io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / mmc / core / block.c
blob42e27a2982180efe570f1ea658c6dfc57ccf4222
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
48 #include <linux/uaccess.h>
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
72 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
77 (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex);
81 * The defaults come from config options but can be overriden by module
82 * or bootarg options.
84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
87 * We've only got one major, so number of mmcblk devices is
88 * limited to (1 << 20) / number of minors per device. It is also
89 * limited by the MAX_DEVICES below.
91 static int max_devices;
93 #define MAX_DEVICES 256
95 static DEFINE_IDA(mmc_blk_ida);
96 static DEFINE_IDA(mmc_rpmb_ida);
99 * There is one mmc_blk_data per slot.
101 struct mmc_blk_data {
102 struct device *parent;
103 struct gendisk *disk;
104 struct mmc_queue queue;
105 struct list_head part;
106 struct list_head rpmbs;
108 unsigned int flags;
109 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
110 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
112 unsigned int usage;
113 unsigned int read_only;
114 unsigned int part_type;
115 unsigned int reset_done;
116 #define MMC_BLK_READ BIT(0)
117 #define MMC_BLK_WRITE BIT(1)
118 #define MMC_BLK_DISCARD BIT(2)
119 #define MMC_BLK_SECDISCARD BIT(3)
120 #define MMC_BLK_CQE_RECOVERY BIT(4)
123 * Only set in main mmc_blk_data associated
124 * with mmc_card with dev_set_drvdata, and keeps
125 * track of the current selected device partition.
127 unsigned int part_curr;
128 struct device_attribute force_ro;
129 struct device_attribute power_ro_lock;
130 int area_type;
132 /* debugfs files (only in main mmc_blk_data) */
133 struct dentry *status_dentry;
134 struct dentry *ext_csd_dentry;
137 /* Device type for RPMB character devices */
138 static dev_t mmc_rpmb_devt;
140 /* Bus type for RPMB character devices */
141 static struct bus_type mmc_rpmb_bus_type = {
142 .name = "mmc_rpmb",
146 * struct mmc_rpmb_data - special RPMB device type for these areas
147 * @dev: the device for the RPMB area
148 * @chrdev: character device for the RPMB area
149 * @id: unique device ID number
150 * @part_index: partition index (0 on first)
151 * @md: parent MMC block device
152 * @node: list item, so we can put this device on a list
154 struct mmc_rpmb_data {
155 struct device dev;
156 struct cdev chrdev;
157 int id;
158 unsigned int part_index;
159 struct mmc_blk_data *md;
160 struct list_head node;
163 static DEFINE_MUTEX(open_lock);
165 module_param(perdev_minors, int, 0444);
166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
168 static inline int mmc_blk_part_switch(struct mmc_card *card,
169 unsigned int part_type);
170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
171 struct mmc_card *card,
172 int disable_multi,
173 struct mmc_queue *mq);
174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
178 struct mmc_blk_data *md;
180 mutex_lock(&open_lock);
181 md = disk->private_data;
182 if (md && md->usage == 0)
183 md = NULL;
184 if (md)
185 md->usage++;
186 mutex_unlock(&open_lock);
188 return md;
191 static inline int mmc_get_devidx(struct gendisk *disk)
193 int devidx = disk->first_minor / perdev_minors;
194 return devidx;
197 static void mmc_blk_put(struct mmc_blk_data *md)
199 mutex_lock(&open_lock);
200 md->usage--;
201 if (md->usage == 0) {
202 int devidx = mmc_get_devidx(md->disk);
203 blk_put_queue(md->queue.queue);
204 ida_simple_remove(&mmc_blk_ida, devidx);
205 put_disk(md->disk);
206 kfree(md);
208 mutex_unlock(&open_lock);
211 static ssize_t power_ro_lock_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
214 int ret;
215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
216 struct mmc_card *card = md->queue.card;
217 int locked = 0;
219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
220 locked = 2;
221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
222 locked = 1;
224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
226 mmc_blk_put(md);
228 return ret;
231 static ssize_t power_ro_lock_store(struct device *dev,
232 struct device_attribute *attr, const char *buf, size_t count)
234 int ret;
235 struct mmc_blk_data *md, *part_md;
236 struct mmc_queue *mq;
237 struct request *req;
238 unsigned long set;
240 if (kstrtoul(buf, 0, &set))
241 return -EINVAL;
243 if (set != 1)
244 return count;
246 md = mmc_blk_get(dev_to_disk(dev));
247 mq = &md->queue;
249 /* Dispatch locking to the block layer */
250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
251 if (IS_ERR(req)) {
252 count = PTR_ERR(req);
253 goto out_put;
255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
256 blk_execute_rq(mq->queue, NULL, req, 0);
257 ret = req_to_mmc_queue_req(req)->drv_op_result;
258 blk_put_request(req);
260 if (!ret) {
261 pr_info("%s: Locking boot partition ro until next power on\n",
262 md->disk->disk_name);
263 set_disk_ro(md->disk, 1);
265 list_for_each_entry(part_md, &md->part, part)
266 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
267 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
268 set_disk_ro(part_md->disk, 1);
271 out_put:
272 mmc_blk_put(md);
273 return count;
276 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
277 char *buf)
279 int ret;
280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
282 ret = snprintf(buf, PAGE_SIZE, "%d\n",
283 get_disk_ro(dev_to_disk(dev)) ^
284 md->read_only);
285 mmc_blk_put(md);
286 return ret;
289 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
290 const char *buf, size_t count)
292 int ret;
293 char *end;
294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
295 unsigned long set = simple_strtoul(buf, &end, 0);
296 if (end == buf) {
297 ret = -EINVAL;
298 goto out;
301 set_disk_ro(dev_to_disk(dev), set || md->read_only);
302 ret = count;
303 out:
304 mmc_blk_put(md);
305 return ret;
308 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
310 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
311 int ret = -ENXIO;
313 mutex_lock(&block_mutex);
314 if (md) {
315 ret = 0;
316 if ((mode & FMODE_WRITE) && md->read_only) {
317 mmc_blk_put(md);
318 ret = -EROFS;
321 mutex_unlock(&block_mutex);
323 return ret;
326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
328 struct mmc_blk_data *md = disk->private_data;
330 mutex_lock(&block_mutex);
331 mmc_blk_put(md);
332 mutex_unlock(&block_mutex);
335 static int
336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 geo->heads = 4;
340 geo->sectors = 16;
341 return 0;
344 struct mmc_blk_ioc_data {
345 struct mmc_ioc_cmd ic;
346 unsigned char *buf;
347 u64 buf_bytes;
348 struct mmc_rpmb_data *rpmb;
351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 struct mmc_ioc_cmd __user *user)
354 struct mmc_blk_ioc_data *idata;
355 int err;
357 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 if (!idata) {
359 err = -ENOMEM;
360 goto out;
363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 err = -EFAULT;
365 goto idata_err;
368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 err = -EOVERFLOW;
371 goto idata_err;
374 if (!idata->buf_bytes) {
375 idata->buf = NULL;
376 return idata;
379 idata->buf = memdup_user((void __user *)(unsigned long)
380 idata->ic.data_ptr, idata->buf_bytes);
381 if (IS_ERR(idata->buf)) {
382 err = PTR_ERR(idata->buf);
383 goto idata_err;
386 return idata;
388 idata_err:
389 kfree(idata);
390 out:
391 return ERR_PTR(err);
394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 struct mmc_blk_ioc_data *idata)
397 struct mmc_ioc_cmd *ic = &idata->ic;
399 if (copy_to_user(&(ic_ptr->response), ic->response,
400 sizeof(ic->response)))
401 return -EFAULT;
403 if (!idata->ic.write_flag) {
404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 idata->buf, idata->buf_bytes))
406 return -EFAULT;
409 return 0;
412 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
413 u32 *resp_errs)
415 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
416 int err = 0;
417 u32 status;
419 do {
420 bool done = time_after(jiffies, timeout);
422 err = __mmc_send_status(card, &status, 5);
423 if (err) {
424 dev_err(mmc_dev(card->host),
425 "error %d requesting status\n", err);
426 return err;
429 /* Accumulate any response error bits seen */
430 if (resp_errs)
431 *resp_errs |= status;
434 * Timeout if the device never becomes ready for data and never
435 * leaves the program state.
437 if (done) {
438 dev_err(mmc_dev(card->host),
439 "Card stuck in wrong state! %s status: %#x\n",
440 __func__, status);
441 return -ETIMEDOUT;
443 } while (!mmc_ready_for_data(status));
445 return err;
448 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
449 struct mmc_blk_ioc_data *idata)
451 struct mmc_command cmd = {}, sbc = {};
452 struct mmc_data data = {};
453 struct mmc_request mrq = {};
454 struct scatterlist sg;
455 int err;
456 unsigned int target_part;
458 if (!card || !md || !idata)
459 return -EINVAL;
462 * The RPMB accesses comes in from the character device, so we
463 * need to target these explicitly. Else we just target the
464 * partition type for the block device the ioctl() was issued
465 * on.
467 if (idata->rpmb) {
468 /* Support multiple RPMB partitions */
469 target_part = idata->rpmb->part_index;
470 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
471 } else {
472 target_part = md->part_type;
475 cmd.opcode = idata->ic.opcode;
476 cmd.arg = idata->ic.arg;
477 cmd.flags = idata->ic.flags;
479 if (idata->buf_bytes) {
480 data.sg = &sg;
481 data.sg_len = 1;
482 data.blksz = idata->ic.blksz;
483 data.blocks = idata->ic.blocks;
485 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
487 if (idata->ic.write_flag)
488 data.flags = MMC_DATA_WRITE;
489 else
490 data.flags = MMC_DATA_READ;
492 /* data.flags must already be set before doing this. */
493 mmc_set_data_timeout(&data, card);
495 /* Allow overriding the timeout_ns for empirical tuning. */
496 if (idata->ic.data_timeout_ns)
497 data.timeout_ns = idata->ic.data_timeout_ns;
499 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
501 * Pretend this is a data transfer and rely on the
502 * host driver to compute timeout. When all host
503 * drivers support cmd.cmd_timeout for R1B, this
504 * can be changed to:
506 * mrq.data = NULL;
507 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
509 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
512 mrq.data = &data;
515 mrq.cmd = &cmd;
517 err = mmc_blk_part_switch(card, target_part);
518 if (err)
519 return err;
521 if (idata->ic.is_acmd) {
522 err = mmc_app_cmd(card->host, card);
523 if (err)
524 return err;
527 if (idata->rpmb) {
528 sbc.opcode = MMC_SET_BLOCK_COUNT;
530 * We don't do any blockcount validation because the max size
531 * may be increased by a future standard. We just copy the
532 * 'Reliable Write' bit here.
534 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
535 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
536 mrq.sbc = &sbc;
539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
540 (cmd.opcode == MMC_SWITCH))
541 return mmc_sanitize(card);
543 mmc_wait_for_req(card->host, &mrq);
545 if (cmd.error) {
546 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
547 __func__, cmd.error);
548 return cmd.error;
550 if (data.error) {
551 dev_err(mmc_dev(card->host), "%s: data error %d\n",
552 __func__, data.error);
553 return data.error;
557 * Make sure the cache of the PARTITION_CONFIG register and
558 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
559 * changed it successfully.
561 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
562 (cmd.opcode == MMC_SWITCH)) {
563 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
564 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
567 * Update cache so the next mmc_blk_part_switch call operates
568 * on up-to-date data.
570 card->ext_csd.part_config = value;
571 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
575 * According to the SD specs, some commands require a delay after
576 * issuing the command.
578 if (idata->ic.postsleep_min_us)
579 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
581 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
583 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
585 * Ensure RPMB/R1B command has completed by polling CMD13
586 * "Send Status".
588 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
591 return err;
594 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
595 struct mmc_ioc_cmd __user *ic_ptr,
596 struct mmc_rpmb_data *rpmb)
598 struct mmc_blk_ioc_data *idata;
599 struct mmc_blk_ioc_data *idatas[1];
600 struct mmc_queue *mq;
601 struct mmc_card *card;
602 int err = 0, ioc_err = 0;
603 struct request *req;
605 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
606 if (IS_ERR(idata))
607 return PTR_ERR(idata);
608 /* This will be NULL on non-RPMB ioctl():s */
609 idata->rpmb = rpmb;
611 card = md->queue.card;
612 if (IS_ERR(card)) {
613 err = PTR_ERR(card);
614 goto cmd_done;
618 * Dispatch the ioctl() into the block request queue.
620 mq = &md->queue;
621 req = blk_get_request(mq->queue,
622 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
623 if (IS_ERR(req)) {
624 err = PTR_ERR(req);
625 goto cmd_done;
627 idatas[0] = idata;
628 req_to_mmc_queue_req(req)->drv_op =
629 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
630 req_to_mmc_queue_req(req)->drv_op_data = idatas;
631 req_to_mmc_queue_req(req)->ioc_count = 1;
632 blk_execute_rq(mq->queue, NULL, req, 0);
633 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
634 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
635 blk_put_request(req);
637 cmd_done:
638 kfree(idata->buf);
639 kfree(idata);
640 return ioc_err ? ioc_err : err;
643 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
644 struct mmc_ioc_multi_cmd __user *user,
645 struct mmc_rpmb_data *rpmb)
647 struct mmc_blk_ioc_data **idata = NULL;
648 struct mmc_ioc_cmd __user *cmds = user->cmds;
649 struct mmc_card *card;
650 struct mmc_queue *mq;
651 int i, err = 0, ioc_err = 0;
652 __u64 num_of_cmds;
653 struct request *req;
655 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
656 sizeof(num_of_cmds)))
657 return -EFAULT;
659 if (!num_of_cmds)
660 return 0;
662 if (num_of_cmds > MMC_IOC_MAX_CMDS)
663 return -EINVAL;
665 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
666 if (!idata)
667 return -ENOMEM;
669 for (i = 0; i < num_of_cmds; i++) {
670 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
671 if (IS_ERR(idata[i])) {
672 err = PTR_ERR(idata[i]);
673 num_of_cmds = i;
674 goto cmd_err;
676 /* This will be NULL on non-RPMB ioctl():s */
677 idata[i]->rpmb = rpmb;
680 card = md->queue.card;
681 if (IS_ERR(card)) {
682 err = PTR_ERR(card);
683 goto cmd_err;
688 * Dispatch the ioctl()s into the block request queue.
690 mq = &md->queue;
691 req = blk_get_request(mq->queue,
692 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
693 if (IS_ERR(req)) {
694 err = PTR_ERR(req);
695 goto cmd_err;
697 req_to_mmc_queue_req(req)->drv_op =
698 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
699 req_to_mmc_queue_req(req)->drv_op_data = idata;
700 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
701 blk_execute_rq(mq->queue, NULL, req, 0);
702 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
704 /* copy to user if data and response */
705 for (i = 0; i < num_of_cmds && !err; i++)
706 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
708 blk_put_request(req);
710 cmd_err:
711 for (i = 0; i < num_of_cmds; i++) {
712 kfree(idata[i]->buf);
713 kfree(idata[i]);
715 kfree(idata);
716 return ioc_err ? ioc_err : err;
719 static int mmc_blk_check_blkdev(struct block_device *bdev)
722 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
723 * whole block device, not on a partition. This prevents overspray
724 * between sibling partitions.
726 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
727 return -EPERM;
728 return 0;
731 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
732 unsigned int cmd, unsigned long arg)
734 struct mmc_blk_data *md;
735 int ret;
737 switch (cmd) {
738 case MMC_IOC_CMD:
739 ret = mmc_blk_check_blkdev(bdev);
740 if (ret)
741 return ret;
742 md = mmc_blk_get(bdev->bd_disk);
743 if (!md)
744 return -EINVAL;
745 ret = mmc_blk_ioctl_cmd(md,
746 (struct mmc_ioc_cmd __user *)arg,
747 NULL);
748 mmc_blk_put(md);
749 return ret;
750 case MMC_IOC_MULTI_CMD:
751 ret = mmc_blk_check_blkdev(bdev);
752 if (ret)
753 return ret;
754 md = mmc_blk_get(bdev->bd_disk);
755 if (!md)
756 return -EINVAL;
757 ret = mmc_blk_ioctl_multi_cmd(md,
758 (struct mmc_ioc_multi_cmd __user *)arg,
759 NULL);
760 mmc_blk_put(md);
761 return ret;
762 default:
763 return -EINVAL;
767 #ifdef CONFIG_COMPAT
768 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
769 unsigned int cmd, unsigned long arg)
771 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
773 #endif
775 static const struct block_device_operations mmc_bdops = {
776 .open = mmc_blk_open,
777 .release = mmc_blk_release,
778 .getgeo = mmc_blk_getgeo,
779 .owner = THIS_MODULE,
780 .ioctl = mmc_blk_ioctl,
781 #ifdef CONFIG_COMPAT
782 .compat_ioctl = mmc_blk_compat_ioctl,
783 #endif
786 static int mmc_blk_part_switch_pre(struct mmc_card *card,
787 unsigned int part_type)
789 int ret = 0;
791 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
792 if (card->ext_csd.cmdq_en) {
793 ret = mmc_cmdq_disable(card);
794 if (ret)
795 return ret;
797 mmc_retune_pause(card->host);
800 return ret;
803 static int mmc_blk_part_switch_post(struct mmc_card *card,
804 unsigned int part_type)
806 int ret = 0;
808 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
809 mmc_retune_unpause(card->host);
810 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
811 ret = mmc_cmdq_enable(card);
814 return ret;
817 static inline int mmc_blk_part_switch(struct mmc_card *card,
818 unsigned int part_type)
820 int ret = 0;
821 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
823 if (main_md->part_curr == part_type)
824 return 0;
826 if (mmc_card_mmc(card)) {
827 u8 part_config = card->ext_csd.part_config;
829 ret = mmc_blk_part_switch_pre(card, part_type);
830 if (ret)
831 return ret;
833 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
834 part_config |= part_type;
836 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
837 EXT_CSD_PART_CONFIG, part_config,
838 card->ext_csd.part_time);
839 if (ret) {
840 mmc_blk_part_switch_post(card, part_type);
841 return ret;
844 card->ext_csd.part_config = part_config;
846 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
849 main_md->part_curr = part_type;
850 return ret;
853 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
855 int err;
856 u32 result;
857 __be32 *blocks;
859 struct mmc_request mrq = {};
860 struct mmc_command cmd = {};
861 struct mmc_data data = {};
863 struct scatterlist sg;
865 cmd.opcode = MMC_APP_CMD;
866 cmd.arg = card->rca << 16;
867 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
869 err = mmc_wait_for_cmd(card->host, &cmd, 0);
870 if (err)
871 return err;
872 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
873 return -EIO;
875 memset(&cmd, 0, sizeof(struct mmc_command));
877 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
878 cmd.arg = 0;
879 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
881 data.blksz = 4;
882 data.blocks = 1;
883 data.flags = MMC_DATA_READ;
884 data.sg = &sg;
885 data.sg_len = 1;
886 mmc_set_data_timeout(&data, card);
888 mrq.cmd = &cmd;
889 mrq.data = &data;
891 blocks = kmalloc(4, GFP_KERNEL);
892 if (!blocks)
893 return -ENOMEM;
895 sg_init_one(&sg, blocks, 4);
897 mmc_wait_for_req(card->host, &mrq);
899 result = ntohl(*blocks);
900 kfree(blocks);
902 if (cmd.error || data.error)
903 return -EIO;
905 *written_blocks = result;
907 return 0;
910 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
912 if (host->actual_clock)
913 return host->actual_clock / 1000;
915 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
916 if (host->ios.clock)
917 return host->ios.clock / 2000;
919 /* How can there be no clock */
920 WARN_ON_ONCE(1);
921 return 100; /* 100 kHz is minimum possible value */
924 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
925 struct mmc_data *data)
927 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
928 unsigned int khz;
930 if (data->timeout_clks) {
931 khz = mmc_blk_clock_khz(host);
932 ms += DIV_ROUND_UP(data->timeout_clks, khz);
935 return ms;
938 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
939 int type)
941 int err;
943 if (md->reset_done & type)
944 return -EEXIST;
946 md->reset_done |= type;
947 err = mmc_hw_reset(host);
948 /* Ensure we switch back to the correct partition */
949 if (err != -EOPNOTSUPP) {
950 struct mmc_blk_data *main_md =
951 dev_get_drvdata(&host->card->dev);
952 int part_err;
954 main_md->part_curr = main_md->part_type;
955 part_err = mmc_blk_part_switch(host->card, md->part_type);
956 if (part_err) {
958 * We have failed to get back into the correct
959 * partition, so we need to abort the whole request.
961 return -ENODEV;
964 return err;
967 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
969 md->reset_done &= ~type;
973 * The non-block commands come back from the block layer after it queued it and
974 * processed it with all other requests and then they get issued in this
975 * function.
977 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
979 struct mmc_queue_req *mq_rq;
980 struct mmc_card *card = mq->card;
981 struct mmc_blk_data *md = mq->blkdata;
982 struct mmc_blk_ioc_data **idata;
983 bool rpmb_ioctl;
984 u8 **ext_csd;
985 u32 status;
986 int ret;
987 int i;
989 mq_rq = req_to_mmc_queue_req(req);
990 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
992 switch (mq_rq->drv_op) {
993 case MMC_DRV_OP_IOCTL:
994 case MMC_DRV_OP_IOCTL_RPMB:
995 idata = mq_rq->drv_op_data;
996 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
997 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
998 if (ret)
999 break;
1001 /* Always switch back to main area after RPMB access */
1002 if (rpmb_ioctl)
1003 mmc_blk_part_switch(card, 0);
1004 break;
1005 case MMC_DRV_OP_BOOT_WP:
1006 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1007 card->ext_csd.boot_ro_lock |
1008 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1009 card->ext_csd.part_time);
1010 if (ret)
1011 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1012 md->disk->disk_name, ret);
1013 else
1014 card->ext_csd.boot_ro_lock |=
1015 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1016 break;
1017 case MMC_DRV_OP_GET_CARD_STATUS:
1018 ret = mmc_send_status(card, &status);
1019 if (!ret)
1020 ret = status;
1021 break;
1022 case MMC_DRV_OP_GET_EXT_CSD:
1023 ext_csd = mq_rq->drv_op_data;
1024 ret = mmc_get_ext_csd(card, ext_csd);
1025 break;
1026 default:
1027 pr_err("%s: unknown driver specific operation\n",
1028 md->disk->disk_name);
1029 ret = -EINVAL;
1030 break;
1032 mq_rq->drv_op_result = ret;
1033 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1036 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1038 struct mmc_blk_data *md = mq->blkdata;
1039 struct mmc_card *card = md->queue.card;
1040 unsigned int from, nr;
1041 int err = 0, type = MMC_BLK_DISCARD;
1042 blk_status_t status = BLK_STS_OK;
1044 if (!mmc_can_erase(card)) {
1045 status = BLK_STS_NOTSUPP;
1046 goto fail;
1049 from = blk_rq_pos(req);
1050 nr = blk_rq_sectors(req);
1052 do {
1053 err = 0;
1054 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1055 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 INAND_CMD38_ARG_EXT_CSD,
1057 card->erase_arg == MMC_TRIM_ARG ?
1058 INAND_CMD38_ARG_TRIM :
1059 INAND_CMD38_ARG_ERASE,
1060 card->ext_csd.generic_cmd6_time);
1062 if (!err)
1063 err = mmc_erase(card, from, nr, card->erase_arg);
1064 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1065 if (err)
1066 status = BLK_STS_IOERR;
1067 else
1068 mmc_blk_reset_success(md, type);
1069 fail:
1070 blk_mq_end_request(req, status);
1073 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1074 struct request *req)
1076 struct mmc_blk_data *md = mq->blkdata;
1077 struct mmc_card *card = md->queue.card;
1078 unsigned int from, nr, arg;
1079 int err = 0, type = MMC_BLK_SECDISCARD;
1080 blk_status_t status = BLK_STS_OK;
1082 if (!(mmc_can_secure_erase_trim(card))) {
1083 status = BLK_STS_NOTSUPP;
1084 goto out;
1087 from = blk_rq_pos(req);
1088 nr = blk_rq_sectors(req);
1090 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1091 arg = MMC_SECURE_TRIM1_ARG;
1092 else
1093 arg = MMC_SECURE_ERASE_ARG;
1095 retry:
1096 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1097 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1098 INAND_CMD38_ARG_EXT_CSD,
1099 arg == MMC_SECURE_TRIM1_ARG ?
1100 INAND_CMD38_ARG_SECTRIM1 :
1101 INAND_CMD38_ARG_SECERASE,
1102 card->ext_csd.generic_cmd6_time);
1103 if (err)
1104 goto out_retry;
1107 err = mmc_erase(card, from, nr, arg);
1108 if (err == -EIO)
1109 goto out_retry;
1110 if (err) {
1111 status = BLK_STS_IOERR;
1112 goto out;
1115 if (arg == MMC_SECURE_TRIM1_ARG) {
1116 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1117 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1118 INAND_CMD38_ARG_EXT_CSD,
1119 INAND_CMD38_ARG_SECTRIM2,
1120 card->ext_csd.generic_cmd6_time);
1121 if (err)
1122 goto out_retry;
1125 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1126 if (err == -EIO)
1127 goto out_retry;
1128 if (err) {
1129 status = BLK_STS_IOERR;
1130 goto out;
1134 out_retry:
1135 if (err && !mmc_blk_reset(md, card->host, type))
1136 goto retry;
1137 if (!err)
1138 mmc_blk_reset_success(md, type);
1139 out:
1140 blk_mq_end_request(req, status);
1143 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1145 struct mmc_blk_data *md = mq->blkdata;
1146 struct mmc_card *card = md->queue.card;
1147 int ret = 0;
1149 ret = mmc_flush_cache(card);
1150 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1154 * Reformat current write as a reliable write, supporting
1155 * both legacy and the enhanced reliable write MMC cards.
1156 * In each transfer we'll handle only as much as a single
1157 * reliable write can handle, thus finish the request in
1158 * partial completions.
1160 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1161 struct mmc_card *card,
1162 struct request *req)
1164 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1165 /* Legacy mode imposes restrictions on transfers. */
1166 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1167 brq->data.blocks = 1;
1169 if (brq->data.blocks > card->ext_csd.rel_sectors)
1170 brq->data.blocks = card->ext_csd.rel_sectors;
1171 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1172 brq->data.blocks = 1;
1176 #define CMD_ERRORS_EXCL_OOR \
1177 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1178 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1179 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1180 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1181 R1_CC_ERROR | /* Card controller error */ \
1182 R1_ERROR) /* General/unknown error */
1184 #define CMD_ERRORS \
1185 (CMD_ERRORS_EXCL_OOR | \
1186 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1188 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1190 u32 val;
1193 * Per the SD specification(physical layer version 4.10)[1],
1194 * section 4.3.3, it explicitly states that "When the last
1195 * block of user area is read using CMD18, the host should
1196 * ignore OUT_OF_RANGE error that may occur even the sequence
1197 * is correct". And JESD84-B51 for eMMC also has a similar
1198 * statement on section 6.8.3.
1200 * Multiple block read/write could be done by either predefined
1201 * method, namely CMD23, or open-ending mode. For open-ending mode,
1202 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1204 * However the spec[1] doesn't tell us whether we should also
1205 * ignore that for predefined method. But per the spec[1], section
1206 * 4.15 Set Block Count Command, it says"If illegal block count
1207 * is set, out of range error will be indicated during read/write
1208 * operation (For example, data transfer is stopped at user area
1209 * boundary)." In another word, we could expect a out of range error
1210 * in the response for the following CMD18/25. And if argument of
1211 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1212 * we could also expect to get a -ETIMEDOUT or any error number from
1213 * the host drivers due to missing data response(for write)/data(for
1214 * read), as the cards will stop the data transfer by itself per the
1215 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1218 if (!brq->stop.error) {
1219 bool oor_with_open_end;
1220 /* If there is no error yet, check R1 response */
1222 val = brq->stop.resp[0] & CMD_ERRORS;
1223 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1225 if (val && !oor_with_open_end)
1226 brq->stop.error = -EIO;
1230 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1231 int disable_multi, bool *do_rel_wr_p,
1232 bool *do_data_tag_p)
1234 struct mmc_blk_data *md = mq->blkdata;
1235 struct mmc_card *card = md->queue.card;
1236 struct mmc_blk_request *brq = &mqrq->brq;
1237 struct request *req = mmc_queue_req_to_req(mqrq);
1238 bool do_rel_wr, do_data_tag;
1241 * Reliable writes are used to implement Forced Unit Access and
1242 * are supported only on MMCs.
1244 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1245 rq_data_dir(req) == WRITE &&
1246 (md->flags & MMC_BLK_REL_WR);
1248 memset(brq, 0, sizeof(struct mmc_blk_request));
1250 brq->mrq.data = &brq->data;
1251 brq->mrq.tag = req->tag;
1253 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1254 brq->stop.arg = 0;
1256 if (rq_data_dir(req) == READ) {
1257 brq->data.flags = MMC_DATA_READ;
1258 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1259 } else {
1260 brq->data.flags = MMC_DATA_WRITE;
1261 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1264 brq->data.blksz = 512;
1265 brq->data.blocks = blk_rq_sectors(req);
1266 brq->data.blk_addr = blk_rq_pos(req);
1269 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1270 * The eMMC will give "high" priority tasks priority over "simple"
1271 * priority tasks. Here we always set "simple" priority by not setting
1272 * MMC_DATA_PRIO.
1276 * The block layer doesn't support all sector count
1277 * restrictions, so we need to be prepared for too big
1278 * requests.
1280 if (brq->data.blocks > card->host->max_blk_count)
1281 brq->data.blocks = card->host->max_blk_count;
1283 if (brq->data.blocks > 1) {
1285 * Some SD cards in SPI mode return a CRC error or even lock up
1286 * completely when trying to read the last block using a
1287 * multiblock read command.
1289 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1290 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1291 get_capacity(md->disk)))
1292 brq->data.blocks--;
1295 * After a read error, we redo the request one sector
1296 * at a time in order to accurately determine which
1297 * sectors can be read successfully.
1299 if (disable_multi)
1300 brq->data.blocks = 1;
1303 * Some controllers have HW issues while operating
1304 * in multiple I/O mode
1306 if (card->host->ops->multi_io_quirk)
1307 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1308 (rq_data_dir(req) == READ) ?
1309 MMC_DATA_READ : MMC_DATA_WRITE,
1310 brq->data.blocks);
1313 if (do_rel_wr) {
1314 mmc_apply_rel_rw(brq, card, req);
1315 brq->data.flags |= MMC_DATA_REL_WR;
1319 * Data tag is used only during writing meta data to speed
1320 * up write and any subsequent read of this meta data
1322 do_data_tag = card->ext_csd.data_tag_unit_size &&
1323 (req->cmd_flags & REQ_META) &&
1324 (rq_data_dir(req) == WRITE) &&
1325 ((brq->data.blocks * brq->data.blksz) >=
1326 card->ext_csd.data_tag_unit_size);
1328 if (do_data_tag)
1329 brq->data.flags |= MMC_DATA_DAT_TAG;
1331 mmc_set_data_timeout(&brq->data, card);
1333 brq->data.sg = mqrq->sg;
1334 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1337 * Adjust the sg list so it is the same size as the
1338 * request.
1340 if (brq->data.blocks != blk_rq_sectors(req)) {
1341 int i, data_size = brq->data.blocks << 9;
1342 struct scatterlist *sg;
1344 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1345 data_size -= sg->length;
1346 if (data_size <= 0) {
1347 sg->length += data_size;
1348 i++;
1349 break;
1352 brq->data.sg_len = i;
1355 if (do_rel_wr_p)
1356 *do_rel_wr_p = do_rel_wr;
1358 if (do_data_tag_p)
1359 *do_data_tag_p = do_data_tag;
1362 #define MMC_CQE_RETRIES 2
1364 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1366 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1367 struct mmc_request *mrq = &mqrq->brq.mrq;
1368 struct request_queue *q = req->q;
1369 struct mmc_host *host = mq->card->host;
1370 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1371 unsigned long flags;
1372 bool put_card;
1373 int err;
1375 mmc_cqe_post_req(host, mrq);
1377 if (mrq->cmd && mrq->cmd->error)
1378 err = mrq->cmd->error;
1379 else if (mrq->data && mrq->data->error)
1380 err = mrq->data->error;
1381 else
1382 err = 0;
1384 if (err) {
1385 if (mqrq->retries++ < MMC_CQE_RETRIES)
1386 blk_mq_requeue_request(req, true);
1387 else
1388 blk_mq_end_request(req, BLK_STS_IOERR);
1389 } else if (mrq->data) {
1390 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1391 blk_mq_requeue_request(req, true);
1392 else
1393 __blk_mq_end_request(req, BLK_STS_OK);
1394 } else {
1395 blk_mq_end_request(req, BLK_STS_OK);
1398 spin_lock_irqsave(&mq->lock, flags);
1400 mq->in_flight[issue_type] -= 1;
1402 put_card = (mmc_tot_in_flight(mq) == 0);
1404 mmc_cqe_check_busy(mq);
1406 spin_unlock_irqrestore(&mq->lock, flags);
1408 if (!mq->cqe_busy)
1409 blk_mq_run_hw_queues(q, true);
1411 if (put_card)
1412 mmc_put_card(mq->card, &mq->ctx);
1415 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1417 struct mmc_card *card = mq->card;
1418 struct mmc_host *host = card->host;
1419 int err;
1421 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1423 err = mmc_cqe_recovery(host);
1424 if (err)
1425 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1426 else
1427 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1429 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1432 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1434 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1435 brq.mrq);
1436 struct request *req = mmc_queue_req_to_req(mqrq);
1437 struct request_queue *q = req->q;
1438 struct mmc_queue *mq = q->queuedata;
1441 * Block layer timeouts race with completions which means the normal
1442 * completion path cannot be used during recovery.
1444 if (mq->in_recovery)
1445 mmc_blk_cqe_complete_rq(mq, req);
1446 else if (likely(!blk_should_fake_timeout(req->q)))
1447 blk_mq_complete_request(req);
1450 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1452 mrq->done = mmc_blk_cqe_req_done;
1453 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1455 return mmc_cqe_start_req(host, mrq);
1458 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1459 struct request *req)
1461 struct mmc_blk_request *brq = &mqrq->brq;
1463 memset(brq, 0, sizeof(*brq));
1465 brq->mrq.cmd = &brq->cmd;
1466 brq->mrq.tag = req->tag;
1468 return &brq->mrq;
1471 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1473 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1474 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1476 mrq->cmd->opcode = MMC_SWITCH;
1477 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1478 (EXT_CSD_FLUSH_CACHE << 16) |
1479 (1 << 8) |
1480 EXT_CSD_CMD_SET_NORMAL;
1481 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1483 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1486 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1488 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1489 struct mmc_host *host = mq->card->host;
1490 int err;
1492 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1493 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1494 mmc_pre_req(host, &mqrq->brq.mrq);
1496 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1497 if (err)
1498 mmc_post_req(host, &mqrq->brq.mrq, err);
1500 return err;
1503 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1505 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1506 struct mmc_host *host = mq->card->host;
1508 if (host->hsq_enabled)
1509 return mmc_blk_hsq_issue_rw_rq(mq, req);
1511 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1513 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1516 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1517 struct mmc_card *card,
1518 int disable_multi,
1519 struct mmc_queue *mq)
1521 u32 readcmd, writecmd;
1522 struct mmc_blk_request *brq = &mqrq->brq;
1523 struct request *req = mmc_queue_req_to_req(mqrq);
1524 struct mmc_blk_data *md = mq->blkdata;
1525 bool do_rel_wr, do_data_tag;
1527 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1529 brq->mrq.cmd = &brq->cmd;
1531 brq->cmd.arg = blk_rq_pos(req);
1532 if (!mmc_card_blockaddr(card))
1533 brq->cmd.arg <<= 9;
1534 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1536 if (brq->data.blocks > 1 || do_rel_wr) {
1537 /* SPI multiblock writes terminate using a special
1538 * token, not a STOP_TRANSMISSION request.
1540 if (!mmc_host_is_spi(card->host) ||
1541 rq_data_dir(req) == READ)
1542 brq->mrq.stop = &brq->stop;
1543 readcmd = MMC_READ_MULTIPLE_BLOCK;
1544 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1545 } else {
1546 brq->mrq.stop = NULL;
1547 readcmd = MMC_READ_SINGLE_BLOCK;
1548 writecmd = MMC_WRITE_BLOCK;
1550 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1553 * Pre-defined multi-block transfers are preferable to
1554 * open ended-ones (and necessary for reliable writes).
1555 * However, it is not sufficient to just send CMD23,
1556 * and avoid the final CMD12, as on an error condition
1557 * CMD12 (stop) needs to be sent anyway. This, coupled
1558 * with Auto-CMD23 enhancements provided by some
1559 * hosts, means that the complexity of dealing
1560 * with this is best left to the host. If CMD23 is
1561 * supported by card and host, we'll fill sbc in and let
1562 * the host deal with handling it correctly. This means
1563 * that for hosts that don't expose MMC_CAP_CMD23, no
1564 * change of behavior will be observed.
1566 * N.B: Some MMC cards experience perf degradation.
1567 * We'll avoid using CMD23-bounded multiblock writes for
1568 * these, while retaining features like reliable writes.
1570 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1571 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1572 do_data_tag)) {
1573 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1574 brq->sbc.arg = brq->data.blocks |
1575 (do_rel_wr ? (1 << 31) : 0) |
1576 (do_data_tag ? (1 << 29) : 0);
1577 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1578 brq->mrq.sbc = &brq->sbc;
1582 #define MMC_MAX_RETRIES 5
1583 #define MMC_DATA_RETRIES 2
1584 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1586 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1588 struct mmc_command cmd = {
1589 .opcode = MMC_STOP_TRANSMISSION,
1590 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1591 /* Some hosts wait for busy anyway, so provide a busy timeout */
1592 .busy_timeout = timeout,
1595 return mmc_wait_for_cmd(card->host, &cmd, 5);
1598 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1600 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1601 struct mmc_blk_request *brq = &mqrq->brq;
1602 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1603 int err;
1605 mmc_retune_hold_now(card->host);
1607 mmc_blk_send_stop(card, timeout);
1609 err = card_busy_detect(card, timeout, NULL);
1611 mmc_retune_release(card->host);
1613 return err;
1616 #define MMC_READ_SINGLE_RETRIES 2
1618 /* Single sector read during recovery */
1619 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1621 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1622 struct mmc_request *mrq = &mqrq->brq.mrq;
1623 struct mmc_card *card = mq->card;
1624 struct mmc_host *host = card->host;
1625 blk_status_t error = BLK_STS_OK;
1626 int retries = 0;
1628 do {
1629 u32 status;
1630 int err;
1632 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1634 mmc_wait_for_req(host, mrq);
1636 err = mmc_send_status(card, &status);
1637 if (err)
1638 goto error_exit;
1640 if (!mmc_host_is_spi(host) &&
1641 !mmc_ready_for_data(status)) {
1642 err = mmc_blk_fix_state(card, req);
1643 if (err)
1644 goto error_exit;
1647 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1648 continue;
1650 retries = 0;
1652 if (mrq->cmd->error ||
1653 mrq->data->error ||
1654 (!mmc_host_is_spi(host) &&
1655 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1656 error = BLK_STS_IOERR;
1657 else
1658 error = BLK_STS_OK;
1660 } while (blk_update_request(req, error, 512));
1662 return;
1664 error_exit:
1665 mrq->data->bytes_xfered = 0;
1666 blk_update_request(req, BLK_STS_IOERR, 512);
1667 /* Let it try the remaining request again */
1668 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1669 mqrq->retries = MMC_MAX_RETRIES - 1;
1672 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1674 return !!brq->mrq.sbc;
1677 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1679 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1683 * Check for errors the host controller driver might not have seen such as
1684 * response mode errors or invalid card state.
1686 static bool mmc_blk_status_error(struct request *req, u32 status)
1688 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689 struct mmc_blk_request *brq = &mqrq->brq;
1690 struct mmc_queue *mq = req->q->queuedata;
1691 u32 stop_err_bits;
1693 if (mmc_host_is_spi(mq->card->host))
1694 return false;
1696 stop_err_bits = mmc_blk_stop_err_bits(brq);
1698 return brq->cmd.resp[0] & CMD_ERRORS ||
1699 brq->stop.resp[0] & stop_err_bits ||
1700 status & stop_err_bits ||
1701 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1704 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1706 return !brq->sbc.error && !brq->cmd.error &&
1707 !(brq->cmd.resp[0] & CMD_ERRORS);
1711 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1712 * policy:
1713 * 1. A request that has transferred at least some data is considered
1714 * successful and will be requeued if there is remaining data to
1715 * transfer.
1716 * 2. Otherwise the number of retries is incremented and the request
1717 * will be requeued if there are remaining retries.
1718 * 3. Otherwise the request will be errored out.
1719 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1720 * mqrq->retries. So there are only 4 possible actions here:
1721 * 1. do not accept the bytes_xfered value i.e. set it to zero
1722 * 2. change mqrq->retries to determine the number of retries
1723 * 3. try to reset the card
1724 * 4. read one sector at a time
1726 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1728 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1729 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1730 struct mmc_blk_request *brq = &mqrq->brq;
1731 struct mmc_blk_data *md = mq->blkdata;
1732 struct mmc_card *card = mq->card;
1733 u32 status;
1734 u32 blocks;
1735 int err;
1738 * Some errors the host driver might not have seen. Set the number of
1739 * bytes transferred to zero in that case.
1741 err = __mmc_send_status(card, &status, 0);
1742 if (err || mmc_blk_status_error(req, status))
1743 brq->data.bytes_xfered = 0;
1745 mmc_retune_release(card->host);
1748 * Try again to get the status. This also provides an opportunity for
1749 * re-tuning.
1751 if (err)
1752 err = __mmc_send_status(card, &status, 0);
1755 * Nothing more to do after the number of bytes transferred has been
1756 * updated and there is no card.
1758 if (err && mmc_detect_card_removed(card->host))
1759 return;
1761 /* Try to get back to "tran" state */
1762 if (!mmc_host_is_spi(mq->card->host) &&
1763 (err || !mmc_ready_for_data(status)))
1764 err = mmc_blk_fix_state(mq->card, req);
1767 * Special case for SD cards where the card might record the number of
1768 * blocks written.
1770 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1771 rq_data_dir(req) == WRITE) {
1772 if (mmc_sd_num_wr_blocks(card, &blocks))
1773 brq->data.bytes_xfered = 0;
1774 else
1775 brq->data.bytes_xfered = blocks << 9;
1778 /* Reset if the card is in a bad state */
1779 if (!mmc_host_is_spi(mq->card->host) &&
1780 err && mmc_blk_reset(md, card->host, type)) {
1781 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1782 mqrq->retries = MMC_NO_RETRIES;
1783 return;
1787 * If anything was done, just return and if there is anything remaining
1788 * on the request it will get requeued.
1790 if (brq->data.bytes_xfered)
1791 return;
1793 /* Reset before last retry */
1794 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1795 mmc_blk_reset(md, card->host, type);
1797 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1798 if (brq->sbc.error || brq->cmd.error)
1799 return;
1801 /* Reduce the remaining retries for data errors */
1802 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1803 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1804 return;
1807 /* FIXME: Missing single sector read for large sector size */
1808 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1809 brq->data.blocks > 1) {
1810 /* Read one sector at a time */
1811 mmc_blk_read_single(mq, req);
1812 return;
1816 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1818 mmc_blk_eval_resp_error(brq);
1820 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1821 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1824 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1826 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827 u32 status = 0;
1828 int err;
1830 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1831 return 0;
1833 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1836 * Do not assume data transferred correctly if there are any error bits
1837 * set.
1839 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1840 mqrq->brq.data.bytes_xfered = 0;
1841 err = err ? err : -EIO;
1844 /* Copy the exception bit so it will be seen later on */
1845 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1846 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1848 return err;
1851 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1852 struct request *req)
1854 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1856 mmc_blk_reset_success(mq->blkdata, type);
1859 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1861 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1862 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1864 if (nr_bytes) {
1865 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1866 blk_mq_requeue_request(req, true);
1867 else
1868 __blk_mq_end_request(req, BLK_STS_OK);
1869 } else if (!blk_rq_bytes(req)) {
1870 __blk_mq_end_request(req, BLK_STS_IOERR);
1871 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1872 blk_mq_requeue_request(req, true);
1873 } else {
1874 if (mmc_card_removed(mq->card))
1875 req->rq_flags |= RQF_QUIET;
1876 blk_mq_end_request(req, BLK_STS_IOERR);
1880 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1881 struct mmc_queue_req *mqrq)
1883 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1884 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1885 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1888 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1889 struct mmc_queue_req *mqrq)
1891 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1892 mmc_run_bkops(mq->card);
1895 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1897 struct mmc_queue_req *mqrq =
1898 container_of(mrq, struct mmc_queue_req, brq.mrq);
1899 struct request *req = mmc_queue_req_to_req(mqrq);
1900 struct request_queue *q = req->q;
1901 struct mmc_queue *mq = q->queuedata;
1902 struct mmc_host *host = mq->card->host;
1903 unsigned long flags;
1905 if (mmc_blk_rq_error(&mqrq->brq) ||
1906 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1907 spin_lock_irqsave(&mq->lock, flags);
1908 mq->recovery_needed = true;
1909 mq->recovery_req = req;
1910 spin_unlock_irqrestore(&mq->lock, flags);
1912 host->cqe_ops->cqe_recovery_start(host);
1914 schedule_work(&mq->recovery_work);
1915 return;
1918 mmc_blk_rw_reset_success(mq, req);
1921 * Block layer timeouts race with completions which means the normal
1922 * completion path cannot be used during recovery.
1924 if (mq->in_recovery)
1925 mmc_blk_cqe_complete_rq(mq, req);
1926 else if (likely(!blk_should_fake_timeout(req->q)))
1927 blk_mq_complete_request(req);
1930 void mmc_blk_mq_complete(struct request *req)
1932 struct mmc_queue *mq = req->q->queuedata;
1934 if (mq->use_cqe)
1935 mmc_blk_cqe_complete_rq(mq, req);
1936 else if (likely(!blk_should_fake_timeout(req->q)))
1937 mmc_blk_mq_complete_rq(mq, req);
1940 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1941 struct request *req)
1943 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1944 struct mmc_host *host = mq->card->host;
1946 if (mmc_blk_rq_error(&mqrq->brq) ||
1947 mmc_blk_card_busy(mq->card, req)) {
1948 mmc_blk_mq_rw_recovery(mq, req);
1949 } else {
1950 mmc_blk_rw_reset_success(mq, req);
1951 mmc_retune_release(host);
1954 mmc_blk_urgent_bkops(mq, mqrq);
1957 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1959 unsigned long flags;
1960 bool put_card;
1962 spin_lock_irqsave(&mq->lock, flags);
1964 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1966 put_card = (mmc_tot_in_flight(mq) == 0);
1968 spin_unlock_irqrestore(&mq->lock, flags);
1970 if (put_card)
1971 mmc_put_card(mq->card, &mq->ctx);
1974 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1976 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1977 struct mmc_request *mrq = &mqrq->brq.mrq;
1978 struct mmc_host *host = mq->card->host;
1980 mmc_post_req(host, mrq, 0);
1983 * Block layer timeouts race with completions which means the normal
1984 * completion path cannot be used during recovery.
1986 if (mq->in_recovery)
1987 mmc_blk_mq_complete_rq(mq, req);
1988 else if (likely(!blk_should_fake_timeout(req->q)))
1989 blk_mq_complete_request(req);
1991 mmc_blk_mq_dec_in_flight(mq, req);
1994 void mmc_blk_mq_recovery(struct mmc_queue *mq)
1996 struct request *req = mq->recovery_req;
1997 struct mmc_host *host = mq->card->host;
1998 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2000 mq->recovery_req = NULL;
2001 mq->rw_wait = false;
2003 if (mmc_blk_rq_error(&mqrq->brq)) {
2004 mmc_retune_hold_now(host);
2005 mmc_blk_mq_rw_recovery(mq, req);
2008 mmc_blk_urgent_bkops(mq, mqrq);
2010 mmc_blk_mq_post_req(mq, req);
2013 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2014 struct request **prev_req)
2016 if (mmc_host_done_complete(mq->card->host))
2017 return;
2019 mutex_lock(&mq->complete_lock);
2021 if (!mq->complete_req)
2022 goto out_unlock;
2024 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2026 if (prev_req)
2027 *prev_req = mq->complete_req;
2028 else
2029 mmc_blk_mq_post_req(mq, mq->complete_req);
2031 mq->complete_req = NULL;
2033 out_unlock:
2034 mutex_unlock(&mq->complete_lock);
2037 void mmc_blk_mq_complete_work(struct work_struct *work)
2039 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2040 complete_work);
2042 mmc_blk_mq_complete_prev_req(mq, NULL);
2045 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2047 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2048 brq.mrq);
2049 struct request *req = mmc_queue_req_to_req(mqrq);
2050 struct request_queue *q = req->q;
2051 struct mmc_queue *mq = q->queuedata;
2052 struct mmc_host *host = mq->card->host;
2053 unsigned long flags;
2055 if (!mmc_host_done_complete(host)) {
2056 bool waiting;
2059 * We cannot complete the request in this context, so record
2060 * that there is a request to complete, and that a following
2061 * request does not need to wait (although it does need to
2062 * complete complete_req first).
2064 spin_lock_irqsave(&mq->lock, flags);
2065 mq->complete_req = req;
2066 mq->rw_wait = false;
2067 waiting = mq->waiting;
2068 spin_unlock_irqrestore(&mq->lock, flags);
2071 * If 'waiting' then the waiting task will complete this
2072 * request, otherwise queue a work to do it. Note that
2073 * complete_work may still race with the dispatch of a following
2074 * request.
2076 if (waiting)
2077 wake_up(&mq->wait);
2078 else
2079 queue_work(mq->card->complete_wq, &mq->complete_work);
2081 return;
2084 /* Take the recovery path for errors or urgent background operations */
2085 if (mmc_blk_rq_error(&mqrq->brq) ||
2086 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2087 spin_lock_irqsave(&mq->lock, flags);
2088 mq->recovery_needed = true;
2089 mq->recovery_req = req;
2090 spin_unlock_irqrestore(&mq->lock, flags);
2091 wake_up(&mq->wait);
2092 schedule_work(&mq->recovery_work);
2093 return;
2096 mmc_blk_rw_reset_success(mq, req);
2098 mq->rw_wait = false;
2099 wake_up(&mq->wait);
2101 mmc_blk_mq_post_req(mq, req);
2104 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2106 unsigned long flags;
2107 bool done;
2110 * Wait while there is another request in progress, but not if recovery
2111 * is needed. Also indicate whether there is a request waiting to start.
2113 spin_lock_irqsave(&mq->lock, flags);
2114 if (mq->recovery_needed) {
2115 *err = -EBUSY;
2116 done = true;
2117 } else {
2118 done = !mq->rw_wait;
2120 mq->waiting = !done;
2121 spin_unlock_irqrestore(&mq->lock, flags);
2123 return done;
2126 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2128 int err = 0;
2130 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2132 /* Always complete the previous request if there is one */
2133 mmc_blk_mq_complete_prev_req(mq, prev_req);
2135 return err;
2138 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2139 struct request *req)
2141 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2142 struct mmc_host *host = mq->card->host;
2143 struct request *prev_req = NULL;
2144 int err = 0;
2146 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2148 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2150 mmc_pre_req(host, &mqrq->brq.mrq);
2152 err = mmc_blk_rw_wait(mq, &prev_req);
2153 if (err)
2154 goto out_post_req;
2156 mq->rw_wait = true;
2158 err = mmc_start_request(host, &mqrq->brq.mrq);
2160 if (prev_req)
2161 mmc_blk_mq_post_req(mq, prev_req);
2163 if (err)
2164 mq->rw_wait = false;
2166 /* Release re-tuning here where there is no synchronization required */
2167 if (err || mmc_host_done_complete(host))
2168 mmc_retune_release(host);
2170 out_post_req:
2171 if (err)
2172 mmc_post_req(host, &mqrq->brq.mrq, err);
2174 return err;
2177 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2179 if (mq->use_cqe)
2180 return host->cqe_ops->cqe_wait_for_idle(host);
2182 return mmc_blk_rw_wait(mq, NULL);
2185 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2187 struct mmc_blk_data *md = mq->blkdata;
2188 struct mmc_card *card = md->queue.card;
2189 struct mmc_host *host = card->host;
2190 int ret;
2192 ret = mmc_blk_part_switch(card, md->part_type);
2193 if (ret)
2194 return MMC_REQ_FAILED_TO_START;
2196 switch (mmc_issue_type(mq, req)) {
2197 case MMC_ISSUE_SYNC:
2198 ret = mmc_blk_wait_for_idle(mq, host);
2199 if (ret)
2200 return MMC_REQ_BUSY;
2201 switch (req_op(req)) {
2202 case REQ_OP_DRV_IN:
2203 case REQ_OP_DRV_OUT:
2204 mmc_blk_issue_drv_op(mq, req);
2205 break;
2206 case REQ_OP_DISCARD:
2207 mmc_blk_issue_discard_rq(mq, req);
2208 break;
2209 case REQ_OP_SECURE_ERASE:
2210 mmc_blk_issue_secdiscard_rq(mq, req);
2211 break;
2212 case REQ_OP_FLUSH:
2213 mmc_blk_issue_flush(mq, req);
2214 break;
2215 default:
2216 WARN_ON_ONCE(1);
2217 return MMC_REQ_FAILED_TO_START;
2219 return MMC_REQ_FINISHED;
2220 case MMC_ISSUE_DCMD:
2221 case MMC_ISSUE_ASYNC:
2222 switch (req_op(req)) {
2223 case REQ_OP_FLUSH:
2224 ret = mmc_blk_cqe_issue_flush(mq, req);
2225 break;
2226 case REQ_OP_READ:
2227 case REQ_OP_WRITE:
2228 if (mq->use_cqe)
2229 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2230 else
2231 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2232 break;
2233 default:
2234 WARN_ON_ONCE(1);
2235 ret = -EINVAL;
2237 if (!ret)
2238 return MMC_REQ_STARTED;
2239 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2240 default:
2241 WARN_ON_ONCE(1);
2242 return MMC_REQ_FAILED_TO_START;
2246 static inline int mmc_blk_readonly(struct mmc_card *card)
2248 return mmc_card_readonly(card) ||
2249 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2252 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2253 struct device *parent,
2254 sector_t size,
2255 bool default_ro,
2256 const char *subname,
2257 int area_type)
2259 struct mmc_blk_data *md;
2260 int devidx, ret;
2262 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2263 if (devidx < 0) {
2265 * We get -ENOSPC because there are no more any available
2266 * devidx. The reason may be that, either userspace haven't yet
2267 * unmounted the partitions, which postpones mmc_blk_release()
2268 * from being called, or the device has more partitions than
2269 * what we support.
2271 if (devidx == -ENOSPC)
2272 dev_err(mmc_dev(card->host),
2273 "no more device IDs available\n");
2275 return ERR_PTR(devidx);
2278 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2279 if (!md) {
2280 ret = -ENOMEM;
2281 goto out;
2284 md->area_type = area_type;
2287 * Set the read-only status based on the supported commands
2288 * and the write protect switch.
2290 md->read_only = mmc_blk_readonly(card);
2292 md->disk = alloc_disk(perdev_minors);
2293 if (md->disk == NULL) {
2294 ret = -ENOMEM;
2295 goto err_kfree;
2298 INIT_LIST_HEAD(&md->part);
2299 INIT_LIST_HEAD(&md->rpmbs);
2300 md->usage = 1;
2302 ret = mmc_init_queue(&md->queue, card);
2303 if (ret)
2304 goto err_putdisk;
2306 md->queue.blkdata = md;
2309 * Keep an extra reference to the queue so that we can shutdown the
2310 * queue (i.e. call blk_cleanup_queue()) while there are still
2311 * references to the 'md'. The corresponding blk_put_queue() is in
2312 * mmc_blk_put().
2314 if (!blk_get_queue(md->queue.queue)) {
2315 mmc_cleanup_queue(&md->queue);
2316 ret = -ENODEV;
2317 goto err_putdisk;
2320 md->disk->major = MMC_BLOCK_MAJOR;
2321 md->disk->first_minor = devidx * perdev_minors;
2322 md->disk->fops = &mmc_bdops;
2323 md->disk->private_data = md;
2324 md->disk->queue = md->queue.queue;
2325 md->parent = parent;
2326 set_disk_ro(md->disk, md->read_only || default_ro);
2327 md->disk->flags = GENHD_FL_EXT_DEVT;
2328 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2329 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2330 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2333 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2335 * - be set for removable media with permanent block devices
2336 * - be unset for removable block devices with permanent media
2338 * Since MMC block devices clearly fall under the second
2339 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2340 * should use the block device creation/destruction hotplug
2341 * messages to tell when the card is present.
2344 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2345 "mmcblk%u%s", card->host->index, subname ? subname : "");
2347 set_capacity(md->disk, size);
2349 if (mmc_host_cmd23(card->host)) {
2350 if ((mmc_card_mmc(card) &&
2351 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2352 (mmc_card_sd(card) &&
2353 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2354 md->flags |= MMC_BLK_CMD23;
2357 if (mmc_card_mmc(card) &&
2358 md->flags & MMC_BLK_CMD23 &&
2359 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2360 card->ext_csd.rel_sectors)) {
2361 md->flags |= MMC_BLK_REL_WR;
2362 blk_queue_write_cache(md->queue.queue, true, true);
2365 return md;
2367 err_putdisk:
2368 put_disk(md->disk);
2369 err_kfree:
2370 kfree(md);
2371 out:
2372 ida_simple_remove(&mmc_blk_ida, devidx);
2373 return ERR_PTR(ret);
2376 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2378 sector_t size;
2380 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2382 * The EXT_CSD sector count is in number or 512 byte
2383 * sectors.
2385 size = card->ext_csd.sectors;
2386 } else {
2388 * The CSD capacity field is in units of read_blkbits.
2389 * set_capacity takes units of 512 bytes.
2391 size = (typeof(sector_t))card->csd.capacity
2392 << (card->csd.read_blkbits - 9);
2395 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2396 MMC_BLK_DATA_AREA_MAIN);
2399 static int mmc_blk_alloc_part(struct mmc_card *card,
2400 struct mmc_blk_data *md,
2401 unsigned int part_type,
2402 sector_t size,
2403 bool default_ro,
2404 const char *subname,
2405 int area_type)
2407 char cap_str[10];
2408 struct mmc_blk_data *part_md;
2410 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2411 subname, area_type);
2412 if (IS_ERR(part_md))
2413 return PTR_ERR(part_md);
2414 part_md->part_type = part_type;
2415 list_add(&part_md->part, &md->part);
2417 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2418 cap_str, sizeof(cap_str));
2419 pr_info("%s: %s %s partition %u %s\n",
2420 part_md->disk->disk_name, mmc_card_id(card),
2421 mmc_card_name(card), part_md->part_type, cap_str);
2422 return 0;
2426 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2427 * @filp: the character device file
2428 * @cmd: the ioctl() command
2429 * @arg: the argument from userspace
2431 * This will essentially just redirect the ioctl()s coming in over to
2432 * the main block device spawning the RPMB character device.
2434 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2435 unsigned long arg)
2437 struct mmc_rpmb_data *rpmb = filp->private_data;
2438 int ret;
2440 switch (cmd) {
2441 case MMC_IOC_CMD:
2442 ret = mmc_blk_ioctl_cmd(rpmb->md,
2443 (struct mmc_ioc_cmd __user *)arg,
2444 rpmb);
2445 break;
2446 case MMC_IOC_MULTI_CMD:
2447 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2448 (struct mmc_ioc_multi_cmd __user *)arg,
2449 rpmb);
2450 break;
2451 default:
2452 ret = -EINVAL;
2453 break;
2456 return ret;
2459 #ifdef CONFIG_COMPAT
2460 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2461 unsigned long arg)
2463 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2465 #endif
2467 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2469 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2470 struct mmc_rpmb_data, chrdev);
2472 get_device(&rpmb->dev);
2473 filp->private_data = rpmb;
2474 mmc_blk_get(rpmb->md->disk);
2476 return nonseekable_open(inode, filp);
2479 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2481 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2482 struct mmc_rpmb_data, chrdev);
2484 mmc_blk_put(rpmb->md);
2485 put_device(&rpmb->dev);
2487 return 0;
2490 static const struct file_operations mmc_rpmb_fileops = {
2491 .release = mmc_rpmb_chrdev_release,
2492 .open = mmc_rpmb_chrdev_open,
2493 .owner = THIS_MODULE,
2494 .llseek = no_llseek,
2495 .unlocked_ioctl = mmc_rpmb_ioctl,
2496 #ifdef CONFIG_COMPAT
2497 .compat_ioctl = mmc_rpmb_ioctl_compat,
2498 #endif
2501 static void mmc_blk_rpmb_device_release(struct device *dev)
2503 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2505 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2506 kfree(rpmb);
2509 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2510 struct mmc_blk_data *md,
2511 unsigned int part_index,
2512 sector_t size,
2513 const char *subname)
2515 int devidx, ret;
2516 char rpmb_name[DISK_NAME_LEN];
2517 char cap_str[10];
2518 struct mmc_rpmb_data *rpmb;
2520 /* This creates the minor number for the RPMB char device */
2521 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2522 if (devidx < 0)
2523 return devidx;
2525 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2526 if (!rpmb) {
2527 ida_simple_remove(&mmc_rpmb_ida, devidx);
2528 return -ENOMEM;
2531 snprintf(rpmb_name, sizeof(rpmb_name),
2532 "mmcblk%u%s", card->host->index, subname ? subname : "");
2534 rpmb->id = devidx;
2535 rpmb->part_index = part_index;
2536 rpmb->dev.init_name = rpmb_name;
2537 rpmb->dev.bus = &mmc_rpmb_bus_type;
2538 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2539 rpmb->dev.parent = &card->dev;
2540 rpmb->dev.release = mmc_blk_rpmb_device_release;
2541 device_initialize(&rpmb->dev);
2542 dev_set_drvdata(&rpmb->dev, rpmb);
2543 rpmb->md = md;
2545 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2546 rpmb->chrdev.owner = THIS_MODULE;
2547 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2548 if (ret) {
2549 pr_err("%s: could not add character device\n", rpmb_name);
2550 goto out_put_device;
2553 list_add(&rpmb->node, &md->rpmbs);
2555 string_get_size((u64)size, 512, STRING_UNITS_2,
2556 cap_str, sizeof(cap_str));
2558 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2559 rpmb_name, mmc_card_id(card),
2560 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2561 MAJOR(mmc_rpmb_devt), rpmb->id);
2563 return 0;
2565 out_put_device:
2566 put_device(&rpmb->dev);
2567 return ret;
2570 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2573 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2574 put_device(&rpmb->dev);
2577 /* MMC Physical partitions consist of two boot partitions and
2578 * up to four general purpose partitions.
2579 * For each partition enabled in EXT_CSD a block device will be allocatedi
2580 * to provide access to the partition.
2583 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2585 int idx, ret;
2587 if (!mmc_card_mmc(card))
2588 return 0;
2590 for (idx = 0; idx < card->nr_parts; idx++) {
2591 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2593 * RPMB partitions does not provide block access, they
2594 * are only accessed using ioctl():s. Thus create
2595 * special RPMB block devices that do not have a
2596 * backing block queue for these.
2598 ret = mmc_blk_alloc_rpmb_part(card, md,
2599 card->part[idx].part_cfg,
2600 card->part[idx].size >> 9,
2601 card->part[idx].name);
2602 if (ret)
2603 return ret;
2604 } else if (card->part[idx].size) {
2605 ret = mmc_blk_alloc_part(card, md,
2606 card->part[idx].part_cfg,
2607 card->part[idx].size >> 9,
2608 card->part[idx].force_ro,
2609 card->part[idx].name,
2610 card->part[idx].area_type);
2611 if (ret)
2612 return ret;
2616 return 0;
2619 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2621 struct mmc_card *card;
2623 if (md) {
2625 * Flush remaining requests and free queues. It
2626 * is freeing the queue that stops new requests
2627 * from being accepted.
2629 card = md->queue.card;
2630 if (md->disk->flags & GENHD_FL_UP) {
2631 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2632 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2633 card->ext_csd.boot_ro_lockable)
2634 device_remove_file(disk_to_dev(md->disk),
2635 &md->power_ro_lock);
2637 del_gendisk(md->disk);
2639 mmc_cleanup_queue(&md->queue);
2640 mmc_blk_put(md);
2644 static void mmc_blk_remove_parts(struct mmc_card *card,
2645 struct mmc_blk_data *md)
2647 struct list_head *pos, *q;
2648 struct mmc_blk_data *part_md;
2649 struct mmc_rpmb_data *rpmb;
2651 /* Remove RPMB partitions */
2652 list_for_each_safe(pos, q, &md->rpmbs) {
2653 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2654 list_del(pos);
2655 mmc_blk_remove_rpmb_part(rpmb);
2657 /* Remove block partitions */
2658 list_for_each_safe(pos, q, &md->part) {
2659 part_md = list_entry(pos, struct mmc_blk_data, part);
2660 list_del(pos);
2661 mmc_blk_remove_req(part_md);
2665 static int mmc_add_disk(struct mmc_blk_data *md)
2667 int ret;
2668 struct mmc_card *card = md->queue.card;
2670 device_add_disk(md->parent, md->disk, NULL);
2671 md->force_ro.show = force_ro_show;
2672 md->force_ro.store = force_ro_store;
2673 sysfs_attr_init(&md->force_ro.attr);
2674 md->force_ro.attr.name = "force_ro";
2675 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2676 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2677 if (ret)
2678 goto force_ro_fail;
2680 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2681 card->ext_csd.boot_ro_lockable) {
2682 umode_t mode;
2684 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2685 mode = S_IRUGO;
2686 else
2687 mode = S_IRUGO | S_IWUSR;
2689 md->power_ro_lock.show = power_ro_lock_show;
2690 md->power_ro_lock.store = power_ro_lock_store;
2691 sysfs_attr_init(&md->power_ro_lock.attr);
2692 md->power_ro_lock.attr.mode = mode;
2693 md->power_ro_lock.attr.name =
2694 "ro_lock_until_next_power_on";
2695 ret = device_create_file(disk_to_dev(md->disk),
2696 &md->power_ro_lock);
2697 if (ret)
2698 goto power_ro_lock_fail;
2700 return ret;
2702 power_ro_lock_fail:
2703 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2704 force_ro_fail:
2705 del_gendisk(md->disk);
2707 return ret;
2710 #ifdef CONFIG_DEBUG_FS
2712 static int mmc_dbg_card_status_get(void *data, u64 *val)
2714 struct mmc_card *card = data;
2715 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2716 struct mmc_queue *mq = &md->queue;
2717 struct request *req;
2718 int ret;
2720 /* Ask the block layer about the card status */
2721 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2722 if (IS_ERR(req))
2723 return PTR_ERR(req);
2724 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2725 blk_execute_rq(mq->queue, NULL, req, 0);
2726 ret = req_to_mmc_queue_req(req)->drv_op_result;
2727 if (ret >= 0) {
2728 *val = ret;
2729 ret = 0;
2731 blk_put_request(req);
2733 return ret;
2735 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2736 NULL, "%08llx\n");
2738 /* That is two digits * 512 + 1 for newline */
2739 #define EXT_CSD_STR_LEN 1025
2741 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2743 struct mmc_card *card = inode->i_private;
2744 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2745 struct mmc_queue *mq = &md->queue;
2746 struct request *req;
2747 char *buf;
2748 ssize_t n = 0;
2749 u8 *ext_csd;
2750 int err, i;
2752 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2753 if (!buf)
2754 return -ENOMEM;
2756 /* Ask the block layer for the EXT CSD */
2757 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2758 if (IS_ERR(req)) {
2759 err = PTR_ERR(req);
2760 goto out_free;
2762 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2763 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2764 blk_execute_rq(mq->queue, NULL, req, 0);
2765 err = req_to_mmc_queue_req(req)->drv_op_result;
2766 blk_put_request(req);
2767 if (err) {
2768 pr_err("FAILED %d\n", err);
2769 goto out_free;
2772 for (i = 0; i < 512; i++)
2773 n += sprintf(buf + n, "%02x", ext_csd[i]);
2774 n += sprintf(buf + n, "\n");
2776 if (n != EXT_CSD_STR_LEN) {
2777 err = -EINVAL;
2778 kfree(ext_csd);
2779 goto out_free;
2782 filp->private_data = buf;
2783 kfree(ext_csd);
2784 return 0;
2786 out_free:
2787 kfree(buf);
2788 return err;
2791 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2792 size_t cnt, loff_t *ppos)
2794 char *buf = filp->private_data;
2796 return simple_read_from_buffer(ubuf, cnt, ppos,
2797 buf, EXT_CSD_STR_LEN);
2800 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2802 kfree(file->private_data);
2803 return 0;
2806 static const struct file_operations mmc_dbg_ext_csd_fops = {
2807 .open = mmc_ext_csd_open,
2808 .read = mmc_ext_csd_read,
2809 .release = mmc_ext_csd_release,
2810 .llseek = default_llseek,
2813 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2815 struct dentry *root;
2817 if (!card->debugfs_root)
2818 return 0;
2820 root = card->debugfs_root;
2822 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2823 md->status_dentry =
2824 debugfs_create_file_unsafe("status", 0400, root,
2825 card,
2826 &mmc_dbg_card_status_fops);
2827 if (!md->status_dentry)
2828 return -EIO;
2831 if (mmc_card_mmc(card)) {
2832 md->ext_csd_dentry =
2833 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2834 &mmc_dbg_ext_csd_fops);
2835 if (!md->ext_csd_dentry)
2836 return -EIO;
2839 return 0;
2842 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2843 struct mmc_blk_data *md)
2845 if (!card->debugfs_root)
2846 return;
2848 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2849 debugfs_remove(md->status_dentry);
2850 md->status_dentry = NULL;
2853 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2854 debugfs_remove(md->ext_csd_dentry);
2855 md->ext_csd_dentry = NULL;
2859 #else
2861 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2863 return 0;
2866 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2867 struct mmc_blk_data *md)
2871 #endif /* CONFIG_DEBUG_FS */
2873 static int mmc_blk_probe(struct mmc_card *card)
2875 struct mmc_blk_data *md, *part_md;
2876 char cap_str[10];
2879 * Check that the card supports the command class(es) we need.
2881 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2882 return -ENODEV;
2884 mmc_fixup_device(card, mmc_blk_fixups);
2886 card->complete_wq = alloc_workqueue("mmc_complete",
2887 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2888 if (unlikely(!card->complete_wq)) {
2889 pr_err("Failed to create mmc completion workqueue");
2890 return -ENOMEM;
2893 md = mmc_blk_alloc(card);
2894 if (IS_ERR(md))
2895 return PTR_ERR(md);
2897 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2898 cap_str, sizeof(cap_str));
2899 pr_info("%s: %s %s %s %s\n",
2900 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2901 cap_str, md->read_only ? "(ro)" : "");
2903 if (mmc_blk_alloc_parts(card, md))
2904 goto out;
2906 dev_set_drvdata(&card->dev, md);
2908 if (mmc_add_disk(md))
2909 goto out;
2911 list_for_each_entry(part_md, &md->part, part) {
2912 if (mmc_add_disk(part_md))
2913 goto out;
2916 /* Add two debugfs entries */
2917 mmc_blk_add_debugfs(card, md);
2919 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2920 pm_runtime_use_autosuspend(&card->dev);
2923 * Don't enable runtime PM for SD-combo cards here. Leave that
2924 * decision to be taken during the SDIO init sequence instead.
2926 if (card->type != MMC_TYPE_SD_COMBO) {
2927 pm_runtime_set_active(&card->dev);
2928 pm_runtime_enable(&card->dev);
2931 return 0;
2933 out:
2934 mmc_blk_remove_parts(card, md);
2935 mmc_blk_remove_req(md);
2936 return 0;
2939 static void mmc_blk_remove(struct mmc_card *card)
2941 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2943 mmc_blk_remove_debugfs(card, md);
2944 mmc_blk_remove_parts(card, md);
2945 pm_runtime_get_sync(&card->dev);
2946 if (md->part_curr != md->part_type) {
2947 mmc_claim_host(card->host);
2948 mmc_blk_part_switch(card, md->part_type);
2949 mmc_release_host(card->host);
2951 if (card->type != MMC_TYPE_SD_COMBO)
2952 pm_runtime_disable(&card->dev);
2953 pm_runtime_put_noidle(&card->dev);
2954 mmc_blk_remove_req(md);
2955 dev_set_drvdata(&card->dev, NULL);
2956 destroy_workqueue(card->complete_wq);
2959 static int _mmc_blk_suspend(struct mmc_card *card)
2961 struct mmc_blk_data *part_md;
2962 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2964 if (md) {
2965 mmc_queue_suspend(&md->queue);
2966 list_for_each_entry(part_md, &md->part, part) {
2967 mmc_queue_suspend(&part_md->queue);
2970 return 0;
2973 static void mmc_blk_shutdown(struct mmc_card *card)
2975 _mmc_blk_suspend(card);
2978 #ifdef CONFIG_PM_SLEEP
2979 static int mmc_blk_suspend(struct device *dev)
2981 struct mmc_card *card = mmc_dev_to_card(dev);
2983 return _mmc_blk_suspend(card);
2986 static int mmc_blk_resume(struct device *dev)
2988 struct mmc_blk_data *part_md;
2989 struct mmc_blk_data *md = dev_get_drvdata(dev);
2991 if (md) {
2993 * Resume involves the card going into idle state,
2994 * so current partition is always the main one.
2996 md->part_curr = md->part_type;
2997 mmc_queue_resume(&md->queue);
2998 list_for_each_entry(part_md, &md->part, part) {
2999 mmc_queue_resume(&part_md->queue);
3002 return 0;
3004 #endif
3006 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3008 static struct mmc_driver mmc_driver = {
3009 .drv = {
3010 .name = "mmcblk",
3011 .pm = &mmc_blk_pm_ops,
3013 .probe = mmc_blk_probe,
3014 .remove = mmc_blk_remove,
3015 .shutdown = mmc_blk_shutdown,
3018 static int __init mmc_blk_init(void)
3020 int res;
3022 res = bus_register(&mmc_rpmb_bus_type);
3023 if (res < 0) {
3024 pr_err("mmcblk: could not register RPMB bus type\n");
3025 return res;
3027 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3028 if (res < 0) {
3029 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3030 goto out_bus_unreg;
3033 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3034 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3036 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3038 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3039 if (res)
3040 goto out_chrdev_unreg;
3042 res = mmc_register_driver(&mmc_driver);
3043 if (res)
3044 goto out_blkdev_unreg;
3046 return 0;
3048 out_blkdev_unreg:
3049 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3050 out_chrdev_unreg:
3051 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3052 out_bus_unreg:
3053 bus_unregister(&mmc_rpmb_bus_type);
3054 return res;
3057 static void __exit mmc_blk_exit(void)
3059 mmc_unregister_driver(&mmc_driver);
3060 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3062 bus_unregister(&mmc_rpmb_bus_type);
3065 module_init(mmc_blk_init);
3066 module_exit(mmc_blk_exit);
3068 MODULE_LICENSE("GPL");
3069 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");