1182 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1184 /* Fill the caching variables for later use */
1185 xordev->win_start[i] = cs->base;
1186 xordev->win_end[i] = cs->base + cs->size - 1;
1188 win_enable |= (1 << i);
1189 win_enable |= 3 << (16 + (2 * i));
1192 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1193 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1194 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1195 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1198 static void
1199 mv_xor_conf_mbus_windows_a3700(struct mv_xor_device *xordev)
1201 void __iomem *base = xordev->xor_high_base;
1202 u32 win_enable = 0;
1203 int i;
1205 for (i = 0; i < 8; i++) {
1206 writel(0, base + WINDOW_BASE(i));
1207 writel(0, base + WINDOW_SIZE(i));
1208 if (i < 4)
1209 writel(0, base + WINDOW_REMAP_HIGH(i));
1212 * For Armada3700 open default 4GB Mbus window. The dram
1213 * related configuration are done at AXIS level.
1215 writel(0xffff0000, base + WINDOW_SIZE(0));
1216 win_enable |= 1;
1217 win_enable |= 3 << 16;
1219 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1220 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1221 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1222 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1226 * Since this XOR driver is basically used only for RAID5, we don't
1227 * need to care about synchronizing ->suspend with DMA activity,
1228 * because the DMA engine will naturally be quiet due to the block
1229 * devices being suspended.
1231 static int mv_xor_suspend(struct platform_device *pdev, pm_message_t state)
1233 struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1234 int i;
1236 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1237 struct mv_xor_chan *mv_chan = xordev->channels[i];
1239 if (!mv_chan)
1240 continue;
1242 mv_chan->saved_config_reg =
1243 readl_relaxed(XOR_CONFIG(mv_chan));
1244 mv_chan->saved_int_mask_reg =
1245 readl_relaxed(XOR_INTR_MASK(mv_chan));
1248 return 0;
1251 static int mv_xor_resume(struct platform_device *dev)
1253 struct mv_xor_device *xordev = platform_get_drvdata(dev);
1254 const struct mbus_dram_target_info *dram;
1255 int i;
1257 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1258 struct mv_xor_chan *mv_chan = xordev->channels[i];
1260 if (!mv_chan)
1261 continue;
1263 writel_relaxed(mv_chan->saved_config_reg,
1264 XOR_CONFIG(mv_chan));
1265 writel_relaxed(mv_chan->saved_int_mask_reg,
1266 XOR_INTR_MASK(mv_chan));
1269 if (xordev->xor_type == XOR_ARMADA_37XX) {
1270 mv_xor_conf_mbus_windows_a3700(xordev);
1271 return 0;
1274 dram = mv_mbus_dram_info();
1275 if (dram)
1276 mv_xor_conf_mbus_windows(xordev, dram);
1278 return 0;
1281 static const struct of_device_id mv_xor_dt_ids[] = {
1282 { .compatible = "marvell,orion-xor", .data = (void *)XOR_ORION },
1283 { .compatible = "marvell,armada-380-xor", .data = (void *)XOR_ARMADA_38X },
1284 { .compatible = "marvell,armada-3700-xor", .data = (void *)XOR_ARMADA_37XX },
1288 static unsigned int mv_xor_engine_count;
1290 static int mv_xor_probe(struct platform_device *pdev)
1292 const struct mbus_dram_target_info *dram;
1293 struct mv_xor_device *xordev;
1294 struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev);
1295 struct resource *res;
1296 unsigned int max_engines, max_channels;
1297 int i, ret;
1299 dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1301 xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
1302 if (!xordev)
1303 return -ENOMEM;
1305 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1306 if (!res)
1307 return -ENODEV;
1309 xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
1310 resource_size(res));
1311 if (!xordev->xor_base)
1312 return -EBUSY;
1314 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1315 if (!res)
1316 return -ENODEV;
1318 xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1319 resource_size(res));
1320 if (!xordev->xor_high_base)
1321 return -EBUSY;
1323 platform_set_drvdata(pdev, xordev);
1327 * We need to know which type of XOR device we use before
1328 * setting up. In non-dt case it can only be the legacy one.
1330 xordev->xor_type = XOR_ORION;
1331 if (pdev->dev.of_node) {
1332 const struct of_device_id *of_id =
1333 of_match_device(mv_xor_dt_ids,
1334 &pdev->dev);
1336 xordev->xor_type = (uintptr_t)of_id->data;
1340 * (Re-)program MBUS remapping windows if we are asked to.
1342 if (xordev->xor_type == XOR_ARMADA_37XX) {
1343 mv_xor_conf_mbus_windows_a3700(xordev);
1344 } else {
1345 dram = mv_mbus_dram_info();
1346 if (dram)
1347 mv_xor_conf_mbus_windows(xordev, dram);
1350 /* Not all platforms can gate the clock, so it is not
1351 * an error if the clock does not exists.
1353 xordev->clk = clk_get(&pdev->dev, NULL);
1354 if (!IS_ERR(xordev->clk))
1355 clk_prepare_enable(xordev->clk);
1358 * We don't want to have more than one channel per CPU in
1359 * order for async_tx to perform well. So we limit the number
1360 * of engines and channels so that we take into account this
1361 * constraint. Note that we also want to use channels from
1362 * separate engines when possible. For dual-CPU Armada 3700
1363 * SoC with single XOR engine allow using its both channels.
1365 max_engines = num_present_cpus();
1366 if (xordev->xor_type == XOR_ARMADA_37XX)
1367 max_channels = num_present_cpus();
1368 else
1369 max_channels = min_t(unsigned int,
1370 MV_XOR_MAX_CHANNELS,
1371 DIV_ROUND_UP(num_present_cpus(), 2));
1373 if (mv_xor_engine_count >= max_engines)
1374 return 0;
1376 if (pdev->dev.of_node) {
1377 struct device_node *np;
1378 int i = 0;
1380 for_each_child_of_node(pdev->dev.of_node, np) {
1381 struct mv_xor_chan *chan;
1382 dma_cap_mask_t cap_mask;
1383 int irq;
1385 if (i >= max_channels)
1386 continue;
1388 dma_cap_zero(cap_mask);
1389 dma_cap_set(DMA_MEMCPY, cap_mask);
1390 dma_cap_set(DMA_XOR, cap_mask);
1391 dma_cap_set(DMA_INTERRUPT, cap_mask);
1393 irq = irq_of_parse_and_map(np, 0);
1394 if (!irq) {
1395 ret = -ENODEV;
1396 goto err_channel_add;
1399 chan = mv_xor_channel_add(xordev, pdev, i,
1400 cap_mask, irq);
1401 if (IS_ERR(chan)) {
1402 ret = PTR_ERR(chan);
1403 irq_dispose_mapping(irq);
1404 goto err_channel_add;
1407 xordev->channels[i] = chan;
1408 i++;
1410 } else if (pdata && pdata->channels) {
1411 for (i = 0; i < max_channels; i++) {
1412 struct mv_xor_channel_data *cd;
1413 struct mv_xor_chan *chan;
1414 int irq;
1416 cd = &pdata->channels[i];
1417 irq = platform_get_irq(pdev, i);
1418 if (irq < 0) {
1419 ret = irq;
1420 goto err_channel_add;
1423 chan = mv_xor_channel_add(xordev, pdev, i,
1424 cd->cap_mask, irq);
1425 if (IS_ERR(chan)) {
1426 ret = PTR_ERR(chan);
1427 goto err_channel_add;
1430 xordev->channels[i] = chan;
1434 return 0;
1436 err_channel_add:
1437 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1438 if (xordev->channels[i]) {
1439 mv_xor_channel_remove(xordev->channels[i]);
1440 if (pdev->dev.of_node)
1441 irq_dispose_mapping(xordev->channels[i]->irq);
1444 if (!IS_ERR(xordev->clk)) {
1445 clk_disable_unprepare(xordev->clk);
1446 clk_put(xordev->clk);
1449 return ret;
1452 static struct platform_driver mv_xor_driver = {
1453 .probe = mv_xor_probe,
1454 .suspend = mv_xor_suspend,
1455 .resume = mv_xor_resume,
1456 .driver = {
1457 .name = MV_XOR_NAME,
1458 .of_match_table = mv_xor_dt_ids,
1462 builtin_platform_driver(mv_xor_driver);
1465 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1466 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1467 MODULE_LICENSE("GPL");