io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / thunderbolt / switch.c
bloba8572f49d3adc42e65998f3cd38e60443ef7ca87
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
17 #include "tb.h"
19 /* Switch NVM support */
21 #define NVM_CSS 0x10
23 struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
29 enum nvm_write_ops {
30 WRITE_AND_AUTHENTICATE = 1,
31 WRITE_ONLY = 2,
35 * Hold NVM authentication failure status per switch This information
36 * needs to stay around even when the switch gets power cycled so we
37 * keep it separately.
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
44 struct nvm_auth_status *st;
46 list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 if (uuid_equal(&st->uuid, sw->uuid))
48 return st;
51 return NULL;
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
56 struct nvm_auth_status *st;
58 mutex_lock(&nvm_auth_status_lock);
59 st = __nvm_get_auth_status(sw);
60 mutex_unlock(&nvm_auth_status_lock);
62 *status = st ? st->status : 0;
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
67 struct nvm_auth_status *st;
69 if (WARN_ON(!sw->uuid))
70 return;
72 mutex_lock(&nvm_auth_status_lock);
73 st = __nvm_get_auth_status(sw);
75 if (!st) {
76 st = kzalloc(sizeof(*st), GFP_KERNEL);
77 if (!st)
78 goto unlock;
80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 INIT_LIST_HEAD(&st->list);
82 list_add_tail(&st->list, &nvm_auth_status_cache);
85 st->status = status;
86 unlock:
87 mutex_unlock(&nvm_auth_status_lock);
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
92 struct nvm_auth_status *st;
94 mutex_lock(&nvm_auth_status_lock);
95 st = __nvm_get_auth_status(sw);
96 if (st) {
97 list_del(&st->list);
98 kfree(st);
100 mutex_unlock(&nvm_auth_status_lock);
103 static int nvm_validate_and_write(struct tb_switch *sw)
105 unsigned int image_size, hdr_size;
106 const u8 *buf = sw->nvm->buf;
107 u16 ds_size;
108 int ret;
110 if (!buf)
111 return -EINVAL;
113 image_size = sw->nvm->buf_data_size;
114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 return -EINVAL;
118 * FARB pointer must point inside the image and must at least
119 * contain parts of the digital section we will be reading here.
121 hdr_size = (*(u32 *)buf) & 0xffffff;
122 if (hdr_size + NVM_DEVID + 2 >= image_size)
123 return -EINVAL;
125 /* Digital section start should be aligned to 4k page */
126 if (!IS_ALIGNED(hdr_size, SZ_4K))
127 return -EINVAL;
130 * Read digital section size and check that it also fits inside
131 * the image.
133 ds_size = *(u16 *)(buf + hdr_size);
134 if (ds_size >= image_size)
135 return -EINVAL;
137 if (!sw->safe_mode) {
138 u16 device_id;
141 * Make sure the device ID in the image matches the one
142 * we read from the switch config space.
144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 if (device_id != sw->config.device_id)
146 return -EINVAL;
148 if (sw->generation < 3) {
149 /* Write CSS headers first */
150 ret = dma_port_flash_write(sw->dma_port,
151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 DMA_PORT_CSS_MAX_SIZE);
153 if (ret)
154 return ret;
157 /* Skip headers in the image */
158 buf += hdr_size;
159 image_size -= hdr_size;
162 if (tb_switch_is_usb4(sw))
163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 else
165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 if (!ret)
167 sw->nvm->flushed = true;
168 return ret;
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
173 int ret = 0;
176 * Root switch NVM upgrade requires that we disconnect the
177 * existing paths first (in case it is not in safe mode
178 * already).
180 if (!sw->safe_mode) {
181 u32 status;
183 ret = tb_domain_disconnect_all_paths(sw->tb);
184 if (ret)
185 return ret;
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
190 ret = dma_port_flash_update_auth(sw->dma_port);
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
195 * Any error from update auth operation requires power
196 * cycling of the host router.
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
204 * From safe mode we can get out by just power cycling the
205 * switch.
207 dma_port_power_cycle(sw->dma_port);
208 return ret;
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
213 int ret, retries = 10;
215 ret = dma_port_flash_update_auth(sw->dma_port);
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
224 return ret;
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
233 do {
234 u32 status;
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
250 msleep(500);
251 } while (--retries);
253 return -ETIMEDOUT;
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
258 struct pci_dev *root_port;
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
273 struct pci_dev *root_port;
275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
280 static inline bool nvm_readable(struct tb_switch *sw)
282 if (tb_switch_is_usb4(sw)) {
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
289 return usb4_switch_nvm_sector_size(sw) > 0;
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
311 static int nvm_authenticate(struct tb_switch *sw)
313 int ret;
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
325 return ret;
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
331 struct tb_nvm *nvm = priv;
332 struct tb_switch *sw = tb_to_switch(nvm->dev);
333 int ret;
335 pm_runtime_get_sync(&sw->dev);
337 if (!mutex_trylock(&sw->tb->lock)) {
338 ret = restart_syscall();
339 goto out;
342 ret = nvm_read(sw, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
345 out:
346 pm_runtime_mark_last_busy(&sw->dev);
347 pm_runtime_put_autosuspend(&sw->dev);
349 return ret;
352 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 size_t bytes)
355 struct tb_nvm *nvm = priv;
356 struct tb_switch *sw = tb_to_switch(nvm->dev);
357 int ret;
359 if (!mutex_trylock(&sw->tb->lock))
360 return restart_syscall();
363 * Since writing the NVM image might require some special steps,
364 * for example when CSS headers are written, we cache the image
365 * locally here and handle the special cases when the user asks
366 * us to authenticate the image.
368 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 mutex_unlock(&sw->tb->lock);
371 return ret;
374 static int tb_switch_nvm_add(struct tb_switch *sw)
376 struct tb_nvm *nvm;
377 u32 val;
378 int ret;
380 if (!nvm_readable(sw))
381 return 0;
384 * The NVM format of non-Intel hardware is not known so
385 * currently restrict NVM upgrade for Intel hardware. We may
386 * relax this in the future when we learn other NVM formats.
388 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 sw->config.vendor_id != 0x8087) {
390 dev_info(&sw->dev,
391 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 sw->config.vendor_id);
393 return 0;
396 nvm = tb_nvm_alloc(&sw->dev);
397 if (IS_ERR(nvm))
398 return PTR_ERR(nvm);
401 * If the switch is in safe-mode the only accessible portion of
402 * the NVM is the non-active one where userspace is expected to
403 * write new functional NVM.
405 if (!sw->safe_mode) {
406 u32 nvm_size, hdr_size;
408 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 if (ret)
410 goto err_nvm;
412 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 nvm_size = (SZ_1M << (val & 7)) / 8;
414 nvm_size = (nvm_size - hdr_size) / 2;
416 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 if (ret)
418 goto err_nvm;
420 nvm->major = val >> 16;
421 nvm->minor = val >> 8;
423 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 if (ret)
425 goto err_nvm;
428 if (!sw->no_nvm_upgrade) {
429 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 tb_switch_nvm_write);
431 if (ret)
432 goto err_nvm;
435 sw->nvm = nvm;
436 return 0;
438 err_nvm:
439 tb_nvm_free(nvm);
440 return ret;
443 static void tb_switch_nvm_remove(struct tb_switch *sw)
445 struct tb_nvm *nvm;
447 nvm = sw->nvm;
448 sw->nvm = NULL;
450 if (!nvm)
451 return;
453 /* Remove authentication status in case the switch is unplugged */
454 if (!nvm->authenticating)
455 nvm_clear_auth_status(sw);
457 tb_nvm_free(nvm);
460 /* port utility functions */
462 static const char *tb_port_type(struct tb_regs_port_header *port)
464 switch (port->type >> 16) {
465 case 0:
466 switch ((u8) port->type) {
467 case 0:
468 return "Inactive";
469 case 1:
470 return "Port";
471 case 2:
472 return "NHI";
473 default:
474 return "unknown";
476 case 0x2:
477 return "Ethernet";
478 case 0x8:
479 return "SATA";
480 case 0xe:
481 return "DP/HDMI";
482 case 0x10:
483 return "PCIe";
484 case 0x20:
485 return "USB";
486 default:
487 return "unknown";
491 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
493 tb_dbg(tb,
494 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 port->port_number, port->vendor_id, port->device_id,
496 port->revision, port->thunderbolt_version, tb_port_type(port),
497 port->type);
498 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
499 port->max_in_hop_id, port->max_out_hop_id);
500 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
501 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
505 * tb_port_state() - get connectedness state of a port
506 * @port: the port to check
508 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
510 * Return: Returns an enum tb_port_state on success or an error code on failure.
512 int tb_port_state(struct tb_port *port)
514 struct tb_cap_phy phy;
515 int res;
516 if (port->cap_phy == 0) {
517 tb_port_WARN(port, "does not have a PHY\n");
518 return -EINVAL;
520 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
521 if (res)
522 return res;
523 return phy.state;
527 * tb_wait_for_port() - wait for a port to become ready
529 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
530 * wait_if_unplugged is set then we also wait if the port is in state
531 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
532 * switch resume). Otherwise we only wait if a device is registered but the link
533 * has not yet been established.
535 * Return: Returns an error code on failure. Returns 0 if the port is not
536 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
537 * if the port is connected and in state TB_PORT_UP.
539 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
541 int retries = 10;
542 int state;
543 if (!port->cap_phy) {
544 tb_port_WARN(port, "does not have PHY\n");
545 return -EINVAL;
547 if (tb_is_upstream_port(port)) {
548 tb_port_WARN(port, "is the upstream port\n");
549 return -EINVAL;
552 while (retries--) {
553 state = tb_port_state(port);
554 if (state < 0)
555 return state;
556 if (state == TB_PORT_DISABLED) {
557 tb_port_dbg(port, "is disabled (state: 0)\n");
558 return 0;
560 if (state == TB_PORT_UNPLUGGED) {
561 if (wait_if_unplugged) {
562 /* used during resume */
563 tb_port_dbg(port,
564 "is unplugged (state: 7), retrying...\n");
565 msleep(100);
566 continue;
568 tb_port_dbg(port, "is unplugged (state: 7)\n");
569 return 0;
571 if (state == TB_PORT_UP) {
572 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
573 return 1;
577 * After plug-in the state is TB_PORT_CONNECTING. Give it some
578 * time.
580 tb_port_dbg(port,
581 "is connected, link is not up (state: %d), retrying...\n",
582 state);
583 msleep(100);
585 tb_port_warn(port,
586 "failed to reach state TB_PORT_UP. Ignoring port...\n");
587 return 0;
591 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
593 * Change the number of NFC credits allocated to @port by @credits. To remove
594 * NFC credits pass a negative amount of credits.
596 * Return: Returns 0 on success or an error code on failure.
598 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
600 u32 nfc_credits;
602 if (credits == 0 || port->sw->is_unplugged)
603 return 0;
606 * USB4 restricts programming NFC buffers to lane adapters only
607 * so skip other ports.
609 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
610 return 0;
612 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
613 nfc_credits += credits;
615 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
616 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
618 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
619 port->config.nfc_credits |= nfc_credits;
621 return tb_port_write(port, &port->config.nfc_credits,
622 TB_CFG_PORT, ADP_CS_4, 1);
626 * tb_port_set_initial_credits() - Set initial port link credits allocated
627 * @port: Port to set the initial credits
628 * @credits: Number of credits to to allocate
630 * Set initial credits value to be used for ingress shared buffering.
632 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
634 u32 data;
635 int ret;
637 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
638 if (ret)
639 return ret;
641 data &= ~ADP_CS_5_LCA_MASK;
642 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
644 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
648 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
650 * Return: Returns 0 on success or an error code on failure.
652 int tb_port_clear_counter(struct tb_port *port, int counter)
654 u32 zero[3] = { 0, 0, 0 };
655 tb_port_dbg(port, "clearing counter %d\n", counter);
656 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
660 * tb_port_unlock() - Unlock downstream port
661 * @port: Port to unlock
663 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
664 * downstream router accessible for CM.
666 int tb_port_unlock(struct tb_port *port)
668 if (tb_switch_is_icm(port->sw))
669 return 0;
670 if (!tb_port_is_null(port))
671 return -EINVAL;
672 if (tb_switch_is_usb4(port->sw))
673 return usb4_port_unlock(port);
674 return 0;
677 static int __tb_port_enable(struct tb_port *port, bool enable)
679 int ret;
680 u32 phy;
682 if (!tb_port_is_null(port))
683 return -EINVAL;
685 ret = tb_port_read(port, &phy, TB_CFG_PORT,
686 port->cap_phy + LANE_ADP_CS_1, 1);
687 if (ret)
688 return ret;
690 if (enable)
691 phy &= ~LANE_ADP_CS_1_LD;
692 else
693 phy |= LANE_ADP_CS_1_LD;
695 return tb_port_write(port, &phy, TB_CFG_PORT,
696 port->cap_phy + LANE_ADP_CS_1, 1);
700 * tb_port_enable() - Enable lane adapter
701 * @port: Port to enable (can be %NULL)
703 * This is used for lane 0 and 1 adapters to enable it.
705 int tb_port_enable(struct tb_port *port)
707 return __tb_port_enable(port, true);
711 * tb_port_disable() - Disable lane adapter
712 * @port: Port to disable (can be %NULL)
714 * This is used for lane 0 and 1 adapters to disable it.
716 int tb_port_disable(struct tb_port *port)
718 return __tb_port_enable(port, false);
722 * tb_init_port() - initialize a port
724 * This is a helper method for tb_switch_alloc. Does not check or initialize
725 * any downstream switches.
727 * Return: Returns 0 on success or an error code on failure.
729 static int tb_init_port(struct tb_port *port)
731 int res;
732 int cap;
734 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
735 if (res) {
736 if (res == -ENODEV) {
737 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
738 port->port);
739 port->disabled = true;
740 return 0;
742 return res;
745 /* Port 0 is the switch itself and has no PHY. */
746 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
747 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
749 if (cap > 0)
750 port->cap_phy = cap;
751 else
752 tb_port_WARN(port, "non switch port without a PHY\n");
754 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
755 if (cap > 0)
756 port->cap_usb4 = cap;
757 } else if (port->port != 0) {
758 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
759 if (cap > 0)
760 port->cap_adap = cap;
763 tb_dump_port(port->sw->tb, &port->config);
765 /* Control port does not need HopID allocation */
766 if (port->port) {
767 ida_init(&port->in_hopids);
768 ida_init(&port->out_hopids);
771 INIT_LIST_HEAD(&port->list);
772 return 0;
776 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
777 int max_hopid)
779 int port_max_hopid;
780 struct ida *ida;
782 if (in) {
783 port_max_hopid = port->config.max_in_hop_id;
784 ida = &port->in_hopids;
785 } else {
786 port_max_hopid = port->config.max_out_hop_id;
787 ida = &port->out_hopids;
791 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
792 * reserved.
794 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
795 min_hopid = TB_PATH_MIN_HOPID;
797 if (max_hopid < 0 || max_hopid > port_max_hopid)
798 max_hopid = port_max_hopid;
800 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
804 * tb_port_alloc_in_hopid() - Allocate input HopID from port
805 * @port: Port to allocate HopID for
806 * @min_hopid: Minimum acceptable input HopID
807 * @max_hopid: Maximum acceptable input HopID
809 * Return: HopID between @min_hopid and @max_hopid or negative errno in
810 * case of error.
812 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
814 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
818 * tb_port_alloc_out_hopid() - Allocate output HopID from port
819 * @port: Port to allocate HopID for
820 * @min_hopid: Minimum acceptable output HopID
821 * @max_hopid: Maximum acceptable output HopID
823 * Return: HopID between @min_hopid and @max_hopid or negative errno in
824 * case of error.
826 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
828 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
832 * tb_port_release_in_hopid() - Release allocated input HopID from port
833 * @port: Port whose HopID to release
834 * @hopid: HopID to release
836 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
838 ida_simple_remove(&port->in_hopids, hopid);
842 * tb_port_release_out_hopid() - Release allocated output HopID from port
843 * @port: Port whose HopID to release
844 * @hopid: HopID to release
846 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
848 ida_simple_remove(&port->out_hopids, hopid);
851 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
852 const struct tb_switch *sw)
854 u64 mask = (1ULL << parent->config.depth * 8) - 1;
855 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
859 * tb_next_port_on_path() - Return next port for given port on a path
860 * @start: Start port of the walk
861 * @end: End port of the walk
862 * @prev: Previous port (%NULL if this is the first)
864 * This function can be used to walk from one port to another if they
865 * are connected through zero or more switches. If the @prev is dual
866 * link port, the function follows that link and returns another end on
867 * that same link.
869 * If the @end port has been reached, return %NULL.
871 * Domain tb->lock must be held when this function is called.
873 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
874 struct tb_port *prev)
876 struct tb_port *next;
878 if (!prev)
879 return start;
881 if (prev->sw == end->sw) {
882 if (prev == end)
883 return NULL;
884 return end;
887 if (tb_switch_is_reachable(prev->sw, end->sw)) {
888 next = tb_port_at(tb_route(end->sw), prev->sw);
889 /* Walk down the topology if next == prev */
890 if (prev->remote &&
891 (next == prev || next->dual_link_port == prev))
892 next = prev->remote;
893 } else {
894 if (tb_is_upstream_port(prev)) {
895 next = prev->remote;
896 } else {
897 next = tb_upstream_port(prev->sw);
899 * Keep the same link if prev and next are both
900 * dual link ports.
902 if (next->dual_link_port &&
903 next->link_nr != prev->link_nr) {
904 next = next->dual_link_port;
909 return next != prev ? next : NULL;
913 * tb_port_get_link_speed() - Get current link speed
914 * @port: Port to check (USB4 or CIO)
916 * Returns link speed in Gb/s or negative errno in case of failure.
918 int tb_port_get_link_speed(struct tb_port *port)
920 u32 val, speed;
921 int ret;
923 if (!port->cap_phy)
924 return -EINVAL;
926 ret = tb_port_read(port, &val, TB_CFG_PORT,
927 port->cap_phy + LANE_ADP_CS_1, 1);
928 if (ret)
929 return ret;
931 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
932 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
933 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
937 * tb_port_get_link_width() - Get current link width
938 * @port: Port to check (USB4 or CIO)
940 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
941 * or negative errno in case of failure.
943 int tb_port_get_link_width(struct tb_port *port)
945 u32 val;
946 int ret;
948 if (!port->cap_phy)
949 return -EINVAL;
951 ret = tb_port_read(port, &val, TB_CFG_PORT,
952 port->cap_phy + LANE_ADP_CS_1, 1);
953 if (ret)
954 return ret;
956 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
957 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
960 static bool tb_port_is_width_supported(struct tb_port *port, int width)
962 u32 phy, widths;
963 int ret;
965 if (!port->cap_phy)
966 return false;
968 ret = tb_port_read(port, &phy, TB_CFG_PORT,
969 port->cap_phy + LANE_ADP_CS_0, 1);
970 if (ret)
971 return false;
973 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
974 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
976 return !!(widths & width);
979 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
981 u32 val;
982 int ret;
984 if (!port->cap_phy)
985 return -EINVAL;
987 ret = tb_port_read(port, &val, TB_CFG_PORT,
988 port->cap_phy + LANE_ADP_CS_1, 1);
989 if (ret)
990 return ret;
992 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
993 switch (width) {
994 case 1:
995 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
996 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
997 break;
998 case 2:
999 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1000 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1001 break;
1002 default:
1003 return -EINVAL;
1006 val |= LANE_ADP_CS_1_LB;
1008 return tb_port_write(port, &val, TB_CFG_PORT,
1009 port->cap_phy + LANE_ADP_CS_1, 1);
1013 * tb_port_lane_bonding_enable() - Enable bonding on port
1014 * @port: port to enable
1016 * Enable bonding by setting the link width of the port and the
1017 * other port in case of dual link port.
1019 * Return: %0 in case of success and negative errno in case of error
1021 int tb_port_lane_bonding_enable(struct tb_port *port)
1023 int ret;
1026 * Enable lane bonding for both links if not already enabled by
1027 * for example the boot firmware.
1029 ret = tb_port_get_link_width(port);
1030 if (ret == 1) {
1031 ret = tb_port_set_link_width(port, 2);
1032 if (ret)
1033 return ret;
1036 ret = tb_port_get_link_width(port->dual_link_port);
1037 if (ret == 1) {
1038 ret = tb_port_set_link_width(port->dual_link_port, 2);
1039 if (ret) {
1040 tb_port_set_link_width(port, 1);
1041 return ret;
1045 port->bonded = true;
1046 port->dual_link_port->bonded = true;
1048 return 0;
1052 * tb_port_lane_bonding_disable() - Disable bonding on port
1053 * @port: port to disable
1055 * Disable bonding by setting the link width of the port and the
1056 * other port in case of dual link port.
1059 void tb_port_lane_bonding_disable(struct tb_port *port)
1061 port->dual_link_port->bonded = false;
1062 port->bonded = false;
1064 tb_port_set_link_width(port->dual_link_port, 1);
1065 tb_port_set_link_width(port, 1);
1069 * tb_port_is_enabled() - Is the adapter port enabled
1070 * @port: Port to check
1072 bool tb_port_is_enabled(struct tb_port *port)
1074 switch (port->config.type) {
1075 case TB_TYPE_PCIE_UP:
1076 case TB_TYPE_PCIE_DOWN:
1077 return tb_pci_port_is_enabled(port);
1079 case TB_TYPE_DP_HDMI_IN:
1080 case TB_TYPE_DP_HDMI_OUT:
1081 return tb_dp_port_is_enabled(port);
1083 case TB_TYPE_USB3_UP:
1084 case TB_TYPE_USB3_DOWN:
1085 return tb_usb3_port_is_enabled(port);
1087 default:
1088 return false;
1093 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1094 * @port: USB3 adapter port to check
1096 bool tb_usb3_port_is_enabled(struct tb_port *port)
1098 u32 data;
1100 if (tb_port_read(port, &data, TB_CFG_PORT,
1101 port->cap_adap + ADP_USB3_CS_0, 1))
1102 return false;
1104 return !!(data & ADP_USB3_CS_0_PE);
1108 * tb_usb3_port_enable() - Enable USB3 adapter port
1109 * @port: USB3 adapter port to enable
1110 * @enable: Enable/disable the USB3 adapter
1112 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1114 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1115 : ADP_USB3_CS_0_V;
1117 if (!port->cap_adap)
1118 return -ENXIO;
1119 return tb_port_write(port, &word, TB_CFG_PORT,
1120 port->cap_adap + ADP_USB3_CS_0, 1);
1124 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1125 * @port: PCIe port to check
1127 bool tb_pci_port_is_enabled(struct tb_port *port)
1129 u32 data;
1131 if (tb_port_read(port, &data, TB_CFG_PORT,
1132 port->cap_adap + ADP_PCIE_CS_0, 1))
1133 return false;
1135 return !!(data & ADP_PCIE_CS_0_PE);
1139 * tb_pci_port_enable() - Enable PCIe adapter port
1140 * @port: PCIe port to enable
1141 * @enable: Enable/disable the PCIe adapter
1143 int tb_pci_port_enable(struct tb_port *port, bool enable)
1145 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1146 if (!port->cap_adap)
1147 return -ENXIO;
1148 return tb_port_write(port, &word, TB_CFG_PORT,
1149 port->cap_adap + ADP_PCIE_CS_0, 1);
1153 * tb_dp_port_hpd_is_active() - Is HPD already active
1154 * @port: DP out port to check
1156 * Checks if the DP OUT adapter port has HDP bit already set.
1158 int tb_dp_port_hpd_is_active(struct tb_port *port)
1160 u32 data;
1161 int ret;
1163 ret = tb_port_read(port, &data, TB_CFG_PORT,
1164 port->cap_adap + ADP_DP_CS_2, 1);
1165 if (ret)
1166 return ret;
1168 return !!(data & ADP_DP_CS_2_HDP);
1172 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1173 * @port: Port to clear HPD
1175 * If the DP IN port has HDP set, this function can be used to clear it.
1177 int tb_dp_port_hpd_clear(struct tb_port *port)
1179 u32 data;
1180 int ret;
1182 ret = tb_port_read(port, &data, TB_CFG_PORT,
1183 port->cap_adap + ADP_DP_CS_3, 1);
1184 if (ret)
1185 return ret;
1187 data |= ADP_DP_CS_3_HDPC;
1188 return tb_port_write(port, &data, TB_CFG_PORT,
1189 port->cap_adap + ADP_DP_CS_3, 1);
1193 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1194 * @port: DP IN/OUT port to set hops
1195 * @video: Video Hop ID
1196 * @aux_tx: AUX TX Hop ID
1197 * @aux_rx: AUX RX Hop ID
1199 * Programs specified Hop IDs for DP IN/OUT port.
1201 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1202 unsigned int aux_tx, unsigned int aux_rx)
1204 u32 data[2];
1205 int ret;
1207 ret = tb_port_read(port, data, TB_CFG_PORT,
1208 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1209 if (ret)
1210 return ret;
1212 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1213 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1214 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1216 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1217 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1218 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1219 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1220 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1222 return tb_port_write(port, data, TB_CFG_PORT,
1223 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1227 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1228 * @port: DP adapter port to check
1230 bool tb_dp_port_is_enabled(struct tb_port *port)
1232 u32 data[2];
1234 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1235 ARRAY_SIZE(data)))
1236 return false;
1238 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1242 * tb_dp_port_enable() - Enables/disables DP paths of a port
1243 * @port: DP IN/OUT port
1244 * @enable: Enable/disable DP path
1246 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1247 * calling this function.
1249 int tb_dp_port_enable(struct tb_port *port, bool enable)
1251 u32 data[2];
1252 int ret;
1254 ret = tb_port_read(port, data, TB_CFG_PORT,
1255 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1256 if (ret)
1257 return ret;
1259 if (enable)
1260 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1261 else
1262 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1264 return tb_port_write(port, data, TB_CFG_PORT,
1265 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1268 /* switch utility functions */
1270 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1272 switch (sw->generation) {
1273 case 1:
1274 return "Thunderbolt 1";
1275 case 2:
1276 return "Thunderbolt 2";
1277 case 3:
1278 return "Thunderbolt 3";
1279 case 4:
1280 return "USB4";
1281 default:
1282 return "Unknown";
1286 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1288 const struct tb_regs_switch_header *regs = &sw->config;
1290 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1291 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1292 regs->revision, regs->thunderbolt_version);
1293 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1294 tb_dbg(tb, " Config:\n");
1295 tb_dbg(tb,
1296 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1297 regs->upstream_port_number, regs->depth,
1298 (((u64) regs->route_hi) << 32) | regs->route_lo,
1299 regs->enabled, regs->plug_events_delay);
1300 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1301 regs->__unknown1, regs->__unknown4);
1305 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1306 * @sw: Switch to reset
1308 * Return: Returns 0 on success or an error code on failure.
1310 int tb_switch_reset(struct tb_switch *sw)
1312 struct tb_cfg_result res;
1314 if (sw->generation > 1)
1315 return 0;
1317 tb_sw_dbg(sw, "resetting switch\n");
1319 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1320 TB_CFG_SWITCH, 2, 2);
1321 if (res.err)
1322 return res.err;
1323 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw), TB_CFG_DEFAULT_TIMEOUT);
1324 if (res.err > 0)
1325 return -EIO;
1326 return res.err;
1330 * tb_plug_events_active() - enable/disable plug events on a switch
1332 * Also configures a sane plug_events_delay of 255ms.
1334 * Return: Returns 0 on success or an error code on failure.
1336 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1338 u32 data;
1339 int res;
1341 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1342 return 0;
1344 sw->config.plug_events_delay = 0xff;
1345 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1346 if (res)
1347 return res;
1349 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1350 if (res)
1351 return res;
1353 if (active) {
1354 data = data & 0xFFFFFF83;
1355 switch (sw->config.device_id) {
1356 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1357 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1358 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1359 break;
1360 default:
1361 data |= 4;
1363 } else {
1364 data = data | 0x7c;
1366 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1367 sw->cap_plug_events + 1, 1);
1370 static ssize_t authorized_show(struct device *dev,
1371 struct device_attribute *attr,
1372 char *buf)
1374 struct tb_switch *sw = tb_to_switch(dev);
1376 return sprintf(buf, "%u\n", sw->authorized);
1379 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1381 int ret = -EINVAL;
1383 if (!mutex_trylock(&sw->tb->lock))
1384 return restart_syscall();
1386 if (sw->authorized)
1387 goto unlock;
1389 switch (val) {
1390 /* Approve switch */
1391 case 1:
1392 if (sw->key)
1393 ret = tb_domain_approve_switch_key(sw->tb, sw);
1394 else
1395 ret = tb_domain_approve_switch(sw->tb, sw);
1396 break;
1398 /* Challenge switch */
1399 case 2:
1400 if (sw->key)
1401 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1402 break;
1404 default:
1405 break;
1408 if (!ret) {
1409 sw->authorized = val;
1410 /* Notify status change to the userspace */
1411 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1414 unlock:
1415 mutex_unlock(&sw->tb->lock);
1416 return ret;
1419 static ssize_t authorized_store(struct device *dev,
1420 struct device_attribute *attr,
1421 const char *buf, size_t count)
1423 struct tb_switch *sw = tb_to_switch(dev);
1424 unsigned int val;
1425 ssize_t ret;
1427 ret = kstrtouint(buf, 0, &val);
1428 if (ret)
1429 return ret;
1430 if (val > 2)
1431 return -EINVAL;
1433 pm_runtime_get_sync(&sw->dev);
1434 ret = tb_switch_set_authorized(sw, val);
1435 pm_runtime_mark_last_busy(&sw->dev);
1436 pm_runtime_put_autosuspend(&sw->dev);
1438 return ret ? ret : count;
1440 static DEVICE_ATTR_RW(authorized);
1442 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1443 char *buf)
1445 struct tb_switch *sw = tb_to_switch(dev);
1447 return sprintf(buf, "%u\n", sw->boot);
1449 static DEVICE_ATTR_RO(boot);
1451 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1452 char *buf)
1454 struct tb_switch *sw = tb_to_switch(dev);
1456 return sprintf(buf, "%#x\n", sw->device);
1458 static DEVICE_ATTR_RO(device);
1460 static ssize_t
1461 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1463 struct tb_switch *sw = tb_to_switch(dev);
1465 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1467 static DEVICE_ATTR_RO(device_name);
1469 static ssize_t
1470 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1472 struct tb_switch *sw = tb_to_switch(dev);
1474 return sprintf(buf, "%u\n", sw->generation);
1476 static DEVICE_ATTR_RO(generation);
1478 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1479 char *buf)
1481 struct tb_switch *sw = tb_to_switch(dev);
1482 ssize_t ret;
1484 if (!mutex_trylock(&sw->tb->lock))
1485 return restart_syscall();
1487 if (sw->key)
1488 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1489 else
1490 ret = sprintf(buf, "\n");
1492 mutex_unlock(&sw->tb->lock);
1493 return ret;
1496 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1497 const char *buf, size_t count)
1499 struct tb_switch *sw = tb_to_switch(dev);
1500 u8 key[TB_SWITCH_KEY_SIZE];
1501 ssize_t ret = count;
1502 bool clear = false;
1504 if (!strcmp(buf, "\n"))
1505 clear = true;
1506 else if (hex2bin(key, buf, sizeof(key)))
1507 return -EINVAL;
1509 if (!mutex_trylock(&sw->tb->lock))
1510 return restart_syscall();
1512 if (sw->authorized) {
1513 ret = -EBUSY;
1514 } else {
1515 kfree(sw->key);
1516 if (clear) {
1517 sw->key = NULL;
1518 } else {
1519 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1520 if (!sw->key)
1521 ret = -ENOMEM;
1525 mutex_unlock(&sw->tb->lock);
1526 return ret;
1528 static DEVICE_ATTR(key, 0600, key_show, key_store);
1530 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1531 char *buf)
1533 struct tb_switch *sw = tb_to_switch(dev);
1535 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1539 * Currently all lanes must run at the same speed but we expose here
1540 * both directions to allow possible asymmetric links in the future.
1542 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1543 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1545 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1546 char *buf)
1548 struct tb_switch *sw = tb_to_switch(dev);
1550 return sprintf(buf, "%u\n", sw->link_width);
1554 * Currently link has same amount of lanes both directions (1 or 2) but
1555 * expose them separately to allow possible asymmetric links in the future.
1557 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1558 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1560 static ssize_t nvm_authenticate_show(struct device *dev,
1561 struct device_attribute *attr, char *buf)
1563 struct tb_switch *sw = tb_to_switch(dev);
1564 u32 status;
1566 nvm_get_auth_status(sw, &status);
1567 return sprintf(buf, "%#x\n", status);
1570 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1571 bool disconnect)
1573 struct tb_switch *sw = tb_to_switch(dev);
1574 int val;
1575 int ret;
1577 pm_runtime_get_sync(&sw->dev);
1579 if (!mutex_trylock(&sw->tb->lock)) {
1580 ret = restart_syscall();
1581 goto exit_rpm;
1584 /* If NVMem devices are not yet added */
1585 if (!sw->nvm) {
1586 ret = -EAGAIN;
1587 goto exit_unlock;
1590 ret = kstrtoint(buf, 10, &val);
1591 if (ret)
1592 goto exit_unlock;
1594 /* Always clear the authentication status */
1595 nvm_clear_auth_status(sw);
1597 if (val > 0) {
1598 if (!sw->nvm->flushed) {
1599 if (!sw->nvm->buf) {
1600 ret = -EINVAL;
1601 goto exit_unlock;
1604 ret = nvm_validate_and_write(sw);
1605 if (ret || val == WRITE_ONLY)
1606 goto exit_unlock;
1608 if (val == WRITE_AND_AUTHENTICATE) {
1609 if (disconnect) {
1610 ret = tb_lc_force_power(sw);
1611 } else {
1612 sw->nvm->authenticating = true;
1613 ret = nvm_authenticate(sw);
1618 exit_unlock:
1619 mutex_unlock(&sw->tb->lock);
1620 exit_rpm:
1621 pm_runtime_mark_last_busy(&sw->dev);
1622 pm_runtime_put_autosuspend(&sw->dev);
1624 return ret;
1627 static ssize_t nvm_authenticate_store(struct device *dev,
1628 struct device_attribute *attr, const char *buf, size_t count)
1630 int ret = nvm_authenticate_sysfs(dev, buf, false);
1631 if (ret)
1632 return ret;
1633 return count;
1635 static DEVICE_ATTR_RW(nvm_authenticate);
1637 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1638 struct device_attribute *attr, char *buf)
1640 return nvm_authenticate_show(dev, attr, buf);
1643 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1644 struct device_attribute *attr, const char *buf, size_t count)
1646 int ret;
1648 ret = nvm_authenticate_sysfs(dev, buf, true);
1649 return ret ? ret : count;
1651 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1653 static ssize_t nvm_version_show(struct device *dev,
1654 struct device_attribute *attr, char *buf)
1656 struct tb_switch *sw = tb_to_switch(dev);
1657 int ret;
1659 if (!mutex_trylock(&sw->tb->lock))
1660 return restart_syscall();
1662 if (sw->safe_mode)
1663 ret = -ENODATA;
1664 else if (!sw->nvm)
1665 ret = -EAGAIN;
1666 else
1667 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1669 mutex_unlock(&sw->tb->lock);
1671 return ret;
1673 static DEVICE_ATTR_RO(nvm_version);
1675 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1676 char *buf)
1678 struct tb_switch *sw = tb_to_switch(dev);
1680 return sprintf(buf, "%#x\n", sw->vendor);
1682 static DEVICE_ATTR_RO(vendor);
1684 static ssize_t
1685 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1687 struct tb_switch *sw = tb_to_switch(dev);
1689 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1691 static DEVICE_ATTR_RO(vendor_name);
1693 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1694 char *buf)
1696 struct tb_switch *sw = tb_to_switch(dev);
1698 return sprintf(buf, "%pUb\n", sw->uuid);
1700 static DEVICE_ATTR_RO(unique_id);
1702 static struct attribute *switch_attrs[] = {
1703 &dev_attr_authorized.attr,
1704 &dev_attr_boot.attr,
1705 &dev_attr_device.attr,
1706 &dev_attr_device_name.attr,
1707 &dev_attr_generation.attr,
1708 &dev_attr_key.attr,
1709 &dev_attr_nvm_authenticate.attr,
1710 &dev_attr_nvm_authenticate_on_disconnect.attr,
1711 &dev_attr_nvm_version.attr,
1712 &dev_attr_rx_speed.attr,
1713 &dev_attr_rx_lanes.attr,
1714 &dev_attr_tx_speed.attr,
1715 &dev_attr_tx_lanes.attr,
1716 &dev_attr_vendor.attr,
1717 &dev_attr_vendor_name.attr,
1718 &dev_attr_unique_id.attr,
1719 NULL,
1722 static umode_t switch_attr_is_visible(struct kobject *kobj,
1723 struct attribute *attr, int n)
1725 struct device *dev = kobj_to_dev(kobj);
1726 struct tb_switch *sw = tb_to_switch(dev);
1728 if (attr == &dev_attr_device.attr) {
1729 if (!sw->device)
1730 return 0;
1731 } else if (attr == &dev_attr_device_name.attr) {
1732 if (!sw->device_name)
1733 return 0;
1734 } else if (attr == &dev_attr_vendor.attr) {
1735 if (!sw->vendor)
1736 return 0;
1737 } else if (attr == &dev_attr_vendor_name.attr) {
1738 if (!sw->vendor_name)
1739 return 0;
1740 } else if (attr == &dev_attr_key.attr) {
1741 if (tb_route(sw) &&
1742 sw->tb->security_level == TB_SECURITY_SECURE &&
1743 sw->security_level == TB_SECURITY_SECURE)
1744 return attr->mode;
1745 return 0;
1746 } else if (attr == &dev_attr_rx_speed.attr ||
1747 attr == &dev_attr_rx_lanes.attr ||
1748 attr == &dev_attr_tx_speed.attr ||
1749 attr == &dev_attr_tx_lanes.attr) {
1750 if (tb_route(sw))
1751 return attr->mode;
1752 return 0;
1753 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1754 if (nvm_upgradeable(sw))
1755 return attr->mode;
1756 return 0;
1757 } else if (attr == &dev_attr_nvm_version.attr) {
1758 if (nvm_readable(sw))
1759 return attr->mode;
1760 return 0;
1761 } else if (attr == &dev_attr_boot.attr) {
1762 if (tb_route(sw))
1763 return attr->mode;
1764 return 0;
1765 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1766 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1767 return attr->mode;
1768 return 0;
1771 return sw->safe_mode ? 0 : attr->mode;
1774 static struct attribute_group switch_group = {
1775 .is_visible = switch_attr_is_visible,
1776 .attrs = switch_attrs,
1779 static const struct attribute_group *switch_groups[] = {
1780 &switch_group,
1781 NULL,
1784 static void tb_switch_release(struct device *dev)
1786 struct tb_switch *sw = tb_to_switch(dev);
1787 struct tb_port *port;
1789 dma_port_free(sw->dma_port);
1791 tb_switch_for_each_port(sw, port) {
1792 if (!port->disabled) {
1793 ida_destroy(&port->in_hopids);
1794 ida_destroy(&port->out_hopids);
1798 kfree(sw->uuid);
1799 kfree(sw->device_name);
1800 kfree(sw->vendor_name);
1801 kfree(sw->ports);
1802 kfree(sw->drom);
1803 kfree(sw->key);
1804 kfree(sw);
1808 * Currently only need to provide the callbacks. Everything else is handled
1809 * in the connection manager.
1811 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1813 struct tb_switch *sw = tb_to_switch(dev);
1814 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1816 if (cm_ops->runtime_suspend_switch)
1817 return cm_ops->runtime_suspend_switch(sw);
1819 return 0;
1822 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1824 struct tb_switch *sw = tb_to_switch(dev);
1825 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1827 if (cm_ops->runtime_resume_switch)
1828 return cm_ops->runtime_resume_switch(sw);
1829 return 0;
1832 static const struct dev_pm_ops tb_switch_pm_ops = {
1833 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1834 NULL)
1837 struct device_type tb_switch_type = {
1838 .name = "thunderbolt_device",
1839 .release = tb_switch_release,
1840 .pm = &tb_switch_pm_ops,
1843 static int tb_switch_get_generation(struct tb_switch *sw)
1845 switch (sw->config.device_id) {
1846 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1847 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1848 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1849 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1850 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1851 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1852 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1853 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1854 return 1;
1856 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1857 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1858 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1859 return 2;
1861 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1862 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1863 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1864 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1865 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1866 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1867 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1868 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1869 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1870 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1871 return 3;
1873 default:
1874 if (tb_switch_is_usb4(sw))
1875 return 4;
1878 * For unknown switches assume generation to be 1 to be
1879 * on the safe side.
1881 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1882 sw->config.device_id);
1883 return 1;
1887 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1889 int max_depth;
1891 if (tb_switch_is_usb4(sw) ||
1892 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1893 max_depth = USB4_SWITCH_MAX_DEPTH;
1894 else
1895 max_depth = TB_SWITCH_MAX_DEPTH;
1897 return depth > max_depth;
1901 * tb_switch_alloc() - allocate a switch
1902 * @tb: Pointer to the owning domain
1903 * @parent: Parent device for this switch
1904 * @route: Route string for this switch
1906 * Allocates and initializes a switch. Will not upload configuration to
1907 * the switch. For that you need to call tb_switch_configure()
1908 * separately. The returned switch should be released by calling
1909 * tb_switch_put().
1911 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1912 * failure.
1914 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1915 u64 route)
1917 struct tb_switch *sw;
1918 int upstream_port;
1919 int i, ret, depth;
1921 /* Unlock the downstream port so we can access the switch below */
1922 if (route) {
1923 struct tb_switch *parent_sw = tb_to_switch(parent);
1924 struct tb_port *down;
1926 down = tb_port_at(route, parent_sw);
1927 tb_port_unlock(down);
1930 depth = tb_route_length(route);
1932 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1933 if (upstream_port < 0)
1934 return ERR_PTR(upstream_port);
1936 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1937 if (!sw)
1938 return ERR_PTR(-ENOMEM);
1940 sw->tb = tb;
1941 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1942 if (ret)
1943 goto err_free_sw_ports;
1945 sw->generation = tb_switch_get_generation(sw);
1947 tb_dbg(tb, "current switch config:\n");
1948 tb_dump_switch(tb, sw);
1950 /* configure switch */
1951 sw->config.upstream_port_number = upstream_port;
1952 sw->config.depth = depth;
1953 sw->config.route_hi = upper_32_bits(route);
1954 sw->config.route_lo = lower_32_bits(route);
1955 sw->config.enabled = 0;
1957 /* Make sure we do not exceed maximum topology limit */
1958 if (tb_switch_exceeds_max_depth(sw, depth)) {
1959 ret = -EADDRNOTAVAIL;
1960 goto err_free_sw_ports;
1963 /* initialize ports */
1964 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1965 GFP_KERNEL);
1966 if (!sw->ports) {
1967 ret = -ENOMEM;
1968 goto err_free_sw_ports;
1971 for (i = 0; i <= sw->config.max_port_number; i++) {
1972 /* minimum setup for tb_find_cap and tb_drom_read to work */
1973 sw->ports[i].sw = sw;
1974 sw->ports[i].port = i;
1977 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1978 if (ret > 0)
1979 sw->cap_plug_events = ret;
1981 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1982 if (ret > 0)
1983 sw->cap_lc = ret;
1985 /* Root switch is always authorized */
1986 if (!route)
1987 sw->authorized = true;
1989 device_initialize(&sw->dev);
1990 sw->dev.parent = parent;
1991 sw->dev.bus = &tb_bus_type;
1992 sw->dev.type = &tb_switch_type;
1993 sw->dev.groups = switch_groups;
1994 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1996 return sw;
1998 err_free_sw_ports:
1999 kfree(sw->ports);
2000 kfree(sw);
2002 return ERR_PTR(ret);
2006 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2007 * @tb: Pointer to the owning domain
2008 * @parent: Parent device for this switch
2009 * @route: Route string for this switch
2011 * This creates a switch in safe mode. This means the switch pretty much
2012 * lacks all capabilities except DMA configuration port before it is
2013 * flashed with a valid NVM firmware.
2015 * The returned switch must be released by calling tb_switch_put().
2017 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2019 struct tb_switch *
2020 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2022 struct tb_switch *sw;
2024 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2025 if (!sw)
2026 return ERR_PTR(-ENOMEM);
2028 sw->tb = tb;
2029 sw->config.depth = tb_route_length(route);
2030 sw->config.route_hi = upper_32_bits(route);
2031 sw->config.route_lo = lower_32_bits(route);
2032 sw->safe_mode = true;
2034 device_initialize(&sw->dev);
2035 sw->dev.parent = parent;
2036 sw->dev.bus = &tb_bus_type;
2037 sw->dev.type = &tb_switch_type;
2038 sw->dev.groups = switch_groups;
2039 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2041 return sw;
2045 * tb_switch_configure() - Uploads configuration to the switch
2046 * @sw: Switch to configure
2048 * Call this function before the switch is added to the system. It will
2049 * upload configuration to the switch and makes it available for the
2050 * connection manager to use. Can be called to the switch again after
2051 * resume from low power states to re-initialize it.
2053 * Return: %0 in case of success and negative errno in case of failure
2055 int tb_switch_configure(struct tb_switch *sw)
2057 struct tb *tb = sw->tb;
2058 u64 route;
2059 int ret;
2061 route = tb_route(sw);
2063 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2064 sw->config.enabled ? "restoring" : "initializing", route,
2065 tb_route_length(route), sw->config.upstream_port_number);
2067 sw->config.enabled = 1;
2069 if (tb_switch_is_usb4(sw)) {
2071 * For USB4 devices, we need to program the CM version
2072 * accordingly so that it knows to expose all the
2073 * additional capabilities.
2075 sw->config.cmuv = USB4_VERSION_1_0;
2077 /* Enumerate the switch */
2078 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2079 ROUTER_CS_1, 4);
2080 if (ret)
2081 return ret;
2083 ret = usb4_switch_setup(sw);
2084 } else {
2085 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2086 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2087 sw->config.vendor_id);
2089 if (!sw->cap_plug_events) {
2090 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2091 return -ENODEV;
2094 /* Enumerate the switch */
2095 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2096 ROUTER_CS_1, 3);
2098 if (ret)
2099 return ret;
2101 return tb_plug_events_active(sw, true);
2104 static int tb_switch_set_uuid(struct tb_switch *sw)
2106 bool uid = false;
2107 u32 uuid[4];
2108 int ret;
2110 if (sw->uuid)
2111 return 0;
2113 if (tb_switch_is_usb4(sw)) {
2114 ret = usb4_switch_read_uid(sw, &sw->uid);
2115 if (ret)
2116 return ret;
2117 uid = true;
2118 } else {
2120 * The newer controllers include fused UUID as part of
2121 * link controller specific registers
2123 ret = tb_lc_read_uuid(sw, uuid);
2124 if (ret) {
2125 if (ret != -EINVAL)
2126 return ret;
2127 uid = true;
2131 if (uid) {
2133 * ICM generates UUID based on UID and fills the upper
2134 * two words with ones. This is not strictly following
2135 * UUID format but we want to be compatible with it so
2136 * we do the same here.
2138 uuid[0] = sw->uid & 0xffffffff;
2139 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2140 uuid[2] = 0xffffffff;
2141 uuid[3] = 0xffffffff;
2144 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2145 if (!sw->uuid)
2146 return -ENOMEM;
2147 return 0;
2150 static int tb_switch_add_dma_port(struct tb_switch *sw)
2152 u32 status;
2153 int ret;
2155 switch (sw->generation) {
2156 case 2:
2157 /* Only root switch can be upgraded */
2158 if (tb_route(sw))
2159 return 0;
2161 fallthrough;
2162 case 3:
2163 case 4:
2164 ret = tb_switch_set_uuid(sw);
2165 if (ret)
2166 return ret;
2167 break;
2169 default:
2171 * DMA port is the only thing available when the switch
2172 * is in safe mode.
2174 if (!sw->safe_mode)
2175 return 0;
2176 break;
2179 if (sw->no_nvm_upgrade)
2180 return 0;
2182 if (tb_switch_is_usb4(sw)) {
2183 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2184 if (ret)
2185 return ret;
2187 if (status) {
2188 tb_sw_info(sw, "switch flash authentication failed\n");
2189 nvm_set_auth_status(sw, status);
2192 return 0;
2195 /* Root switch DMA port requires running firmware */
2196 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2197 return 0;
2199 sw->dma_port = dma_port_alloc(sw);
2200 if (!sw->dma_port)
2201 return 0;
2204 * If there is status already set then authentication failed
2205 * when the dma_port_flash_update_auth() returned. Power cycling
2206 * is not needed (it was done already) so only thing we do here
2207 * is to unblock runtime PM of the root port.
2209 nvm_get_auth_status(sw, &status);
2210 if (status) {
2211 if (!tb_route(sw))
2212 nvm_authenticate_complete_dma_port(sw);
2213 return 0;
2217 * Check status of the previous flash authentication. If there
2218 * is one we need to power cycle the switch in any case to make
2219 * it functional again.
2221 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2222 if (ret <= 0)
2223 return ret;
2225 /* Now we can allow root port to suspend again */
2226 if (!tb_route(sw))
2227 nvm_authenticate_complete_dma_port(sw);
2229 if (status) {
2230 tb_sw_info(sw, "switch flash authentication failed\n");
2231 nvm_set_auth_status(sw, status);
2234 tb_sw_info(sw, "power cycling the switch now\n");
2235 dma_port_power_cycle(sw->dma_port);
2238 * We return error here which causes the switch adding failure.
2239 * It should appear back after power cycle is complete.
2241 return -ESHUTDOWN;
2244 static void tb_switch_default_link_ports(struct tb_switch *sw)
2246 int i;
2248 for (i = 1; i <= sw->config.max_port_number; i += 2) {
2249 struct tb_port *port = &sw->ports[i];
2250 struct tb_port *subordinate;
2252 if (!tb_port_is_null(port))
2253 continue;
2255 /* Check for the subordinate port */
2256 if (i == sw->config.max_port_number ||
2257 !tb_port_is_null(&sw->ports[i + 1]))
2258 continue;
2260 /* Link them if not already done so (by DROM) */
2261 subordinate = &sw->ports[i + 1];
2262 if (!port->dual_link_port && !subordinate->dual_link_port) {
2263 port->link_nr = 0;
2264 port->dual_link_port = subordinate;
2265 subordinate->link_nr = 1;
2266 subordinate->dual_link_port = port;
2268 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2269 port->port, subordinate->port);
2274 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2276 const struct tb_port *up = tb_upstream_port(sw);
2278 if (!up->dual_link_port || !up->dual_link_port->remote)
2279 return false;
2281 if (tb_switch_is_usb4(sw))
2282 return usb4_switch_lane_bonding_possible(sw);
2283 return tb_lc_lane_bonding_possible(sw);
2286 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2288 struct tb_port *up;
2289 bool change = false;
2290 int ret;
2292 if (!tb_route(sw) || tb_switch_is_icm(sw))
2293 return 0;
2295 up = tb_upstream_port(sw);
2297 ret = tb_port_get_link_speed(up);
2298 if (ret < 0)
2299 return ret;
2300 if (sw->link_speed != ret)
2301 change = true;
2302 sw->link_speed = ret;
2304 ret = tb_port_get_link_width(up);
2305 if (ret < 0)
2306 return ret;
2307 if (sw->link_width != ret)
2308 change = true;
2309 sw->link_width = ret;
2311 /* Notify userspace that there is possible link attribute change */
2312 if (device_is_registered(&sw->dev) && change)
2313 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2315 return 0;
2319 * tb_switch_lane_bonding_enable() - Enable lane bonding
2320 * @sw: Switch to enable lane bonding
2322 * Connection manager can call this function to enable lane bonding of a
2323 * switch. If conditions are correct and both switches support the feature,
2324 * lanes are bonded. It is safe to call this to any switch.
2326 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2328 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2329 struct tb_port *up, *down;
2330 u64 route = tb_route(sw);
2331 int ret;
2333 if (!route)
2334 return 0;
2336 if (!tb_switch_lane_bonding_possible(sw))
2337 return 0;
2339 up = tb_upstream_port(sw);
2340 down = tb_port_at(route, parent);
2342 if (!tb_port_is_width_supported(up, 2) ||
2343 !tb_port_is_width_supported(down, 2))
2344 return 0;
2346 ret = tb_port_lane_bonding_enable(up);
2347 if (ret) {
2348 tb_port_warn(up, "failed to enable lane bonding\n");
2349 return ret;
2352 ret = tb_port_lane_bonding_enable(down);
2353 if (ret) {
2354 tb_port_warn(down, "failed to enable lane bonding\n");
2355 tb_port_lane_bonding_disable(up);
2356 return ret;
2359 tb_switch_update_link_attributes(sw);
2361 tb_sw_dbg(sw, "lane bonding enabled\n");
2362 return ret;
2366 * tb_switch_lane_bonding_disable() - Disable lane bonding
2367 * @sw: Switch whose lane bonding to disable
2369 * Disables lane bonding between @sw and parent. This can be called even
2370 * if lanes were not bonded originally.
2372 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2374 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2375 struct tb_port *up, *down;
2377 if (!tb_route(sw))
2378 return;
2380 up = tb_upstream_port(sw);
2381 if (!up->bonded)
2382 return;
2384 down = tb_port_at(tb_route(sw), parent);
2386 tb_port_lane_bonding_disable(up);
2387 tb_port_lane_bonding_disable(down);
2389 tb_switch_update_link_attributes(sw);
2390 tb_sw_dbg(sw, "lane bonding disabled\n");
2394 * tb_switch_configure_link() - Set link configured
2395 * @sw: Switch whose link is configured
2397 * Sets the link upstream from @sw configured (from both ends) so that
2398 * it will not be disconnected when the domain exits sleep. Can be
2399 * called for any switch.
2401 * It is recommended that this is called after lane bonding is enabled.
2403 * Returns %0 on success and negative errno in case of error.
2405 int tb_switch_configure_link(struct tb_switch *sw)
2407 struct tb_port *up, *down;
2408 int ret;
2410 if (!tb_route(sw) || tb_switch_is_icm(sw))
2411 return 0;
2413 up = tb_upstream_port(sw);
2414 if (tb_switch_is_usb4(up->sw))
2415 ret = usb4_port_configure(up);
2416 else
2417 ret = tb_lc_configure_port(up);
2418 if (ret)
2419 return ret;
2421 down = up->remote;
2422 if (tb_switch_is_usb4(down->sw))
2423 return usb4_port_configure(down);
2424 return tb_lc_configure_port(down);
2428 * tb_switch_unconfigure_link() - Unconfigure link
2429 * @sw: Switch whose link is unconfigured
2431 * Sets the link unconfigured so the @sw will be disconnected if the
2432 * domain exists sleep.
2434 void tb_switch_unconfigure_link(struct tb_switch *sw)
2436 struct tb_port *up, *down;
2438 if (sw->is_unplugged)
2439 return;
2440 if (!tb_route(sw) || tb_switch_is_icm(sw))
2441 return;
2443 up = tb_upstream_port(sw);
2444 if (tb_switch_is_usb4(up->sw))
2445 usb4_port_unconfigure(up);
2446 else
2447 tb_lc_unconfigure_port(up);
2449 down = up->remote;
2450 if (tb_switch_is_usb4(down->sw))
2451 usb4_port_unconfigure(down);
2452 else
2453 tb_lc_unconfigure_port(down);
2457 * tb_switch_add() - Add a switch to the domain
2458 * @sw: Switch to add
2460 * This is the last step in adding switch to the domain. It will read
2461 * identification information from DROM and initializes ports so that
2462 * they can be used to connect other switches. The switch will be
2463 * exposed to the userspace when this function successfully returns. To
2464 * remove and release the switch, call tb_switch_remove().
2466 * Return: %0 in case of success and negative errno in case of failure
2468 int tb_switch_add(struct tb_switch *sw)
2470 int i, ret;
2473 * Initialize DMA control port now before we read DROM. Recent
2474 * host controllers have more complete DROM on NVM that includes
2475 * vendor and model identification strings which we then expose
2476 * to the userspace. NVM can be accessed through DMA
2477 * configuration based mailbox.
2479 ret = tb_switch_add_dma_port(sw);
2480 if (ret) {
2481 dev_err(&sw->dev, "failed to add DMA port\n");
2482 return ret;
2485 if (!sw->safe_mode) {
2486 /* read drom */
2487 ret = tb_drom_read(sw);
2488 if (ret) {
2489 dev_err(&sw->dev, "reading DROM failed\n");
2490 return ret;
2492 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2494 ret = tb_switch_set_uuid(sw);
2495 if (ret) {
2496 dev_err(&sw->dev, "failed to set UUID\n");
2497 return ret;
2500 for (i = 0; i <= sw->config.max_port_number; i++) {
2501 if (sw->ports[i].disabled) {
2502 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2503 continue;
2505 ret = tb_init_port(&sw->ports[i]);
2506 if (ret) {
2507 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2508 return ret;
2512 tb_switch_default_link_ports(sw);
2514 ret = tb_switch_update_link_attributes(sw);
2515 if (ret)
2516 return ret;
2518 ret = tb_switch_tmu_init(sw);
2519 if (ret)
2520 return ret;
2523 ret = device_add(&sw->dev);
2524 if (ret) {
2525 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2526 return ret;
2529 if (tb_route(sw)) {
2530 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2531 sw->vendor, sw->device);
2532 if (sw->vendor_name && sw->device_name)
2533 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2534 sw->device_name);
2537 ret = tb_switch_nvm_add(sw);
2538 if (ret) {
2539 dev_err(&sw->dev, "failed to add NVM devices\n");
2540 device_del(&sw->dev);
2541 return ret;
2545 * Thunderbolt routers do not generate wakeups themselves but
2546 * they forward wakeups from tunneled protocols, so enable it
2547 * here.
2549 device_init_wakeup(&sw->dev, true);
2551 pm_runtime_set_active(&sw->dev);
2552 if (sw->rpm) {
2553 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2554 pm_runtime_use_autosuspend(&sw->dev);
2555 pm_runtime_mark_last_busy(&sw->dev);
2556 pm_runtime_enable(&sw->dev);
2557 pm_request_autosuspend(&sw->dev);
2560 tb_switch_debugfs_init(sw);
2561 return 0;
2565 * tb_switch_remove() - Remove and release a switch
2566 * @sw: Switch to remove
2568 * This will remove the switch from the domain and release it after last
2569 * reference count drops to zero. If there are switches connected below
2570 * this switch, they will be removed as well.
2572 void tb_switch_remove(struct tb_switch *sw)
2574 struct tb_port *port;
2576 tb_switch_debugfs_remove(sw);
2578 if (sw->rpm) {
2579 pm_runtime_get_sync(&sw->dev);
2580 pm_runtime_disable(&sw->dev);
2583 /* port 0 is the switch itself and never has a remote */
2584 tb_switch_for_each_port(sw, port) {
2585 if (tb_port_has_remote(port)) {
2586 tb_switch_remove(port->remote->sw);
2587 port->remote = NULL;
2588 } else if (port->xdomain) {
2589 tb_xdomain_remove(port->xdomain);
2590 port->xdomain = NULL;
2593 /* Remove any downstream retimers */
2594 tb_retimer_remove_all(port);
2597 if (!sw->is_unplugged)
2598 tb_plug_events_active(sw, false);
2600 tb_switch_nvm_remove(sw);
2602 if (tb_route(sw))
2603 dev_info(&sw->dev, "device disconnected\n");
2604 device_unregister(&sw->dev);
2608 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2610 void tb_sw_set_unplugged(struct tb_switch *sw)
2612 struct tb_port *port;
2614 if (sw == sw->tb->root_switch) {
2615 tb_sw_WARN(sw, "cannot unplug root switch\n");
2616 return;
2618 if (sw->is_unplugged) {
2619 tb_sw_WARN(sw, "is_unplugged already set\n");
2620 return;
2622 sw->is_unplugged = true;
2623 tb_switch_for_each_port(sw, port) {
2624 if (tb_port_has_remote(port))
2625 tb_sw_set_unplugged(port->remote->sw);
2626 else if (port->xdomain)
2627 port->xdomain->is_unplugged = true;
2631 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2633 if (flags)
2634 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2635 else
2636 tb_sw_dbg(sw, "disabling wakeup\n");
2638 if (tb_switch_is_usb4(sw))
2639 return usb4_switch_set_wake(sw, flags);
2640 return tb_lc_set_wake(sw, flags);
2643 int tb_switch_resume(struct tb_switch *sw)
2645 struct tb_port *port;
2646 int err;
2648 tb_sw_dbg(sw, "resuming switch\n");
2651 * Check for UID of the connected switches except for root
2652 * switch which we assume cannot be removed.
2654 if (tb_route(sw)) {
2655 u64 uid;
2658 * Check first that we can still read the switch config
2659 * space. It may be that there is now another domain
2660 * connected.
2662 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2663 if (err < 0) {
2664 tb_sw_info(sw, "switch not present anymore\n");
2665 return err;
2668 if (tb_switch_is_usb4(sw))
2669 err = usb4_switch_read_uid(sw, &uid);
2670 else
2671 err = tb_drom_read_uid_only(sw, &uid);
2672 if (err) {
2673 tb_sw_warn(sw, "uid read failed\n");
2674 return err;
2676 if (sw->uid != uid) {
2677 tb_sw_info(sw,
2678 "changed while suspended (uid %#llx -> %#llx)\n",
2679 sw->uid, uid);
2680 return -ENODEV;
2684 err = tb_switch_configure(sw);
2685 if (err)
2686 return err;
2688 /* Disable wakes */
2689 tb_switch_set_wake(sw, 0);
2691 err = tb_switch_tmu_init(sw);
2692 if (err)
2693 return err;
2695 /* check for surviving downstream switches */
2696 tb_switch_for_each_port(sw, port) {
2697 if (!tb_port_has_remote(port) && !port->xdomain)
2698 continue;
2700 if (tb_wait_for_port(port, true) <= 0) {
2701 tb_port_warn(port,
2702 "lost during suspend, disconnecting\n");
2703 if (tb_port_has_remote(port))
2704 tb_sw_set_unplugged(port->remote->sw);
2705 else if (port->xdomain)
2706 port->xdomain->is_unplugged = true;
2707 } else if (tb_port_has_remote(port) || port->xdomain) {
2709 * Always unlock the port so the downstream
2710 * switch/domain is accessible.
2712 if (tb_port_unlock(port))
2713 tb_port_warn(port, "failed to unlock port\n");
2714 if (port->remote && tb_switch_resume(port->remote->sw)) {
2715 tb_port_warn(port,
2716 "lost during suspend, disconnecting\n");
2717 tb_sw_set_unplugged(port->remote->sw);
2721 return 0;
2725 * tb_switch_suspend() - Put a switch to sleep
2726 * @sw: Switch to suspend
2727 * @runtime: Is this runtime suspend or system sleep
2729 * Suspends router and all its children. Enables wakes according to
2730 * value of @runtime and then sets sleep bit for the router. If @sw is
2731 * host router the domain is ready to go to sleep once this function
2732 * returns.
2734 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
2736 unsigned int flags = 0;
2737 struct tb_port *port;
2738 int err;
2740 tb_sw_dbg(sw, "suspending switch\n");
2742 err = tb_plug_events_active(sw, false);
2743 if (err)
2744 return;
2746 tb_switch_for_each_port(sw, port) {
2747 if (tb_port_has_remote(port))
2748 tb_switch_suspend(port->remote->sw, runtime);
2751 if (runtime) {
2752 /* Trigger wake when something is plugged in/out */
2753 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2754 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2755 } else if (device_may_wakeup(&sw->dev)) {
2756 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2759 tb_switch_set_wake(sw, flags);
2761 if (tb_switch_is_usb4(sw))
2762 usb4_switch_set_sleep(sw);
2763 else
2764 tb_lc_set_sleep(sw);
2768 * tb_switch_query_dp_resource() - Query availability of DP resource
2769 * @sw: Switch whose DP resource is queried
2770 * @in: DP IN port
2772 * Queries availability of DP resource for DP tunneling using switch
2773 * specific means. Returns %true if resource is available.
2775 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2777 if (tb_switch_is_usb4(sw))
2778 return usb4_switch_query_dp_resource(sw, in);
2779 return tb_lc_dp_sink_query(sw, in);
2783 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2784 * @sw: Switch whose DP resource is allocated
2785 * @in: DP IN port
2787 * Allocates DP resource for DP tunneling. The resource must be
2788 * available for this to succeed (see tb_switch_query_dp_resource()).
2789 * Returns %0 in success and negative errno otherwise.
2791 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2793 if (tb_switch_is_usb4(sw))
2794 return usb4_switch_alloc_dp_resource(sw, in);
2795 return tb_lc_dp_sink_alloc(sw, in);
2799 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2800 * @sw: Switch whose DP resource is de-allocated
2801 * @in: DP IN port
2803 * De-allocates DP resource that was previously allocated for DP
2804 * tunneling.
2806 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2808 int ret;
2810 if (tb_switch_is_usb4(sw))
2811 ret = usb4_switch_dealloc_dp_resource(sw, in);
2812 else
2813 ret = tb_lc_dp_sink_dealloc(sw, in);
2815 if (ret)
2816 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2817 in->port);
2820 struct tb_sw_lookup {
2821 struct tb *tb;
2822 u8 link;
2823 u8 depth;
2824 const uuid_t *uuid;
2825 u64 route;
2828 static int tb_switch_match(struct device *dev, const void *data)
2830 struct tb_switch *sw = tb_to_switch(dev);
2831 const struct tb_sw_lookup *lookup = data;
2833 if (!sw)
2834 return 0;
2835 if (sw->tb != lookup->tb)
2836 return 0;
2838 if (lookup->uuid)
2839 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2841 if (lookup->route) {
2842 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2843 sw->config.route_hi == upper_32_bits(lookup->route);
2846 /* Root switch is matched only by depth */
2847 if (!lookup->depth)
2848 return !sw->depth;
2850 return sw->link == lookup->link && sw->depth == lookup->depth;
2854 * tb_switch_find_by_link_depth() - Find switch by link and depth
2855 * @tb: Domain the switch belongs
2856 * @link: Link number the switch is connected
2857 * @depth: Depth of the switch in link
2859 * Returned switch has reference count increased so the caller needs to
2860 * call tb_switch_put() when done with the switch.
2862 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2864 struct tb_sw_lookup lookup;
2865 struct device *dev;
2867 memset(&lookup, 0, sizeof(lookup));
2868 lookup.tb = tb;
2869 lookup.link = link;
2870 lookup.depth = depth;
2872 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2873 if (dev)
2874 return tb_to_switch(dev);
2876 return NULL;
2880 * tb_switch_find_by_uuid() - Find switch by UUID
2881 * @tb: Domain the switch belongs
2882 * @uuid: UUID to look for
2884 * Returned switch has reference count increased so the caller needs to
2885 * call tb_switch_put() when done with the switch.
2887 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2889 struct tb_sw_lookup lookup;
2890 struct device *dev;
2892 memset(&lookup, 0, sizeof(lookup));
2893 lookup.tb = tb;
2894 lookup.uuid = uuid;
2896 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2897 if (dev)
2898 return tb_to_switch(dev);
2900 return NULL;
2904 * tb_switch_find_by_route() - Find switch by route string
2905 * @tb: Domain the switch belongs
2906 * @route: Route string to look for
2908 * Returned switch has reference count increased so the caller needs to
2909 * call tb_switch_put() when done with the switch.
2911 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2913 struct tb_sw_lookup lookup;
2914 struct device *dev;
2916 if (!route)
2917 return tb_switch_get(tb->root_switch);
2919 memset(&lookup, 0, sizeof(lookup));
2920 lookup.tb = tb;
2921 lookup.route = route;
2923 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2924 if (dev)
2925 return tb_to_switch(dev);
2927 return NULL;
2931 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2932 * @sw: Switch to find the port from
2933 * @type: Port type to look for
2935 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2936 enum tb_port_type type)
2938 struct tb_port *port;
2940 tb_switch_for_each_port(sw, port) {
2941 if (port->config.type == type)
2942 return port;
2945 return NULL;