io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / md / bcache / alloc.c
blob8c371d5eef8eb96becfc9da08a32545552591bae
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Primary bucket allocation code
5 * Copyright 2012 Google, Inc.
7 * Allocation in bcache is done in terms of buckets:
9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
10 * btree pointers - they must match for the pointer to be considered valid.
12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
13 * bucket simply by incrementing its gen.
15 * The gens (along with the priorities; it's really the gens are important but
16 * the code is named as if it's the priorities) are written in an arbitrary list
17 * of buckets on disk, with a pointer to them in the journal header.
19 * When we invalidate a bucket, we have to write its new gen to disk and wait
20 * for that write to complete before we use it - otherwise after a crash we
21 * could have pointers that appeared to be good but pointed to data that had
22 * been overwritten.
24 * Since the gens and priorities are all stored contiguously on disk, we can
25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
26 * call prio_write(), and when prio_write() finishes we pull buckets off the
27 * free_inc list and optionally discard them.
29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
30 * priorities and gens were being written before we could allocate. c->free is a
31 * smaller freelist, and buckets on that list are always ready to be used.
33 * If we've got discards enabled, that happens when a bucket moves from the
34 * free_inc list to the free list.
36 * There is another freelist, because sometimes we have buckets that we know
37 * have nothing pointing into them - these we can reuse without waiting for
38 * priorities to be rewritten. These come from freed btree nodes and buckets
39 * that garbage collection discovered no longer had valid keys pointing into
40 * them (because they were overwritten). That's the unused list - buckets on the
41 * unused list move to the free list, optionally being discarded in the process.
43 * It's also important to ensure that gens don't wrap around - with respect to
44 * either the oldest gen in the btree or the gen on disk. This is quite
45 * difficult to do in practice, but we explicitly guard against it anyways - if
46 * a bucket is in danger of wrapping around we simply skip invalidating it that
47 * time around, and we garbage collect or rewrite the priorities sooner than we
48 * would have otherwise.
50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
52 * bch_bucket_alloc_set() allocates one bucket from different caches
53 * out of a cache set.
55 * free_some_buckets() drives all the processes described above. It's called
56 * from bch_bucket_alloc() and a few other places that need to make sure free
57 * buckets are ready.
59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
60 * invalidated, and then invalidate them and stick them on the free_inc list -
61 * in either lru or fifo order.
64 #include "bcache.h"
65 #include "btree.h"
67 #include <linux/blkdev.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
72 #define MAX_OPEN_BUCKETS 128
74 /* Bucket heap / gen */
76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
78 uint8_t ret = ++b->gen;
80 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
81 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
83 return ret;
86 void bch_rescale_priorities(struct cache_set *c, int sectors)
88 struct cache *ca;
89 struct bucket *b;
90 unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024;
91 int r;
93 atomic_sub(sectors, &c->rescale);
95 do {
96 r = atomic_read(&c->rescale);
98 if (r >= 0)
99 return;
100 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
102 mutex_lock(&c->bucket_lock);
104 c->min_prio = USHRT_MAX;
106 ca = c->cache;
107 for_each_bucket(b, ca)
108 if (b->prio &&
109 b->prio != BTREE_PRIO &&
110 !atomic_read(&b->pin)) {
111 b->prio--;
112 c->min_prio = min(c->min_prio, b->prio);
115 mutex_unlock(&c->bucket_lock);
119 * Background allocation thread: scans for buckets to be invalidated,
120 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
121 * then optionally issues discard commands to the newly free buckets, then puts
122 * them on the various freelists.
125 static inline bool can_inc_bucket_gen(struct bucket *b)
127 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
130 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
132 BUG_ON(!ca->set->gc_mark_valid);
134 return (!GC_MARK(b) ||
135 GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
136 !atomic_read(&b->pin) &&
137 can_inc_bucket_gen(b);
140 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
142 lockdep_assert_held(&ca->set->bucket_lock);
143 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
145 if (GC_SECTORS_USED(b))
146 trace_bcache_invalidate(ca, b - ca->buckets);
148 bch_inc_gen(ca, b);
149 b->prio = INITIAL_PRIO;
150 atomic_inc(&b->pin);
153 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
155 __bch_invalidate_one_bucket(ca, b);
157 fifo_push(&ca->free_inc, b - ca->buckets);
161 * Determines what order we're going to reuse buckets, smallest bucket_prio()
162 * first: we also take into account the number of sectors of live data in that
163 * bucket, and in order for that multiply to make sense we have to scale bucket
165 * Thus, we scale the bucket priorities so that the bucket with the smallest
166 * prio is worth 1/8th of what INITIAL_PRIO is worth.
169 #define bucket_prio(b) \
170 ({ \
171 unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
173 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
176 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
177 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
179 static void invalidate_buckets_lru(struct cache *ca)
181 struct bucket *b;
182 ssize_t i;
184 ca->heap.used = 0;
186 for_each_bucket(b, ca) {
187 if (!bch_can_invalidate_bucket(ca, b))
188 continue;
190 if (!heap_full(&ca->heap))
191 heap_add(&ca->heap, b, bucket_max_cmp);
192 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
193 ca->heap.data[0] = b;
194 heap_sift(&ca->heap, 0, bucket_max_cmp);
198 for (i = ca->heap.used / 2 - 1; i >= 0; --i)
199 heap_sift(&ca->heap, i, bucket_min_cmp);
201 while (!fifo_full(&ca->free_inc)) {
202 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
204 * We don't want to be calling invalidate_buckets()
205 * multiple times when it can't do anything
207 ca->invalidate_needs_gc = 1;
208 wake_up_gc(ca->set);
209 return;
212 bch_invalidate_one_bucket(ca, b);
216 static void invalidate_buckets_fifo(struct cache *ca)
218 struct bucket *b;
219 size_t checked = 0;
221 while (!fifo_full(&ca->free_inc)) {
222 if (ca->fifo_last_bucket < ca->sb.first_bucket ||
223 ca->fifo_last_bucket >= ca->sb.nbuckets)
224 ca->fifo_last_bucket = ca->sb.first_bucket;
226 b = ca->buckets + ca->fifo_last_bucket++;
228 if (bch_can_invalidate_bucket(ca, b))
229 bch_invalidate_one_bucket(ca, b);
231 if (++checked >= ca->sb.nbuckets) {
232 ca->invalidate_needs_gc = 1;
233 wake_up_gc(ca->set);
234 return;
239 static void invalidate_buckets_random(struct cache *ca)
241 struct bucket *b;
242 size_t checked = 0;
244 while (!fifo_full(&ca->free_inc)) {
245 size_t n;
247 get_random_bytes(&n, sizeof(n));
249 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
250 n += ca->sb.first_bucket;
252 b = ca->buckets + n;
254 if (bch_can_invalidate_bucket(ca, b))
255 bch_invalidate_one_bucket(ca, b);
257 if (++checked >= ca->sb.nbuckets / 2) {
258 ca->invalidate_needs_gc = 1;
259 wake_up_gc(ca->set);
260 return;
265 static void invalidate_buckets(struct cache *ca)
267 BUG_ON(ca->invalidate_needs_gc);
269 switch (CACHE_REPLACEMENT(&ca->sb)) {
270 case CACHE_REPLACEMENT_LRU:
271 invalidate_buckets_lru(ca);
272 break;
273 case CACHE_REPLACEMENT_FIFO:
274 invalidate_buckets_fifo(ca);
275 break;
276 case CACHE_REPLACEMENT_RANDOM:
277 invalidate_buckets_random(ca);
278 break;
282 #define allocator_wait(ca, cond) \
283 do { \
284 while (1) { \
285 set_current_state(TASK_INTERRUPTIBLE); \
286 if (cond) \
287 break; \
289 mutex_unlock(&(ca)->set->bucket_lock); \
290 if (kthread_should_stop() || \
291 test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \
292 set_current_state(TASK_RUNNING); \
293 goto out; \
296 schedule(); \
297 mutex_lock(&(ca)->set->bucket_lock); \
299 __set_current_state(TASK_RUNNING); \
300 } while (0)
302 static int bch_allocator_push(struct cache *ca, long bucket)
304 unsigned int i;
306 /* Prios/gens are actually the most important reserve */
307 if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
308 return true;
310 for (i = 0; i < RESERVE_NR; i++)
311 if (fifo_push(&ca->free[i], bucket))
312 return true;
314 return false;
317 static int bch_allocator_thread(void *arg)
319 struct cache *ca = arg;
321 mutex_lock(&ca->set->bucket_lock);
323 while (1) {
325 * First, we pull buckets off of the unused and free_inc lists,
326 * possibly issue discards to them, then we add the bucket to
327 * the free list:
329 while (1) {
330 long bucket;
332 if (!fifo_pop(&ca->free_inc, bucket))
333 break;
335 if (ca->discard) {
336 mutex_unlock(&ca->set->bucket_lock);
337 blkdev_issue_discard(ca->bdev,
338 bucket_to_sector(ca->set, bucket),
339 ca->sb.bucket_size, GFP_KERNEL, 0);
340 mutex_lock(&ca->set->bucket_lock);
343 allocator_wait(ca, bch_allocator_push(ca, bucket));
344 wake_up(&ca->set->btree_cache_wait);
345 wake_up(&ca->set->bucket_wait);
349 * We've run out of free buckets, we need to find some buckets
350 * we can invalidate. First, invalidate them in memory and add
351 * them to the free_inc list:
354 retry_invalidate:
355 allocator_wait(ca, ca->set->gc_mark_valid &&
356 !ca->invalidate_needs_gc);
357 invalidate_buckets(ca);
360 * Now, we write their new gens to disk so we can start writing
361 * new stuff to them:
363 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
364 if (CACHE_SYNC(&ca->sb)) {
366 * This could deadlock if an allocation with a btree
367 * node locked ever blocked - having the btree node
368 * locked would block garbage collection, but here we're
369 * waiting on garbage collection before we invalidate
370 * and free anything.
372 * But this should be safe since the btree code always
373 * uses btree_check_reserve() before allocating now, and
374 * if it fails it blocks without btree nodes locked.
376 if (!fifo_full(&ca->free_inc))
377 goto retry_invalidate;
379 if (bch_prio_write(ca, false) < 0) {
380 ca->invalidate_needs_gc = 1;
381 wake_up_gc(ca->set);
385 out:
386 wait_for_kthread_stop();
387 return 0;
390 /* Allocation */
392 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
394 DEFINE_WAIT(w);
395 struct bucket *b;
396 long r;
399 /* No allocation if CACHE_SET_IO_DISABLE bit is set */
400 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
401 return -1;
403 /* fastpath */
404 if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
405 fifo_pop(&ca->free[reserve], r))
406 goto out;
408 if (!wait) {
409 trace_bcache_alloc_fail(ca, reserve);
410 return -1;
413 do {
414 prepare_to_wait(&ca->set->bucket_wait, &w,
415 TASK_UNINTERRUPTIBLE);
417 mutex_unlock(&ca->set->bucket_lock);
418 schedule();
419 mutex_lock(&ca->set->bucket_lock);
420 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
421 !fifo_pop(&ca->free[reserve], r));
423 finish_wait(&ca->set->bucket_wait, &w);
424 out:
425 if (ca->alloc_thread)
426 wake_up_process(ca->alloc_thread);
428 trace_bcache_alloc(ca, reserve);
430 if (expensive_debug_checks(ca->set)) {
431 size_t iter;
432 long i;
433 unsigned int j;
435 for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
436 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
438 for (j = 0; j < RESERVE_NR; j++)
439 fifo_for_each(i, &ca->free[j], iter)
440 BUG_ON(i == r);
441 fifo_for_each(i, &ca->free_inc, iter)
442 BUG_ON(i == r);
445 b = ca->buckets + r;
447 BUG_ON(atomic_read(&b->pin) != 1);
449 SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
451 if (reserve <= RESERVE_PRIO) {
452 SET_GC_MARK(b, GC_MARK_METADATA);
453 SET_GC_MOVE(b, 0);
454 b->prio = BTREE_PRIO;
455 } else {
456 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
457 SET_GC_MOVE(b, 0);
458 b->prio = INITIAL_PRIO;
461 if (ca->set->avail_nbuckets > 0) {
462 ca->set->avail_nbuckets--;
463 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
466 return r;
469 void __bch_bucket_free(struct cache *ca, struct bucket *b)
471 SET_GC_MARK(b, 0);
472 SET_GC_SECTORS_USED(b, 0);
474 if (ca->set->avail_nbuckets < ca->set->nbuckets) {
475 ca->set->avail_nbuckets++;
476 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
480 void bch_bucket_free(struct cache_set *c, struct bkey *k)
482 unsigned int i;
484 for (i = 0; i < KEY_PTRS(k); i++)
485 __bch_bucket_free(PTR_CACHE(c, k, i),
486 PTR_BUCKET(c, k, i));
489 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
490 struct bkey *k, bool wait)
492 struct cache *ca;
493 long b;
495 /* No allocation if CACHE_SET_IO_DISABLE bit is set */
496 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
497 return -1;
499 lockdep_assert_held(&c->bucket_lock);
501 bkey_init(k);
503 ca = c->cache;
504 b = bch_bucket_alloc(ca, reserve, wait);
505 if (b == -1)
506 goto err;
508 k->ptr[0] = MAKE_PTR(ca->buckets[b].gen,
509 bucket_to_sector(c, b),
510 ca->sb.nr_this_dev);
512 SET_KEY_PTRS(k, 1);
514 return 0;
515 err:
516 bch_bucket_free(c, k);
517 bkey_put(c, k);
518 return -1;
521 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
522 struct bkey *k, bool wait)
524 int ret;
526 mutex_lock(&c->bucket_lock);
527 ret = __bch_bucket_alloc_set(c, reserve, k, wait);
528 mutex_unlock(&c->bucket_lock);
529 return ret;
532 /* Sector allocator */
534 struct open_bucket {
535 struct list_head list;
536 unsigned int last_write_point;
537 unsigned int sectors_free;
538 BKEY_PADDED(key);
542 * We keep multiple buckets open for writes, and try to segregate different
543 * write streams for better cache utilization: first we try to segregate flash
544 * only volume write streams from cached devices, secondly we look for a bucket
545 * where the last write to it was sequential with the current write, and
546 * failing that we look for a bucket that was last used by the same task.
548 * The ideas is if you've got multiple tasks pulling data into the cache at the
549 * same time, you'll get better cache utilization if you try to segregate their
550 * data and preserve locality.
552 * For example, dirty sectors of flash only volume is not reclaimable, if their
553 * dirty sectors mixed with dirty sectors of cached device, such buckets will
554 * be marked as dirty and won't be reclaimed, though the dirty data of cached
555 * device have been written back to backend device.
557 * And say you've starting Firefox at the same time you're copying a
558 * bunch of files. Firefox will likely end up being fairly hot and stay in the
559 * cache awhile, but the data you copied might not be; if you wrote all that
560 * data to the same buckets it'd get invalidated at the same time.
562 * Both of those tasks will be doing fairly random IO so we can't rely on
563 * detecting sequential IO to segregate their data, but going off of the task
564 * should be a sane heuristic.
566 static struct open_bucket *pick_data_bucket(struct cache_set *c,
567 const struct bkey *search,
568 unsigned int write_point,
569 struct bkey *alloc)
571 struct open_bucket *ret, *ret_task = NULL;
573 list_for_each_entry_reverse(ret, &c->data_buckets, list)
574 if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
575 UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
576 continue;
577 else if (!bkey_cmp(&ret->key, search))
578 goto found;
579 else if (ret->last_write_point == write_point)
580 ret_task = ret;
582 ret = ret_task ?: list_first_entry(&c->data_buckets,
583 struct open_bucket, list);
584 found:
585 if (!ret->sectors_free && KEY_PTRS(alloc)) {
586 ret->sectors_free = c->cache->sb.bucket_size;
587 bkey_copy(&ret->key, alloc);
588 bkey_init(alloc);
591 if (!ret->sectors_free)
592 ret = NULL;
594 return ret;
598 * Allocates some space in the cache to write to, and k to point to the newly
599 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
600 * end of the newly allocated space).
602 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
603 * sectors were actually allocated.
605 * If s->writeback is true, will not fail.
607 bool bch_alloc_sectors(struct cache_set *c,
608 struct bkey *k,
609 unsigned int sectors,
610 unsigned int write_point,
611 unsigned int write_prio,
612 bool wait)
614 struct open_bucket *b;
615 BKEY_PADDED(key) alloc;
616 unsigned int i;
619 * We might have to allocate a new bucket, which we can't do with a
620 * spinlock held. So if we have to allocate, we drop the lock, allocate
621 * and then retry. KEY_PTRS() indicates whether alloc points to
622 * allocated bucket(s).
625 bkey_init(&alloc.key);
626 spin_lock(&c->data_bucket_lock);
628 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
629 unsigned int watermark = write_prio
630 ? RESERVE_MOVINGGC
631 : RESERVE_NONE;
633 spin_unlock(&c->data_bucket_lock);
635 if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait))
636 return false;
638 spin_lock(&c->data_bucket_lock);
642 * If we had to allocate, we might race and not need to allocate the
643 * second time we call pick_data_bucket(). If we allocated a bucket but
644 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
646 if (KEY_PTRS(&alloc.key))
647 bkey_put(c, &alloc.key);
649 for (i = 0; i < KEY_PTRS(&b->key); i++)
650 EBUG_ON(ptr_stale(c, &b->key, i));
652 /* Set up the pointer to the space we're allocating: */
654 for (i = 0; i < KEY_PTRS(&b->key); i++)
655 k->ptr[i] = b->key.ptr[i];
657 sectors = min(sectors, b->sectors_free);
659 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
660 SET_KEY_SIZE(k, sectors);
661 SET_KEY_PTRS(k, KEY_PTRS(&b->key));
664 * Move b to the end of the lru, and keep track of what this bucket was
665 * last used for:
667 list_move_tail(&b->list, &c->data_buckets);
668 bkey_copy_key(&b->key, k);
669 b->last_write_point = write_point;
671 b->sectors_free -= sectors;
673 for (i = 0; i < KEY_PTRS(&b->key); i++) {
674 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
676 atomic_long_add(sectors,
677 &PTR_CACHE(c, &b->key, i)->sectors_written);
680 if (b->sectors_free < c->cache->sb.block_size)
681 b->sectors_free = 0;
684 * k takes refcounts on the buckets it points to until it's inserted
685 * into the btree, but if we're done with this bucket we just transfer
686 * get_data_bucket()'s refcount.
688 if (b->sectors_free)
689 for (i = 0; i < KEY_PTRS(&b->key); i++)
690 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
692 spin_unlock(&c->data_bucket_lock);
693 return true;
696 /* Init */
698 void bch_open_buckets_free(struct cache_set *c)
700 struct open_bucket *b;
702 while (!list_empty(&c->data_buckets)) {
703 b = list_first_entry(&c->data_buckets,
704 struct open_bucket, list);
705 list_del(&b->list);
706 kfree(b);
710 int bch_open_buckets_alloc(struct cache_set *c)
712 int i;
714 spin_lock_init(&c->data_bucket_lock);
716 for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
717 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
719 if (!b)
720 return -ENOMEM;
722 list_add(&b->list, &c->data_buckets);
725 return 0;
728 int bch_cache_allocator_start(struct cache *ca)
730 struct task_struct *k = kthread_run(bch_allocator_thread,
731 ca, "bcache_allocator");
732 if (IS_ERR(k))
733 return PTR_ERR(k);
735 ca->alloc_thread = k;
736 return 0;