1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/core/core.c
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
49 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
50 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
51 #define SD_DISCARD_TIMEOUT_MS (250)
53 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
56 * Enabling software CRCs on the data blocks can be a significant (30%)
57 * performance cost, and for other reasons may not always be desired.
58 * So we allow it it to be disabled.
61 module_param(use_spi_crc
, bool, 0);
63 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
67 * We use the system_freezable_wq, because of two reasons.
68 * First, it allows several works (not the same work item) to be
69 * executed simultaneously. Second, the queue becomes frozen when
70 * userspace becomes frozen during system PM.
72 return queue_delayed_work(system_freezable_wq
, work
, delay
);
75 #ifdef CONFIG_FAIL_MMC_REQUEST
78 * Internal function. Inject random data errors.
79 * If mmc_data is NULL no errors are injected.
81 static void mmc_should_fail_request(struct mmc_host
*host
,
82 struct mmc_request
*mrq
)
84 struct mmc_command
*cmd
= mrq
->cmd
;
85 struct mmc_data
*data
= mrq
->data
;
86 static const int data_errors
[] = {
95 if ((cmd
&& cmd
->error
) || data
->error
||
96 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
99 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
100 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
103 #else /* CONFIG_FAIL_MMC_REQUEST */
105 static inline void mmc_should_fail_request(struct mmc_host
*host
,
106 struct mmc_request
*mrq
)
110 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
114 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
115 complete_all(&mrq
->cmd_completion
);
118 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
120 if (!mrq
->cap_cmd_during_tfr
)
123 mmc_complete_cmd(mrq
);
125 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
126 mmc_hostname(host
), mrq
->cmd
->opcode
);
128 EXPORT_SYMBOL(mmc_command_done
);
131 * mmc_request_done - finish processing an MMC request
132 * @host: MMC host which completed request
133 * @mrq: MMC request which request
135 * MMC drivers should call this function when they have completed
136 * their processing of a request.
138 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
140 struct mmc_command
*cmd
= mrq
->cmd
;
141 int err
= cmd
->error
;
143 /* Flag re-tuning needed on CRC errors */
144 if (cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
145 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
&&
146 !host
->retune_crc_disable
&&
147 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
148 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
149 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
150 mmc_retune_needed(host
);
152 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
153 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
157 if (host
->ongoing_mrq
== mrq
)
158 host
->ongoing_mrq
= NULL
;
160 mmc_complete_cmd(mrq
);
162 trace_mmc_request_done(host
, mrq
);
165 * We list various conditions for the command to be considered
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
173 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
174 mmc_should_fail_request(host
, mrq
);
176 if (!host
->ongoing_mrq
)
177 led_trigger_event(host
->led
, LED_OFF
);
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host
), mrq
->sbc
->opcode
,
183 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
184 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host
), cmd
->opcode
, err
,
189 cmd
->resp
[0], cmd
->resp
[1],
190 cmd
->resp
[2], cmd
->resp
[3]);
193 pr_debug("%s: %d bytes transferred: %d\n",
195 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host
), mrq
->stop
->opcode
,
202 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
203 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
214 EXPORT_SYMBOL(mmc_request_done
);
216 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err
= mmc_retune(host
);
223 mrq
->cmd
->error
= err
;
224 mmc_request_done(host
, mrq
);
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
233 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
234 host
->ops
->card_busy
) {
235 int tries
= 500; /* Wait aprox 500ms at maximum */
237 while (host
->ops
->card_busy(host
) && --tries
)
241 mrq
->cmd
->error
= -EBUSY
;
242 mmc_request_done(host
, mrq
);
247 if (mrq
->cap_cmd_during_tfr
) {
248 host
->ongoing_mrq
= mrq
;
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
253 reinit_completion(&mrq
->cmd_completion
);
256 trace_mmc_request_start(host
, mrq
);
259 host
->cqe_ops
->cqe_off(host
);
261 host
->ops
->request(host
, mrq
);
264 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
,
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host
), mrq
->sbc
->opcode
,
270 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host
), cqe
? "CQE direct " : "",
276 mrq
->cmd
->opcode
, mrq
->cmd
->arg
, mrq
->cmd
->flags
);
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host
), mrq
->tag
, mrq
->data
->blk_addr
);
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host
), mrq
->data
->blksz
,
286 mrq
->data
->blocks
, mrq
->data
->flags
,
287 mrq
->data
->timeout_ns
/ 1000000,
288 mrq
->data
->timeout_clks
);
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host
), mrq
->stop
->opcode
,
294 mrq
->stop
->arg
, mrq
->stop
->flags
);
298 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
300 unsigned int i
, sz
= 0;
301 struct scatterlist
*sg
;
306 mrq
->cmd
->data
= mrq
->data
;
313 if (mrq
->data
->blksz
> host
->max_blk_size
||
314 mrq
->data
->blocks
> host
->max_blk_count
||
315 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
318 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
320 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
323 mrq
->data
->error
= 0;
324 mrq
->data
->mrq
= mrq
;
326 mrq
->data
->stop
= mrq
->stop
;
327 mrq
->stop
->error
= 0;
328 mrq
->stop
->mrq
= mrq
;
335 int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
339 init_completion(&mrq
->cmd_completion
);
341 mmc_retune_hold(host
);
343 if (mmc_card_removed(host
->card
))
346 mmc_mrq_pr_debug(host
, mrq
, false);
348 WARN_ON(!host
->claimed
);
350 err
= mmc_mrq_prep(host
, mrq
);
354 led_trigger_event(host
->led
, LED_FULL
);
355 __mmc_start_request(host
, mrq
);
359 EXPORT_SYMBOL(mmc_start_request
);
361 static void mmc_wait_done(struct mmc_request
*mrq
)
363 complete(&mrq
->completion
);
366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
368 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
371 * If there is an ongoing transfer, wait for the command line to become
374 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
375 wait_for_completion(&ongoing_mrq
->cmd_completion
);
378 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
382 mmc_wait_ongoing_tfr_cmd(host
);
384 init_completion(&mrq
->completion
);
385 mrq
->done
= mmc_wait_done
;
387 err
= mmc_start_request(host
, mrq
);
389 mrq
->cmd
->error
= err
;
390 mmc_complete_cmd(mrq
);
391 complete(&mrq
->completion
);
397 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
399 struct mmc_command
*cmd
;
402 wait_for_completion(&mrq
->completion
);
406 if (!cmd
->error
|| !cmd
->retries
||
407 mmc_card_removed(host
->card
))
410 mmc_retune_recheck(host
);
412 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
416 __mmc_start_request(host
, mrq
);
419 mmc_retune_release(host
);
421 EXPORT_SYMBOL(mmc_wait_for_req_done
);
424 * mmc_cqe_start_req - Start a CQE request.
425 * @host: MMC host to start the request
426 * @mrq: request to start
428 * Start the request, re-tuning if needed and it is possible. Returns an error
429 * code if the request fails to start or -EBUSY if CQE is busy.
431 int mmc_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
436 * CQE cannot process re-tuning commands. Caller must hold retuning
437 * while CQE is in use. Re-tuning can happen here only when CQE has no
438 * active requests i.e. this is the first. Note, re-tuning will call
441 err
= mmc_retune(host
);
447 mmc_mrq_pr_debug(host
, mrq
, true);
449 err
= mmc_mrq_prep(host
, mrq
);
453 err
= host
->cqe_ops
->cqe_request(host
, mrq
);
457 trace_mmc_request_start(host
, mrq
);
463 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 mmc_hostname(host
), mrq
->cmd
->opcode
, err
);
466 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 mmc_hostname(host
), mrq
->tag
, err
);
471 EXPORT_SYMBOL(mmc_cqe_start_req
);
474 * mmc_cqe_request_done - CQE has finished processing an MMC request
475 * @host: MMC host which completed request
476 * @mrq: MMC request which completed
478 * CQE drivers should call this function when they have completed
479 * their processing of a request.
481 void mmc_cqe_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
483 mmc_should_fail_request(host
, mrq
);
485 /* Flag re-tuning needed on CRC errors */
486 if ((mrq
->cmd
&& mrq
->cmd
->error
== -EILSEQ
) ||
487 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
))
488 mmc_retune_needed(host
);
490 trace_mmc_request_done(host
, mrq
);
493 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->error
);
496 pr_debug("%s: CQE transfer done tag %d\n",
497 mmc_hostname(host
), mrq
->tag
);
501 pr_debug("%s: %d bytes transferred: %d\n",
503 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
508 EXPORT_SYMBOL(mmc_cqe_request_done
);
511 * mmc_cqe_post_req - CQE post process of a completed MMC request
513 * @mrq: MMC request to be processed
515 void mmc_cqe_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
517 if (host
->cqe_ops
->cqe_post_req
)
518 host
->cqe_ops
->cqe_post_req(host
, mrq
);
520 EXPORT_SYMBOL(mmc_cqe_post_req
);
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT 1000
526 * mmc_cqe_recovery - Recover from CQE errors.
527 * @host: MMC host to recover
529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
530 * in eMMC, and discarding the queue in CQE. CQE must call
531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532 * fails to discard its queue.
534 int mmc_cqe_recovery(struct mmc_host
*host
)
536 struct mmc_command cmd
;
539 mmc_retune_hold_now(host
);
542 * Recovery is expected seldom, if at all, but it reduces performance,
543 * so make sure it is not completely silent.
545 pr_warn("%s: running CQE recovery\n", mmc_hostname(host
));
547 host
->cqe_ops
->cqe_recovery_start(host
);
549 memset(&cmd
, 0, sizeof(cmd
));
550 cmd
.opcode
= MMC_STOP_TRANSMISSION
,
551 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
,
552 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
553 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
554 mmc_wait_for_cmd(host
, &cmd
, 0);
556 memset(&cmd
, 0, sizeof(cmd
));
557 cmd
.opcode
= MMC_CMDQ_TASK_MGMT
;
558 cmd
.arg
= 1; /* Discard entire queue */
559 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
560 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
561 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
562 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
564 host
->cqe_ops
->cqe_recovery_finish(host
);
566 mmc_retune_release(host
);
570 EXPORT_SYMBOL(mmc_cqe_recovery
);
573 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
577 * mmc_is_req_done() is used with requests that have
578 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
579 * starting a request and before waiting for it to complete. That is,
580 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
581 * and before mmc_wait_for_req_done(). If it is called at other times the
582 * result is not meaningful.
584 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
586 return completion_done(&mrq
->completion
);
588 EXPORT_SYMBOL(mmc_is_req_done
);
591 * mmc_wait_for_req - start a request and wait for completion
592 * @host: MMC host to start command
593 * @mrq: MMC request to start
595 * Start a new MMC custom command request for a host, and wait
596 * for the command to complete. In the case of 'cap_cmd_during_tfr'
597 * requests, the transfer is ongoing and the caller can issue further
598 * commands that do not use the data lines, and then wait by calling
599 * mmc_wait_for_req_done().
600 * Does not attempt to parse the response.
602 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
604 __mmc_start_req(host
, mrq
);
606 if (!mrq
->cap_cmd_during_tfr
)
607 mmc_wait_for_req_done(host
, mrq
);
609 EXPORT_SYMBOL(mmc_wait_for_req
);
612 * mmc_wait_for_cmd - start a command and wait for completion
613 * @host: MMC host to start command
614 * @cmd: MMC command to start
615 * @retries: maximum number of retries
617 * Start a new MMC command for a host, and wait for the command
618 * to complete. Return any error that occurred while the command
619 * was executing. Do not attempt to parse the response.
621 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
623 struct mmc_request mrq
= {};
625 WARN_ON(!host
->claimed
);
627 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
628 cmd
->retries
= retries
;
633 mmc_wait_for_req(host
, &mrq
);
638 EXPORT_SYMBOL(mmc_wait_for_cmd
);
641 * mmc_set_data_timeout - set the timeout for a data command
642 * @data: data phase for command
643 * @card: the MMC card associated with the data transfer
645 * Computes the data timeout parameters according to the
646 * correct algorithm given the card type.
648 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
653 * SDIO cards only define an upper 1 s limit on access.
655 if (mmc_card_sdio(card
)) {
656 data
->timeout_ns
= 1000000000;
657 data
->timeout_clks
= 0;
662 * SD cards use a 100 multiplier rather than 10
664 mult
= mmc_card_sd(card
) ? 100 : 10;
667 * Scale up the multiplier (and therefore the timeout) by
668 * the r2w factor for writes.
670 if (data
->flags
& MMC_DATA_WRITE
)
671 mult
<<= card
->csd
.r2w_factor
;
673 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
674 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
677 * SD cards also have an upper limit on the timeout.
679 if (mmc_card_sd(card
)) {
680 unsigned int timeout_us
, limit_us
;
682 timeout_us
= data
->timeout_ns
/ 1000;
683 if (card
->host
->ios
.clock
)
684 timeout_us
+= data
->timeout_clks
* 1000 /
685 (card
->host
->ios
.clock
/ 1000);
687 if (data
->flags
& MMC_DATA_WRITE
)
689 * The MMC spec "It is strongly recommended
690 * for hosts to implement more than 500ms
691 * timeout value even if the card indicates
692 * the 250ms maximum busy length." Even the
693 * previous value of 300ms is known to be
694 * insufficient for some cards.
701 * SDHC cards always use these fixed values.
703 if (timeout_us
> limit_us
) {
704 data
->timeout_ns
= limit_us
* 1000;
705 data
->timeout_clks
= 0;
708 /* assign limit value if invalid */
710 data
->timeout_ns
= limit_us
* 1000;
714 * Some cards require longer data read timeout than indicated in CSD.
715 * Address this by setting the read timeout to a "reasonably high"
716 * value. For the cards tested, 600ms has proven enough. If necessary,
717 * this value can be increased if other problematic cards require this.
719 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
720 data
->timeout_ns
= 600000000;
721 data
->timeout_clks
= 0;
725 * Some cards need very high timeouts if driven in SPI mode.
726 * The worst observed timeout was 900ms after writing a
727 * continuous stream of data until the internal logic
730 if (mmc_host_is_spi(card
->host
)) {
731 if (data
->flags
& MMC_DATA_WRITE
) {
732 if (data
->timeout_ns
< 1000000000)
733 data
->timeout_ns
= 1000000000; /* 1s */
735 if (data
->timeout_ns
< 100000000)
736 data
->timeout_ns
= 100000000; /* 100ms */
740 EXPORT_SYMBOL(mmc_set_data_timeout
);
743 * Allow claiming an already claimed host if the context is the same or there is
744 * no context but the task is the same.
746 static inline bool mmc_ctx_matches(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
747 struct task_struct
*task
)
749 return host
->claimer
== ctx
||
750 (!ctx
&& task
&& host
->claimer
->task
== task
);
753 static inline void mmc_ctx_set_claimer(struct mmc_host
*host
,
755 struct task_struct
*task
)
757 if (!host
->claimer
) {
761 host
->claimer
= &host
->default_ctx
;
764 host
->claimer
->task
= task
;
768 * __mmc_claim_host - exclusively claim a host
769 * @host: mmc host to claim
770 * @ctx: context that claims the host or NULL in which case the default
771 * context will be used
772 * @abort: whether or not the operation should be aborted
774 * Claim a host for a set of operations. If @abort is non null and
775 * dereference a non-zero value then this will return prematurely with
776 * that non-zero value without acquiring the lock. Returns zero
777 * with the lock held otherwise.
779 int __mmc_claim_host(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
782 struct task_struct
*task
= ctx
? NULL
: current
;
783 DECLARE_WAITQUEUE(wait
, current
);
790 add_wait_queue(&host
->wq
, &wait
);
791 spin_lock_irqsave(&host
->lock
, flags
);
793 set_current_state(TASK_UNINTERRUPTIBLE
);
794 stop
= abort
? atomic_read(abort
) : 0;
795 if (stop
|| !host
->claimed
|| mmc_ctx_matches(host
, ctx
, task
))
797 spin_unlock_irqrestore(&host
->lock
, flags
);
799 spin_lock_irqsave(&host
->lock
, flags
);
801 set_current_state(TASK_RUNNING
);
804 mmc_ctx_set_claimer(host
, ctx
, task
);
805 host
->claim_cnt
+= 1;
806 if (host
->claim_cnt
== 1)
810 spin_unlock_irqrestore(&host
->lock
, flags
);
811 remove_wait_queue(&host
->wq
, &wait
);
814 pm_runtime_get_sync(mmc_dev(host
));
818 EXPORT_SYMBOL(__mmc_claim_host
);
821 * mmc_release_host - release a host
822 * @host: mmc host to release
824 * Release a MMC host, allowing others to claim the host
825 * for their operations.
827 void mmc_release_host(struct mmc_host
*host
)
831 WARN_ON(!host
->claimed
);
833 spin_lock_irqsave(&host
->lock
, flags
);
834 if (--host
->claim_cnt
) {
835 /* Release for nested claim */
836 spin_unlock_irqrestore(&host
->lock
, flags
);
839 host
->claimer
->task
= NULL
;
840 host
->claimer
= NULL
;
841 spin_unlock_irqrestore(&host
->lock
, flags
);
843 pm_runtime_mark_last_busy(mmc_dev(host
));
844 if (host
->caps
& MMC_CAP_SYNC_RUNTIME_PM
)
845 pm_runtime_put_sync_suspend(mmc_dev(host
));
847 pm_runtime_put_autosuspend(mmc_dev(host
));
850 EXPORT_SYMBOL(mmc_release_host
);
853 * This is a helper function, which fetches a runtime pm reference for the
854 * card device and also claims the host.
856 void mmc_get_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
858 pm_runtime_get_sync(&card
->dev
);
859 __mmc_claim_host(card
->host
, ctx
, NULL
);
861 EXPORT_SYMBOL(mmc_get_card
);
864 * This is a helper function, which releases the host and drops the runtime
865 * pm reference for the card device.
867 void mmc_put_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
869 struct mmc_host
*host
= card
->host
;
871 WARN_ON(ctx
&& host
->claimer
!= ctx
);
873 mmc_release_host(host
);
874 pm_runtime_mark_last_busy(&card
->dev
);
875 pm_runtime_put_autosuspend(&card
->dev
);
877 EXPORT_SYMBOL(mmc_put_card
);
880 * Internal function that does the actual ios call to the host driver,
881 * optionally printing some debug output.
883 static inline void mmc_set_ios(struct mmc_host
*host
)
885 struct mmc_ios
*ios
= &host
->ios
;
887 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
888 "width %u timing %u\n",
889 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
890 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
891 1 << ios
->bus_width
, ios
->timing
);
893 host
->ops
->set_ios(host
, ios
);
897 * Control chip select pin on a host.
899 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
901 host
->ios
.chip_select
= mode
;
906 * Sets the host clock to the highest possible frequency that
909 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
911 WARN_ON(hz
&& hz
< host
->f_min
);
913 if (hz
> host
->f_max
)
916 host
->ios
.clock
= hz
;
920 int mmc_execute_tuning(struct mmc_card
*card
)
922 struct mmc_host
*host
= card
->host
;
926 if (!host
->ops
->execute_tuning
)
930 host
->cqe_ops
->cqe_off(host
);
932 if (mmc_card_mmc(card
))
933 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
935 opcode
= MMC_SEND_TUNING_BLOCK
;
937 err
= host
->ops
->execute_tuning(host
, opcode
);
940 pr_err("%s: tuning execution failed: %d\n",
941 mmc_hostname(host
), err
);
943 mmc_retune_enable(host
);
949 * Change the bus mode (open drain/push-pull) of a host.
951 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
953 host
->ios
.bus_mode
= mode
;
958 * Change data bus width of a host.
960 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
962 host
->ios
.bus_width
= width
;
967 * Set initial state after a power cycle or a hw_reset.
969 void mmc_set_initial_state(struct mmc_host
*host
)
972 host
->cqe_ops
->cqe_off(host
);
974 mmc_retune_disable(host
);
976 if (mmc_host_is_spi(host
))
977 host
->ios
.chip_select
= MMC_CS_HIGH
;
979 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
980 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
981 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
982 host
->ios
.timing
= MMC_TIMING_LEGACY
;
983 host
->ios
.drv_type
= 0;
984 host
->ios
.enhanced_strobe
= false;
987 * Make sure we are in non-enhanced strobe mode before we
988 * actually enable it in ext_csd.
990 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
991 host
->ops
->hs400_enhanced_strobe
)
992 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
998 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1000 * @low_bits: prefer low bits in boundary cases
1002 * This function returns the OCR bit number according to the provided @vdd
1003 * value. If conversion is not possible a negative errno value returned.
1005 * Depending on the @low_bits flag the function prefers low or high OCR bits
1006 * on boundary voltages. For example,
1007 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1008 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1010 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1012 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1014 const int max_bit
= ilog2(MMC_VDD_35_36
);
1017 if (vdd
< 1650 || vdd
> 3600)
1020 if (vdd
>= 1650 && vdd
<= 1950)
1021 return ilog2(MMC_VDD_165_195
);
1026 /* Base 2000 mV, step 100 mV, bit's base 8. */
1027 bit
= (vdd
- 2000) / 100 + 8;
1034 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1035 * @vdd_min: minimum voltage value (mV)
1036 * @vdd_max: maximum voltage value (mV)
1038 * This function returns the OCR mask bits according to the provided @vdd_min
1039 * and @vdd_max values. If conversion is not possible the function returns 0.
1041 * Notes wrt boundary cases:
1042 * This function sets the OCR bits for all boundary voltages, for example
1043 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1044 * MMC_VDD_34_35 mask.
1046 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1050 if (vdd_max
< vdd_min
)
1053 /* Prefer high bits for the boundary vdd_max values. */
1054 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1058 /* Prefer low bits for the boundary vdd_min values. */
1059 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1063 /* Fill the mask, from max bit to min bit. */
1064 while (vdd_max
>= vdd_min
)
1065 mask
|= 1 << vdd_max
--;
1070 static int mmc_of_get_func_num(struct device_node
*node
)
1075 ret
= of_property_read_u32(node
, "reg", ®
);
1082 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1085 struct device_node
*node
;
1087 if (!host
->parent
|| !host
->parent
->of_node
)
1090 for_each_child_of_node(host
->parent
->of_node
, node
) {
1091 if (mmc_of_get_func_num(node
) == func_num
)
1099 * Mask off any voltages we don't support and select
1100 * the lowest voltage
1102 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1107 * Sanity check the voltages that the card claims to
1111 dev_warn(mmc_dev(host
),
1112 "card claims to support voltages below defined range\n");
1116 ocr
&= host
->ocr_avail
;
1118 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1122 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1125 mmc_power_cycle(host
, ocr
);
1129 if (bit
!= host
->ios
.vdd
)
1130 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1136 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1139 int old_signal_voltage
= host
->ios
.signal_voltage
;
1141 host
->ios
.signal_voltage
= signal_voltage
;
1142 if (host
->ops
->start_signal_voltage_switch
)
1143 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1146 host
->ios
.signal_voltage
= old_signal_voltage
;
1152 void mmc_set_initial_signal_voltage(struct mmc_host
*host
)
1154 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1155 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1156 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1157 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1158 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1159 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1160 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1163 int mmc_host_set_uhs_voltage(struct mmc_host
*host
)
1168 * During a signal voltage level switch, the clock must be gated
1169 * for 5 ms according to the SD spec
1171 clock
= host
->ios
.clock
;
1172 host
->ios
.clock
= 0;
1175 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1178 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1180 host
->ios
.clock
= clock
;
1186 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1188 struct mmc_command cmd
= {};
1192 * If we cannot switch voltages, return failure so the caller
1193 * can continue without UHS mode
1195 if (!host
->ops
->start_signal_voltage_switch
)
1197 if (!host
->ops
->card_busy
)
1198 pr_warn("%s: cannot verify signal voltage switch\n",
1199 mmc_hostname(host
));
1201 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1203 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1205 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1209 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1213 * The card should drive cmd and dat[0:3] low immediately
1214 * after the response of cmd11, but wait 1 ms to be sure
1217 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1222 if (mmc_host_set_uhs_voltage(host
)) {
1224 * Voltages may not have been switched, but we've already
1225 * sent CMD11, so a power cycle is required anyway
1231 /* Wait for at least 1 ms according to spec */
1235 * Failure to switch is indicated by the card holding
1238 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1243 pr_debug("%s: Signal voltage switch failed, "
1244 "power cycling card\n", mmc_hostname(host
));
1245 mmc_power_cycle(host
, ocr
);
1252 * Select timing parameters for host.
1254 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1256 host
->ios
.timing
= timing
;
1261 * Select appropriate driver type for host.
1263 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1265 host
->ios
.drv_type
= drv_type
;
1269 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1270 int card_drv_type
, int *drv_type
)
1272 struct mmc_host
*host
= card
->host
;
1273 int host_drv_type
= SD_DRIVER_TYPE_B
;
1277 if (!host
->ops
->select_drive_strength
)
1280 /* Use SD definition of driver strength for hosts */
1281 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1282 host_drv_type
|= SD_DRIVER_TYPE_A
;
1284 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1285 host_drv_type
|= SD_DRIVER_TYPE_C
;
1287 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1288 host_drv_type
|= SD_DRIVER_TYPE_D
;
1291 * The drive strength that the hardware can support
1292 * depends on the board design. Pass the appropriate
1293 * information and let the hardware specific code
1294 * return what is possible given the options
1296 return host
->ops
->select_drive_strength(card
, max_dtr
,
1303 * Apply power to the MMC stack. This is a two-stage process.
1304 * First, we enable power to the card without the clock running.
1305 * We then wait a bit for the power to stabilise. Finally,
1306 * enable the bus drivers and clock to the card.
1308 * We must _NOT_ enable the clock prior to power stablising.
1310 * If a host does all the power sequencing itself, ignore the
1311 * initial MMC_POWER_UP stage.
1313 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1315 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1318 mmc_pwrseq_pre_power_on(host
);
1320 host
->ios
.vdd
= fls(ocr
) - 1;
1321 host
->ios
.power_mode
= MMC_POWER_UP
;
1322 /* Set initial state and call mmc_set_ios */
1323 mmc_set_initial_state(host
);
1325 mmc_set_initial_signal_voltage(host
);
1328 * This delay should be sufficient to allow the power supply
1329 * to reach the minimum voltage.
1331 mmc_delay(host
->ios
.power_delay_ms
);
1333 mmc_pwrseq_post_power_on(host
);
1335 host
->ios
.clock
= host
->f_init
;
1337 host
->ios
.power_mode
= MMC_POWER_ON
;
1341 * This delay must be at least 74 clock sizes, or 1 ms, or the
1342 * time required to reach a stable voltage.
1344 mmc_delay(host
->ios
.power_delay_ms
);
1347 void mmc_power_off(struct mmc_host
*host
)
1349 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1352 mmc_pwrseq_power_off(host
);
1354 host
->ios
.clock
= 0;
1357 host
->ios
.power_mode
= MMC_POWER_OFF
;
1358 /* Set initial state and call mmc_set_ios */
1359 mmc_set_initial_state(host
);
1362 * Some configurations, such as the 802.11 SDIO card in the OLPC
1363 * XO-1.5, require a short delay after poweroff before the card
1364 * can be successfully turned on again.
1369 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1371 mmc_power_off(host
);
1372 /* Wait at least 1 ms according to SD spec */
1374 mmc_power_up(host
, ocr
);
1378 * Cleanup when the last reference to the bus operator is dropped.
1380 static void __mmc_release_bus(struct mmc_host
*host
)
1382 WARN_ON(!host
->bus_dead
);
1384 host
->bus_ops
= NULL
;
1388 * Increase reference count of bus operator
1390 static inline void mmc_bus_get(struct mmc_host
*host
)
1392 unsigned long flags
;
1394 spin_lock_irqsave(&host
->lock
, flags
);
1396 spin_unlock_irqrestore(&host
->lock
, flags
);
1400 * Decrease reference count of bus operator and free it if
1401 * it is the last reference.
1403 static inline void mmc_bus_put(struct mmc_host
*host
)
1405 unsigned long flags
;
1407 spin_lock_irqsave(&host
->lock
, flags
);
1409 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1410 __mmc_release_bus(host
);
1411 spin_unlock_irqrestore(&host
->lock
, flags
);
1415 * Assign a mmc bus handler to a host. Only one bus handler may control a
1416 * host at any given time.
1418 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1420 unsigned long flags
;
1422 WARN_ON(!host
->claimed
);
1424 spin_lock_irqsave(&host
->lock
, flags
);
1426 WARN_ON(host
->bus_ops
);
1427 WARN_ON(host
->bus_refs
);
1429 host
->bus_ops
= ops
;
1433 spin_unlock_irqrestore(&host
->lock
, flags
);
1437 * Remove the current bus handler from a host.
1439 void mmc_detach_bus(struct mmc_host
*host
)
1441 unsigned long flags
;
1443 WARN_ON(!host
->claimed
);
1444 WARN_ON(!host
->bus_ops
);
1446 spin_lock_irqsave(&host
->lock
, flags
);
1450 spin_unlock_irqrestore(&host
->lock
, flags
);
1455 void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
, bool cd_irq
)
1458 * Prevent system sleep for 5s to allow user space to consume the
1459 * corresponding uevent. This is especially useful, when CD irq is used
1460 * as a system wakeup, but doesn't hurt in other cases.
1462 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
1463 __pm_wakeup_event(host
->ws
, 5000);
1465 host
->detect_change
= 1;
1466 mmc_schedule_delayed_work(&host
->detect
, delay
);
1470 * mmc_detect_change - process change of state on a MMC socket
1471 * @host: host which changed state.
1472 * @delay: optional delay to wait before detection (jiffies)
1474 * MMC drivers should call this when they detect a card has been
1475 * inserted or removed. The MMC layer will confirm that any
1476 * present card is still functional, and initialize any newly
1479 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1481 _mmc_detect_change(host
, delay
, true);
1483 EXPORT_SYMBOL(mmc_detect_change
);
1485 void mmc_init_erase(struct mmc_card
*card
)
1489 if (is_power_of_2(card
->erase_size
))
1490 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1492 card
->erase_shift
= 0;
1495 * It is possible to erase an arbitrarily large area of an SD or MMC
1496 * card. That is not desirable because it can take a long time
1497 * (minutes) potentially delaying more important I/O, and also the
1498 * timeout calculations become increasingly hugely over-estimated.
1499 * Consequently, 'pref_erase' is defined as a guide to limit erases
1500 * to that size and alignment.
1502 * For SD cards that define Allocation Unit size, limit erases to one
1503 * Allocation Unit at a time.
1504 * For MMC, have a stab at ai good value and for modern cards it will
1505 * end up being 4MiB. Note that if the value is too small, it can end
1506 * up taking longer to erase. Also note, erase_size is already set to
1507 * High Capacity Erase Size if available when this function is called.
1509 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1510 card
->pref_erase
= card
->ssr
.au
;
1511 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1512 } else if (card
->erase_size
) {
1513 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1515 card
->pref_erase
= 512 * 1024 / 512;
1517 card
->pref_erase
= 1024 * 1024 / 512;
1519 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1521 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1522 if (card
->pref_erase
< card
->erase_size
)
1523 card
->pref_erase
= card
->erase_size
;
1525 sz
= card
->pref_erase
% card
->erase_size
;
1527 card
->pref_erase
+= card
->erase_size
- sz
;
1530 card
->pref_erase
= 0;
1533 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1534 unsigned int arg
, unsigned int qty
)
1536 unsigned int erase_timeout
;
1538 if (arg
== MMC_DISCARD_ARG
||
1539 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1540 erase_timeout
= card
->ext_csd
.trim_timeout
;
1541 } else if (card
->ext_csd
.erase_group_def
& 1) {
1542 /* High Capacity Erase Group Size uses HC timeouts */
1543 if (arg
== MMC_TRIM_ARG
)
1544 erase_timeout
= card
->ext_csd
.trim_timeout
;
1546 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1548 /* CSD Erase Group Size uses write timeout */
1549 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1550 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
1551 unsigned int timeout_us
;
1553 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1554 if (card
->csd
.taac_ns
< 1000000)
1555 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
1557 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
1560 * ios.clock is only a target. The real clock rate might be
1561 * less but not that much less, so fudge it by multiplying by 2.
1564 timeout_us
+= (timeout_clks
* 1000) /
1565 (card
->host
->ios
.clock
/ 1000);
1567 erase_timeout
= timeout_us
/ 1000;
1570 * Theoretically, the calculation could underflow so round up
1571 * to 1ms in that case.
1577 /* Multiplier for secure operations */
1578 if (arg
& MMC_SECURE_ARGS
) {
1579 if (arg
== MMC_SECURE_ERASE_ARG
)
1580 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1582 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1585 erase_timeout
*= qty
;
1588 * Ensure at least a 1 second timeout for SPI as per
1589 * 'mmc_set_data_timeout()'
1591 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1592 erase_timeout
= 1000;
1594 return erase_timeout
;
1597 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1601 unsigned int erase_timeout
;
1603 /* for DISCARD none of the below calculation applies.
1604 * the busy timeout is 250msec per discard command.
1606 if (arg
== SD_DISCARD_ARG
)
1607 return SD_DISCARD_TIMEOUT_MS
;
1609 if (card
->ssr
.erase_timeout
) {
1610 /* Erase timeout specified in SD Status Register (SSR) */
1611 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1612 card
->ssr
.erase_offset
;
1615 * Erase timeout not specified in SD Status Register (SSR) so
1616 * use 250ms per write block.
1618 erase_timeout
= 250 * qty
;
1621 /* Must not be less than 1 second */
1622 if (erase_timeout
< 1000)
1623 erase_timeout
= 1000;
1625 return erase_timeout
;
1628 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1632 if (mmc_card_sd(card
))
1633 return mmc_sd_erase_timeout(card
, arg
, qty
);
1635 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1638 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1639 unsigned int to
, unsigned int arg
)
1641 struct mmc_command cmd
= {};
1642 unsigned int qty
= 0, busy_timeout
= 0;
1643 bool use_r1b_resp
= false;
1646 mmc_retune_hold(card
->host
);
1649 * qty is used to calculate the erase timeout which depends on how many
1650 * erase groups (or allocation units in SD terminology) are affected.
1651 * We count erasing part of an erase group as one erase group.
1652 * For SD, the allocation units are always a power of 2. For MMC, the
1653 * erase group size is almost certainly also power of 2, but it does not
1654 * seem to insist on that in the JEDEC standard, so we fall back to
1655 * division in that case. SD may not specify an allocation unit size,
1656 * in which case the timeout is based on the number of write blocks.
1658 * Note that the timeout for secure trim 2 will only be correct if the
1659 * number of erase groups specified is the same as the total of all
1660 * preceding secure trim 1 commands. Since the power may have been
1661 * lost since the secure trim 1 commands occurred, it is generally
1662 * impossible to calculate the secure trim 2 timeout correctly.
1664 if (card
->erase_shift
)
1665 qty
+= ((to
>> card
->erase_shift
) -
1666 (from
>> card
->erase_shift
)) + 1;
1667 else if (mmc_card_sd(card
))
1668 qty
+= to
- from
+ 1;
1670 qty
+= ((to
/ card
->erase_size
) -
1671 (from
/ card
->erase_size
)) + 1;
1673 if (!mmc_card_blockaddr(card
)) {
1678 if (mmc_card_sd(card
))
1679 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
1681 cmd
.opcode
= MMC_ERASE_GROUP_START
;
1683 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1684 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1686 pr_err("mmc_erase: group start error %d, "
1687 "status %#x\n", err
, cmd
.resp
[0]);
1692 memset(&cmd
, 0, sizeof(struct mmc_command
));
1693 if (mmc_card_sd(card
))
1694 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
1696 cmd
.opcode
= MMC_ERASE_GROUP_END
;
1698 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1699 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1701 pr_err("mmc_erase: group end error %d, status %#x\n",
1707 memset(&cmd
, 0, sizeof(struct mmc_command
));
1708 cmd
.opcode
= MMC_ERASE
;
1710 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
1712 * If the host controller supports busy signalling and the timeout for
1713 * the erase operation does not exceed the max_busy_timeout, we should
1714 * use R1B response. Or we need to prevent the host from doing hw busy
1715 * detection, which is done by converting to a R1 response instead.
1716 * Note, some hosts requires R1B, which also means they are on their own
1717 * when it comes to deal with the busy timeout.
1719 if (!(card
->host
->caps
& MMC_CAP_NEED_RSP_BUSY
) &&
1720 card
->host
->max_busy_timeout
&&
1721 busy_timeout
> card
->host
->max_busy_timeout
) {
1722 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1724 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1725 cmd
.busy_timeout
= busy_timeout
;
1726 use_r1b_resp
= true;
1729 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1731 pr_err("mmc_erase: erase error %d, status %#x\n",
1737 if (mmc_host_is_spi(card
->host
))
1741 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1744 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
1747 /* Let's poll to find out when the erase operation completes. */
1748 err
= mmc_poll_for_busy(card
, busy_timeout
, MMC_BUSY_ERASE
);
1751 mmc_retune_release(card
->host
);
1755 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
1760 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
1763 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1764 * to align the erase size efficiently.
1766 if (is_power_of_2(card
->erase_size
)) {
1767 unsigned int temp
= from_new
;
1769 from_new
= round_up(temp
, card
->erase_size
);
1770 rem
= from_new
- temp
;
1777 nr_new
= round_down(nr_new
, card
->erase_size
);
1779 rem
= from_new
% card
->erase_size
;
1781 rem
= card
->erase_size
- rem
;
1789 rem
= nr_new
% card
->erase_size
;
1797 *to
= from_new
+ nr_new
;
1804 * mmc_erase - erase sectors.
1805 * @card: card to erase
1806 * @from: first sector to erase
1807 * @nr: number of sectors to erase
1808 * @arg: erase command argument
1810 * Caller must claim host before calling this function.
1812 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
1815 unsigned int rem
, to
= from
+ nr
;
1818 if (!(card
->csd
.cmdclass
& CCC_ERASE
))
1821 if (!card
->erase_size
)
1824 if (mmc_card_sd(card
) && arg
!= SD_ERASE_ARG
&& arg
!= SD_DISCARD_ARG
)
1827 if (mmc_card_mmc(card
) && (arg
& MMC_SECURE_ARGS
) &&
1828 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
1831 if (mmc_card_mmc(card
) && (arg
& MMC_TRIM_ARGS
) &&
1832 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
1835 if (arg
== MMC_SECURE_ERASE_ARG
) {
1836 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1840 if (arg
== MMC_ERASE_ARG
)
1841 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
1849 /* 'from' and 'to' are inclusive */
1853 * Special case where only one erase-group fits in the timeout budget:
1854 * If the region crosses an erase-group boundary on this particular
1855 * case, we will be trimming more than one erase-group which, does not
1856 * fit in the timeout budget of the controller, so we need to split it
1857 * and call mmc_do_erase() twice if necessary. This special case is
1858 * identified by the card->eg_boundary flag.
1860 rem
= card
->erase_size
- (from
% card
->erase_size
);
1861 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
1862 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
1864 if ((err
) || (to
<= from
))
1868 return mmc_do_erase(card
, from
, to
, arg
);
1870 EXPORT_SYMBOL(mmc_erase
);
1872 int mmc_can_erase(struct mmc_card
*card
)
1874 if (card
->csd
.cmdclass
& CCC_ERASE
&& card
->erase_size
)
1878 EXPORT_SYMBOL(mmc_can_erase
);
1880 int mmc_can_trim(struct mmc_card
*card
)
1882 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
1883 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
1887 EXPORT_SYMBOL(mmc_can_trim
);
1889 int mmc_can_discard(struct mmc_card
*card
)
1892 * As there's no way to detect the discard support bit at v4.5
1893 * use the s/w feature support filed.
1895 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
1899 EXPORT_SYMBOL(mmc_can_discard
);
1901 int mmc_can_sanitize(struct mmc_card
*card
)
1903 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
1905 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
1910 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
1912 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
1913 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
1917 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
1919 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
1922 if (!card
->erase_size
)
1924 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
1928 EXPORT_SYMBOL(mmc_erase_group_aligned
);
1930 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
1933 struct mmc_host
*host
= card
->host
;
1934 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
1935 unsigned int last_timeout
= 0;
1936 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
1937 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
1939 if (card
->erase_shift
) {
1940 max_qty
= UINT_MAX
>> card
->erase_shift
;
1941 min_qty
= card
->pref_erase
>> card
->erase_shift
;
1942 } else if (mmc_card_sd(card
)) {
1944 min_qty
= card
->pref_erase
;
1946 max_qty
= UINT_MAX
/ card
->erase_size
;
1947 min_qty
= card
->pref_erase
/ card
->erase_size
;
1951 * We should not only use 'host->max_busy_timeout' as the limitation
1952 * when deciding the max discard sectors. We should set a balance value
1953 * to improve the erase speed, and it can not get too long timeout at
1956 * Here we set 'card->pref_erase' as the minimal discard sectors no
1957 * matter what size of 'host->max_busy_timeout', but if the
1958 * 'host->max_busy_timeout' is large enough for more discard sectors,
1959 * then we can continue to increase the max discard sectors until we
1960 * get a balance value. In cases when the 'host->max_busy_timeout'
1961 * isn't specified, use the default max erase timeout.
1965 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
1966 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
1968 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
1971 if (timeout
< last_timeout
)
1973 last_timeout
= timeout
;
1983 * When specifying a sector range to trim, chances are we might cross
1984 * an erase-group boundary even if the amount of sectors is less than
1986 * If we can only fit one erase-group in the controller timeout budget,
1987 * we have to care that erase-group boundaries are not crossed by a
1988 * single trim operation. We flag that special case with "eg_boundary".
1989 * In all other cases we can just decrement qty and pretend that we
1990 * always touch (qty + 1) erase-groups as a simple optimization.
1993 card
->eg_boundary
= 1;
1997 /* Convert qty to sectors */
1998 if (card
->erase_shift
)
1999 max_discard
= qty
<< card
->erase_shift
;
2000 else if (mmc_card_sd(card
))
2001 max_discard
= qty
+ 1;
2003 max_discard
= qty
* card
->erase_size
;
2008 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2010 struct mmc_host
*host
= card
->host
;
2011 unsigned int max_discard
, max_trim
;
2014 * Without erase_group_def set, MMC erase timeout depends on clock
2015 * frequence which can change. In that case, the best choice is
2016 * just the preferred erase size.
2018 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2019 return card
->pref_erase
;
2021 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2022 if (mmc_can_trim(card
)) {
2023 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2024 if (max_trim
< max_discard
|| max_discard
== 0)
2025 max_discard
= max_trim
;
2026 } else if (max_discard
< card
->erase_size
) {
2029 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2030 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2031 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2034 EXPORT_SYMBOL(mmc_calc_max_discard
);
2036 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2038 return card
? mmc_card_blockaddr(card
) : false;
2040 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2042 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2044 struct mmc_command cmd
= {};
2046 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2047 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2050 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2052 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2053 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2055 EXPORT_SYMBOL(mmc_set_blocklen
);
2057 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2059 mmc_pwrseq_reset(host
);
2061 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2063 host
->ops
->hw_reset(host
);
2067 * mmc_hw_reset - reset the card in hardware
2068 * @host: MMC host to which the card is attached
2070 * Hard reset the card. This function is only for upper layers, like the
2071 * block layer or card drivers. You cannot use it in host drivers (struct
2072 * mmc_card might be gone then).
2074 * Return: 0 on success, -errno on failure
2076 int mmc_hw_reset(struct mmc_host
*host
)
2084 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->hw_reset
) {
2089 ret
= host
->bus_ops
->hw_reset(host
);
2093 pr_warn("%s: tried to HW reset card, got error %d\n",
2094 mmc_hostname(host
), ret
);
2098 EXPORT_SYMBOL(mmc_hw_reset
);
2100 int mmc_sw_reset(struct mmc_host
*host
)
2108 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->sw_reset
) {
2113 ret
= host
->bus_ops
->sw_reset(host
);
2117 pr_warn("%s: tried to SW reset card, got error %d\n",
2118 mmc_hostname(host
), ret
);
2122 EXPORT_SYMBOL(mmc_sw_reset
);
2124 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2126 host
->f_init
= freq
;
2128 pr_debug("%s: %s: trying to init card at %u Hz\n",
2129 mmc_hostname(host
), __func__
, host
->f_init
);
2131 mmc_power_up(host
, host
->ocr_avail
);
2134 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2135 * do a hardware reset if possible.
2137 mmc_hw_reset_for_init(host
);
2140 * sdio_reset sends CMD52 to reset card. Since we do not know
2141 * if the card is being re-initialized, just send it. CMD52
2142 * should be ignored by SD/eMMC cards.
2143 * Skip it if we already know that we do not support SDIO commands
2145 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2150 if (!(host
->caps2
& MMC_CAP2_NO_SD
)) {
2151 if (mmc_send_if_cond_pcie(host
, host
->ocr_avail
))
2153 if (mmc_card_sd_express(host
))
2157 /* Order's important: probe SDIO, then SD, then MMC */
2158 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2159 if (!mmc_attach_sdio(host
))
2162 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2163 if (!mmc_attach_sd(host
))
2166 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2167 if (!mmc_attach_mmc(host
))
2171 mmc_power_off(host
);
2175 int _mmc_detect_card_removed(struct mmc_host
*host
)
2179 if (!host
->card
|| mmc_card_removed(host
->card
))
2182 ret
= host
->bus_ops
->alive(host
);
2185 * Card detect status and alive check may be out of sync if card is
2186 * removed slowly, when card detect switch changes while card/slot
2187 * pads are still contacted in hardware (refer to "SD Card Mechanical
2188 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2189 * detect work 200ms later for this case.
2191 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2192 mmc_detect_change(host
, msecs_to_jiffies(200));
2193 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2197 mmc_card_set_removed(host
->card
);
2198 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2204 int mmc_detect_card_removed(struct mmc_host
*host
)
2206 struct mmc_card
*card
= host
->card
;
2209 WARN_ON(!host
->claimed
);
2214 if (!mmc_card_is_removable(host
))
2217 ret
= mmc_card_removed(card
);
2219 * The card will be considered unchanged unless we have been asked to
2220 * detect a change or host requires polling to provide card detection.
2222 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2225 host
->detect_change
= 0;
2227 ret
= _mmc_detect_card_removed(host
);
2228 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2230 * Schedule a detect work as soon as possible to let a
2231 * rescan handle the card removal.
2233 cancel_delayed_work(&host
->detect
);
2234 _mmc_detect_change(host
, 0, false);
2240 EXPORT_SYMBOL(mmc_detect_card_removed
);
2242 void mmc_rescan(struct work_struct
*work
)
2244 struct mmc_host
*host
=
2245 container_of(work
, struct mmc_host
, detect
.work
);
2248 if (host
->rescan_disable
)
2251 /* If there is a non-removable card registered, only scan once */
2252 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2254 host
->rescan_entered
= 1;
2256 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2257 mmc_claim_host(host
);
2258 host
->ops
->card_event(host
);
2259 mmc_release_host(host
);
2260 host
->trigger_card_event
= false;
2265 /* Verify a registered card to be functional, else remove it. */
2266 if (host
->bus_ops
&& !host
->bus_dead
)
2267 host
->bus_ops
->detect(host
);
2269 host
->detect_change
= 0;
2272 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2273 * the card is no longer present.
2278 /* if there still is a card present, stop here */
2279 if (host
->bus_ops
!= NULL
) {
2285 * Only we can add a new handler, so it's safe to
2286 * release the lock here.
2290 mmc_claim_host(host
);
2291 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2292 host
->ops
->get_cd(host
) == 0) {
2293 mmc_power_off(host
);
2294 mmc_release_host(host
);
2298 /* If an SD express card is present, then leave it as is. */
2299 if (mmc_card_sd_express(host
)) {
2300 mmc_release_host(host
);
2304 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2305 unsigned int freq
= freqs
[i
];
2306 if (freq
> host
->f_max
) {
2307 if (i
+ 1 < ARRAY_SIZE(freqs
))
2311 if (!mmc_rescan_try_freq(host
, max(freq
, host
->f_min
)))
2313 if (freqs
[i
] <= host
->f_min
)
2316 mmc_release_host(host
);
2319 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2320 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2323 void mmc_start_host(struct mmc_host
*host
)
2325 host
->f_init
= max(min(freqs
[0], host
->f_max
), host
->f_min
);
2326 host
->rescan_disable
= 0;
2328 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2329 mmc_claim_host(host
);
2330 mmc_power_up(host
, host
->ocr_avail
);
2331 mmc_release_host(host
);
2334 mmc_gpiod_request_cd_irq(host
);
2335 _mmc_detect_change(host
, 0, false);
2338 void mmc_stop_host(struct mmc_host
*host
)
2340 if (host
->slot
.cd_irq
>= 0) {
2341 mmc_gpio_set_cd_wake(host
, false);
2342 disable_irq(host
->slot
.cd_irq
);
2345 host
->rescan_disable
= 1;
2346 cancel_delayed_work_sync(&host
->detect
);
2348 /* clear pm flags now and let card drivers set them as needed */
2352 if (host
->bus_ops
&& !host
->bus_dead
) {
2353 /* Calling bus_ops->remove() with a claimed host can deadlock */
2354 host
->bus_ops
->remove(host
);
2355 mmc_claim_host(host
);
2356 mmc_detach_bus(host
);
2357 mmc_power_off(host
);
2358 mmc_release_host(host
);
2364 mmc_claim_host(host
);
2365 mmc_power_off(host
);
2366 mmc_release_host(host
);
2369 #ifdef CONFIG_PM_SLEEP
2370 /* Do the card removal on suspend if card is assumed removeable
2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2374 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2375 unsigned long mode
, void *unused
)
2377 struct mmc_host
*host
= container_of(
2378 notify_block
, struct mmc_host
, pm_notify
);
2379 unsigned long flags
;
2383 case PM_HIBERNATION_PREPARE
:
2384 case PM_SUSPEND_PREPARE
:
2385 case PM_RESTORE_PREPARE
:
2386 spin_lock_irqsave(&host
->lock
, flags
);
2387 host
->rescan_disable
= 1;
2388 spin_unlock_irqrestore(&host
->lock
, flags
);
2389 cancel_delayed_work_sync(&host
->detect
);
2394 /* Validate prerequisites for suspend */
2395 if (host
->bus_ops
->pre_suspend
)
2396 err
= host
->bus_ops
->pre_suspend(host
);
2400 if (!mmc_card_is_removable(host
)) {
2401 dev_warn(mmc_dev(host
),
2402 "pre_suspend failed for non-removable host: "
2404 /* Avoid removing non-removable hosts */
2408 /* Calling bus_ops->remove() with a claimed host can deadlock */
2409 host
->bus_ops
->remove(host
);
2410 mmc_claim_host(host
);
2411 mmc_detach_bus(host
);
2412 mmc_power_off(host
);
2413 mmc_release_host(host
);
2417 case PM_POST_SUSPEND
:
2418 case PM_POST_HIBERNATION
:
2419 case PM_POST_RESTORE
:
2421 spin_lock_irqsave(&host
->lock
, flags
);
2422 host
->rescan_disable
= 0;
2423 spin_unlock_irqrestore(&host
->lock
, flags
);
2424 _mmc_detect_change(host
, 0, false);
2431 void mmc_register_pm_notifier(struct mmc_host
*host
)
2433 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2434 register_pm_notifier(&host
->pm_notify
);
2437 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2439 unregister_pm_notifier(&host
->pm_notify
);
2443 static int __init
mmc_init(void)
2447 ret
= mmc_register_bus();
2451 ret
= mmc_register_host_class();
2453 goto unregister_bus
;
2455 ret
= sdio_register_bus();
2457 goto unregister_host_class
;
2461 unregister_host_class
:
2462 mmc_unregister_host_class();
2464 mmc_unregister_bus();
2468 static void __exit
mmc_exit(void)
2470 sdio_unregister_bus();
2471 mmc_unregister_host_class();
2472 mmc_unregister_bus();
2475 subsys_initcall(mmc_init
);
2476 module_exit(mmc_exit
);
2478 MODULE_LICENSE("GPL");