1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
40 #include <asm/div64.h>
45 #define DRIVER_NAME "mmci-pl18x"
47 static void mmci_variant_init(struct mmci_host
*host
);
48 static void ux500_variant_init(struct mmci_host
*host
);
49 static void ux500v2_variant_init(struct mmci_host
*host
);
51 static unsigned int fmax
= 515633;
53 static struct variant_data variant_arm
= {
55 .fifohalfsize
= 8 * 4,
56 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
57 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
58 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
59 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
60 .datalength_bits
= 16,
61 .datactrl_blocksz
= 11,
62 .pwrreg_powerup
= MCI_PWR_UP
,
64 .reversed_irq_handling
= true,
66 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
67 .start_err
= MCI_STARTBITERR
,
69 .init
= mmci_variant_init
,
72 static struct variant_data variant_arm_extended_fifo
= {
74 .fifohalfsize
= 64 * 4,
75 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
76 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
77 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
78 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
79 .datalength_bits
= 16,
80 .datactrl_blocksz
= 11,
81 .pwrreg_powerup
= MCI_PWR_UP
,
84 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
85 .start_err
= MCI_STARTBITERR
,
87 .init
= mmci_variant_init
,
90 static struct variant_data variant_arm_extended_fifo_hwfc
= {
92 .fifohalfsize
= 64 * 4,
93 .clkreg_enable
= MCI_ARM_HWFCEN
,
94 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
95 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
96 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
97 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
98 .datalength_bits
= 16,
99 .datactrl_blocksz
= 11,
100 .pwrreg_powerup
= MCI_PWR_UP
,
103 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
104 .start_err
= MCI_STARTBITERR
,
105 .opendrain
= MCI_ROD
,
106 .init
= mmci_variant_init
,
109 static struct variant_data variant_u300
= {
111 .fifohalfsize
= 8 * 4,
112 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
113 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
114 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
115 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
116 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
117 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
118 .datalength_bits
= 16,
119 .datactrl_blocksz
= 11,
120 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
122 .pwrreg_powerup
= MCI_PWR_ON
,
124 .signal_direction
= true,
125 .pwrreg_clkgate
= true,
126 .pwrreg_nopower
= true,
128 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
129 .start_err
= MCI_STARTBITERR
,
131 .init
= mmci_variant_init
,
134 static struct variant_data variant_nomadik
= {
136 .fifohalfsize
= 8 * 4,
137 .clkreg
= MCI_CLK_ENABLE
,
138 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
139 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
140 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
141 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
142 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
143 .datalength_bits
= 24,
144 .datactrl_blocksz
= 11,
145 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
148 .pwrreg_powerup
= MCI_PWR_ON
,
150 .signal_direction
= true,
151 .pwrreg_clkgate
= true,
152 .pwrreg_nopower
= true,
154 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
155 .start_err
= MCI_STARTBITERR
,
157 .init
= mmci_variant_init
,
160 static struct variant_data variant_ux500
= {
162 .fifohalfsize
= 8 * 4,
163 .clkreg
= MCI_CLK_ENABLE
,
164 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
165 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
166 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
167 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
168 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
169 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
170 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
171 .datalength_bits
= 24,
172 .datactrl_blocksz
= 11,
173 .datactrl_any_blocksz
= true,
174 .dma_power_of_2
= true,
175 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
178 .pwrreg_powerup
= MCI_PWR_ON
,
180 .signal_direction
= true,
181 .pwrreg_clkgate
= true,
183 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
184 .busy_detect_flag
= MCI_ST_CARDBUSY
,
185 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
186 .pwrreg_nopower
= true,
188 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
189 .start_err
= MCI_STARTBITERR
,
191 .init
= ux500_variant_init
,
194 static struct variant_data variant_ux500v2
= {
196 .fifohalfsize
= 8 * 4,
197 .clkreg
= MCI_CLK_ENABLE
,
198 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
199 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
200 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
201 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
202 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
203 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
204 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
205 .datactrl_mask_ddrmode
= MCI_DPSM_ST_DDRMODE
,
206 .datalength_bits
= 24,
207 .datactrl_blocksz
= 11,
208 .datactrl_any_blocksz
= true,
209 .dma_power_of_2
= true,
210 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
213 .pwrreg_powerup
= MCI_PWR_ON
,
215 .signal_direction
= true,
216 .pwrreg_clkgate
= true,
218 .busy_dpsm_flag
= MCI_DPSM_ST_BUSYMODE
,
219 .busy_detect_flag
= MCI_ST_CARDBUSY
,
220 .busy_detect_mask
= MCI_ST_BUSYENDMASK
,
221 .pwrreg_nopower
= true,
223 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
224 .start_err
= MCI_STARTBITERR
,
226 .init
= ux500v2_variant_init
,
229 static struct variant_data variant_stm32
= {
231 .fifohalfsize
= 8 * 4,
232 .clkreg
= MCI_CLK_ENABLE
,
233 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
234 .clkreg_8bit_bus_enable
= MCI_ST_8BIT_BUS
,
235 .clkreg_neg_edge_enable
= MCI_ST_UX500_NEG_EDGE
,
236 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
237 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
238 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
239 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
240 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
241 .datalength_bits
= 24,
242 .datactrl_blocksz
= 11,
243 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
246 .pwrreg_powerup
= MCI_PWR_ON
,
248 .pwrreg_clkgate
= true,
249 .pwrreg_nopower
= true,
250 .init
= mmci_variant_init
,
253 static struct variant_data variant_stm32_sdmmc
= {
255 .fifohalfsize
= 8 * 4,
257 .stm32_clkdiv
= true,
258 .cmdreg_cpsm_enable
= MCI_CPSM_STM32_ENABLE
,
259 .cmdreg_lrsp_crc
= MCI_CPSM_STM32_LRSP_CRC
,
260 .cmdreg_srsp_crc
= MCI_CPSM_STM32_SRSP_CRC
,
261 .cmdreg_srsp
= MCI_CPSM_STM32_SRSP
,
262 .cmdreg_stop
= MCI_CPSM_STM32_CMDSTOP
,
263 .data_cmd_enable
= MCI_CPSM_STM32_CMDTRANS
,
264 .irq_pio_mask
= MCI_IRQ_PIO_STM32_MASK
,
265 .datactrl_first
= true,
266 .datacnt_useless
= true,
267 .datalength_bits
= 25,
268 .datactrl_blocksz
= 14,
269 .datactrl_any_blocksz
= true,
270 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
271 .stm32_idmabsize_mask
= GENMASK(12, 5),
272 .busy_timeout
= true,
274 .busy_detect_flag
= MCI_STM32_BUSYD0
,
275 .busy_detect_mask
= MCI_STM32_BUSYD0ENDMASK
,
276 .init
= sdmmc_variant_init
,
279 static struct variant_data variant_stm32_sdmmcv2
= {
281 .fifohalfsize
= 8 * 4,
283 .stm32_clkdiv
= true,
284 .cmdreg_cpsm_enable
= MCI_CPSM_STM32_ENABLE
,
285 .cmdreg_lrsp_crc
= MCI_CPSM_STM32_LRSP_CRC
,
286 .cmdreg_srsp_crc
= MCI_CPSM_STM32_SRSP_CRC
,
287 .cmdreg_srsp
= MCI_CPSM_STM32_SRSP
,
288 .cmdreg_stop
= MCI_CPSM_STM32_CMDSTOP
,
289 .data_cmd_enable
= MCI_CPSM_STM32_CMDTRANS
,
290 .irq_pio_mask
= MCI_IRQ_PIO_STM32_MASK
,
291 .datactrl_first
= true,
292 .datacnt_useless
= true,
293 .datalength_bits
= 25,
294 .datactrl_blocksz
= 14,
295 .datactrl_any_blocksz
= true,
296 .datactrl_mask_sdio
= MCI_DPSM_ST_SDIOEN
,
297 .stm32_idmabsize_mask
= GENMASK(16, 5),
299 .busy_timeout
= true,
301 .busy_detect_flag
= MCI_STM32_BUSYD0
,
302 .busy_detect_mask
= MCI_STM32_BUSYD0ENDMASK
,
303 .init
= sdmmc_variant_init
,
306 static struct variant_data variant_qcom
= {
308 .fifohalfsize
= 8 * 4,
309 .clkreg
= MCI_CLK_ENABLE
,
310 .clkreg_enable
= MCI_QCOM_CLK_FLOWENA
|
311 MCI_QCOM_CLK_SELECT_IN_FBCLK
,
312 .clkreg_8bit_bus_enable
= MCI_QCOM_CLK_WIDEBUS_8
,
313 .datactrl_mask_ddrmode
= MCI_QCOM_CLK_SELECT_IN_DDR_MODE
,
314 .cmdreg_cpsm_enable
= MCI_CPSM_ENABLE
,
315 .cmdreg_lrsp_crc
= MCI_CPSM_RESPONSE
| MCI_CPSM_LONGRSP
,
316 .cmdreg_srsp_crc
= MCI_CPSM_RESPONSE
,
317 .cmdreg_srsp
= MCI_CPSM_RESPONSE
,
318 .data_cmd_enable
= MCI_CPSM_QCOM_DATCMD
,
319 .datalength_bits
= 24,
320 .datactrl_blocksz
= 11,
321 .datactrl_any_blocksz
= true,
322 .pwrreg_powerup
= MCI_PWR_UP
,
324 .explicit_mclk_control
= true,
328 .irq_pio_mask
= MCI_IRQ_PIO_MASK
,
329 .start_err
= MCI_STARTBITERR
,
330 .opendrain
= MCI_ROD
,
331 .init
= qcom_variant_init
,
334 /* Busy detection for the ST Micro variant */
335 static int mmci_card_busy(struct mmc_host
*mmc
)
337 struct mmci_host
*host
= mmc_priv(mmc
);
341 spin_lock_irqsave(&host
->lock
, flags
);
342 if (readl(host
->base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)
344 spin_unlock_irqrestore(&host
->lock
, flags
);
349 static void mmci_reg_delay(struct mmci_host
*host
)
352 * According to the spec, at least three feedback clock cycles
353 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
354 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
355 * Worst delay time during card init is at 100 kHz => 30 us.
356 * Worst delay time when up and running is at 25 MHz => 120 ns.
358 if (host
->cclk
< 25000000)
365 * This must be called with host->lock held
367 void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
369 if (host
->clk_reg
!= clk
) {
371 writel(clk
, host
->base
+ MMCICLOCK
);
376 * This must be called with host->lock held
378 void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
380 if (host
->pwr_reg
!= pwr
) {
382 writel(pwr
, host
->base
+ MMCIPOWER
);
387 * This must be called with host->lock held
389 static void mmci_write_datactrlreg(struct mmci_host
*host
, u32 datactrl
)
391 /* Keep busy mode in DPSM if enabled */
392 datactrl
|= host
->datactrl_reg
& host
->variant
->busy_dpsm_flag
;
394 if (host
->datactrl_reg
!= datactrl
) {
395 host
->datactrl_reg
= datactrl
;
396 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
401 * This must be called with host->lock held
403 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
405 struct variant_data
*variant
= host
->variant
;
406 u32 clk
= variant
->clkreg
;
408 /* Make sure cclk reflects the current calculated clock */
412 if (variant
->explicit_mclk_control
) {
413 host
->cclk
= host
->mclk
;
414 } else if (desired
>= host
->mclk
) {
415 clk
= MCI_CLK_BYPASS
;
416 if (variant
->st_clkdiv
)
417 clk
|= MCI_ST_UX500_NEG_EDGE
;
418 host
->cclk
= host
->mclk
;
419 } else if (variant
->st_clkdiv
) {
421 * DB8500 TRM says f = mclk / (clkdiv + 2)
422 * => clkdiv = (mclk / f) - 2
423 * Round the divider up so we don't exceed the max
426 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
429 host
->cclk
= host
->mclk
/ (clk
+ 2);
432 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
433 * => clkdiv = mclk / (2 * f) - 1
435 clk
= host
->mclk
/ (2 * desired
) - 1;
438 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
441 clk
|= variant
->clkreg_enable
;
442 clk
|= MCI_CLK_ENABLE
;
443 /* This hasn't proven to be worthwhile */
444 /* clk |= MCI_CLK_PWRSAVE; */
447 /* Set actual clock for debug */
448 host
->mmc
->actual_clock
= host
->cclk
;
450 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
452 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
453 clk
|= variant
->clkreg_8bit_bus_enable
;
455 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
456 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
457 clk
|= variant
->clkreg_neg_edge_enable
;
459 mmci_write_clkreg(host
, clk
);
462 static void mmci_dma_release(struct mmci_host
*host
)
464 if (host
->ops
&& host
->ops
->dma_release
)
465 host
->ops
->dma_release(host
);
467 host
->use_dma
= false;
470 static void mmci_dma_setup(struct mmci_host
*host
)
472 if (!host
->ops
|| !host
->ops
->dma_setup
)
475 if (host
->ops
->dma_setup(host
))
478 /* initialize pre request cookie */
479 host
->next_cookie
= 1;
481 host
->use_dma
= true;
485 * Validate mmc prerequisites
487 static int mmci_validate_data(struct mmci_host
*host
,
488 struct mmc_data
*data
)
490 struct variant_data
*variant
= host
->variant
;
494 if (!is_power_of_2(data
->blksz
) && !variant
->datactrl_any_blocksz
) {
495 dev_err(mmc_dev(host
->mmc
),
496 "unsupported block size (%d bytes)\n", data
->blksz
);
500 if (host
->ops
&& host
->ops
->validate_data
)
501 return host
->ops
->validate_data(host
, data
);
506 static int mmci_prep_data(struct mmci_host
*host
, struct mmc_data
*data
, bool next
)
510 if (!host
->ops
|| !host
->ops
->prep_data
)
513 err
= host
->ops
->prep_data(host
, data
, next
);
516 data
->host_cookie
= ++host
->next_cookie
< 0 ?
517 1 : host
->next_cookie
;
522 static void mmci_unprep_data(struct mmci_host
*host
, struct mmc_data
*data
,
525 if (host
->ops
&& host
->ops
->unprep_data
)
526 host
->ops
->unprep_data(host
, data
, err
);
528 data
->host_cookie
= 0;
531 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
533 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= host
->next_cookie
);
535 if (host
->ops
&& host
->ops
->get_next_data
)
536 host
->ops
->get_next_data(host
, data
);
539 static int mmci_dma_start(struct mmci_host
*host
, unsigned int datactrl
)
541 struct mmc_data
*data
= host
->data
;
547 ret
= mmci_prep_data(host
, data
, false);
551 if (!host
->ops
|| !host
->ops
->dma_start
)
554 /* Okay, go for it. */
555 dev_vdbg(mmc_dev(host
->mmc
),
556 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
557 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
559 ret
= host
->ops
->dma_start(host
, &datactrl
);
563 /* Trigger the DMA transfer */
564 mmci_write_datactrlreg(host
, datactrl
);
567 * Let the MMCI say when the data is ended and it's time
568 * to fire next DMA request. When that happens, MMCI will
569 * call mmci_data_end()
571 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
572 host
->base
+ MMCIMASK0
);
576 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
581 if (host
->ops
&& host
->ops
->dma_finalize
)
582 host
->ops
->dma_finalize(host
, data
);
585 static void mmci_dma_error(struct mmci_host
*host
)
590 if (host
->ops
&& host
->ops
->dma_error
)
591 host
->ops
->dma_error(host
);
595 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
597 writel(0, host
->base
+ MMCICOMMAND
);
604 mmc_request_done(host
->mmc
, mrq
);
607 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
609 void __iomem
*base
= host
->base
;
610 struct variant_data
*variant
= host
->variant
;
612 if (host
->singleirq
) {
613 unsigned int mask0
= readl(base
+ MMCIMASK0
);
615 mask0
&= ~variant
->irq_pio_mask
;
618 writel(mask0
, base
+ MMCIMASK0
);
621 if (variant
->mmcimask1
)
622 writel(mask
, base
+ MMCIMASK1
);
624 host
->mask1_reg
= mask
;
627 static void mmci_stop_data(struct mmci_host
*host
)
629 mmci_write_datactrlreg(host
, 0);
630 mmci_set_mask1(host
, 0);
634 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
636 unsigned int flags
= SG_MITER_ATOMIC
;
638 if (data
->flags
& MMC_DATA_READ
)
639 flags
|= SG_MITER_TO_SG
;
641 flags
|= SG_MITER_FROM_SG
;
643 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
646 static u32
mmci_get_dctrl_cfg(struct mmci_host
*host
)
648 return MCI_DPSM_ENABLE
| mmci_dctrl_blksz(host
);
651 static u32
ux500v2_get_dctrl_cfg(struct mmci_host
*host
)
653 return MCI_DPSM_ENABLE
| (host
->data
->blksz
<< 16);
656 static bool ux500_busy_complete(struct mmci_host
*host
, u32 status
, u32 err_msk
)
658 void __iomem
*base
= host
->base
;
661 * Before unmasking for the busy end IRQ, confirm that the
662 * command was sent successfully. To keep track of having a
663 * command in-progress, waiting for busy signaling to end,
664 * store the status in host->busy_status.
666 * Note that, the card may need a couple of clock cycles before
667 * it starts signaling busy on DAT0, hence re-read the
668 * MMCISTATUS register here, to allow the busy bit to be set.
669 * Potentially we may even need to poll the register for a
670 * while, to allow it to be set, but tests indicates that it
673 if (!host
->busy_status
&& !(status
& err_msk
) &&
674 (readl(base
+ MMCISTATUS
) & host
->variant
->busy_detect_flag
)) {
675 writel(readl(base
+ MMCIMASK0
) |
676 host
->variant
->busy_detect_mask
,
679 host
->busy_status
= status
& (MCI_CMDSENT
| MCI_CMDRESPEND
);
684 * If there is a command in-progress that has been successfully
685 * sent, then bail out if busy status is set and wait for the
688 * Note that, the HW triggers an IRQ on both edges while
689 * monitoring DAT0 for busy completion, but there is only one
690 * status bit in MMCISTATUS for the busy state. Therefore
691 * both the start and the end interrupts needs to be cleared,
692 * one after the other. So, clear the busy start IRQ here.
694 if (host
->busy_status
&&
695 (status
& host
->variant
->busy_detect_flag
)) {
696 writel(host
->variant
->busy_detect_mask
, base
+ MMCICLEAR
);
701 * If there is a command in-progress that has been successfully
702 * sent and the busy bit isn't set, it means we have received
703 * the busy end IRQ. Clear and mask the IRQ, then continue to
704 * process the command.
706 if (host
->busy_status
) {
707 writel(host
->variant
->busy_detect_mask
, base
+ MMCICLEAR
);
709 writel(readl(base
+ MMCIMASK0
) &
710 ~host
->variant
->busy_detect_mask
, base
+ MMCIMASK0
);
711 host
->busy_status
= 0;
718 * All the DMA operation mode stuff goes inside this ifdef.
719 * This assumes that you have a generic DMA device interface,
720 * no custom DMA interfaces are supported.
722 #ifdef CONFIG_DMA_ENGINE
723 struct mmci_dmae_next
{
724 struct dma_async_tx_descriptor
*desc
;
725 struct dma_chan
*chan
;
728 struct mmci_dmae_priv
{
729 struct dma_chan
*cur
;
730 struct dma_chan
*rx_channel
;
731 struct dma_chan
*tx_channel
;
732 struct dma_async_tx_descriptor
*desc_current
;
733 struct mmci_dmae_next next_data
;
736 int mmci_dmae_setup(struct mmci_host
*host
)
738 const char *rxname
, *txname
;
739 struct mmci_dmae_priv
*dmae
;
741 dmae
= devm_kzalloc(mmc_dev(host
->mmc
), sizeof(*dmae
), GFP_KERNEL
);
745 host
->dma_priv
= dmae
;
747 dmae
->rx_channel
= dma_request_chan(mmc_dev(host
->mmc
), "rx");
748 if (IS_ERR(dmae
->rx_channel
)) {
749 int ret
= PTR_ERR(dmae
->rx_channel
);
750 dmae
->rx_channel
= NULL
;
754 dmae
->tx_channel
= dma_request_chan(mmc_dev(host
->mmc
), "tx");
755 if (IS_ERR(dmae
->tx_channel
)) {
756 if (PTR_ERR(dmae
->tx_channel
) == -EPROBE_DEFER
)
757 dev_warn(mmc_dev(host
->mmc
),
758 "Deferred probe for TX channel ignored\n");
759 dmae
->tx_channel
= NULL
;
763 * If only an RX channel is specified, the driver will
764 * attempt to use it bidirectionally, however if it is
765 * is specified but cannot be located, DMA will be disabled.
767 if (dmae
->rx_channel
&& !dmae
->tx_channel
)
768 dmae
->tx_channel
= dmae
->rx_channel
;
770 if (dmae
->rx_channel
)
771 rxname
= dma_chan_name(dmae
->rx_channel
);
775 if (dmae
->tx_channel
)
776 txname
= dma_chan_name(dmae
->tx_channel
);
780 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
784 * Limit the maximum segment size in any SG entry according to
785 * the parameters of the DMA engine device.
787 if (dmae
->tx_channel
) {
788 struct device
*dev
= dmae
->tx_channel
->device
->dev
;
789 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
791 if (max_seg_size
< host
->mmc
->max_seg_size
)
792 host
->mmc
->max_seg_size
= max_seg_size
;
794 if (dmae
->rx_channel
) {
795 struct device
*dev
= dmae
->rx_channel
->device
->dev
;
796 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
798 if (max_seg_size
< host
->mmc
->max_seg_size
)
799 host
->mmc
->max_seg_size
= max_seg_size
;
802 if (!dmae
->tx_channel
|| !dmae
->rx_channel
) {
803 mmci_dmae_release(host
);
811 * This is used in or so inline it
812 * so it can be discarded.
814 void mmci_dmae_release(struct mmci_host
*host
)
816 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
818 if (dmae
->rx_channel
)
819 dma_release_channel(dmae
->rx_channel
);
820 if (dmae
->tx_channel
)
821 dma_release_channel(dmae
->tx_channel
);
822 dmae
->rx_channel
= dmae
->tx_channel
= NULL
;
825 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
827 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
828 struct dma_chan
*chan
;
830 if (data
->flags
& MMC_DATA_READ
)
831 chan
= dmae
->rx_channel
;
833 chan
= dmae
->tx_channel
;
835 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
,
836 mmc_get_dma_dir(data
));
839 void mmci_dmae_error(struct mmci_host
*host
)
841 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
843 if (!dma_inprogress(host
))
846 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
847 dmaengine_terminate_all(dmae
->cur
);
848 host
->dma_in_progress
= false;
850 dmae
->desc_current
= NULL
;
851 host
->data
->host_cookie
= 0;
853 mmci_dma_unmap(host
, host
->data
);
856 void mmci_dmae_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
858 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
862 if (!dma_inprogress(host
))
865 /* Wait up to 1ms for the DMA to complete */
867 status
= readl(host
->base
+ MMCISTATUS
);
868 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
874 * Check to see whether we still have some data left in the FIFO -
875 * this catches DMA controllers which are unable to monitor the
876 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
877 * contiguous buffers. On TX, we'll get a FIFO underrun error.
879 if (status
& MCI_RXDATAAVLBLMASK
) {
880 mmci_dma_error(host
);
883 } else if (!data
->host_cookie
) {
884 mmci_dma_unmap(host
, data
);
888 * Use of DMA with scatter-gather is impossible.
889 * Give up with DMA and switch back to PIO mode.
891 if (status
& MCI_RXDATAAVLBLMASK
) {
892 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
893 mmci_dma_release(host
);
896 host
->dma_in_progress
= false;
898 dmae
->desc_current
= NULL
;
901 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
902 static int _mmci_dmae_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
903 struct dma_chan
**dma_chan
,
904 struct dma_async_tx_descriptor
**dma_desc
)
906 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
907 struct variant_data
*variant
= host
->variant
;
908 struct dma_slave_config conf
= {
909 .src_addr
= host
->phybase
+ MMCIFIFO
,
910 .dst_addr
= host
->phybase
+ MMCIFIFO
,
911 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
912 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
913 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
914 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
917 struct dma_chan
*chan
;
918 struct dma_device
*device
;
919 struct dma_async_tx_descriptor
*desc
;
921 unsigned long flags
= DMA_CTRL_ACK
;
923 if (data
->flags
& MMC_DATA_READ
) {
924 conf
.direction
= DMA_DEV_TO_MEM
;
925 chan
= dmae
->rx_channel
;
927 conf
.direction
= DMA_MEM_TO_DEV
;
928 chan
= dmae
->tx_channel
;
931 /* If there's no DMA channel, fall back to PIO */
935 /* If less than or equal to the fifo size, don't bother with DMA */
936 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
940 * This is necessary to get SDIO working on the Ux500. We do not yet
941 * know if this is a bug in:
942 * - The Ux500 DMA controller (DMA40)
943 * - The MMCI DMA interface on the Ux500
944 * some power of two blocks (such as 64 bytes) are sent regularly
945 * during SDIO traffic and those work fine so for these we enable DMA
948 if (host
->variant
->dma_power_of_2
&& !is_power_of_2(data
->blksz
))
951 device
= chan
->device
;
952 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
,
953 mmc_get_dma_dir(data
));
957 if (host
->variant
->qcom_dml
)
958 flags
|= DMA_PREP_INTERRUPT
;
960 dmaengine_slave_config(chan
, &conf
);
961 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
962 conf
.direction
, flags
);
972 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
,
973 mmc_get_dma_dir(data
));
977 int mmci_dmae_prep_data(struct mmci_host
*host
,
978 struct mmc_data
*data
,
981 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
982 struct mmci_dmae_next
*nd
= &dmae
->next_data
;
988 return _mmci_dmae_prep_data(host
, data
, &nd
->chan
, &nd
->desc
);
989 /* Check if next job is already prepared. */
990 if (dmae
->cur
&& dmae
->desc_current
)
993 /* No job were prepared thus do it now. */
994 return _mmci_dmae_prep_data(host
, data
, &dmae
->cur
,
995 &dmae
->desc_current
);
998 int mmci_dmae_start(struct mmci_host
*host
, unsigned int *datactrl
)
1000 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1003 host
->dma_in_progress
= true;
1004 ret
= dma_submit_error(dmaengine_submit(dmae
->desc_current
));
1006 host
->dma_in_progress
= false;
1009 dma_async_issue_pending(dmae
->cur
);
1011 *datactrl
|= MCI_DPSM_DMAENABLE
;
1016 void mmci_dmae_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
1018 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1019 struct mmci_dmae_next
*next
= &dmae
->next_data
;
1024 WARN_ON(!data
->host_cookie
&& (next
->desc
|| next
->chan
));
1026 dmae
->desc_current
= next
->desc
;
1027 dmae
->cur
= next
->chan
;
1032 void mmci_dmae_unprep_data(struct mmci_host
*host
,
1033 struct mmc_data
*data
, int err
)
1036 struct mmci_dmae_priv
*dmae
= host
->dma_priv
;
1041 mmci_dma_unmap(host
, data
);
1044 struct mmci_dmae_next
*next
= &dmae
->next_data
;
1045 struct dma_chan
*chan
;
1046 if (data
->flags
& MMC_DATA_READ
)
1047 chan
= dmae
->rx_channel
;
1049 chan
= dmae
->tx_channel
;
1050 dmaengine_terminate_all(chan
);
1052 if (dmae
->desc_current
== next
->desc
)
1053 dmae
->desc_current
= NULL
;
1055 if (dmae
->cur
== next
->chan
) {
1056 host
->dma_in_progress
= false;
1065 static struct mmci_host_ops mmci_variant_ops
= {
1066 .prep_data
= mmci_dmae_prep_data
,
1067 .unprep_data
= mmci_dmae_unprep_data
,
1068 .get_datactrl_cfg
= mmci_get_dctrl_cfg
,
1069 .get_next_data
= mmci_dmae_get_next_data
,
1070 .dma_setup
= mmci_dmae_setup
,
1071 .dma_release
= mmci_dmae_release
,
1072 .dma_start
= mmci_dmae_start
,
1073 .dma_finalize
= mmci_dmae_finalize
,
1074 .dma_error
= mmci_dmae_error
,
1077 static struct mmci_host_ops mmci_variant_ops
= {
1078 .get_datactrl_cfg
= mmci_get_dctrl_cfg
,
1082 static void mmci_variant_init(struct mmci_host
*host
)
1084 host
->ops
= &mmci_variant_ops
;
1087 static void ux500_variant_init(struct mmci_host
*host
)
1089 host
->ops
= &mmci_variant_ops
;
1090 host
->ops
->busy_complete
= ux500_busy_complete
;
1093 static void ux500v2_variant_init(struct mmci_host
*host
)
1095 host
->ops
= &mmci_variant_ops
;
1096 host
->ops
->busy_complete
= ux500_busy_complete
;
1097 host
->ops
->get_datactrl_cfg
= ux500v2_get_dctrl_cfg
;
1100 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1102 struct mmci_host
*host
= mmc_priv(mmc
);
1103 struct mmc_data
*data
= mrq
->data
;
1108 WARN_ON(data
->host_cookie
);
1110 if (mmci_validate_data(host
, data
))
1113 mmci_prep_data(host
, data
, true);
1116 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
1119 struct mmci_host
*host
= mmc_priv(mmc
);
1120 struct mmc_data
*data
= mrq
->data
;
1122 if (!data
|| !data
->host_cookie
)
1125 mmci_unprep_data(host
, data
, err
);
1128 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
1130 struct variant_data
*variant
= host
->variant
;
1131 unsigned int datactrl
, timeout
, irqmask
;
1132 unsigned long long clks
;
1135 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
1136 data
->blksz
, data
->blocks
, data
->flags
);
1139 host
->size
= data
->blksz
* data
->blocks
;
1140 data
->bytes_xfered
= 0;
1142 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
1143 do_div(clks
, NSEC_PER_SEC
);
1145 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
1148 writel(timeout
, base
+ MMCIDATATIMER
);
1149 writel(host
->size
, base
+ MMCIDATALENGTH
);
1151 datactrl
= host
->ops
->get_datactrl_cfg(host
);
1152 datactrl
|= host
->data
->flags
& MMC_DATA_READ
? MCI_DPSM_DIRECTION
: 0;
1154 if (host
->mmc
->card
&& mmc_card_sdio(host
->mmc
->card
)) {
1157 datactrl
|= variant
->datactrl_mask_sdio
;
1160 * The ST Micro variant for SDIO small write transfers
1161 * needs to have clock H/W flow control disabled,
1162 * otherwise the transfer will not start. The threshold
1163 * depends on the rate of MCLK.
1165 if (variant
->st_sdio
&& data
->flags
& MMC_DATA_WRITE
&&
1167 (host
->size
<= 8 && host
->mclk
> 50000000)))
1168 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
1170 clk
= host
->clk_reg
| variant
->clkreg_enable
;
1172 mmci_write_clkreg(host
, clk
);
1175 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
||
1176 host
->mmc
->ios
.timing
== MMC_TIMING_MMC_DDR52
)
1177 datactrl
|= variant
->datactrl_mask_ddrmode
;
1180 * Attempt to use DMA operation mode, if this
1181 * should fail, fall back to PIO mode
1183 if (!mmci_dma_start(host
, datactrl
))
1186 /* IRQ mode, map the SG list for CPU reading/writing */
1187 mmci_init_sg(host
, data
);
1189 if (data
->flags
& MMC_DATA_READ
) {
1190 irqmask
= MCI_RXFIFOHALFFULLMASK
;
1193 * If we have less than the fifo 'half-full' threshold to
1194 * transfer, trigger a PIO interrupt as soon as any data
1197 if (host
->size
< variant
->fifohalfsize
)
1198 irqmask
|= MCI_RXDATAAVLBLMASK
;
1201 * We don't actually need to include "FIFO empty" here
1202 * since its implicit in "FIFO half empty".
1204 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
1207 mmci_write_datactrlreg(host
, datactrl
);
1208 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1209 mmci_set_mask1(host
, irqmask
);
1213 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
1215 void __iomem
*base
= host
->base
;
1216 unsigned long long clks
;
1218 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
1219 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
1221 if (readl(base
+ MMCICOMMAND
) & host
->variant
->cmdreg_cpsm_enable
) {
1222 writel(0, base
+ MMCICOMMAND
);
1223 mmci_reg_delay(host
);
1226 if (host
->variant
->cmdreg_stop
&&
1227 cmd
->opcode
== MMC_STOP_TRANSMISSION
)
1228 c
|= host
->variant
->cmdreg_stop
;
1230 c
|= cmd
->opcode
| host
->variant
->cmdreg_cpsm_enable
;
1231 if (cmd
->flags
& MMC_RSP_PRESENT
) {
1232 if (cmd
->flags
& MMC_RSP_136
)
1233 c
|= host
->variant
->cmdreg_lrsp_crc
;
1234 else if (cmd
->flags
& MMC_RSP_CRC
)
1235 c
|= host
->variant
->cmdreg_srsp_crc
;
1237 c
|= host
->variant
->cmdreg_srsp
;
1240 if (host
->variant
->busy_timeout
&& cmd
->flags
& MMC_RSP_BUSY
) {
1241 if (!cmd
->busy_timeout
)
1242 cmd
->busy_timeout
= 10 * MSEC_PER_SEC
;
1244 clks
= (unsigned long long)cmd
->busy_timeout
* host
->cclk
;
1245 do_div(clks
, MSEC_PER_SEC
);
1246 writel_relaxed(clks
, host
->base
+ MMCIDATATIMER
);
1249 if (host
->ops
->pre_sig_volt_switch
&& cmd
->opcode
== SD_SWITCH_VOLTAGE
)
1250 host
->ops
->pre_sig_volt_switch(host
);
1253 c
|= MCI_CPSM_INTERRUPT
;
1255 if (mmc_cmd_type(cmd
) == MMC_CMD_ADTC
)
1256 c
|= host
->variant
->data_cmd_enable
;
1260 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
1261 writel(c
, base
+ MMCICOMMAND
);
1264 static void mmci_stop_command(struct mmci_host
*host
)
1266 host
->stop_abort
.error
= 0;
1267 mmci_start_command(host
, &host
->stop_abort
, 0);
1271 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
1272 unsigned int status
)
1274 unsigned int status_err
;
1276 /* Make sure we have data to handle */
1280 /* First check for errors */
1281 status_err
= status
& (host
->variant
->start_err
|
1282 MCI_DATACRCFAIL
| MCI_DATATIMEOUT
|
1283 MCI_TXUNDERRUN
| MCI_RXOVERRUN
);
1286 u32 remain
, success
;
1288 /* Terminate the DMA transfer */
1289 mmci_dma_error(host
);
1292 * Calculate how far we are into the transfer. Note that
1293 * the data counter gives the number of bytes transferred
1294 * on the MMC bus, not on the host side. On reads, this
1295 * can be as much as a FIFO-worth of data ahead. This
1296 * matters for FIFO overruns only.
1298 if (!host
->variant
->datacnt_useless
) {
1299 remain
= readl(host
->base
+ MMCIDATACNT
);
1300 success
= data
->blksz
* data
->blocks
- remain
;
1305 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1306 status_err
, success
);
1307 if (status_err
& MCI_DATACRCFAIL
) {
1308 /* Last block was not successful */
1310 data
->error
= -EILSEQ
;
1311 } else if (status_err
& MCI_DATATIMEOUT
) {
1312 data
->error
= -ETIMEDOUT
;
1313 } else if (status_err
& MCI_STARTBITERR
) {
1314 data
->error
= -ECOMM
;
1315 } else if (status_err
& MCI_TXUNDERRUN
) {
1317 } else if (status_err
& MCI_RXOVERRUN
) {
1318 if (success
> host
->variant
->fifosize
)
1319 success
-= host
->variant
->fifosize
;
1324 data
->bytes_xfered
= round_down(success
, data
->blksz
);
1327 if (status
& MCI_DATABLOCKEND
)
1328 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
1330 if (status
& MCI_DATAEND
|| data
->error
) {
1331 mmci_dma_finalize(host
, data
);
1333 mmci_stop_data(host
);
1336 /* The error clause is handled above, success! */
1337 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
1340 if (host
->variant
->cmdreg_stop
&& data
->error
)
1341 mmci_stop_command(host
);
1343 mmci_request_end(host
, data
->mrq
);
1344 } else if (host
->mrq
->sbc
&& !data
->error
) {
1345 mmci_request_end(host
, data
->mrq
);
1347 mmci_start_command(host
, data
->stop
, 0);
1353 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
1354 unsigned int status
)
1356 u32 err_msk
= MCI_CMDCRCFAIL
| MCI_CMDTIMEOUT
;
1357 void __iomem
*base
= host
->base
;
1358 bool sbc
, busy_resp
;
1363 sbc
= (cmd
== host
->mrq
->sbc
);
1364 busy_resp
= !!(cmd
->flags
& MMC_RSP_BUSY
);
1367 * We need to be one of these interrupts to be considered worth
1368 * handling. Note that we tag on any latent IRQs postponed
1369 * due to waiting for busy status.
1371 if (host
->variant
->busy_timeout
&& busy_resp
)
1372 err_msk
|= MCI_DATATIMEOUT
;
1374 if (!((status
| host
->busy_status
) &
1375 (err_msk
| MCI_CMDSENT
| MCI_CMDRESPEND
)))
1378 /* Handle busy detection on DAT0 if the variant supports it. */
1379 if (busy_resp
&& host
->variant
->busy_detect
)
1380 if (!host
->ops
->busy_complete(host
, status
, err_msk
))
1385 if (status
& MCI_CMDTIMEOUT
) {
1386 cmd
->error
= -ETIMEDOUT
;
1387 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
1388 cmd
->error
= -EILSEQ
;
1389 } else if (host
->variant
->busy_timeout
&& busy_resp
&&
1390 status
& MCI_DATATIMEOUT
) {
1391 cmd
->error
= -ETIMEDOUT
;
1392 host
->irq_action
= IRQ_WAKE_THREAD
;
1394 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
1395 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
1396 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
1397 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
1400 if ((!sbc
&& !cmd
->data
) || cmd
->error
) {
1402 /* Terminate the DMA transfer */
1403 mmci_dma_error(host
);
1405 mmci_stop_data(host
);
1406 if (host
->variant
->cmdreg_stop
&& cmd
->error
) {
1407 mmci_stop_command(host
);
1412 if (host
->irq_action
!= IRQ_WAKE_THREAD
)
1413 mmci_request_end(host
, host
->mrq
);
1416 mmci_start_command(host
, host
->mrq
->cmd
, 0);
1417 } else if (!host
->variant
->datactrl_first
&&
1418 !(cmd
->data
->flags
& MMC_DATA_READ
)) {
1419 mmci_start_data(host
, cmd
->data
);
1423 static int mmci_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int remain
)
1425 return remain
- (readl(host
->base
+ MMCIFIFOCNT
) << 2);
1428 static int mmci_qcom_get_rx_fifocnt(struct mmci_host
*host
, u32 status
, int r
)
1431 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1432 * from the fifo range should be used
1434 if (status
& MCI_RXFIFOHALFFULL
)
1435 return host
->variant
->fifohalfsize
;
1436 else if (status
& MCI_RXDATAAVLBL
)
1442 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
1444 void __iomem
*base
= host
->base
;
1446 u32 status
= readl(host
->base
+ MMCISTATUS
);
1447 int host_remain
= host
->size
;
1450 int count
= host
->get_rx_fifocnt(host
, status
, host_remain
);
1459 * SDIO especially may want to send something that is
1460 * not divisible by 4 (as opposed to card sectors
1461 * etc). Therefore make sure to always read the last bytes
1462 * while only doing full 32-bit reads towards the FIFO.
1464 if (unlikely(count
& 0x3)) {
1466 unsigned char buf
[4];
1467 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
1468 memcpy(ptr
, buf
, count
);
1470 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1474 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
1479 host_remain
-= count
;
1484 status
= readl(base
+ MMCISTATUS
);
1485 } while (status
& MCI_RXDATAAVLBL
);
1487 return ptr
- buffer
;
1490 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
1492 struct variant_data
*variant
= host
->variant
;
1493 void __iomem
*base
= host
->base
;
1497 unsigned int count
, maxcnt
;
1499 maxcnt
= status
& MCI_TXFIFOEMPTY
?
1500 variant
->fifosize
: variant
->fifohalfsize
;
1501 count
= min(remain
, maxcnt
);
1504 * SDIO especially may want to send something that is
1505 * not divisible by 4 (as opposed to card sectors
1506 * etc), and the FIFO only accept full 32-bit writes.
1507 * So compensate by adding +3 on the count, a single
1508 * byte become a 32bit write, 7 bytes will be two
1511 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
1519 status
= readl(base
+ MMCISTATUS
);
1520 } while (status
& MCI_TXFIFOHALFEMPTY
);
1522 return ptr
- buffer
;
1526 * PIO data transfer IRQ handler.
1528 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
1530 struct mmci_host
*host
= dev_id
;
1531 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
1532 struct variant_data
*variant
= host
->variant
;
1533 void __iomem
*base
= host
->base
;
1536 status
= readl(base
+ MMCISTATUS
);
1538 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
1541 unsigned int remain
, len
;
1545 * For write, we only need to test the half-empty flag
1546 * here - if the FIFO is completely empty, then by
1547 * definition it is more than half empty.
1549 * For read, check for data available.
1551 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1554 if (!sg_miter_next(sg_miter
))
1557 buffer
= sg_miter
->addr
;
1558 remain
= sg_miter
->length
;
1561 if (status
& MCI_RXACTIVE
)
1562 len
= mmci_pio_read(host
, buffer
, remain
);
1563 if (status
& MCI_TXACTIVE
)
1564 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1566 sg_miter
->consumed
= len
;
1574 status
= readl(base
+ MMCISTATUS
);
1577 sg_miter_stop(sg_miter
);
1580 * If we have less than the fifo 'half-full' threshold to transfer,
1581 * trigger a PIO interrupt as soon as any data is available.
1583 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1584 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1587 * If we run out of data, disable the data IRQs; this
1588 * prevents a race where the FIFO becomes empty before
1589 * the chip itself has disabled the data path, and
1590 * stops us racing with our data end IRQ.
1592 if (host
->size
== 0) {
1593 mmci_set_mask1(host
, 0);
1594 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1601 * Handle completion of command and data transfers.
1603 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1605 struct mmci_host
*host
= dev_id
;
1608 spin_lock(&host
->lock
);
1609 host
->irq_action
= IRQ_HANDLED
;
1612 status
= readl(host
->base
+ MMCISTATUS
);
1614 if (host
->singleirq
) {
1615 if (status
& host
->mask1_reg
)
1616 mmci_pio_irq(irq
, dev_id
);
1618 status
&= ~host
->variant
->irq_pio_mask
;
1622 * Busy detection is managed by mmci_cmd_irq(), including to
1623 * clear the corresponding IRQ.
1625 status
&= readl(host
->base
+ MMCIMASK0
);
1626 if (host
->variant
->busy_detect
)
1627 writel(status
& ~host
->variant
->busy_detect_mask
,
1628 host
->base
+ MMCICLEAR
);
1630 writel(status
, host
->base
+ MMCICLEAR
);
1632 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1634 if (host
->variant
->reversed_irq_handling
) {
1635 mmci_data_irq(host
, host
->data
, status
);
1636 mmci_cmd_irq(host
, host
->cmd
, status
);
1638 mmci_cmd_irq(host
, host
->cmd
, status
);
1639 mmci_data_irq(host
, host
->data
, status
);
1643 * Busy detection has been handled by mmci_cmd_irq() above.
1644 * Clear the status bit to prevent polling in IRQ context.
1646 if (host
->variant
->busy_detect_flag
)
1647 status
&= ~host
->variant
->busy_detect_flag
;
1651 spin_unlock(&host
->lock
);
1653 return host
->irq_action
;
1657 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1659 * A reset is needed for some variants, where a datatimeout for a R1B request
1660 * causes the DPSM to stay busy (non-functional).
1662 static irqreturn_t
mmci_irq_thread(int irq
, void *dev_id
)
1664 struct mmci_host
*host
= dev_id
;
1665 unsigned long flags
;
1668 reset_control_assert(host
->rst
);
1670 reset_control_deassert(host
->rst
);
1673 spin_lock_irqsave(&host
->lock
, flags
);
1674 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
1675 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
1676 writel(MCI_IRQENABLE
| host
->variant
->start_err
,
1677 host
->base
+ MMCIMASK0
);
1679 host
->irq_action
= IRQ_HANDLED
;
1680 mmci_request_end(host
, host
->mrq
);
1681 spin_unlock_irqrestore(&host
->lock
, flags
);
1683 return host
->irq_action
;
1686 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1688 struct mmci_host
*host
= mmc_priv(mmc
);
1689 unsigned long flags
;
1691 WARN_ON(host
->mrq
!= NULL
);
1693 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1694 if (mrq
->cmd
->error
) {
1695 mmc_request_done(mmc
, mrq
);
1699 spin_lock_irqsave(&host
->lock
, flags
);
1704 mmci_get_next_data(host
, mrq
->data
);
1707 (host
->variant
->datactrl_first
|| mrq
->data
->flags
& MMC_DATA_READ
))
1708 mmci_start_data(host
, mrq
->data
);
1711 mmci_start_command(host
, mrq
->sbc
, 0);
1713 mmci_start_command(host
, mrq
->cmd
, 0);
1715 spin_unlock_irqrestore(&host
->lock
, flags
);
1718 static void mmci_set_max_busy_timeout(struct mmc_host
*mmc
)
1720 struct mmci_host
*host
= mmc_priv(mmc
);
1721 u32 max_busy_timeout
= 0;
1723 if (!host
->variant
->busy_detect
)
1726 if (host
->variant
->busy_timeout
&& mmc
->actual_clock
)
1727 max_busy_timeout
= ~0UL / (mmc
->actual_clock
/ MSEC_PER_SEC
);
1729 mmc
->max_busy_timeout
= max_busy_timeout
;
1732 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1734 struct mmci_host
*host
= mmc_priv(mmc
);
1735 struct variant_data
*variant
= host
->variant
;
1737 unsigned long flags
;
1740 if (host
->plat
->ios_handler
&&
1741 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1742 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1744 switch (ios
->power_mode
) {
1746 if (!IS_ERR(mmc
->supply
.vmmc
))
1747 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1749 if (!IS_ERR(mmc
->supply
.vqmmc
) && host
->vqmmc_enabled
) {
1750 regulator_disable(mmc
->supply
.vqmmc
);
1751 host
->vqmmc_enabled
= false;
1756 if (!IS_ERR(mmc
->supply
.vmmc
))
1757 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1760 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1761 * and instead uses MCI_PWR_ON so apply whatever value is
1762 * configured in the variant data.
1764 pwr
|= variant
->pwrreg_powerup
;
1768 if (!IS_ERR(mmc
->supply
.vqmmc
) && !host
->vqmmc_enabled
) {
1769 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1771 dev_err(mmc_dev(mmc
),
1772 "failed to enable vqmmc regulator\n");
1774 host
->vqmmc_enabled
= true;
1781 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1783 * The ST Micro variant has some additional bits
1784 * indicating signal direction for the signals in
1785 * the SD/MMC bus and feedback-clock usage.
1787 pwr
|= host
->pwr_reg_add
;
1789 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1790 pwr
&= ~MCI_ST_DATA74DIREN
;
1791 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1792 pwr
&= (~MCI_ST_DATA74DIREN
&
1793 ~MCI_ST_DATA31DIREN
&
1794 ~MCI_ST_DATA2DIREN
);
1797 if (variant
->opendrain
) {
1798 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
)
1799 pwr
|= variant
->opendrain
;
1802 * If the variant cannot configure the pads by its own, then we
1803 * expect the pinctrl to be able to do that for us
1805 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
)
1806 pinctrl_select_state(host
->pinctrl
, host
->pins_opendrain
);
1808 pinctrl_select_default_state(mmc_dev(mmc
));
1812 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1813 * gating the clock, the MCI_PWR_ON bit is cleared.
1815 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
1818 if (host
->variant
->explicit_mclk_control
&&
1819 ios
->clock
!= host
->clock_cache
) {
1820 ret
= clk_set_rate(host
->clk
, ios
->clock
);
1822 dev_err(mmc_dev(host
->mmc
),
1823 "Error setting clock rate (%d)\n", ret
);
1825 host
->mclk
= clk_get_rate(host
->clk
);
1827 host
->clock_cache
= ios
->clock
;
1829 spin_lock_irqsave(&host
->lock
, flags
);
1831 if (host
->ops
&& host
->ops
->set_clkreg
)
1832 host
->ops
->set_clkreg(host
, ios
->clock
);
1834 mmci_set_clkreg(host
, ios
->clock
);
1836 mmci_set_max_busy_timeout(mmc
);
1838 if (host
->ops
&& host
->ops
->set_pwrreg
)
1839 host
->ops
->set_pwrreg(host
, pwr
);
1841 mmci_write_pwrreg(host
, pwr
);
1843 mmci_reg_delay(host
);
1845 spin_unlock_irqrestore(&host
->lock
, flags
);
1848 static int mmci_get_cd(struct mmc_host
*mmc
)
1850 struct mmci_host
*host
= mmc_priv(mmc
);
1851 struct mmci_platform_data
*plat
= host
->plat
;
1852 unsigned int status
= mmc_gpio_get_cd(mmc
);
1854 if (status
== -ENOSYS
) {
1856 return 1; /* Assume always present */
1858 status
= plat
->status(mmc_dev(host
->mmc
));
1863 static int mmci_sig_volt_switch(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1865 struct mmci_host
*host
= mmc_priv(mmc
);
1868 ret
= mmc_regulator_set_vqmmc(mmc
, ios
);
1870 if (!ret
&& host
->ops
&& host
->ops
->post_sig_volt_switch
)
1871 ret
= host
->ops
->post_sig_volt_switch(host
, ios
);
1876 dev_warn(mmc_dev(mmc
), "Voltage switch failed\n");
1881 static struct mmc_host_ops mmci_ops
= {
1882 .request
= mmci_request
,
1883 .pre_req
= mmci_pre_request
,
1884 .post_req
= mmci_post_request
,
1885 .set_ios
= mmci_set_ios
,
1886 .get_ro
= mmc_gpio_get_ro
,
1887 .get_cd
= mmci_get_cd
,
1888 .start_signal_voltage_switch
= mmci_sig_volt_switch
,
1891 static int mmci_of_parse(struct device_node
*np
, struct mmc_host
*mmc
)
1893 struct mmci_host
*host
= mmc_priv(mmc
);
1894 int ret
= mmc_of_parse(mmc
);
1899 if (of_get_property(np
, "st,sig-dir-dat0", NULL
))
1900 host
->pwr_reg_add
|= MCI_ST_DATA0DIREN
;
1901 if (of_get_property(np
, "st,sig-dir-dat2", NULL
))
1902 host
->pwr_reg_add
|= MCI_ST_DATA2DIREN
;
1903 if (of_get_property(np
, "st,sig-dir-dat31", NULL
))
1904 host
->pwr_reg_add
|= MCI_ST_DATA31DIREN
;
1905 if (of_get_property(np
, "st,sig-dir-dat74", NULL
))
1906 host
->pwr_reg_add
|= MCI_ST_DATA74DIREN
;
1907 if (of_get_property(np
, "st,sig-dir-cmd", NULL
))
1908 host
->pwr_reg_add
|= MCI_ST_CMDDIREN
;
1909 if (of_get_property(np
, "st,sig-pin-fbclk", NULL
))
1910 host
->pwr_reg_add
|= MCI_ST_FBCLKEN
;
1911 if (of_get_property(np
, "st,sig-dir", NULL
))
1912 host
->pwr_reg_add
|= MCI_STM32_DIRPOL
;
1913 if (of_get_property(np
, "st,neg-edge", NULL
))
1914 host
->clk_reg_add
|= MCI_STM32_CLK_NEGEDGE
;
1915 if (of_get_property(np
, "st,use-ckin", NULL
))
1916 host
->clk_reg_add
|= MCI_STM32_CLK_SELCKIN
;
1918 if (of_get_property(np
, "mmc-cap-mmc-highspeed", NULL
))
1919 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
;
1920 if (of_get_property(np
, "mmc-cap-sd-highspeed", NULL
))
1921 mmc
->caps
|= MMC_CAP_SD_HIGHSPEED
;
1926 static int mmci_probe(struct amba_device
*dev
,
1927 const struct amba_id
*id
)
1929 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1930 struct device_node
*np
= dev
->dev
.of_node
;
1931 struct variant_data
*variant
= id
->data
;
1932 struct mmci_host
*host
;
1933 struct mmc_host
*mmc
;
1936 /* Must have platform data or Device Tree. */
1938 dev_err(&dev
->dev
, "No plat data or DT found\n");
1943 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
1948 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1952 ret
= mmci_of_parse(np
, mmc
);
1956 host
= mmc_priv(mmc
);
1958 host
->mmc_ops
= &mmci_ops
;
1959 mmc
->ops
= &mmci_ops
;
1962 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1963 * pins can be set accordingly using pinctrl
1965 if (!variant
->opendrain
) {
1966 host
->pinctrl
= devm_pinctrl_get(&dev
->dev
);
1967 if (IS_ERR(host
->pinctrl
)) {
1968 dev_err(&dev
->dev
, "failed to get pinctrl");
1969 ret
= PTR_ERR(host
->pinctrl
);
1973 host
->pins_opendrain
= pinctrl_lookup_state(host
->pinctrl
,
1974 MMCI_PINCTRL_STATE_OPENDRAIN
);
1975 if (IS_ERR(host
->pins_opendrain
)) {
1976 dev_err(mmc_dev(mmc
), "Can't select opendrain pins\n");
1977 ret
= PTR_ERR(host
->pins_opendrain
);
1982 host
->hw_designer
= amba_manf(dev
);
1983 host
->hw_revision
= amba_rev(dev
);
1984 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1985 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1987 host
->clk
= devm_clk_get(&dev
->dev
, NULL
);
1988 if (IS_ERR(host
->clk
)) {
1989 ret
= PTR_ERR(host
->clk
);
1993 ret
= clk_prepare_enable(host
->clk
);
1997 if (variant
->qcom_fifo
)
1998 host
->get_rx_fifocnt
= mmci_qcom_get_rx_fifocnt
;
2000 host
->get_rx_fifocnt
= mmci_get_rx_fifocnt
;
2003 host
->variant
= variant
;
2004 host
->mclk
= clk_get_rate(host
->clk
);
2006 * According to the spec, mclk is max 100 MHz,
2007 * so we try to adjust the clock down to this,
2010 if (host
->mclk
> variant
->f_max
) {
2011 ret
= clk_set_rate(host
->clk
, variant
->f_max
);
2014 host
->mclk
= clk_get_rate(host
->clk
);
2015 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
2019 host
->phybase
= dev
->res
.start
;
2020 host
->base
= devm_ioremap_resource(&dev
->dev
, &dev
->res
);
2021 if (IS_ERR(host
->base
)) {
2022 ret
= PTR_ERR(host
->base
);
2027 variant
->init(host
);
2030 * The ARM and ST versions of the block have slightly different
2031 * clock divider equations which means that the minimum divider
2033 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2035 if (variant
->st_clkdiv
)
2036 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
2037 else if (variant
->stm32_clkdiv
)
2038 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 2046);
2039 else if (variant
->explicit_mclk_control
)
2040 mmc
->f_min
= clk_round_rate(host
->clk
, 100000);
2042 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
2044 * If no maximum operating frequency is supplied, fall back to use
2045 * the module parameter, which has a (low) default value in case it
2046 * is not specified. Either value must not exceed the clock rate into
2047 * the block, of course.
2050 mmc
->f_max
= variant
->explicit_mclk_control
?
2051 min(variant
->f_max
, mmc
->f_max
) :
2052 min(host
->mclk
, mmc
->f_max
);
2054 mmc
->f_max
= variant
->explicit_mclk_control
?
2055 fmax
: min(host
->mclk
, fmax
);
2058 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
2060 host
->rst
= devm_reset_control_get_optional_exclusive(&dev
->dev
, NULL
);
2061 if (IS_ERR(host
->rst
)) {
2062 ret
= PTR_ERR(host
->rst
);
2066 /* Get regulators and the supported OCR mask */
2067 ret
= mmc_regulator_get_supply(mmc
);
2071 if (!mmc
->ocr_avail
)
2072 mmc
->ocr_avail
= plat
->ocr_mask
;
2073 else if (plat
->ocr_mask
)
2074 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
2076 /* We support these capabilities. */
2077 mmc
->caps
|= MMC_CAP_CMD23
;
2080 * Enable busy detection.
2082 if (variant
->busy_detect
) {
2083 mmci_ops
.card_busy
= mmci_card_busy
;
2085 * Not all variants have a flag to enable busy detection
2086 * in the DPSM, but if they do, set it here.
2088 if (variant
->busy_dpsm_flag
)
2089 mmci_write_datactrlreg(host
,
2090 host
->variant
->busy_dpsm_flag
);
2091 mmc
->caps
|= MMC_CAP_WAIT_WHILE_BUSY
;
2094 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2095 host
->stop_abort
.opcode
= MMC_STOP_TRANSMISSION
;
2096 host
->stop_abort
.arg
= 0;
2097 host
->stop_abort
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
2099 /* We support these PM capabilities. */
2100 mmc
->pm_caps
|= MMC_PM_KEEP_POWER
;
2105 mmc
->max_segs
= NR_SG
;
2108 * Since only a certain number of bits are valid in the data length
2109 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2112 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
2115 * Set the maximum segment size. Since we aren't doing DMA
2116 * (yet) we are only limited by the data length register.
2118 mmc
->max_seg_size
= mmc
->max_req_size
;
2121 * Block size can be up to 2048 bytes, but must be a power of two.
2123 mmc
->max_blk_size
= 1 << variant
->datactrl_blocksz
;
2126 * Limit the number of blocks transferred so that we don't overflow
2127 * the maximum request size.
2129 mmc
->max_blk_count
= mmc
->max_req_size
>> variant
->datactrl_blocksz
;
2131 spin_lock_init(&host
->lock
);
2133 writel(0, host
->base
+ MMCIMASK0
);
2135 if (variant
->mmcimask1
)
2136 writel(0, host
->base
+ MMCIMASK1
);
2138 writel(0xfff, host
->base
+ MMCICLEAR
);
2142 * - not using DT but using a descriptor table, or
2143 * - using a table of descriptors ALONGSIDE DT, or
2144 * look up these descriptors named "cd" and "wp" right here, fail
2145 * silently of these do not exist
2148 ret
= mmc_gpiod_request_cd(mmc
, "cd", 0, false, 0);
2149 if (ret
== -EPROBE_DEFER
)
2152 ret
= mmc_gpiod_request_ro(mmc
, "wp", 0, 0);
2153 if (ret
== -EPROBE_DEFER
)
2157 ret
= devm_request_threaded_irq(&dev
->dev
, dev
->irq
[0], mmci_irq
,
2158 mmci_irq_thread
, IRQF_SHARED
,
2159 DRIVER_NAME
" (cmd)", host
);
2164 host
->singleirq
= true;
2166 ret
= devm_request_irq(&dev
->dev
, dev
->irq
[1], mmci_pio_irq
,
2167 IRQF_SHARED
, DRIVER_NAME
" (pio)", host
);
2172 writel(MCI_IRQENABLE
| variant
->start_err
, host
->base
+ MMCIMASK0
);
2174 amba_set_drvdata(dev
, mmc
);
2176 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2177 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
2178 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
2179 dev
->irq
[0], dev
->irq
[1]);
2181 mmci_dma_setup(host
);
2183 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
2184 pm_runtime_use_autosuspend(&dev
->dev
);
2188 pm_runtime_put(&dev
->dev
);
2192 clk_disable_unprepare(host
->clk
);
2198 static int mmci_remove(struct amba_device
*dev
)
2200 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
2203 struct mmci_host
*host
= mmc_priv(mmc
);
2204 struct variant_data
*variant
= host
->variant
;
2207 * Undo pm_runtime_put() in probe. We use the _sync
2208 * version here so that we can access the primecell.
2210 pm_runtime_get_sync(&dev
->dev
);
2212 mmc_remove_host(mmc
);
2214 writel(0, host
->base
+ MMCIMASK0
);
2216 if (variant
->mmcimask1
)
2217 writel(0, host
->base
+ MMCIMASK1
);
2219 writel(0, host
->base
+ MMCICOMMAND
);
2220 writel(0, host
->base
+ MMCIDATACTRL
);
2222 mmci_dma_release(host
);
2223 clk_disable_unprepare(host
->clk
);
2231 static void mmci_save(struct mmci_host
*host
)
2233 unsigned long flags
;
2235 spin_lock_irqsave(&host
->lock
, flags
);
2237 writel(0, host
->base
+ MMCIMASK0
);
2238 if (host
->variant
->pwrreg_nopower
) {
2239 writel(0, host
->base
+ MMCIDATACTRL
);
2240 writel(0, host
->base
+ MMCIPOWER
);
2241 writel(0, host
->base
+ MMCICLOCK
);
2243 mmci_reg_delay(host
);
2245 spin_unlock_irqrestore(&host
->lock
, flags
);
2248 static void mmci_restore(struct mmci_host
*host
)
2250 unsigned long flags
;
2252 spin_lock_irqsave(&host
->lock
, flags
);
2254 if (host
->variant
->pwrreg_nopower
) {
2255 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
2256 writel(host
->datactrl_reg
, host
->base
+ MMCIDATACTRL
);
2257 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
2259 writel(MCI_IRQENABLE
| host
->variant
->start_err
,
2260 host
->base
+ MMCIMASK0
);
2261 mmci_reg_delay(host
);
2263 spin_unlock_irqrestore(&host
->lock
, flags
);
2266 static int mmci_runtime_suspend(struct device
*dev
)
2268 struct amba_device
*adev
= to_amba_device(dev
);
2269 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
2272 struct mmci_host
*host
= mmc_priv(mmc
);
2273 pinctrl_pm_select_sleep_state(dev
);
2275 clk_disable_unprepare(host
->clk
);
2281 static int mmci_runtime_resume(struct device
*dev
)
2283 struct amba_device
*adev
= to_amba_device(dev
);
2284 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
2287 struct mmci_host
*host
= mmc_priv(mmc
);
2288 clk_prepare_enable(host
->clk
);
2290 pinctrl_select_default_state(dev
);
2297 static const struct dev_pm_ops mmci_dev_pm_ops
= {
2298 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
2299 pm_runtime_force_resume
)
2300 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
2303 static const struct amba_id mmci_ids
[] = {
2307 .data
= &variant_arm
,
2312 .data
= &variant_arm_extended_fifo
,
2317 .data
= &variant_arm_extended_fifo_hwfc
,
2322 .data
= &variant_arm
,
2324 /* ST Micro variants */
2328 .data
= &variant_u300
,
2333 .data
= &variant_nomadik
,
2338 .data
= &variant_nomadik
,
2343 .data
= &variant_ux500
,
2348 .data
= &variant_ux500v2
,
2353 .data
= &variant_stm32
,
2358 .data
= &variant_stm32_sdmmc
,
2363 .data
= &variant_stm32_sdmmcv2
,
2365 /* Qualcomm variants */
2369 .data
= &variant_qcom
,
2374 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
2376 static struct amba_driver mmci_driver
= {
2378 .name
= DRIVER_NAME
,
2379 .pm
= &mmci_dev_pm_ops
,
2381 .probe
= mmci_probe
,
2382 .remove
= mmci_remove
,
2383 .id_table
= mmci_ids
,
2386 module_amba_driver(mmci_driver
);
2388 module_param(fmax
, uint
, 0444);
2390 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2391 MODULE_LICENSE("GPL");