io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / mmc / core / core.c
blob19f1ee57fb345640200ff21cc75566eb2c739be8
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
38 #include "core.h"
39 #include "card.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
53 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it it to be disabled.
60 bool use_spi_crc = 1;
61 module_param(use_spi_crc, bool, 0);
63 static int mmc_schedule_delayed_work(struct delayed_work *work,
64 unsigned long delay)
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
72 return queue_delayed_work(system_freezable_wq, work, delay);
75 #ifdef CONFIG_FAIL_MMC_REQUEST
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
81 static void mmc_should_fail_request(struct mmc_host *host,
82 struct mmc_request *mrq)
84 struct mmc_command *cmd = mrq->cmd;
85 struct mmc_data *data = mrq->data;
86 static const int data_errors[] = {
87 -ETIMEDOUT,
88 -EILSEQ,
89 -EIO,
92 if (!data)
93 return;
95 if ((cmd && cmd->error) || data->error ||
96 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
97 return;
99 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
100 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
103 #else /* CONFIG_FAIL_MMC_REQUEST */
105 static inline void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
115 complete_all(&mrq->cmd_completion);
118 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 if (!mrq->cap_cmd_during_tfr)
121 return;
123 mmc_complete_cmd(mrq);
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host), mrq->cmd->opcode);
128 EXPORT_SYMBOL(mmc_command_done);
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
138 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 struct mmc_command *cmd = mrq->cmd;
141 int err = cmd->error;
143 /* Flag re-tuning needed on CRC errors */
144 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
145 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
146 !host->retune_crc_disable &&
147 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 (mrq->data && mrq->data->error == -EILSEQ) ||
149 (mrq->stop && mrq->stop->error == -EILSEQ)))
150 mmc_retune_needed(host);
152 if (err && cmd->retries && mmc_host_is_spi(host)) {
153 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 cmd->retries = 0;
157 if (host->ongoing_mrq == mrq)
158 host->ongoing_mrq = NULL;
160 mmc_complete_cmd(mrq);
162 trace_mmc_request_done(host, mrq);
165 * We list various conditions for the command to be considered
166 * properly done:
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
173 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 mmc_should_fail_request(host, mrq);
176 if (!host->ongoing_mrq)
177 led_trigger_event(host->led, LED_OFF);
179 if (mrq->sbc) {
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->sbc->opcode,
182 mrq->sbc->error,
183 mrq->sbc->resp[0], mrq->sbc->resp[1],
184 mrq->sbc->resp[2], mrq->sbc->resp[3]);
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host), cmd->opcode, err,
189 cmd->resp[0], cmd->resp[1],
190 cmd->resp[2], cmd->resp[3]);
192 if (mrq->data) {
193 pr_debug("%s: %d bytes transferred: %d\n",
194 mmc_hostname(host),
195 mrq->data->bytes_xfered, mrq->data->error);
198 if (mrq->stop) {
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host), mrq->stop->opcode,
201 mrq->stop->error,
202 mrq->stop->resp[0], mrq->stop->resp[1],
203 mrq->stop->resp[2], mrq->stop->resp[3]);
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
210 if (mrq->done)
211 mrq->done(mrq);
214 EXPORT_SYMBOL(mmc_request_done);
216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 int err;
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err = mmc_retune(host);
222 if (err) {
223 mrq->cmd->error = err;
224 mmc_request_done(host, mrq);
225 return;
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
233 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 host->ops->card_busy) {
235 int tries = 500; /* Wait aprox 500ms at maximum */
237 while (host->ops->card_busy(host) && --tries)
238 mmc_delay(1);
240 if (tries == 0) {
241 mrq->cmd->error = -EBUSY;
242 mmc_request_done(host, mrq);
243 return;
247 if (mrq->cap_cmd_during_tfr) {
248 host->ongoing_mrq = mrq;
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
253 reinit_completion(&mrq->cmd_completion);
256 trace_mmc_request_start(host, mrq);
258 if (host->cqe_on)
259 host->cqe_ops->cqe_off(host);
261 host->ops->request(host, mrq);
264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 bool cqe)
267 if (mrq->sbc) {
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host), mrq->sbc->opcode,
270 mrq->sbc->arg, mrq->sbc->flags);
273 if (mrq->cmd) {
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host), cqe ? "CQE direct " : "",
276 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 } else if (cqe) {
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
282 if (mrq->data) {
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host), mrq->data->blksz,
286 mrq->data->blocks, mrq->data->flags,
287 mrq->data->timeout_ns / 1000000,
288 mrq->data->timeout_clks);
291 if (mrq->stop) {
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host), mrq->stop->opcode,
294 mrq->stop->arg, mrq->stop->flags);
298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 unsigned int i, sz = 0;
301 struct scatterlist *sg;
303 if (mrq->cmd) {
304 mrq->cmd->error = 0;
305 mrq->cmd->mrq = mrq;
306 mrq->cmd->data = mrq->data;
308 if (mrq->sbc) {
309 mrq->sbc->error = 0;
310 mrq->sbc->mrq = mrq;
312 if (mrq->data) {
313 if (mrq->data->blksz > host->max_blk_size ||
314 mrq->data->blocks > host->max_blk_count ||
315 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 return -EINVAL;
318 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 sz += sg->length;
320 if (sz != mrq->data->blocks * mrq->data->blksz)
321 return -EINVAL;
323 mrq->data->error = 0;
324 mrq->data->mrq = mrq;
325 if (mrq->stop) {
326 mrq->data->stop = mrq->stop;
327 mrq->stop->error = 0;
328 mrq->stop->mrq = mrq;
332 return 0;
335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 int err;
339 init_completion(&mrq->cmd_completion);
341 mmc_retune_hold(host);
343 if (mmc_card_removed(host->card))
344 return -ENOMEDIUM;
346 mmc_mrq_pr_debug(host, mrq, false);
348 WARN_ON(!host->claimed);
350 err = mmc_mrq_prep(host, mrq);
351 if (err)
352 return err;
354 led_trigger_event(host->led, LED_FULL);
355 __mmc_start_request(host, mrq);
357 return 0;
359 EXPORT_SYMBOL(mmc_start_request);
361 static void mmc_wait_done(struct mmc_request *mrq)
363 complete(&mrq->completion);
366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
371 * If there is an ongoing transfer, wait for the command line to become
372 * available.
374 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 wait_for_completion(&ongoing_mrq->cmd_completion);
378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 int err;
382 mmc_wait_ongoing_tfr_cmd(host);
384 init_completion(&mrq->completion);
385 mrq->done = mmc_wait_done;
387 err = mmc_start_request(host, mrq);
388 if (err) {
389 mrq->cmd->error = err;
390 mmc_complete_cmd(mrq);
391 complete(&mrq->completion);
394 return err;
397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 struct mmc_command *cmd;
401 while (1) {
402 wait_for_completion(&mrq->completion);
404 cmd = mrq->cmd;
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card))
408 break;
410 mmc_retune_recheck(host);
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host), cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 __mmc_start_request(host, mrq);
419 mmc_retune_release(host);
421 EXPORT_SYMBOL(mmc_wait_for_req_done);
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
431 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 int err;
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
439 * ->cqe_off().
441 err = mmc_retune(host);
442 if (err)
443 goto out_err;
445 mrq->host = host;
447 mmc_mrq_pr_debug(host, mrq, true);
449 err = mmc_mrq_prep(host, mrq);
450 if (err)
451 goto out_err;
453 err = host->cqe_ops->cqe_request(host, mrq);
454 if (err)
455 goto out_err;
457 trace_mmc_request_start(host, mrq);
459 return 0;
461 out_err:
462 if (mrq->cmd) {
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host), mrq->cmd->opcode, err);
465 } else {
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host), mrq->tag, err);
469 return err;
471 EXPORT_SYMBOL(mmc_cqe_start_req);
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
481 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 mmc_should_fail_request(host, mrq);
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 (mrq->data && mrq->data->error == -EILSEQ))
488 mmc_retune_needed(host);
490 trace_mmc_request_done(host, mrq);
492 if (mrq->cmd) {
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 } else {
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host), mrq->tag);
500 if (mrq->data) {
501 pr_debug("%s: %d bytes transferred: %d\n",
502 mmc_hostname(host),
503 mrq->data->bytes_xfered, mrq->data->error);
506 mrq->done(mrq);
508 EXPORT_SYMBOL(mmc_cqe_request_done);
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
512 * @host: MMC host
513 * @mrq: MMC request to be processed
515 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 if (host->cqe_ops->cqe_post_req)
518 host->cqe_ops->cqe_post_req(host, mrq);
520 EXPORT_SYMBOL(mmc_cqe_post_req);
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT 1000
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
534 int mmc_cqe_recovery(struct mmc_host *host)
536 struct mmc_command cmd;
537 int err;
539 mmc_retune_hold_now(host);
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547 host->cqe_ops->cqe_recovery_start(host);
549 memset(&cmd, 0, sizeof(cmd));
550 cmd.opcode = MMC_STOP_TRANSMISSION,
551 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
552 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
553 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
554 mmc_wait_for_cmd(host, &cmd, 0);
556 memset(&cmd, 0, sizeof(cmd));
557 cmd.opcode = MMC_CMDQ_TASK_MGMT;
558 cmd.arg = 1; /* Discard entire queue */
559 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
560 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
561 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
562 err = mmc_wait_for_cmd(host, &cmd, 0);
564 host->cqe_ops->cqe_recovery_finish(host);
566 mmc_retune_release(host);
568 return err;
570 EXPORT_SYMBOL(mmc_cqe_recovery);
573 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
574 * @host: MMC host
575 * @mrq: MMC request
577 * mmc_is_req_done() is used with requests that have
578 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579 * starting a request and before waiting for it to complete. That is,
580 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581 * and before mmc_wait_for_req_done(). If it is called at other times the
582 * result is not meaningful.
584 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
586 return completion_done(&mrq->completion);
588 EXPORT_SYMBOL(mmc_is_req_done);
591 * mmc_wait_for_req - start a request and wait for completion
592 * @host: MMC host to start command
593 * @mrq: MMC request to start
595 * Start a new MMC custom command request for a host, and wait
596 * for the command to complete. In the case of 'cap_cmd_during_tfr'
597 * requests, the transfer is ongoing and the caller can issue further
598 * commands that do not use the data lines, and then wait by calling
599 * mmc_wait_for_req_done().
600 * Does not attempt to parse the response.
602 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
604 __mmc_start_req(host, mrq);
606 if (!mrq->cap_cmd_during_tfr)
607 mmc_wait_for_req_done(host, mrq);
609 EXPORT_SYMBOL(mmc_wait_for_req);
612 * mmc_wait_for_cmd - start a command and wait for completion
613 * @host: MMC host to start command
614 * @cmd: MMC command to start
615 * @retries: maximum number of retries
617 * Start a new MMC command for a host, and wait for the command
618 * to complete. Return any error that occurred while the command
619 * was executing. Do not attempt to parse the response.
621 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
623 struct mmc_request mrq = {};
625 WARN_ON(!host->claimed);
627 memset(cmd->resp, 0, sizeof(cmd->resp));
628 cmd->retries = retries;
630 mrq.cmd = cmd;
631 cmd->data = NULL;
633 mmc_wait_for_req(host, &mrq);
635 return cmd->error;
638 EXPORT_SYMBOL(mmc_wait_for_cmd);
641 * mmc_set_data_timeout - set the timeout for a data command
642 * @data: data phase for command
643 * @card: the MMC card associated with the data transfer
645 * Computes the data timeout parameters according to the
646 * correct algorithm given the card type.
648 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
650 unsigned int mult;
653 * SDIO cards only define an upper 1 s limit on access.
655 if (mmc_card_sdio(card)) {
656 data->timeout_ns = 1000000000;
657 data->timeout_clks = 0;
658 return;
662 * SD cards use a 100 multiplier rather than 10
664 mult = mmc_card_sd(card) ? 100 : 10;
667 * Scale up the multiplier (and therefore the timeout) by
668 * the r2w factor for writes.
670 if (data->flags & MMC_DATA_WRITE)
671 mult <<= card->csd.r2w_factor;
673 data->timeout_ns = card->csd.taac_ns * mult;
674 data->timeout_clks = card->csd.taac_clks * mult;
677 * SD cards also have an upper limit on the timeout.
679 if (mmc_card_sd(card)) {
680 unsigned int timeout_us, limit_us;
682 timeout_us = data->timeout_ns / 1000;
683 if (card->host->ios.clock)
684 timeout_us += data->timeout_clks * 1000 /
685 (card->host->ios.clock / 1000);
687 if (data->flags & MMC_DATA_WRITE)
689 * The MMC spec "It is strongly recommended
690 * for hosts to implement more than 500ms
691 * timeout value even if the card indicates
692 * the 250ms maximum busy length." Even the
693 * previous value of 300ms is known to be
694 * insufficient for some cards.
696 limit_us = 3000000;
697 else
698 limit_us = 100000;
701 * SDHC cards always use these fixed values.
703 if (timeout_us > limit_us) {
704 data->timeout_ns = limit_us * 1000;
705 data->timeout_clks = 0;
708 /* assign limit value if invalid */
709 if (timeout_us == 0)
710 data->timeout_ns = limit_us * 1000;
714 * Some cards require longer data read timeout than indicated in CSD.
715 * Address this by setting the read timeout to a "reasonably high"
716 * value. For the cards tested, 600ms has proven enough. If necessary,
717 * this value can be increased if other problematic cards require this.
719 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
720 data->timeout_ns = 600000000;
721 data->timeout_clks = 0;
725 * Some cards need very high timeouts if driven in SPI mode.
726 * The worst observed timeout was 900ms after writing a
727 * continuous stream of data until the internal logic
728 * overflowed.
730 if (mmc_host_is_spi(card->host)) {
731 if (data->flags & MMC_DATA_WRITE) {
732 if (data->timeout_ns < 1000000000)
733 data->timeout_ns = 1000000000; /* 1s */
734 } else {
735 if (data->timeout_ns < 100000000)
736 data->timeout_ns = 100000000; /* 100ms */
740 EXPORT_SYMBOL(mmc_set_data_timeout);
743 * Allow claiming an already claimed host if the context is the same or there is
744 * no context but the task is the same.
746 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
747 struct task_struct *task)
749 return host->claimer == ctx ||
750 (!ctx && task && host->claimer->task == task);
753 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
754 struct mmc_ctx *ctx,
755 struct task_struct *task)
757 if (!host->claimer) {
758 if (ctx)
759 host->claimer = ctx;
760 else
761 host->claimer = &host->default_ctx;
763 if (task)
764 host->claimer->task = task;
768 * __mmc_claim_host - exclusively claim a host
769 * @host: mmc host to claim
770 * @ctx: context that claims the host or NULL in which case the default
771 * context will be used
772 * @abort: whether or not the operation should be aborted
774 * Claim a host for a set of operations. If @abort is non null and
775 * dereference a non-zero value then this will return prematurely with
776 * that non-zero value without acquiring the lock. Returns zero
777 * with the lock held otherwise.
779 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
780 atomic_t *abort)
782 struct task_struct *task = ctx ? NULL : current;
783 DECLARE_WAITQUEUE(wait, current);
784 unsigned long flags;
785 int stop;
786 bool pm = false;
788 might_sleep();
790 add_wait_queue(&host->wq, &wait);
791 spin_lock_irqsave(&host->lock, flags);
792 while (1) {
793 set_current_state(TASK_UNINTERRUPTIBLE);
794 stop = abort ? atomic_read(abort) : 0;
795 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
796 break;
797 spin_unlock_irqrestore(&host->lock, flags);
798 schedule();
799 spin_lock_irqsave(&host->lock, flags);
801 set_current_state(TASK_RUNNING);
802 if (!stop) {
803 host->claimed = 1;
804 mmc_ctx_set_claimer(host, ctx, task);
805 host->claim_cnt += 1;
806 if (host->claim_cnt == 1)
807 pm = true;
808 } else
809 wake_up(&host->wq);
810 spin_unlock_irqrestore(&host->lock, flags);
811 remove_wait_queue(&host->wq, &wait);
813 if (pm)
814 pm_runtime_get_sync(mmc_dev(host));
816 return stop;
818 EXPORT_SYMBOL(__mmc_claim_host);
821 * mmc_release_host - release a host
822 * @host: mmc host to release
824 * Release a MMC host, allowing others to claim the host
825 * for their operations.
827 void mmc_release_host(struct mmc_host *host)
829 unsigned long flags;
831 WARN_ON(!host->claimed);
833 spin_lock_irqsave(&host->lock, flags);
834 if (--host->claim_cnt) {
835 /* Release for nested claim */
836 spin_unlock_irqrestore(&host->lock, flags);
837 } else {
838 host->claimed = 0;
839 host->claimer->task = NULL;
840 host->claimer = NULL;
841 spin_unlock_irqrestore(&host->lock, flags);
842 wake_up(&host->wq);
843 pm_runtime_mark_last_busy(mmc_dev(host));
844 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
845 pm_runtime_put_sync_suspend(mmc_dev(host));
846 else
847 pm_runtime_put_autosuspend(mmc_dev(host));
850 EXPORT_SYMBOL(mmc_release_host);
853 * This is a helper function, which fetches a runtime pm reference for the
854 * card device and also claims the host.
856 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
858 pm_runtime_get_sync(&card->dev);
859 __mmc_claim_host(card->host, ctx, NULL);
861 EXPORT_SYMBOL(mmc_get_card);
864 * This is a helper function, which releases the host and drops the runtime
865 * pm reference for the card device.
867 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
869 struct mmc_host *host = card->host;
871 WARN_ON(ctx && host->claimer != ctx);
873 mmc_release_host(host);
874 pm_runtime_mark_last_busy(&card->dev);
875 pm_runtime_put_autosuspend(&card->dev);
877 EXPORT_SYMBOL(mmc_put_card);
880 * Internal function that does the actual ios call to the host driver,
881 * optionally printing some debug output.
883 static inline void mmc_set_ios(struct mmc_host *host)
885 struct mmc_ios *ios = &host->ios;
887 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 "width %u timing %u\n",
889 mmc_hostname(host), ios->clock, ios->bus_mode,
890 ios->power_mode, ios->chip_select, ios->vdd,
891 1 << ios->bus_width, ios->timing);
893 host->ops->set_ios(host, ios);
897 * Control chip select pin on a host.
899 void mmc_set_chip_select(struct mmc_host *host, int mode)
901 host->ios.chip_select = mode;
902 mmc_set_ios(host);
906 * Sets the host clock to the highest possible frequency that
907 * is below "hz".
909 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
911 WARN_ON(hz && hz < host->f_min);
913 if (hz > host->f_max)
914 hz = host->f_max;
916 host->ios.clock = hz;
917 mmc_set_ios(host);
920 int mmc_execute_tuning(struct mmc_card *card)
922 struct mmc_host *host = card->host;
923 u32 opcode;
924 int err;
926 if (!host->ops->execute_tuning)
927 return 0;
929 if (host->cqe_on)
930 host->cqe_ops->cqe_off(host);
932 if (mmc_card_mmc(card))
933 opcode = MMC_SEND_TUNING_BLOCK_HS200;
934 else
935 opcode = MMC_SEND_TUNING_BLOCK;
937 err = host->ops->execute_tuning(host, opcode);
939 if (err)
940 pr_err("%s: tuning execution failed: %d\n",
941 mmc_hostname(host), err);
942 else
943 mmc_retune_enable(host);
945 return err;
949 * Change the bus mode (open drain/push-pull) of a host.
951 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
953 host->ios.bus_mode = mode;
954 mmc_set_ios(host);
958 * Change data bus width of a host.
960 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
962 host->ios.bus_width = width;
963 mmc_set_ios(host);
967 * Set initial state after a power cycle or a hw_reset.
969 void mmc_set_initial_state(struct mmc_host *host)
971 if (host->cqe_on)
972 host->cqe_ops->cqe_off(host);
974 mmc_retune_disable(host);
976 if (mmc_host_is_spi(host))
977 host->ios.chip_select = MMC_CS_HIGH;
978 else
979 host->ios.chip_select = MMC_CS_DONTCARE;
980 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
981 host->ios.bus_width = MMC_BUS_WIDTH_1;
982 host->ios.timing = MMC_TIMING_LEGACY;
983 host->ios.drv_type = 0;
984 host->ios.enhanced_strobe = false;
987 * Make sure we are in non-enhanced strobe mode before we
988 * actually enable it in ext_csd.
990 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
991 host->ops->hs400_enhanced_strobe)
992 host->ops->hs400_enhanced_strobe(host, &host->ios);
994 mmc_set_ios(host);
998 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
999 * @vdd: voltage (mV)
1000 * @low_bits: prefer low bits in boundary cases
1002 * This function returns the OCR bit number according to the provided @vdd
1003 * value. If conversion is not possible a negative errno value returned.
1005 * Depending on the @low_bits flag the function prefers low or high OCR bits
1006 * on boundary voltages. For example,
1007 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1008 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1010 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1012 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1014 const int max_bit = ilog2(MMC_VDD_35_36);
1015 int bit;
1017 if (vdd < 1650 || vdd > 3600)
1018 return -EINVAL;
1020 if (vdd >= 1650 && vdd <= 1950)
1021 return ilog2(MMC_VDD_165_195);
1023 if (low_bits)
1024 vdd -= 1;
1026 /* Base 2000 mV, step 100 mV, bit's base 8. */
1027 bit = (vdd - 2000) / 100 + 8;
1028 if (bit > max_bit)
1029 return max_bit;
1030 return bit;
1034 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1035 * @vdd_min: minimum voltage value (mV)
1036 * @vdd_max: maximum voltage value (mV)
1038 * This function returns the OCR mask bits according to the provided @vdd_min
1039 * and @vdd_max values. If conversion is not possible the function returns 0.
1041 * Notes wrt boundary cases:
1042 * This function sets the OCR bits for all boundary voltages, for example
1043 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1044 * MMC_VDD_34_35 mask.
1046 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1048 u32 mask = 0;
1050 if (vdd_max < vdd_min)
1051 return 0;
1053 /* Prefer high bits for the boundary vdd_max values. */
1054 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1055 if (vdd_max < 0)
1056 return 0;
1058 /* Prefer low bits for the boundary vdd_min values. */
1059 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1060 if (vdd_min < 0)
1061 return 0;
1063 /* Fill the mask, from max bit to min bit. */
1064 while (vdd_max >= vdd_min)
1065 mask |= 1 << vdd_max--;
1067 return mask;
1070 static int mmc_of_get_func_num(struct device_node *node)
1072 u32 reg;
1073 int ret;
1075 ret = of_property_read_u32(node, "reg", &reg);
1076 if (ret < 0)
1077 return ret;
1079 return reg;
1082 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1083 unsigned func_num)
1085 struct device_node *node;
1087 if (!host->parent || !host->parent->of_node)
1088 return NULL;
1090 for_each_child_of_node(host->parent->of_node, node) {
1091 if (mmc_of_get_func_num(node) == func_num)
1092 return node;
1095 return NULL;
1099 * Mask off any voltages we don't support and select
1100 * the lowest voltage
1102 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1104 int bit;
1107 * Sanity check the voltages that the card claims to
1108 * support.
1110 if (ocr & 0x7F) {
1111 dev_warn(mmc_dev(host),
1112 "card claims to support voltages below defined range\n");
1113 ocr &= ~0x7F;
1116 ocr &= host->ocr_avail;
1117 if (!ocr) {
1118 dev_warn(mmc_dev(host), "no support for card's volts\n");
1119 return 0;
1122 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1123 bit = ffs(ocr) - 1;
1124 ocr &= 3 << bit;
1125 mmc_power_cycle(host, ocr);
1126 } else {
1127 bit = fls(ocr) - 1;
1128 ocr &= 3 << bit;
1129 if (bit != host->ios.vdd)
1130 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1133 return ocr;
1136 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1138 int err = 0;
1139 int old_signal_voltage = host->ios.signal_voltage;
1141 host->ios.signal_voltage = signal_voltage;
1142 if (host->ops->start_signal_voltage_switch)
1143 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1145 if (err)
1146 host->ios.signal_voltage = old_signal_voltage;
1148 return err;
1152 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1154 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1155 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1156 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1157 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1158 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1159 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1160 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1163 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1165 u32 clock;
1168 * During a signal voltage level switch, the clock must be gated
1169 * for 5 ms according to the SD spec
1171 clock = host->ios.clock;
1172 host->ios.clock = 0;
1173 mmc_set_ios(host);
1175 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1176 return -EAGAIN;
1178 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1179 mmc_delay(10);
1180 host->ios.clock = clock;
1181 mmc_set_ios(host);
1183 return 0;
1186 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1188 struct mmc_command cmd = {};
1189 int err = 0;
1192 * If we cannot switch voltages, return failure so the caller
1193 * can continue without UHS mode
1195 if (!host->ops->start_signal_voltage_switch)
1196 return -EPERM;
1197 if (!host->ops->card_busy)
1198 pr_warn("%s: cannot verify signal voltage switch\n",
1199 mmc_hostname(host));
1201 cmd.opcode = SD_SWITCH_VOLTAGE;
1202 cmd.arg = 0;
1203 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1205 err = mmc_wait_for_cmd(host, &cmd, 0);
1206 if (err)
1207 return err;
1209 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1210 return -EIO;
1213 * The card should drive cmd and dat[0:3] low immediately
1214 * after the response of cmd11, but wait 1 ms to be sure
1216 mmc_delay(1);
1217 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1218 err = -EAGAIN;
1219 goto power_cycle;
1222 if (mmc_host_set_uhs_voltage(host)) {
1224 * Voltages may not have been switched, but we've already
1225 * sent CMD11, so a power cycle is required anyway
1227 err = -EAGAIN;
1228 goto power_cycle;
1231 /* Wait for at least 1 ms according to spec */
1232 mmc_delay(1);
1235 * Failure to switch is indicated by the card holding
1236 * dat[0:3] low
1238 if (host->ops->card_busy && host->ops->card_busy(host))
1239 err = -EAGAIN;
1241 power_cycle:
1242 if (err) {
1243 pr_debug("%s: Signal voltage switch failed, "
1244 "power cycling card\n", mmc_hostname(host));
1245 mmc_power_cycle(host, ocr);
1248 return err;
1252 * Select timing parameters for host.
1254 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1256 host->ios.timing = timing;
1257 mmc_set_ios(host);
1261 * Select appropriate driver type for host.
1263 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1265 host->ios.drv_type = drv_type;
1266 mmc_set_ios(host);
1269 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1270 int card_drv_type, int *drv_type)
1272 struct mmc_host *host = card->host;
1273 int host_drv_type = SD_DRIVER_TYPE_B;
1275 *drv_type = 0;
1277 if (!host->ops->select_drive_strength)
1278 return 0;
1280 /* Use SD definition of driver strength for hosts */
1281 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1282 host_drv_type |= SD_DRIVER_TYPE_A;
1284 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1285 host_drv_type |= SD_DRIVER_TYPE_C;
1287 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1288 host_drv_type |= SD_DRIVER_TYPE_D;
1291 * The drive strength that the hardware can support
1292 * depends on the board design. Pass the appropriate
1293 * information and let the hardware specific code
1294 * return what is possible given the options
1296 return host->ops->select_drive_strength(card, max_dtr,
1297 host_drv_type,
1298 card_drv_type,
1299 drv_type);
1303 * Apply power to the MMC stack. This is a two-stage process.
1304 * First, we enable power to the card without the clock running.
1305 * We then wait a bit for the power to stabilise. Finally,
1306 * enable the bus drivers and clock to the card.
1308 * We must _NOT_ enable the clock prior to power stablising.
1310 * If a host does all the power sequencing itself, ignore the
1311 * initial MMC_POWER_UP stage.
1313 void mmc_power_up(struct mmc_host *host, u32 ocr)
1315 if (host->ios.power_mode == MMC_POWER_ON)
1316 return;
1318 mmc_pwrseq_pre_power_on(host);
1320 host->ios.vdd = fls(ocr) - 1;
1321 host->ios.power_mode = MMC_POWER_UP;
1322 /* Set initial state and call mmc_set_ios */
1323 mmc_set_initial_state(host);
1325 mmc_set_initial_signal_voltage(host);
1328 * This delay should be sufficient to allow the power supply
1329 * to reach the minimum voltage.
1331 mmc_delay(host->ios.power_delay_ms);
1333 mmc_pwrseq_post_power_on(host);
1335 host->ios.clock = host->f_init;
1337 host->ios.power_mode = MMC_POWER_ON;
1338 mmc_set_ios(host);
1341 * This delay must be at least 74 clock sizes, or 1 ms, or the
1342 * time required to reach a stable voltage.
1344 mmc_delay(host->ios.power_delay_ms);
1347 void mmc_power_off(struct mmc_host *host)
1349 if (host->ios.power_mode == MMC_POWER_OFF)
1350 return;
1352 mmc_pwrseq_power_off(host);
1354 host->ios.clock = 0;
1355 host->ios.vdd = 0;
1357 host->ios.power_mode = MMC_POWER_OFF;
1358 /* Set initial state and call mmc_set_ios */
1359 mmc_set_initial_state(host);
1362 * Some configurations, such as the 802.11 SDIO card in the OLPC
1363 * XO-1.5, require a short delay after poweroff before the card
1364 * can be successfully turned on again.
1366 mmc_delay(1);
1369 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1371 mmc_power_off(host);
1372 /* Wait at least 1 ms according to SD spec */
1373 mmc_delay(1);
1374 mmc_power_up(host, ocr);
1378 * Cleanup when the last reference to the bus operator is dropped.
1380 static void __mmc_release_bus(struct mmc_host *host)
1382 WARN_ON(!host->bus_dead);
1384 host->bus_ops = NULL;
1388 * Increase reference count of bus operator
1390 static inline void mmc_bus_get(struct mmc_host *host)
1392 unsigned long flags;
1394 spin_lock_irqsave(&host->lock, flags);
1395 host->bus_refs++;
1396 spin_unlock_irqrestore(&host->lock, flags);
1400 * Decrease reference count of bus operator and free it if
1401 * it is the last reference.
1403 static inline void mmc_bus_put(struct mmc_host *host)
1405 unsigned long flags;
1407 spin_lock_irqsave(&host->lock, flags);
1408 host->bus_refs--;
1409 if ((host->bus_refs == 0) && host->bus_ops)
1410 __mmc_release_bus(host);
1411 spin_unlock_irqrestore(&host->lock, flags);
1415 * Assign a mmc bus handler to a host. Only one bus handler may control a
1416 * host at any given time.
1418 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1420 unsigned long flags;
1422 WARN_ON(!host->claimed);
1424 spin_lock_irqsave(&host->lock, flags);
1426 WARN_ON(host->bus_ops);
1427 WARN_ON(host->bus_refs);
1429 host->bus_ops = ops;
1430 host->bus_refs = 1;
1431 host->bus_dead = 0;
1433 spin_unlock_irqrestore(&host->lock, flags);
1437 * Remove the current bus handler from a host.
1439 void mmc_detach_bus(struct mmc_host *host)
1441 unsigned long flags;
1443 WARN_ON(!host->claimed);
1444 WARN_ON(!host->bus_ops);
1446 spin_lock_irqsave(&host->lock, flags);
1448 host->bus_dead = 1;
1450 spin_unlock_irqrestore(&host->lock, flags);
1452 mmc_bus_put(host);
1455 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1458 * Prevent system sleep for 5s to allow user space to consume the
1459 * corresponding uevent. This is especially useful, when CD irq is used
1460 * as a system wakeup, but doesn't hurt in other cases.
1462 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1463 __pm_wakeup_event(host->ws, 5000);
1465 host->detect_change = 1;
1466 mmc_schedule_delayed_work(&host->detect, delay);
1470 * mmc_detect_change - process change of state on a MMC socket
1471 * @host: host which changed state.
1472 * @delay: optional delay to wait before detection (jiffies)
1474 * MMC drivers should call this when they detect a card has been
1475 * inserted or removed. The MMC layer will confirm that any
1476 * present card is still functional, and initialize any newly
1477 * inserted.
1479 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1481 _mmc_detect_change(host, delay, true);
1483 EXPORT_SYMBOL(mmc_detect_change);
1485 void mmc_init_erase(struct mmc_card *card)
1487 unsigned int sz;
1489 if (is_power_of_2(card->erase_size))
1490 card->erase_shift = ffs(card->erase_size) - 1;
1491 else
1492 card->erase_shift = 0;
1495 * It is possible to erase an arbitrarily large area of an SD or MMC
1496 * card. That is not desirable because it can take a long time
1497 * (minutes) potentially delaying more important I/O, and also the
1498 * timeout calculations become increasingly hugely over-estimated.
1499 * Consequently, 'pref_erase' is defined as a guide to limit erases
1500 * to that size and alignment.
1502 * For SD cards that define Allocation Unit size, limit erases to one
1503 * Allocation Unit at a time.
1504 * For MMC, have a stab at ai good value and for modern cards it will
1505 * end up being 4MiB. Note that if the value is too small, it can end
1506 * up taking longer to erase. Also note, erase_size is already set to
1507 * High Capacity Erase Size if available when this function is called.
1509 if (mmc_card_sd(card) && card->ssr.au) {
1510 card->pref_erase = card->ssr.au;
1511 card->erase_shift = ffs(card->ssr.au) - 1;
1512 } else if (card->erase_size) {
1513 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1514 if (sz < 128)
1515 card->pref_erase = 512 * 1024 / 512;
1516 else if (sz < 512)
1517 card->pref_erase = 1024 * 1024 / 512;
1518 else if (sz < 1024)
1519 card->pref_erase = 2 * 1024 * 1024 / 512;
1520 else
1521 card->pref_erase = 4 * 1024 * 1024 / 512;
1522 if (card->pref_erase < card->erase_size)
1523 card->pref_erase = card->erase_size;
1524 else {
1525 sz = card->pref_erase % card->erase_size;
1526 if (sz)
1527 card->pref_erase += card->erase_size - sz;
1529 } else
1530 card->pref_erase = 0;
1533 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1534 unsigned int arg, unsigned int qty)
1536 unsigned int erase_timeout;
1538 if (arg == MMC_DISCARD_ARG ||
1539 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1540 erase_timeout = card->ext_csd.trim_timeout;
1541 } else if (card->ext_csd.erase_group_def & 1) {
1542 /* High Capacity Erase Group Size uses HC timeouts */
1543 if (arg == MMC_TRIM_ARG)
1544 erase_timeout = card->ext_csd.trim_timeout;
1545 else
1546 erase_timeout = card->ext_csd.hc_erase_timeout;
1547 } else {
1548 /* CSD Erase Group Size uses write timeout */
1549 unsigned int mult = (10 << card->csd.r2w_factor);
1550 unsigned int timeout_clks = card->csd.taac_clks * mult;
1551 unsigned int timeout_us;
1553 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1554 if (card->csd.taac_ns < 1000000)
1555 timeout_us = (card->csd.taac_ns * mult) / 1000;
1556 else
1557 timeout_us = (card->csd.taac_ns / 1000) * mult;
1560 * ios.clock is only a target. The real clock rate might be
1561 * less but not that much less, so fudge it by multiplying by 2.
1563 timeout_clks <<= 1;
1564 timeout_us += (timeout_clks * 1000) /
1565 (card->host->ios.clock / 1000);
1567 erase_timeout = timeout_us / 1000;
1570 * Theoretically, the calculation could underflow so round up
1571 * to 1ms in that case.
1573 if (!erase_timeout)
1574 erase_timeout = 1;
1577 /* Multiplier for secure operations */
1578 if (arg & MMC_SECURE_ARGS) {
1579 if (arg == MMC_SECURE_ERASE_ARG)
1580 erase_timeout *= card->ext_csd.sec_erase_mult;
1581 else
1582 erase_timeout *= card->ext_csd.sec_trim_mult;
1585 erase_timeout *= qty;
1588 * Ensure at least a 1 second timeout for SPI as per
1589 * 'mmc_set_data_timeout()'
1591 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1592 erase_timeout = 1000;
1594 return erase_timeout;
1597 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1598 unsigned int arg,
1599 unsigned int qty)
1601 unsigned int erase_timeout;
1603 /* for DISCARD none of the below calculation applies.
1604 * the busy timeout is 250msec per discard command.
1606 if (arg == SD_DISCARD_ARG)
1607 return SD_DISCARD_TIMEOUT_MS;
1609 if (card->ssr.erase_timeout) {
1610 /* Erase timeout specified in SD Status Register (SSR) */
1611 erase_timeout = card->ssr.erase_timeout * qty +
1612 card->ssr.erase_offset;
1613 } else {
1615 * Erase timeout not specified in SD Status Register (SSR) so
1616 * use 250ms per write block.
1618 erase_timeout = 250 * qty;
1621 /* Must not be less than 1 second */
1622 if (erase_timeout < 1000)
1623 erase_timeout = 1000;
1625 return erase_timeout;
1628 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1629 unsigned int arg,
1630 unsigned int qty)
1632 if (mmc_card_sd(card))
1633 return mmc_sd_erase_timeout(card, arg, qty);
1634 else
1635 return mmc_mmc_erase_timeout(card, arg, qty);
1638 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1639 unsigned int to, unsigned int arg)
1641 struct mmc_command cmd = {};
1642 unsigned int qty = 0, busy_timeout = 0;
1643 bool use_r1b_resp = false;
1644 int err;
1646 mmc_retune_hold(card->host);
1649 * qty is used to calculate the erase timeout which depends on how many
1650 * erase groups (or allocation units in SD terminology) are affected.
1651 * We count erasing part of an erase group as one erase group.
1652 * For SD, the allocation units are always a power of 2. For MMC, the
1653 * erase group size is almost certainly also power of 2, but it does not
1654 * seem to insist on that in the JEDEC standard, so we fall back to
1655 * division in that case. SD may not specify an allocation unit size,
1656 * in which case the timeout is based on the number of write blocks.
1658 * Note that the timeout for secure trim 2 will only be correct if the
1659 * number of erase groups specified is the same as the total of all
1660 * preceding secure trim 1 commands. Since the power may have been
1661 * lost since the secure trim 1 commands occurred, it is generally
1662 * impossible to calculate the secure trim 2 timeout correctly.
1664 if (card->erase_shift)
1665 qty += ((to >> card->erase_shift) -
1666 (from >> card->erase_shift)) + 1;
1667 else if (mmc_card_sd(card))
1668 qty += to - from + 1;
1669 else
1670 qty += ((to / card->erase_size) -
1671 (from / card->erase_size)) + 1;
1673 if (!mmc_card_blockaddr(card)) {
1674 from <<= 9;
1675 to <<= 9;
1678 if (mmc_card_sd(card))
1679 cmd.opcode = SD_ERASE_WR_BLK_START;
1680 else
1681 cmd.opcode = MMC_ERASE_GROUP_START;
1682 cmd.arg = from;
1683 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1684 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1685 if (err) {
1686 pr_err("mmc_erase: group start error %d, "
1687 "status %#x\n", err, cmd.resp[0]);
1688 err = -EIO;
1689 goto out;
1692 memset(&cmd, 0, sizeof(struct mmc_command));
1693 if (mmc_card_sd(card))
1694 cmd.opcode = SD_ERASE_WR_BLK_END;
1695 else
1696 cmd.opcode = MMC_ERASE_GROUP_END;
1697 cmd.arg = to;
1698 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1699 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1700 if (err) {
1701 pr_err("mmc_erase: group end error %d, status %#x\n",
1702 err, cmd.resp[0]);
1703 err = -EIO;
1704 goto out;
1707 memset(&cmd, 0, sizeof(struct mmc_command));
1708 cmd.opcode = MMC_ERASE;
1709 cmd.arg = arg;
1710 busy_timeout = mmc_erase_timeout(card, arg, qty);
1712 * If the host controller supports busy signalling and the timeout for
1713 * the erase operation does not exceed the max_busy_timeout, we should
1714 * use R1B response. Or we need to prevent the host from doing hw busy
1715 * detection, which is done by converting to a R1 response instead.
1716 * Note, some hosts requires R1B, which also means they are on their own
1717 * when it comes to deal with the busy timeout.
1719 if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1720 card->host->max_busy_timeout &&
1721 busy_timeout > card->host->max_busy_timeout) {
1722 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1723 } else {
1724 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1725 cmd.busy_timeout = busy_timeout;
1726 use_r1b_resp = true;
1729 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1730 if (err) {
1731 pr_err("mmc_erase: erase error %d, status %#x\n",
1732 err, cmd.resp[0]);
1733 err = -EIO;
1734 goto out;
1737 if (mmc_host_is_spi(card->host))
1738 goto out;
1741 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1742 * shall be avoided.
1744 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1745 goto out;
1747 /* Let's poll to find out when the erase operation completes. */
1748 err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1750 out:
1751 mmc_retune_release(card->host);
1752 return err;
1755 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1756 unsigned int *from,
1757 unsigned int *to,
1758 unsigned int nr)
1760 unsigned int from_new = *from, nr_new = nr, rem;
1763 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1764 * to align the erase size efficiently.
1766 if (is_power_of_2(card->erase_size)) {
1767 unsigned int temp = from_new;
1769 from_new = round_up(temp, card->erase_size);
1770 rem = from_new - temp;
1772 if (nr_new > rem)
1773 nr_new -= rem;
1774 else
1775 return 0;
1777 nr_new = round_down(nr_new, card->erase_size);
1778 } else {
1779 rem = from_new % card->erase_size;
1780 if (rem) {
1781 rem = card->erase_size - rem;
1782 from_new += rem;
1783 if (nr_new > rem)
1784 nr_new -= rem;
1785 else
1786 return 0;
1789 rem = nr_new % card->erase_size;
1790 if (rem)
1791 nr_new -= rem;
1794 if (nr_new == 0)
1795 return 0;
1797 *to = from_new + nr_new;
1798 *from = from_new;
1800 return nr_new;
1804 * mmc_erase - erase sectors.
1805 * @card: card to erase
1806 * @from: first sector to erase
1807 * @nr: number of sectors to erase
1808 * @arg: erase command argument
1810 * Caller must claim host before calling this function.
1812 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1813 unsigned int arg)
1815 unsigned int rem, to = from + nr;
1816 int err;
1818 if (!(card->csd.cmdclass & CCC_ERASE))
1819 return -EOPNOTSUPP;
1821 if (!card->erase_size)
1822 return -EOPNOTSUPP;
1824 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1825 return -EOPNOTSUPP;
1827 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1828 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1829 return -EOPNOTSUPP;
1831 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1832 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1833 return -EOPNOTSUPP;
1835 if (arg == MMC_SECURE_ERASE_ARG) {
1836 if (from % card->erase_size || nr % card->erase_size)
1837 return -EINVAL;
1840 if (arg == MMC_ERASE_ARG)
1841 nr = mmc_align_erase_size(card, &from, &to, nr);
1843 if (nr == 0)
1844 return 0;
1846 if (to <= from)
1847 return -EINVAL;
1849 /* 'from' and 'to' are inclusive */
1850 to -= 1;
1853 * Special case where only one erase-group fits in the timeout budget:
1854 * If the region crosses an erase-group boundary on this particular
1855 * case, we will be trimming more than one erase-group which, does not
1856 * fit in the timeout budget of the controller, so we need to split it
1857 * and call mmc_do_erase() twice if necessary. This special case is
1858 * identified by the card->eg_boundary flag.
1860 rem = card->erase_size - (from % card->erase_size);
1861 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1862 err = mmc_do_erase(card, from, from + rem - 1, arg);
1863 from += rem;
1864 if ((err) || (to <= from))
1865 return err;
1868 return mmc_do_erase(card, from, to, arg);
1870 EXPORT_SYMBOL(mmc_erase);
1872 int mmc_can_erase(struct mmc_card *card)
1874 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1875 return 1;
1876 return 0;
1878 EXPORT_SYMBOL(mmc_can_erase);
1880 int mmc_can_trim(struct mmc_card *card)
1882 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1883 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1884 return 1;
1885 return 0;
1887 EXPORT_SYMBOL(mmc_can_trim);
1889 int mmc_can_discard(struct mmc_card *card)
1892 * As there's no way to detect the discard support bit at v4.5
1893 * use the s/w feature support filed.
1895 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1896 return 1;
1897 return 0;
1899 EXPORT_SYMBOL(mmc_can_discard);
1901 int mmc_can_sanitize(struct mmc_card *card)
1903 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1904 return 0;
1905 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1906 return 1;
1907 return 0;
1910 int mmc_can_secure_erase_trim(struct mmc_card *card)
1912 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1913 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1914 return 1;
1915 return 0;
1917 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1919 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1920 unsigned int nr)
1922 if (!card->erase_size)
1923 return 0;
1924 if (from % card->erase_size || nr % card->erase_size)
1925 return 0;
1926 return 1;
1928 EXPORT_SYMBOL(mmc_erase_group_aligned);
1930 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1931 unsigned int arg)
1933 struct mmc_host *host = card->host;
1934 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1935 unsigned int last_timeout = 0;
1936 unsigned int max_busy_timeout = host->max_busy_timeout ?
1937 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1939 if (card->erase_shift) {
1940 max_qty = UINT_MAX >> card->erase_shift;
1941 min_qty = card->pref_erase >> card->erase_shift;
1942 } else if (mmc_card_sd(card)) {
1943 max_qty = UINT_MAX;
1944 min_qty = card->pref_erase;
1945 } else {
1946 max_qty = UINT_MAX / card->erase_size;
1947 min_qty = card->pref_erase / card->erase_size;
1951 * We should not only use 'host->max_busy_timeout' as the limitation
1952 * when deciding the max discard sectors. We should set a balance value
1953 * to improve the erase speed, and it can not get too long timeout at
1954 * the same time.
1956 * Here we set 'card->pref_erase' as the minimal discard sectors no
1957 * matter what size of 'host->max_busy_timeout', but if the
1958 * 'host->max_busy_timeout' is large enough for more discard sectors,
1959 * then we can continue to increase the max discard sectors until we
1960 * get a balance value. In cases when the 'host->max_busy_timeout'
1961 * isn't specified, use the default max erase timeout.
1963 do {
1964 y = 0;
1965 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1966 timeout = mmc_erase_timeout(card, arg, qty + x);
1968 if (qty + x > min_qty && timeout > max_busy_timeout)
1969 break;
1971 if (timeout < last_timeout)
1972 break;
1973 last_timeout = timeout;
1974 y = x;
1976 qty += y;
1977 } while (y);
1979 if (!qty)
1980 return 0;
1983 * When specifying a sector range to trim, chances are we might cross
1984 * an erase-group boundary even if the amount of sectors is less than
1985 * one erase-group.
1986 * If we can only fit one erase-group in the controller timeout budget,
1987 * we have to care that erase-group boundaries are not crossed by a
1988 * single trim operation. We flag that special case with "eg_boundary".
1989 * In all other cases we can just decrement qty and pretend that we
1990 * always touch (qty + 1) erase-groups as a simple optimization.
1992 if (qty == 1)
1993 card->eg_boundary = 1;
1994 else
1995 qty--;
1997 /* Convert qty to sectors */
1998 if (card->erase_shift)
1999 max_discard = qty << card->erase_shift;
2000 else if (mmc_card_sd(card))
2001 max_discard = qty + 1;
2002 else
2003 max_discard = qty * card->erase_size;
2005 return max_discard;
2008 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2010 struct mmc_host *host = card->host;
2011 unsigned int max_discard, max_trim;
2014 * Without erase_group_def set, MMC erase timeout depends on clock
2015 * frequence which can change. In that case, the best choice is
2016 * just the preferred erase size.
2018 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2019 return card->pref_erase;
2021 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2022 if (mmc_can_trim(card)) {
2023 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2024 if (max_trim < max_discard || max_discard == 0)
2025 max_discard = max_trim;
2026 } else if (max_discard < card->erase_size) {
2027 max_discard = 0;
2029 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2030 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2031 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2032 return max_discard;
2034 EXPORT_SYMBOL(mmc_calc_max_discard);
2036 bool mmc_card_is_blockaddr(struct mmc_card *card)
2038 return card ? mmc_card_blockaddr(card) : false;
2040 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2042 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2044 struct mmc_command cmd = {};
2046 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2047 mmc_card_hs400(card) || mmc_card_hs400es(card))
2048 return 0;
2050 cmd.opcode = MMC_SET_BLOCKLEN;
2051 cmd.arg = blocklen;
2052 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2053 return mmc_wait_for_cmd(card->host, &cmd, 5);
2055 EXPORT_SYMBOL(mmc_set_blocklen);
2057 static void mmc_hw_reset_for_init(struct mmc_host *host)
2059 mmc_pwrseq_reset(host);
2061 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2062 return;
2063 host->ops->hw_reset(host);
2067 * mmc_hw_reset - reset the card in hardware
2068 * @host: MMC host to which the card is attached
2070 * Hard reset the card. This function is only for upper layers, like the
2071 * block layer or card drivers. You cannot use it in host drivers (struct
2072 * mmc_card might be gone then).
2074 * Return: 0 on success, -errno on failure
2076 int mmc_hw_reset(struct mmc_host *host)
2078 int ret;
2080 if (!host->card)
2081 return -EINVAL;
2083 mmc_bus_get(host);
2084 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2085 mmc_bus_put(host);
2086 return -EOPNOTSUPP;
2089 ret = host->bus_ops->hw_reset(host);
2090 mmc_bus_put(host);
2092 if (ret < 0)
2093 pr_warn("%s: tried to HW reset card, got error %d\n",
2094 mmc_hostname(host), ret);
2096 return ret;
2098 EXPORT_SYMBOL(mmc_hw_reset);
2100 int mmc_sw_reset(struct mmc_host *host)
2102 int ret;
2104 if (!host->card)
2105 return -EINVAL;
2107 mmc_bus_get(host);
2108 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2109 mmc_bus_put(host);
2110 return -EOPNOTSUPP;
2113 ret = host->bus_ops->sw_reset(host);
2114 mmc_bus_put(host);
2116 if (ret)
2117 pr_warn("%s: tried to SW reset card, got error %d\n",
2118 mmc_hostname(host), ret);
2120 return ret;
2122 EXPORT_SYMBOL(mmc_sw_reset);
2124 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2126 host->f_init = freq;
2128 pr_debug("%s: %s: trying to init card at %u Hz\n",
2129 mmc_hostname(host), __func__, host->f_init);
2131 mmc_power_up(host, host->ocr_avail);
2134 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2135 * do a hardware reset if possible.
2137 mmc_hw_reset_for_init(host);
2140 * sdio_reset sends CMD52 to reset card. Since we do not know
2141 * if the card is being re-initialized, just send it. CMD52
2142 * should be ignored by SD/eMMC cards.
2143 * Skip it if we already know that we do not support SDIO commands
2145 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2146 sdio_reset(host);
2148 mmc_go_idle(host);
2150 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2151 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2152 goto out;
2153 if (mmc_card_sd_express(host))
2154 return 0;
2157 /* Order's important: probe SDIO, then SD, then MMC */
2158 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2159 if (!mmc_attach_sdio(host))
2160 return 0;
2162 if (!(host->caps2 & MMC_CAP2_NO_SD))
2163 if (!mmc_attach_sd(host))
2164 return 0;
2166 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2167 if (!mmc_attach_mmc(host))
2168 return 0;
2170 out:
2171 mmc_power_off(host);
2172 return -EIO;
2175 int _mmc_detect_card_removed(struct mmc_host *host)
2177 int ret;
2179 if (!host->card || mmc_card_removed(host->card))
2180 return 1;
2182 ret = host->bus_ops->alive(host);
2185 * Card detect status and alive check may be out of sync if card is
2186 * removed slowly, when card detect switch changes while card/slot
2187 * pads are still contacted in hardware (refer to "SD Card Mechanical
2188 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2189 * detect work 200ms later for this case.
2191 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2192 mmc_detect_change(host, msecs_to_jiffies(200));
2193 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2196 if (ret) {
2197 mmc_card_set_removed(host->card);
2198 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2201 return ret;
2204 int mmc_detect_card_removed(struct mmc_host *host)
2206 struct mmc_card *card = host->card;
2207 int ret;
2209 WARN_ON(!host->claimed);
2211 if (!card)
2212 return 1;
2214 if (!mmc_card_is_removable(host))
2215 return 0;
2217 ret = mmc_card_removed(card);
2219 * The card will be considered unchanged unless we have been asked to
2220 * detect a change or host requires polling to provide card detection.
2222 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2223 return ret;
2225 host->detect_change = 0;
2226 if (!ret) {
2227 ret = _mmc_detect_card_removed(host);
2228 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2230 * Schedule a detect work as soon as possible to let a
2231 * rescan handle the card removal.
2233 cancel_delayed_work(&host->detect);
2234 _mmc_detect_change(host, 0, false);
2238 return ret;
2240 EXPORT_SYMBOL(mmc_detect_card_removed);
2242 void mmc_rescan(struct work_struct *work)
2244 struct mmc_host *host =
2245 container_of(work, struct mmc_host, detect.work);
2246 int i;
2248 if (host->rescan_disable)
2249 return;
2251 /* If there is a non-removable card registered, only scan once */
2252 if (!mmc_card_is_removable(host) && host->rescan_entered)
2253 return;
2254 host->rescan_entered = 1;
2256 if (host->trigger_card_event && host->ops->card_event) {
2257 mmc_claim_host(host);
2258 host->ops->card_event(host);
2259 mmc_release_host(host);
2260 host->trigger_card_event = false;
2263 mmc_bus_get(host);
2265 /* Verify a registered card to be functional, else remove it. */
2266 if (host->bus_ops && !host->bus_dead)
2267 host->bus_ops->detect(host);
2269 host->detect_change = 0;
2272 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2273 * the card is no longer present.
2275 mmc_bus_put(host);
2276 mmc_bus_get(host);
2278 /* if there still is a card present, stop here */
2279 if (host->bus_ops != NULL) {
2280 mmc_bus_put(host);
2281 goto out;
2285 * Only we can add a new handler, so it's safe to
2286 * release the lock here.
2288 mmc_bus_put(host);
2290 mmc_claim_host(host);
2291 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2292 host->ops->get_cd(host) == 0) {
2293 mmc_power_off(host);
2294 mmc_release_host(host);
2295 goto out;
2298 /* If an SD express card is present, then leave it as is. */
2299 if (mmc_card_sd_express(host)) {
2300 mmc_release_host(host);
2301 goto out;
2304 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2305 unsigned int freq = freqs[i];
2306 if (freq > host->f_max) {
2307 if (i + 1 < ARRAY_SIZE(freqs))
2308 continue;
2309 freq = host->f_max;
2311 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2312 break;
2313 if (freqs[i] <= host->f_min)
2314 break;
2316 mmc_release_host(host);
2318 out:
2319 if (host->caps & MMC_CAP_NEEDS_POLL)
2320 mmc_schedule_delayed_work(&host->detect, HZ);
2323 void mmc_start_host(struct mmc_host *host)
2325 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2326 host->rescan_disable = 0;
2328 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2329 mmc_claim_host(host);
2330 mmc_power_up(host, host->ocr_avail);
2331 mmc_release_host(host);
2334 mmc_gpiod_request_cd_irq(host);
2335 _mmc_detect_change(host, 0, false);
2338 void mmc_stop_host(struct mmc_host *host)
2340 if (host->slot.cd_irq >= 0) {
2341 mmc_gpio_set_cd_wake(host, false);
2342 disable_irq(host->slot.cd_irq);
2345 host->rescan_disable = 1;
2346 cancel_delayed_work_sync(&host->detect);
2348 /* clear pm flags now and let card drivers set them as needed */
2349 host->pm_flags = 0;
2351 mmc_bus_get(host);
2352 if (host->bus_ops && !host->bus_dead) {
2353 /* Calling bus_ops->remove() with a claimed host can deadlock */
2354 host->bus_ops->remove(host);
2355 mmc_claim_host(host);
2356 mmc_detach_bus(host);
2357 mmc_power_off(host);
2358 mmc_release_host(host);
2359 mmc_bus_put(host);
2360 return;
2362 mmc_bus_put(host);
2364 mmc_claim_host(host);
2365 mmc_power_off(host);
2366 mmc_release_host(host);
2369 #ifdef CONFIG_PM_SLEEP
2370 /* Do the card removal on suspend if card is assumed removeable
2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372 to sync the card.
2374 static int mmc_pm_notify(struct notifier_block *notify_block,
2375 unsigned long mode, void *unused)
2377 struct mmc_host *host = container_of(
2378 notify_block, struct mmc_host, pm_notify);
2379 unsigned long flags;
2380 int err = 0;
2382 switch (mode) {
2383 case PM_HIBERNATION_PREPARE:
2384 case PM_SUSPEND_PREPARE:
2385 case PM_RESTORE_PREPARE:
2386 spin_lock_irqsave(&host->lock, flags);
2387 host->rescan_disable = 1;
2388 spin_unlock_irqrestore(&host->lock, flags);
2389 cancel_delayed_work_sync(&host->detect);
2391 if (!host->bus_ops)
2392 break;
2394 /* Validate prerequisites for suspend */
2395 if (host->bus_ops->pre_suspend)
2396 err = host->bus_ops->pre_suspend(host);
2397 if (!err)
2398 break;
2400 if (!mmc_card_is_removable(host)) {
2401 dev_warn(mmc_dev(host),
2402 "pre_suspend failed for non-removable host: "
2403 "%d\n", err);
2404 /* Avoid removing non-removable hosts */
2405 break;
2408 /* Calling bus_ops->remove() with a claimed host can deadlock */
2409 host->bus_ops->remove(host);
2410 mmc_claim_host(host);
2411 mmc_detach_bus(host);
2412 mmc_power_off(host);
2413 mmc_release_host(host);
2414 host->pm_flags = 0;
2415 break;
2417 case PM_POST_SUSPEND:
2418 case PM_POST_HIBERNATION:
2419 case PM_POST_RESTORE:
2421 spin_lock_irqsave(&host->lock, flags);
2422 host->rescan_disable = 0;
2423 spin_unlock_irqrestore(&host->lock, flags);
2424 _mmc_detect_change(host, 0, false);
2428 return 0;
2431 void mmc_register_pm_notifier(struct mmc_host *host)
2433 host->pm_notify.notifier_call = mmc_pm_notify;
2434 register_pm_notifier(&host->pm_notify);
2437 void mmc_unregister_pm_notifier(struct mmc_host *host)
2439 unregister_pm_notifier(&host->pm_notify);
2441 #endif
2443 static int __init mmc_init(void)
2445 int ret;
2447 ret = mmc_register_bus();
2448 if (ret)
2449 return ret;
2451 ret = mmc_register_host_class();
2452 if (ret)
2453 goto unregister_bus;
2455 ret = sdio_register_bus();
2456 if (ret)
2457 goto unregister_host_class;
2459 return 0;
2461 unregister_host_class:
2462 mmc_unregister_host_class();
2463 unregister_bus:
2464 mmc_unregister_bus();
2465 return ret;
2468 static void __exit mmc_exit(void)
2470 sdio_unregister_bus();
2471 mmc_unregister_host_class();
2472 mmc_unregister_bus();
2475 subsys_initcall(mmc_init);
2476 module_exit(mmc_exit);
2478 MODULE_LICENSE("GPL");