io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / md / bcache / writeback.c
bloba129e4d2707c9c5bf3ee65caf89eb397f781996c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
20 static void update_gc_after_writeback(struct cache_set *c)
22 if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 return;
26 c->gc_after_writeback |= BCH_DO_AUTO_GC;
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
32 struct cache_set *c = dc->disk.c;
35 * This is the size of the cache, minus the amount used for
36 * flash-only devices
38 uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39 atomic_long_read(&c->flash_dev_dirty_sectors);
42 * Unfortunately there is no control of global dirty data. If the
43 * user states that they want 10% dirty data in the cache, and has,
44 * e.g., 5 backing volumes of equal size, we try and ensure each
45 * backing volume uses about 2% of the cache for dirty data.
47 uint32_t bdev_share =
48 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 c->cached_dev_sectors);
51 uint64_t cache_dirty_target =
52 div_u64(cache_sectors * dc->writeback_percent, 100);
54 /* Ensure each backing dev gets at least one dirty share */
55 if (bdev_share < 1)
56 bdev_share = 1;
58 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
61 static void __update_writeback_rate(struct cached_dev *dc)
64 * PI controller:
65 * Figures out the amount that should be written per second.
67 * First, the error (number of sectors that are dirty beyond our
68 * target) is calculated. The error is accumulated (numerically
69 * integrated).
71 * Then, the proportional value and integral value are scaled
72 * based on configured values. These are stored as inverses to
73 * avoid fixed point math and to make configuration easy-- e.g.
74 * the default value of 40 for writeback_rate_p_term_inverse
75 * attempts to write at a rate that would retire all the dirty
76 * blocks in 40 seconds.
78 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 * of the error is accumulated in the integral term per second.
80 * This acts as a slow, long-term average that is not subject to
81 * variations in usage like the p term.
83 int64_t target = __calc_target_rate(dc);
84 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 int64_t error = dirty - target;
86 int64_t proportional_scaled =
87 div_s64(error, dc->writeback_rate_p_term_inverse);
88 int64_t integral_scaled;
89 uint32_t new_rate;
91 if ((error < 0 && dc->writeback_rate_integral > 0) ||
92 (error > 0 && time_before64(local_clock(),
93 dc->writeback_rate.next + NSEC_PER_MSEC))) {
95 * Only decrease the integral term if it's more than
96 * zero. Only increase the integral term if the device
97 * is keeping up. (Don't wind up the integral
98 * ineffectively in either case).
100 * It's necessary to scale this by
101 * writeback_rate_update_seconds to keep the integral
102 * term dimensioned properly.
104 dc->writeback_rate_integral += error *
105 dc->writeback_rate_update_seconds;
108 integral_scaled = div_s64(dc->writeback_rate_integral,
109 dc->writeback_rate_i_term_inverse);
111 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112 dc->writeback_rate_minimum, NSEC_PER_SEC);
114 dc->writeback_rate_proportional = proportional_scaled;
115 dc->writeback_rate_integral_scaled = integral_scaled;
116 dc->writeback_rate_change = new_rate -
117 atomic_long_read(&dc->writeback_rate.rate);
118 atomic_long_set(&dc->writeback_rate.rate, new_rate);
119 dc->writeback_rate_target = target;
122 static bool set_at_max_writeback_rate(struct cache_set *c,
123 struct cached_dev *dc)
125 /* Don't sst max writeback rate if it is disabled */
126 if (!c->idle_max_writeback_rate_enabled)
127 return false;
129 /* Don't set max writeback rate if gc is running */
130 if (!c->gc_mark_valid)
131 return false;
133 * Idle_counter is increased everytime when update_writeback_rate() is
134 * called. If all backing devices attached to the same cache set have
135 * identical dc->writeback_rate_update_seconds values, it is about 6
136 * rounds of update_writeback_rate() on each backing device before
137 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
138 * to each dc->writeback_rate.rate.
139 * In order to avoid extra locking cost for counting exact dirty cached
140 * devices number, c->attached_dev_nr is used to calculate the idle
141 * throushold. It might be bigger if not all cached device are in write-
142 * back mode, but it still works well with limited extra rounds of
143 * update_writeback_rate().
145 if (atomic_inc_return(&c->idle_counter) <
146 atomic_read(&c->attached_dev_nr) * 6)
147 return false;
149 if (atomic_read(&c->at_max_writeback_rate) != 1)
150 atomic_set(&c->at_max_writeback_rate, 1);
152 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
154 /* keep writeback_rate_target as existing value */
155 dc->writeback_rate_proportional = 0;
156 dc->writeback_rate_integral_scaled = 0;
157 dc->writeback_rate_change = 0;
160 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
161 * new I/O arrives during before set_at_max_writeback_rate() returns.
162 * Then the writeback rate is set to 1, and its new value should be
163 * decided via __update_writeback_rate().
165 if ((atomic_read(&c->idle_counter) <
166 atomic_read(&c->attached_dev_nr) * 6) ||
167 !atomic_read(&c->at_max_writeback_rate))
168 return false;
170 return true;
173 static void update_writeback_rate(struct work_struct *work)
175 struct cached_dev *dc = container_of(to_delayed_work(work),
176 struct cached_dev,
177 writeback_rate_update);
178 struct cache_set *c = dc->disk.c;
181 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
182 * cancel_delayed_work_sync().
184 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
185 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
186 smp_mb__after_atomic();
189 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
190 * check it here too.
192 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
193 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
194 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
195 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
196 smp_mb__after_atomic();
197 return;
200 if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
202 * If the whole cache set is idle, set_at_max_writeback_rate()
203 * will set writeback rate to a max number. Then it is
204 * unncessary to update writeback rate for an idle cache set
205 * in maximum writeback rate number(s).
207 if (!set_at_max_writeback_rate(c, dc)) {
208 down_read(&dc->writeback_lock);
209 __update_writeback_rate(dc);
210 update_gc_after_writeback(c);
211 up_read(&dc->writeback_lock);
217 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
218 * check it here too.
220 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
221 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
222 schedule_delayed_work(&dc->writeback_rate_update,
223 dc->writeback_rate_update_seconds * HZ);
227 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
228 * cancel_delayed_work_sync().
230 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
231 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
232 smp_mb__after_atomic();
235 static unsigned int writeback_delay(struct cached_dev *dc,
236 unsigned int sectors)
238 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
239 !dc->writeback_percent)
240 return 0;
242 return bch_next_delay(&dc->writeback_rate, sectors);
245 struct dirty_io {
246 struct closure cl;
247 struct cached_dev *dc;
248 uint16_t sequence;
249 struct bio bio;
252 static void dirty_init(struct keybuf_key *w)
254 struct dirty_io *io = w->private;
255 struct bio *bio = &io->bio;
257 bio_init(bio, bio->bi_inline_vecs,
258 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
259 if (!io->dc->writeback_percent)
260 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
262 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
263 bio->bi_private = w;
264 bch_bio_map(bio, NULL);
267 static void dirty_io_destructor(struct closure *cl)
269 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
271 kfree(io);
274 static void write_dirty_finish(struct closure *cl)
276 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
277 struct keybuf_key *w = io->bio.bi_private;
278 struct cached_dev *dc = io->dc;
280 bio_free_pages(&io->bio);
282 /* This is kind of a dumb way of signalling errors. */
283 if (KEY_DIRTY(&w->key)) {
284 int ret;
285 unsigned int i;
286 struct keylist keys;
288 bch_keylist_init(&keys);
290 bkey_copy(keys.top, &w->key);
291 SET_KEY_DIRTY(keys.top, false);
292 bch_keylist_push(&keys);
294 for (i = 0; i < KEY_PTRS(&w->key); i++)
295 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
297 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
299 if (ret)
300 trace_bcache_writeback_collision(&w->key);
302 atomic_long_inc(ret
303 ? &dc->disk.c->writeback_keys_failed
304 : &dc->disk.c->writeback_keys_done);
307 bch_keybuf_del(&dc->writeback_keys, w);
308 up(&dc->in_flight);
310 closure_return_with_destructor(cl, dirty_io_destructor);
313 static void dirty_endio(struct bio *bio)
315 struct keybuf_key *w = bio->bi_private;
316 struct dirty_io *io = w->private;
318 if (bio->bi_status) {
319 SET_KEY_DIRTY(&w->key, false);
320 bch_count_backing_io_errors(io->dc, bio);
323 closure_put(&io->cl);
326 static void write_dirty(struct closure *cl)
328 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
329 struct keybuf_key *w = io->bio.bi_private;
330 struct cached_dev *dc = io->dc;
332 uint16_t next_sequence;
334 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
335 /* Not our turn to write; wait for a write to complete */
336 closure_wait(&dc->writeback_ordering_wait, cl);
338 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
340 * Edge case-- it happened in indeterminate order
341 * relative to when we were added to wait list..
343 closure_wake_up(&dc->writeback_ordering_wait);
346 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
347 return;
350 next_sequence = io->sequence + 1;
353 * IO errors are signalled using the dirty bit on the key.
354 * If we failed to read, we should not attempt to write to the
355 * backing device. Instead, immediately go to write_dirty_finish
356 * to clean up.
358 if (KEY_DIRTY(&w->key)) {
359 dirty_init(w);
360 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
361 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
362 bio_set_dev(&io->bio, io->dc->bdev);
363 io->bio.bi_end_io = dirty_endio;
365 /* I/O request sent to backing device */
366 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
369 atomic_set(&dc->writeback_sequence_next, next_sequence);
370 closure_wake_up(&dc->writeback_ordering_wait);
372 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
375 static void read_dirty_endio(struct bio *bio)
377 struct keybuf_key *w = bio->bi_private;
378 struct dirty_io *io = w->private;
380 /* is_read = 1 */
381 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
382 bio->bi_status, 1,
383 "reading dirty data from cache");
385 dirty_endio(bio);
388 static void read_dirty_submit(struct closure *cl)
390 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
392 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
394 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
397 static void read_dirty(struct cached_dev *dc)
399 unsigned int delay = 0;
400 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
401 size_t size;
402 int nk, i;
403 struct dirty_io *io;
404 struct closure cl;
405 uint16_t sequence = 0;
407 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
408 atomic_set(&dc->writeback_sequence_next, sequence);
409 closure_init_stack(&cl);
412 * XXX: if we error, background writeback just spins. Should use some
413 * mempools.
416 next = bch_keybuf_next(&dc->writeback_keys);
418 while (!kthread_should_stop() &&
419 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
420 next) {
421 size = 0;
422 nk = 0;
424 do {
425 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
428 * Don't combine too many operations, even if they
429 * are all small.
431 if (nk >= MAX_WRITEBACKS_IN_PASS)
432 break;
435 * If the current operation is very large, don't
436 * further combine operations.
438 if (size >= MAX_WRITESIZE_IN_PASS)
439 break;
442 * Operations are only eligible to be combined
443 * if they are contiguous.
445 * TODO: add a heuristic willing to fire a
446 * certain amount of non-contiguous IO per pass,
447 * so that we can benefit from backing device
448 * command queueing.
450 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
451 &START_KEY(&next->key)))
452 break;
454 size += KEY_SIZE(&next->key);
455 keys[nk++] = next;
456 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
458 /* Now we have gathered a set of 1..5 keys to write back. */
459 for (i = 0; i < nk; i++) {
460 w = keys[i];
462 io = kzalloc(struct_size(io, bio.bi_inline_vecs,
463 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
464 GFP_KERNEL);
465 if (!io)
466 goto err;
468 w->private = io;
469 io->dc = dc;
470 io->sequence = sequence++;
472 dirty_init(w);
473 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
474 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
475 bio_set_dev(&io->bio,
476 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
477 io->bio.bi_end_io = read_dirty_endio;
479 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
480 goto err_free;
482 trace_bcache_writeback(&w->key);
484 down(&dc->in_flight);
487 * We've acquired a semaphore for the maximum
488 * simultaneous number of writebacks; from here
489 * everything happens asynchronously.
491 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
494 delay = writeback_delay(dc, size);
496 while (!kthread_should_stop() &&
497 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
498 delay) {
499 schedule_timeout_interruptible(delay);
500 delay = writeback_delay(dc, 0);
504 if (0) {
505 err_free:
506 kfree(w->private);
507 err:
508 bch_keybuf_del(&dc->writeback_keys, w);
512 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
513 * freed) before refilling again
515 closure_sync(&cl);
518 /* Scan for dirty data */
520 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
521 uint64_t offset, int nr_sectors)
523 struct bcache_device *d = c->devices[inode];
524 unsigned int stripe_offset, sectors_dirty;
525 int stripe;
527 if (!d)
528 return;
530 stripe = offset_to_stripe(d, offset);
531 if (stripe < 0)
532 return;
534 if (UUID_FLASH_ONLY(&c->uuids[inode]))
535 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
537 stripe_offset = offset & (d->stripe_size - 1);
539 while (nr_sectors) {
540 int s = min_t(unsigned int, abs(nr_sectors),
541 d->stripe_size - stripe_offset);
543 if (nr_sectors < 0)
544 s = -s;
546 if (stripe >= d->nr_stripes)
547 return;
549 sectors_dirty = atomic_add_return(s,
550 d->stripe_sectors_dirty + stripe);
551 if (sectors_dirty == d->stripe_size)
552 set_bit(stripe, d->full_dirty_stripes);
553 else
554 clear_bit(stripe, d->full_dirty_stripes);
556 nr_sectors -= s;
557 stripe_offset = 0;
558 stripe++;
562 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
564 struct cached_dev *dc = container_of(buf,
565 struct cached_dev,
566 writeback_keys);
568 BUG_ON(KEY_INODE(k) != dc->disk.id);
570 return KEY_DIRTY(k);
573 static void refill_full_stripes(struct cached_dev *dc)
575 struct keybuf *buf = &dc->writeback_keys;
576 unsigned int start_stripe, next_stripe;
577 int stripe;
578 bool wrapped = false;
580 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
581 if (stripe < 0)
582 stripe = 0;
584 start_stripe = stripe;
586 while (1) {
587 stripe = find_next_bit(dc->disk.full_dirty_stripes,
588 dc->disk.nr_stripes, stripe);
590 if (stripe == dc->disk.nr_stripes)
591 goto next;
593 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
594 dc->disk.nr_stripes, stripe);
596 buf->last_scanned = KEY(dc->disk.id,
597 stripe * dc->disk.stripe_size, 0);
599 bch_refill_keybuf(dc->disk.c, buf,
600 &KEY(dc->disk.id,
601 next_stripe * dc->disk.stripe_size, 0),
602 dirty_pred);
604 if (array_freelist_empty(&buf->freelist))
605 return;
607 stripe = next_stripe;
608 next:
609 if (wrapped && stripe > start_stripe)
610 return;
612 if (stripe == dc->disk.nr_stripes) {
613 stripe = 0;
614 wrapped = true;
620 * Returns true if we scanned the entire disk
622 static bool refill_dirty(struct cached_dev *dc)
624 struct keybuf *buf = &dc->writeback_keys;
625 struct bkey start = KEY(dc->disk.id, 0, 0);
626 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
627 struct bkey start_pos;
630 * make sure keybuf pos is inside the range for this disk - at bringup
631 * we might not be attached yet so this disk's inode nr isn't
632 * initialized then
634 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
635 bkey_cmp(&buf->last_scanned, &end) > 0)
636 buf->last_scanned = start;
638 if (dc->partial_stripes_expensive) {
639 refill_full_stripes(dc);
640 if (array_freelist_empty(&buf->freelist))
641 return false;
644 start_pos = buf->last_scanned;
645 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
647 if (bkey_cmp(&buf->last_scanned, &end) < 0)
648 return false;
651 * If we get to the end start scanning again from the beginning, and
652 * only scan up to where we initially started scanning from:
654 buf->last_scanned = start;
655 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
657 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
660 static int bch_writeback_thread(void *arg)
662 struct cached_dev *dc = arg;
663 struct cache_set *c = dc->disk.c;
664 bool searched_full_index;
666 bch_ratelimit_reset(&dc->writeback_rate);
668 while (!kthread_should_stop() &&
669 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
670 down_write(&dc->writeback_lock);
671 set_current_state(TASK_INTERRUPTIBLE);
673 * If the bache device is detaching, skip here and continue
674 * to perform writeback. Otherwise, if no dirty data on cache,
675 * or there is dirty data on cache but writeback is disabled,
676 * the writeback thread should sleep here and wait for others
677 * to wake up it.
679 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
680 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
681 up_write(&dc->writeback_lock);
683 if (kthread_should_stop() ||
684 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
685 set_current_state(TASK_RUNNING);
686 break;
689 schedule();
690 continue;
692 set_current_state(TASK_RUNNING);
694 searched_full_index = refill_dirty(dc);
696 if (searched_full_index &&
697 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
698 atomic_set(&dc->has_dirty, 0);
699 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
700 bch_write_bdev_super(dc, NULL);
702 * If bcache device is detaching via sysfs interface,
703 * writeback thread should stop after there is no dirty
704 * data on cache. BCACHE_DEV_DETACHING flag is set in
705 * bch_cached_dev_detach().
707 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
708 struct closure cl;
710 closure_init_stack(&cl);
711 memset(&dc->sb.set_uuid, 0, 16);
712 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
714 bch_write_bdev_super(dc, &cl);
715 closure_sync(&cl);
717 up_write(&dc->writeback_lock);
718 break;
722 * When dirty data rate is high (e.g. 50%+), there might
723 * be heavy buckets fragmentation after writeback
724 * finished, which hurts following write performance.
725 * If users really care about write performance they
726 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
727 * BCH_DO_AUTO_GC is set, garbage collection thread
728 * will be wake up here. After moving gc, the shrunk
729 * btree and discarded free buckets SSD space may be
730 * helpful for following write requests.
732 if (c->gc_after_writeback ==
733 (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
734 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
735 force_wake_up_gc(c);
739 up_write(&dc->writeback_lock);
741 read_dirty(dc);
743 if (searched_full_index) {
744 unsigned int delay = dc->writeback_delay * HZ;
746 while (delay &&
747 !kthread_should_stop() &&
748 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
749 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
750 delay = schedule_timeout_interruptible(delay);
752 bch_ratelimit_reset(&dc->writeback_rate);
756 if (dc->writeback_write_wq) {
757 flush_workqueue(dc->writeback_write_wq);
758 destroy_workqueue(dc->writeback_write_wq);
760 cached_dev_put(dc);
761 wait_for_kthread_stop();
763 return 0;
766 /* Init */
767 #define INIT_KEYS_EACH_TIME 500000
768 #define INIT_KEYS_SLEEP_MS 100
770 struct sectors_dirty_init {
771 struct btree_op op;
772 unsigned int inode;
773 size_t count;
774 struct bkey start;
777 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
778 struct bkey *k)
780 struct sectors_dirty_init *op = container_of(_op,
781 struct sectors_dirty_init, op);
782 if (KEY_INODE(k) > op->inode)
783 return MAP_DONE;
785 if (KEY_DIRTY(k))
786 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
787 KEY_START(k), KEY_SIZE(k));
789 op->count++;
790 if (atomic_read(&b->c->search_inflight) &&
791 !(op->count % INIT_KEYS_EACH_TIME)) {
792 bkey_copy_key(&op->start, k);
793 return -EAGAIN;
796 return MAP_CONTINUE;
799 static int bch_root_node_dirty_init(struct cache_set *c,
800 struct bcache_device *d,
801 struct bkey *k)
803 struct sectors_dirty_init op;
804 int ret;
806 bch_btree_op_init(&op.op, -1);
807 op.inode = d->id;
808 op.count = 0;
809 op.start = KEY(op.inode, 0, 0);
811 do {
812 ret = bcache_btree(map_keys_recurse,
814 c->root,
815 &op.op,
816 &op.start,
817 sectors_dirty_init_fn,
819 if (ret == -EAGAIN)
820 schedule_timeout_interruptible(
821 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
822 else if (ret < 0) {
823 pr_warn("sectors dirty init failed, ret=%d!\n", ret);
824 break;
826 } while (ret == -EAGAIN);
828 return ret;
831 static int bch_dirty_init_thread(void *arg)
833 struct dirty_init_thrd_info *info = arg;
834 struct bch_dirty_init_state *state = info->state;
835 struct cache_set *c = state->c;
836 struct btree_iter iter;
837 struct bkey *k, *p;
838 int cur_idx, prev_idx, skip_nr;
840 k = p = NULL;
841 cur_idx = prev_idx = 0;
843 bch_btree_iter_init(&c->root->keys, &iter, NULL);
844 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
845 BUG_ON(!k);
847 p = k;
849 while (k) {
850 spin_lock(&state->idx_lock);
851 cur_idx = state->key_idx;
852 state->key_idx++;
853 spin_unlock(&state->idx_lock);
855 skip_nr = cur_idx - prev_idx;
857 while (skip_nr) {
858 k = bch_btree_iter_next_filter(&iter,
859 &c->root->keys,
860 bch_ptr_bad);
861 if (k)
862 p = k;
863 else {
864 atomic_set(&state->enough, 1);
865 /* Update state->enough earlier */
866 smp_mb__after_atomic();
867 goto out;
869 skip_nr--;
870 cond_resched();
873 if (p) {
874 if (bch_root_node_dirty_init(c, state->d, p) < 0)
875 goto out;
878 p = NULL;
879 prev_idx = cur_idx;
880 cond_resched();
883 out:
884 /* In order to wake up state->wait in time */
885 smp_mb__before_atomic();
886 if (atomic_dec_and_test(&state->started))
887 wake_up(&state->wait);
889 return 0;
892 static int bch_btre_dirty_init_thread_nr(void)
894 int n = num_online_cpus()/2;
896 if (n == 0)
897 n = 1;
898 else if (n > BCH_DIRTY_INIT_THRD_MAX)
899 n = BCH_DIRTY_INIT_THRD_MAX;
901 return n;
904 void bch_sectors_dirty_init(struct bcache_device *d)
906 int i;
907 struct bkey *k = NULL;
908 struct btree_iter iter;
909 struct sectors_dirty_init op;
910 struct cache_set *c = d->c;
911 struct bch_dirty_init_state *state;
912 char name[32];
914 /* Just count root keys if no leaf node */
915 if (c->root->level == 0) {
916 bch_btree_op_init(&op.op, -1);
917 op.inode = d->id;
918 op.count = 0;
919 op.start = KEY(op.inode, 0, 0);
921 for_each_key_filter(&c->root->keys,
922 k, &iter, bch_ptr_invalid)
923 sectors_dirty_init_fn(&op.op, c->root, k);
924 return;
927 state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
928 if (!state) {
929 pr_warn("sectors dirty init failed: cannot allocate memory\n");
930 return;
933 state->c = c;
934 state->d = d;
935 state->total_threads = bch_btre_dirty_init_thread_nr();
936 state->key_idx = 0;
937 spin_lock_init(&state->idx_lock);
938 atomic_set(&state->started, 0);
939 atomic_set(&state->enough, 0);
940 init_waitqueue_head(&state->wait);
942 for (i = 0; i < state->total_threads; i++) {
943 /* Fetch latest state->enough earlier */
944 smp_mb__before_atomic();
945 if (atomic_read(&state->enough))
946 break;
948 state->infos[i].state = state;
949 atomic_inc(&state->started);
950 snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);
952 state->infos[i].thread =
953 kthread_run(bch_dirty_init_thread,
954 &state->infos[i],
955 name);
956 if (IS_ERR(state->infos[i].thread)) {
957 pr_err("fails to run thread bch_dirty_init[%d]\n", i);
958 for (--i; i >= 0; i--)
959 kthread_stop(state->infos[i].thread);
960 goto out;
964 wait_event_interruptible(state->wait,
965 atomic_read(&state->started) == 0 ||
966 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
968 out:
969 kfree(state);
972 void bch_cached_dev_writeback_init(struct cached_dev *dc)
974 sema_init(&dc->in_flight, 64);
975 init_rwsem(&dc->writeback_lock);
976 bch_keybuf_init(&dc->writeback_keys);
978 dc->writeback_metadata = true;
979 dc->writeback_running = false;
980 dc->writeback_percent = 10;
981 dc->writeback_delay = 30;
982 atomic_long_set(&dc->writeback_rate.rate, 1024);
983 dc->writeback_rate_minimum = 8;
985 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
986 dc->writeback_rate_p_term_inverse = 40;
987 dc->writeback_rate_i_term_inverse = 10000;
989 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
990 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
993 int bch_cached_dev_writeback_start(struct cached_dev *dc)
995 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
996 WQ_MEM_RECLAIM, 0);
997 if (!dc->writeback_write_wq)
998 return -ENOMEM;
1000 cached_dev_get(dc);
1001 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1002 "bcache_writeback");
1003 if (IS_ERR(dc->writeback_thread)) {
1004 cached_dev_put(dc);
1005 destroy_workqueue(dc->writeback_write_wq);
1006 return PTR_ERR(dc->writeback_thread);
1008 dc->writeback_running = true;
1010 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1011 schedule_delayed_work(&dc->writeback_rate_update,
1012 dc->writeback_rate_update_seconds * HZ);
1014 bch_writeback_queue(dc);
1016 return 0;