io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / tty / serial / ifx6x60.c
blob182e0ccd60b2caf32e69cb635c596b9811c3439e
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************
4 * Driver for the IFX 6x60 spi modem.
6 * Copyright (C) 2008 Option International
7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8 * Denis Joseph Barrow <d.barow@option.com>
9 * Jan Dumon <j.dumon@option.com>
11 * Copyright (C) 2009, 2010 Intel Corp
12 * Russ Gorby <russ.gorby@intel.com>
14 * Driver modified by Intel from Option gtm501l_spi.c
16 * Notes
17 * o The driver currently assumes a single device only. If you need to
18 * change this then look for saved_ifx_dev and add a device lookup
19 * o The driver is intended to be big-endian safe but has never been
20 * tested that way (no suitable hardware). There are a couple of FIXME
21 * notes by areas that may need addressing
22 * o Some of the GPIO naming/setup assumptions may need revisiting if
23 * you need to use this driver for another platform.
25 *****************************************************************************/
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/termios.h>
29 #include <linux/tty.h>
30 #include <linux/device.h>
31 #include <linux/spi/spi.h>
32 #include <linux/kfifo.h>
33 #include <linux/tty_flip.h>
34 #include <linux/timer.h>
35 #include <linux/serial.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq.h>
38 #include <linux/rfkill.h>
39 #include <linux/fs.h>
40 #include <linux/ip.h>
41 #include <linux/dmapool.h>
42 #include <linux/gpio/consumer.h>
43 #include <linux/sched.h>
44 #include <linux/time.h>
45 #include <linux/wait.h>
46 #include <linux/pm.h>
47 #include <linux/pm_runtime.h>
48 #include <linux/spi/ifx_modem.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
52 #include "ifx6x60.h"
54 #define IFX_SPI_MORE_MASK 0x10
55 #define IFX_SPI_MORE_BIT 4 /* bit position in u8 */
56 #define IFX_SPI_CTS_BIT 6 /* bit position in u8 */
57 #define IFX_SPI_MODE SPI_MODE_1
58 #define IFX_SPI_TTY_ID 0
59 #define IFX_SPI_TIMEOUT_SEC 2
60 #define IFX_SPI_HEADER_0 (-1)
61 #define IFX_SPI_HEADER_F (-2)
63 #define PO_POST_DELAY 200
65 /* forward reference */
66 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
67 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
68 unsigned long event, void *data);
69 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
71 /* local variables */
72 static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
73 static struct tty_driver *tty_drv;
74 static struct ifx_spi_device *saved_ifx_dev;
75 static struct lock_class_key ifx_spi_key;
77 static struct notifier_block ifx_modem_reboot_notifier_block = {
78 .notifier_call = ifx_modem_reboot_callback,
81 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
83 gpiod_set_value(ifx_dev->gpio.pmu_reset, 1);
84 msleep(PO_POST_DELAY);
86 return 0;
89 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
90 unsigned long event, void *data)
92 if (saved_ifx_dev)
93 ifx_modem_power_off(saved_ifx_dev);
94 else
95 pr_warn("no ifx modem active;\n");
97 return NOTIFY_OK;
100 /* GPIO/GPE settings */
103 * mrdy_set_high - set MRDY GPIO
104 * @ifx: device we are controlling
107 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
109 gpiod_set_value(ifx->gpio.mrdy, 1);
113 * mrdy_set_low - clear MRDY GPIO
114 * @ifx: device we are controlling
117 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
119 gpiod_set_value(ifx->gpio.mrdy, 0);
123 * ifx_spi_power_state_set
124 * @ifx_dev: our SPI device
125 * @val: bits to set
127 * Set bit in power status and signal power system if status becomes non-0
129 static void
130 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
132 unsigned long flags;
134 spin_lock_irqsave(&ifx_dev->power_lock, flags);
137 * if power status is already non-0, just update, else
138 * tell power system
140 if (!ifx_dev->power_status)
141 pm_runtime_get(&ifx_dev->spi_dev->dev);
142 ifx_dev->power_status |= val;
144 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
148 * ifx_spi_power_state_clear - clear power bit
149 * @ifx_dev: our SPI device
150 * @val: bits to clear
152 * clear bit in power status and signal power system if status becomes 0
154 static void
155 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
157 unsigned long flags;
159 spin_lock_irqsave(&ifx_dev->power_lock, flags);
161 if (ifx_dev->power_status) {
162 ifx_dev->power_status &= ~val;
163 if (!ifx_dev->power_status)
164 pm_runtime_put(&ifx_dev->spi_dev->dev);
167 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
171 * swap_buf_8
172 * @buf: our buffer
173 * @len : number of bytes (not words) in the buffer
174 * @end: end of buffer
176 * Swap the contents of a buffer into big endian format
178 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
180 /* don't swap buffer if SPI word width is 8 bits */
181 return;
185 * swap_buf_16
186 * @buf: our buffer
187 * @len : number of bytes (not words) in the buffer
188 * @end: end of buffer
190 * Swap the contents of a buffer into big endian format
192 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
194 int n;
196 u16 *buf_16 = (u16 *)buf;
197 len = ((len + 1) >> 1);
198 if ((void *)&buf_16[len] > end) {
199 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
200 &buf_16[len], end);
201 return;
203 for (n = 0; n < len; n++) {
204 *buf_16 = cpu_to_be16(*buf_16);
205 buf_16++;
210 * swap_buf_32
211 * @buf: our buffer
212 * @len : number of bytes (not words) in the buffer
213 * @end: end of buffer
215 * Swap the contents of a buffer into big endian format
217 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
219 int n;
221 u32 *buf_32 = (u32 *)buf;
222 len = (len + 3) >> 2;
224 if ((void *)&buf_32[len] > end) {
225 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
226 &buf_32[len], end);
227 return;
229 for (n = 0; n < len; n++) {
230 *buf_32 = cpu_to_be32(*buf_32);
231 buf_32++;
236 * mrdy_assert - assert MRDY line
237 * @ifx_dev: our SPI device
239 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
240 * now.
242 * FIXME: Can SRDY even go high as we are running this code ?
244 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
246 int val = gpiod_get_value(ifx_dev->gpio.srdy);
247 if (!val) {
248 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
249 &ifx_dev->flags)) {
250 mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
254 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
255 mrdy_set_high(ifx_dev);
259 * ifx_spi_timeout - SPI timeout
260 * @t: timer in our SPI device
262 * The SPI has timed out: hang up the tty. Users will then see a hangup
263 * and error events.
265 static void ifx_spi_timeout(struct timer_list *t)
267 struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
269 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
270 tty_port_tty_hangup(&ifx_dev->tty_port, false);
271 mrdy_set_low(ifx_dev);
272 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
275 /* char/tty operations */
278 * ifx_spi_tiocmget - get modem lines
279 * @tty: our tty device
281 * Map the signal state into Linux modem flags and report the value
282 * in Linux terms
284 static int ifx_spi_tiocmget(struct tty_struct *tty)
286 unsigned int value;
287 struct ifx_spi_device *ifx_dev = tty->driver_data;
289 value =
290 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
291 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
292 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
293 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
294 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
295 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
296 return value;
300 * ifx_spi_tiocmset - set modem bits
301 * @tty: the tty structure
302 * @set: bits to set
303 * @clear: bits to clear
305 * The IFX6x60 only supports DTR and RTS. Set them accordingly
306 * and flag that an update to the modem is needed.
308 * FIXME: do we need to kick the tranfers when we do this ?
310 static int ifx_spi_tiocmset(struct tty_struct *tty,
311 unsigned int set, unsigned int clear)
313 struct ifx_spi_device *ifx_dev = tty->driver_data;
315 if (set & TIOCM_RTS)
316 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
317 if (set & TIOCM_DTR)
318 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
319 if (clear & TIOCM_RTS)
320 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
321 if (clear & TIOCM_DTR)
322 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
324 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
325 return 0;
329 * ifx_spi_open - called on tty open
330 * @tty: our tty device
331 * @filp: file handle being associated with the tty
333 * Open the tty interface. We let the tty_port layer do all the work
334 * for us.
336 * FIXME: Remove single device assumption and saved_ifx_dev
338 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
340 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
344 * ifx_spi_close - called when our tty closes
345 * @tty: the tty being closed
346 * @filp: the file handle being closed
348 * Perform the close of the tty. We use the tty_port layer to do all
349 * our hard work.
351 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
353 struct ifx_spi_device *ifx_dev = tty->driver_data;
354 tty_port_close(&ifx_dev->tty_port, tty, filp);
355 /* FIXME: should we do an ifx_spi_reset here ? */
359 * ifx_decode_spi_header - decode received header
360 * @buffer: the received data
361 * @length: decoded length
362 * @more: decoded more flag
363 * @received_cts: status of cts we received
365 * Note how received_cts is handled -- if header is all F it is left
366 * the same as it was, if header is all 0 it is set to 0 otherwise it is
367 * taken from the incoming header.
369 * FIXME: endianness
371 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
372 unsigned char *more, unsigned char *received_cts)
374 u16 h1;
375 u16 h2;
376 u16 *in_buffer = (u16 *)buffer;
378 h1 = *in_buffer;
379 h2 = *(in_buffer+1);
381 if (h1 == 0 && h2 == 0) {
382 *received_cts = 0;
383 *more = 0;
384 return IFX_SPI_HEADER_0;
385 } else if (h1 == 0xffff && h2 == 0xffff) {
386 *more = 0;
387 /* spi_slave_cts remains as it was */
388 return IFX_SPI_HEADER_F;
391 *length = h1 & 0xfff; /* upper bits of byte are flags */
392 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
393 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
394 return 0;
398 * ifx_setup_spi_header - set header fields
399 * @txbuffer: pointer to start of SPI buffer
400 * @tx_count: bytes
401 * @more: indicate if more to follow
403 * Format up an SPI header for a transfer
405 * FIXME: endianness?
407 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
408 unsigned char more)
410 *(u16 *)(txbuffer) = tx_count;
411 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
412 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
416 * ifx_spi_prepare_tx_buffer - prepare transmit frame
417 * @ifx_dev: our SPI device
419 * The transmit buffr needs a header and various other bits of
420 * information followed by as much data as we can pull from the FIFO
421 * and transfer. This function formats up a suitable buffer in the
422 * ifx_dev->tx_buffer
424 * FIXME: performance - should we wake the tty when the queue is half
425 * empty ?
427 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
429 int temp_count;
430 int queue_length;
431 int tx_count;
432 unsigned char *tx_buffer;
434 tx_buffer = ifx_dev->tx_buffer;
436 /* make room for required SPI header */
437 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
438 tx_count = IFX_SPI_HEADER_OVERHEAD;
440 /* clear to signal no more data if this turns out to be the
441 * last buffer sent in a sequence */
442 ifx_dev->spi_more = 0;
444 /* if modem cts is set, just send empty buffer */
445 if (!ifx_dev->spi_slave_cts) {
446 /* see if there's tx data */
447 queue_length = kfifo_len(&ifx_dev->tx_fifo);
448 if (queue_length != 0) {
449 /* data to mux -- see if there's room for it */
450 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
451 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
452 tx_buffer, temp_count,
453 &ifx_dev->fifo_lock);
455 /* update buffer pointer and data count in message */
456 tx_buffer += temp_count;
457 tx_count += temp_count;
458 if (temp_count == queue_length)
459 /* poke port to get more data */
460 tty_port_tty_wakeup(&ifx_dev->tty_port);
461 else /* more data in port, use next SPI message */
462 ifx_dev->spi_more = 1;
465 /* have data and info for header -- set up SPI header in buffer */
466 /* spi header needs payload size, not entire buffer size */
467 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
468 tx_count-IFX_SPI_HEADER_OVERHEAD,
469 ifx_dev->spi_more);
470 /* swap actual data in the buffer */
471 ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
472 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
473 return tx_count;
477 * ifx_spi_write - line discipline write
478 * @tty: our tty device
479 * @buf: pointer to buffer to write (kernel space)
480 * @count: size of buffer
482 * Write the characters we have been given into the FIFO. If the device
483 * is not active then activate it, when the SRDY line is asserted back
484 * this will commence I/O
486 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
487 int count)
489 struct ifx_spi_device *ifx_dev = tty->driver_data;
490 unsigned char *tmp_buf = (unsigned char *)buf;
491 unsigned long flags;
492 bool is_fifo_empty;
493 int tx_count;
495 spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
496 is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
497 tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
498 spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
499 if (is_fifo_empty)
500 mrdy_assert(ifx_dev);
502 return tx_count;
506 * ifx_spi_chars_in_buffer - line discipline helper
507 * @tty: our tty device
509 * Report how much data we can accept before we drop bytes. As we use
510 * a simple FIFO this is nice and easy.
512 static int ifx_spi_write_room(struct tty_struct *tty)
514 struct ifx_spi_device *ifx_dev = tty->driver_data;
515 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
519 * ifx_spi_chars_in_buffer - line discipline helper
520 * @tty: our tty device
522 * Report how many characters we have buffered. In our case this is the
523 * number of bytes sitting in our transmit FIFO.
525 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
527 struct ifx_spi_device *ifx_dev = tty->driver_data;
528 return kfifo_len(&ifx_dev->tx_fifo);
532 * ifx_port_hangup
533 * @tty: our tty
535 * tty port hang up. Called when tty_hangup processing is invoked either
536 * by loss of carrier, or by software (eg vhangup). Serialized against
537 * activate/shutdown by the tty layer.
539 static void ifx_spi_hangup(struct tty_struct *tty)
541 struct ifx_spi_device *ifx_dev = tty->driver_data;
542 tty_port_hangup(&ifx_dev->tty_port);
546 * ifx_port_activate
547 * @port: our tty port
548 * @tty: our tty device
550 * tty port activate method - called for first open. Serialized
551 * with hangup and shutdown by the tty layer.
553 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
555 struct ifx_spi_device *ifx_dev =
556 container_of(port, struct ifx_spi_device, tty_port);
558 /* clear any old data; can't do this in 'close' */
559 kfifo_reset(&ifx_dev->tx_fifo);
561 /* clear any flag which may be set in port shutdown procedure */
562 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
563 clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
565 /* put port data into this tty */
566 tty->driver_data = ifx_dev;
568 /* allows flip string push from int context */
569 port->low_latency = 1;
571 /* set flag to allows data transfer */
572 set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
574 return 0;
578 * ifx_port_shutdown
579 * @port: our tty port
581 * tty port shutdown method - called for last port close. Serialized
582 * with hangup and activate by the tty layer.
584 static void ifx_port_shutdown(struct tty_port *port)
586 struct ifx_spi_device *ifx_dev =
587 container_of(port, struct ifx_spi_device, tty_port);
589 clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
590 mrdy_set_low(ifx_dev);
591 del_timer(&ifx_dev->spi_timer);
592 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
593 tasklet_kill(&ifx_dev->io_work_tasklet);
596 static const struct tty_port_operations ifx_tty_port_ops = {
597 .activate = ifx_port_activate,
598 .shutdown = ifx_port_shutdown,
601 static const struct tty_operations ifx_spi_serial_ops = {
602 .open = ifx_spi_open,
603 .close = ifx_spi_close,
604 .write = ifx_spi_write,
605 .hangup = ifx_spi_hangup,
606 .write_room = ifx_spi_write_room,
607 .chars_in_buffer = ifx_spi_chars_in_buffer,
608 .tiocmget = ifx_spi_tiocmget,
609 .tiocmset = ifx_spi_tiocmset,
613 * ifx_spi_insert_fip_string - queue received data
614 * @ifx_dev: our SPI device
615 * @chars: buffer we have received
616 * @size: number of chars reeived
618 * Queue bytes to the tty assuming the tty side is currently open. If
619 * not the discard the data.
621 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
622 unsigned char *chars, size_t size)
624 tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
625 tty_flip_buffer_push(&ifx_dev->tty_port);
629 * ifx_spi_complete - SPI transfer completed
630 * @ctx: our SPI device
632 * An SPI transfer has completed. Process any received data and kick off
633 * any further transmits we can commence.
635 static void ifx_spi_complete(void *ctx)
637 struct ifx_spi_device *ifx_dev = ctx;
638 int length;
639 int actual_length;
640 unsigned char more = 0;
641 unsigned char cts;
642 int local_write_pending = 0;
643 int queue_length;
644 int srdy;
645 int decode_result;
647 mrdy_set_low(ifx_dev);
649 if (!ifx_dev->spi_msg.status) {
650 /* check header validity, get comm flags */
651 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
652 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
653 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
654 &length, &more, &cts);
655 if (decode_result == IFX_SPI_HEADER_0) {
656 dev_dbg(&ifx_dev->spi_dev->dev,
657 "ignore input: invalid header 0");
658 ifx_dev->spi_slave_cts = 0;
659 goto complete_exit;
660 } else if (decode_result == IFX_SPI_HEADER_F) {
661 dev_dbg(&ifx_dev->spi_dev->dev,
662 "ignore input: invalid header F");
663 goto complete_exit;
666 ifx_dev->spi_slave_cts = cts;
668 actual_length = min((unsigned int)length,
669 ifx_dev->spi_msg.actual_length);
670 ifx_dev->swap_buf(
671 (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
672 actual_length,
673 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
674 ifx_spi_insert_flip_string(
675 ifx_dev,
676 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
677 (size_t)actual_length);
678 } else {
679 more = 0;
680 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
681 ifx_dev->spi_msg.status);
684 complete_exit:
685 if (ifx_dev->write_pending) {
686 ifx_dev->write_pending = 0;
687 local_write_pending = 1;
690 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
692 queue_length = kfifo_len(&ifx_dev->tx_fifo);
693 srdy = gpiod_get_value(ifx_dev->gpio.srdy);
694 if (!srdy)
695 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
697 /* schedule output if there is more to do */
698 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
699 tasklet_schedule(&ifx_dev->io_work_tasklet);
700 else {
701 if (more || ifx_dev->spi_more || queue_length > 0 ||
702 local_write_pending) {
703 if (ifx_dev->spi_slave_cts) {
704 if (more)
705 mrdy_assert(ifx_dev);
706 } else
707 mrdy_assert(ifx_dev);
708 } else {
710 * poke line discipline driver if any for more data
711 * may or may not get more data to write
712 * for now, say not busy
714 ifx_spi_power_state_clear(ifx_dev,
715 IFX_SPI_POWER_DATA_PENDING);
716 tty_port_tty_wakeup(&ifx_dev->tty_port);
722 * ifx_spio_io - I/O tasklet
723 * @t: tasklet construct used to fetch the SPI device
725 * Queue data for transmission if possible and then kick off the
726 * transfer.
728 static void ifx_spi_io(struct tasklet_struct *t)
730 int retval;
731 struct ifx_spi_device *ifx_dev = from_tasklet(ifx_dev, t,
732 io_work_tasklet);
734 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
735 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
736 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
737 ifx_dev->gpio.unack_srdy_int_nb--;
739 ifx_spi_prepare_tx_buffer(ifx_dev);
741 spi_message_init(&ifx_dev->spi_msg);
742 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
744 ifx_dev->spi_msg.context = ifx_dev;
745 ifx_dev->spi_msg.complete = ifx_spi_complete;
747 /* set up our spi transfer */
748 /* note len is BYTES, not transfers */
749 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
750 ifx_dev->spi_xfer.cs_change = 0;
751 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
752 /* ifx_dev->spi_xfer.speed_hz = 390625; */
753 ifx_dev->spi_xfer.bits_per_word =
754 ifx_dev->spi_dev->bits_per_word;
756 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
757 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
760 * setup dma pointers
762 if (ifx_dev->use_dma) {
763 ifx_dev->spi_msg.is_dma_mapped = 1;
764 ifx_dev->tx_dma = ifx_dev->tx_bus;
765 ifx_dev->rx_dma = ifx_dev->rx_bus;
766 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
767 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
768 } else {
769 ifx_dev->spi_msg.is_dma_mapped = 0;
770 ifx_dev->tx_dma = (dma_addr_t)0;
771 ifx_dev->rx_dma = (dma_addr_t)0;
772 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
773 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
776 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
778 /* Assert MRDY. This may have already been done by the write
779 * routine.
781 mrdy_assert(ifx_dev);
783 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
784 if (retval) {
785 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
786 &ifx_dev->flags);
787 tasklet_schedule(&ifx_dev->io_work_tasklet);
788 return;
790 } else
791 ifx_dev->write_pending = 1;
795 * ifx_spi_free_port - free up the tty side
796 * @ifx_dev: IFX device going away
798 * Unregister and free up a port when the device goes away
800 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
802 if (ifx_dev->tty_dev)
803 tty_unregister_device(tty_drv, ifx_dev->minor);
804 tty_port_destroy(&ifx_dev->tty_port);
805 kfifo_free(&ifx_dev->tx_fifo);
809 * ifx_spi_create_port - create a new port
810 * @ifx_dev: our spi device
812 * Allocate and initialise the tty port that goes with this interface
813 * and add it to the tty layer so that it can be opened.
815 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
817 int ret = 0;
818 struct tty_port *pport = &ifx_dev->tty_port;
820 spin_lock_init(&ifx_dev->fifo_lock);
821 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
822 &ifx_spi_key, 0);
824 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
825 ret = -ENOMEM;
826 goto error_ret;
829 tty_port_init(pport);
830 pport->ops = &ifx_tty_port_ops;
831 ifx_dev->minor = IFX_SPI_TTY_ID;
832 ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
833 ifx_dev->minor, &ifx_dev->spi_dev->dev);
834 if (IS_ERR(ifx_dev->tty_dev)) {
835 dev_dbg(&ifx_dev->spi_dev->dev,
836 "%s: registering tty device failed", __func__);
837 ret = PTR_ERR(ifx_dev->tty_dev);
838 goto error_port;
840 return 0;
842 error_port:
843 tty_port_destroy(pport);
844 error_ret:
845 ifx_spi_free_port(ifx_dev);
846 return ret;
850 * ifx_spi_handle_srdy - handle SRDY
851 * @ifx_dev: device asserting SRDY
853 * Check our device state and see what we need to kick off when SRDY
854 * is asserted. This usually means killing the timer and firing off the
855 * I/O processing.
857 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
859 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
860 del_timer(&ifx_dev->spi_timer);
861 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
864 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
866 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
867 tasklet_schedule(&ifx_dev->io_work_tasklet);
868 else
869 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
873 * ifx_spi_srdy_interrupt - SRDY asserted
874 * @irq: our IRQ number
875 * @dev: our ifx device
877 * The modem asserted SRDY. Handle the srdy event
879 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
881 struct ifx_spi_device *ifx_dev = dev;
882 ifx_dev->gpio.unack_srdy_int_nb++;
883 ifx_spi_handle_srdy(ifx_dev);
884 return IRQ_HANDLED;
888 * ifx_spi_reset_interrupt - Modem has changed reset state
889 * @irq: interrupt number
890 * @dev: our device pointer
892 * The modem has either entered or left reset state. Check the GPIO
893 * line to see which.
895 * FIXME: review locking on MR_INPROGRESS versus
896 * parallel unsolicited reset/solicited reset
898 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
900 struct ifx_spi_device *ifx_dev = dev;
901 int val = gpiod_get_value(ifx_dev->gpio.reset_out);
902 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
904 if (val == 0) {
905 /* entered reset */
906 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
907 if (!solreset) {
908 /* unsolicited reset */
909 tty_port_tty_hangup(&ifx_dev->tty_port, false);
911 } else {
912 /* exited reset */
913 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
914 if (solreset) {
915 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
916 wake_up(&ifx_dev->mdm_reset_wait);
919 return IRQ_HANDLED;
923 * ifx_spi_free_device - free device
924 * @ifx_dev: device to free
926 * Free the IFX device
928 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
930 ifx_spi_free_port(ifx_dev);
931 dma_free_coherent(&ifx_dev->spi_dev->dev,
932 IFX_SPI_TRANSFER_SIZE,
933 ifx_dev->tx_buffer,
934 ifx_dev->tx_bus);
935 dma_free_coherent(&ifx_dev->spi_dev->dev,
936 IFX_SPI_TRANSFER_SIZE,
937 ifx_dev->rx_buffer,
938 ifx_dev->rx_bus);
942 * ifx_spi_reset - reset modem
943 * @ifx_dev: modem to reset
945 * Perform a reset on the modem
947 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
949 int ret;
951 * set up modem power, reset
953 * delays are required on some platforms for the modem
954 * to reset properly
956 set_bit(MR_START, &ifx_dev->mdm_reset_state);
957 gpiod_set_value(ifx_dev->gpio.po, 0);
958 gpiod_set_value(ifx_dev->gpio.reset, 0);
959 msleep(25);
960 gpiod_set_value(ifx_dev->gpio.reset, 1);
961 msleep(1);
962 gpiod_set_value(ifx_dev->gpio.po, 1);
963 msleep(1);
964 gpiod_set_value(ifx_dev->gpio.po, 0);
965 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
966 test_bit(MR_COMPLETE,
967 &ifx_dev->mdm_reset_state),
968 IFX_RESET_TIMEOUT);
969 if (!ret)
970 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
971 ifx_dev->mdm_reset_state);
973 ifx_dev->mdm_reset_state = 0;
974 return ret;
978 * ifx_spi_spi_probe - probe callback
979 * @spi: our possible matching SPI device
981 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
982 * GPIO setup.
984 * FIXME:
985 * - Support for multiple devices
986 * - Split out MID specific GPIO handling eventually
989 static int ifx_spi_spi_probe(struct spi_device *spi)
991 int ret;
992 int srdy;
993 struct ifx_modem_platform_data *pl_data;
994 struct ifx_spi_device *ifx_dev;
995 struct device *dev = &spi->dev;
997 if (saved_ifx_dev) {
998 dev_dbg(dev, "ignoring subsequent detection");
999 return -ENODEV;
1002 pl_data = dev_get_platdata(dev);
1003 if (!pl_data) {
1004 dev_err(dev, "missing platform data!");
1005 return -ENODEV;
1008 /* initialize structure to hold our device variables */
1009 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1010 if (!ifx_dev) {
1011 dev_err(dev, "spi device allocation failed");
1012 return -ENOMEM;
1014 saved_ifx_dev = ifx_dev;
1015 ifx_dev->spi_dev = spi;
1016 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1017 spin_lock_init(&ifx_dev->write_lock);
1018 spin_lock_init(&ifx_dev->power_lock);
1019 ifx_dev->power_status = 0;
1020 timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1021 ifx_dev->modem = pl_data->modem_type;
1022 ifx_dev->use_dma = pl_data->use_dma;
1023 ifx_dev->max_hz = pl_data->max_hz;
1024 /* initialize spi mode, etc */
1025 spi->max_speed_hz = ifx_dev->max_hz;
1026 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1027 spi->bits_per_word = spi_bpw;
1028 ret = spi_setup(spi);
1029 if (ret) {
1030 dev_err(dev, "SPI setup wasn't successful %d", ret);
1031 kfree(ifx_dev);
1032 return -ENODEV;
1035 /* init swap_buf function according to word width configuration */
1036 if (spi->bits_per_word == 32)
1037 ifx_dev->swap_buf = swap_buf_32;
1038 else if (spi->bits_per_word == 16)
1039 ifx_dev->swap_buf = swap_buf_16;
1040 else
1041 ifx_dev->swap_buf = swap_buf_8;
1043 /* ensure SPI protocol flags are initialized to enable transfer */
1044 ifx_dev->spi_more = 0;
1045 ifx_dev->spi_slave_cts = 0;
1047 /*initialize transfer and dma buffers */
1048 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1049 IFX_SPI_TRANSFER_SIZE,
1050 &ifx_dev->tx_bus,
1051 GFP_KERNEL);
1052 if (!ifx_dev->tx_buffer) {
1053 dev_err(dev, "DMA-TX buffer allocation failed");
1054 ret = -ENOMEM;
1055 goto error_ret;
1057 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1058 IFX_SPI_TRANSFER_SIZE,
1059 &ifx_dev->rx_bus,
1060 GFP_KERNEL);
1061 if (!ifx_dev->rx_buffer) {
1062 dev_err(dev, "DMA-RX buffer allocation failed");
1063 ret = -ENOMEM;
1064 goto error_ret;
1067 /* initialize waitq for modem reset */
1068 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1070 spi_set_drvdata(spi, ifx_dev);
1071 tasklet_setup(&ifx_dev->io_work_tasklet, ifx_spi_io);
1073 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1075 /* create our tty port */
1076 ret = ifx_spi_create_port(ifx_dev);
1077 if (ret != 0) {
1078 dev_err(dev, "create default tty port failed");
1079 goto error_ret;
1082 ifx_dev->gpio.reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1083 if (IS_ERR(ifx_dev->gpio.reset)) {
1084 dev_err(dev, "could not obtain reset GPIO\n");
1085 ret = PTR_ERR(ifx_dev->gpio.reset);
1086 goto error_ret;
1088 gpiod_set_consumer_name(ifx_dev->gpio.reset, "ifxModem reset");
1089 ifx_dev->gpio.po = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW);
1090 if (IS_ERR(ifx_dev->gpio.po)) {
1091 dev_err(dev, "could not obtain power GPIO\n");
1092 ret = PTR_ERR(ifx_dev->gpio.po);
1093 goto error_ret;
1095 gpiod_set_consumer_name(ifx_dev->gpio.po, "ifxModem power");
1096 ifx_dev->gpio.mrdy = devm_gpiod_get(dev, "mrdy", GPIOD_OUT_LOW);
1097 if (IS_ERR(ifx_dev->gpio.mrdy)) {
1098 dev_err(dev, "could not obtain mrdy GPIO\n");
1099 ret = PTR_ERR(ifx_dev->gpio.mrdy);
1100 goto error_ret;
1102 gpiod_set_consumer_name(ifx_dev->gpio.mrdy, "ifxModem mrdy");
1103 ifx_dev->gpio.srdy = devm_gpiod_get(dev, "srdy", GPIOD_IN);
1104 if (IS_ERR(ifx_dev->gpio.srdy)) {
1105 dev_err(dev, "could not obtain srdy GPIO\n");
1106 ret = PTR_ERR(ifx_dev->gpio.srdy);
1107 goto error_ret;
1109 gpiod_set_consumer_name(ifx_dev->gpio.srdy, "ifxModem srdy");
1110 ifx_dev->gpio.reset_out = devm_gpiod_get(dev, "rst_out", GPIOD_IN);
1111 if (IS_ERR(ifx_dev->gpio.reset_out)) {
1112 dev_err(dev, "could not obtain rst_out GPIO\n");
1113 ret = PTR_ERR(ifx_dev->gpio.reset_out);
1114 goto error_ret;
1116 gpiod_set_consumer_name(ifx_dev->gpio.reset_out, "ifxModem reset out");
1117 ifx_dev->gpio.pmu_reset = devm_gpiod_get(dev, "pmu_reset", GPIOD_ASIS);
1118 if (IS_ERR(ifx_dev->gpio.pmu_reset)) {
1119 dev_err(dev, "could not obtain pmu_reset GPIO\n");
1120 ret = PTR_ERR(ifx_dev->gpio.pmu_reset);
1121 goto error_ret;
1123 gpiod_set_consumer_name(ifx_dev->gpio.pmu_reset, "ifxModem PMU reset");
1125 ret = request_irq(gpiod_to_irq(ifx_dev->gpio.reset_out),
1126 ifx_spi_reset_interrupt,
1127 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1128 ifx_dev);
1129 if (ret) {
1130 dev_err(dev, "Unable to get irq %x\n",
1131 gpiod_to_irq(ifx_dev->gpio.reset_out));
1132 goto error_ret;
1135 ret = ifx_spi_reset(ifx_dev);
1137 ret = request_irq(gpiod_to_irq(ifx_dev->gpio.srdy),
1138 ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1139 ifx_dev);
1140 if (ret) {
1141 dev_err(dev, "Unable to get irq %x",
1142 gpiod_to_irq(ifx_dev->gpio.srdy));
1143 goto error_ret2;
1146 /* set pm runtime power state and register with power system */
1147 pm_runtime_set_active(dev);
1148 pm_runtime_enable(dev);
1150 /* handle case that modem is already signaling SRDY */
1151 /* no outgoing tty open at this point, this just satisfies the
1152 * modem's read and should reset communication properly
1154 srdy = gpiod_get_value(ifx_dev->gpio.srdy);
1156 if (srdy) {
1157 mrdy_assert(ifx_dev);
1158 ifx_spi_handle_srdy(ifx_dev);
1159 } else
1160 mrdy_set_low(ifx_dev);
1161 return 0;
1163 error_ret2:
1164 free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1165 error_ret:
1166 ifx_spi_free_device(ifx_dev);
1167 saved_ifx_dev = NULL;
1168 return ret;
1172 * ifx_spi_spi_remove - SPI device was removed
1173 * @spi: SPI device
1175 * FIXME: We should be shutting the device down here not in
1176 * the module unload path.
1179 static int ifx_spi_spi_remove(struct spi_device *spi)
1181 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1182 /* stop activity */
1183 tasklet_kill(&ifx_dev->io_work_tasklet);
1185 pm_runtime_disable(&spi->dev);
1187 /* free irq */
1188 free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1189 free_irq(gpiod_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1191 /* free allocations */
1192 ifx_spi_free_device(ifx_dev);
1194 saved_ifx_dev = NULL;
1195 return 0;
1199 * ifx_spi_spi_shutdown - called on SPI shutdown
1200 * @spi: SPI device
1202 * No action needs to be taken here
1205 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1207 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1209 ifx_modem_power_off(ifx_dev);
1213 * various suspends and resumes have nothing to do
1214 * no hardware to save state for
1218 * ifx_spi_pm_suspend - suspend modem on system suspend
1219 * @dev: device being suspended
1221 * Suspend the modem. No action needed on Intel MID platforms, may
1222 * need extending for other systems.
1224 static int ifx_spi_pm_suspend(struct device *dev)
1226 return 0;
1230 * ifx_spi_pm_resume - resume modem on system resume
1231 * @dev: device being suspended
1233 * Allow the modem to resume. No action needed.
1235 * FIXME: do we need to reset anything here ?
1237 static int ifx_spi_pm_resume(struct device *dev)
1239 return 0;
1243 * ifx_spi_pm_runtime_resume - suspend modem
1244 * @dev: device being suspended
1246 * Allow the modem to resume. No action needed.
1248 static int ifx_spi_pm_runtime_resume(struct device *dev)
1250 return 0;
1254 * ifx_spi_pm_runtime_suspend - suspend modem
1255 * @dev: device being suspended
1257 * Allow the modem to suspend and thus suspend to continue up the
1258 * device tree.
1260 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1262 return 0;
1266 * ifx_spi_pm_runtime_idle - check if modem idle
1267 * @dev: our device
1269 * Check conditions and queue runtime suspend if idle.
1271 static int ifx_spi_pm_runtime_idle(struct device *dev)
1273 struct spi_device *spi = to_spi_device(dev);
1274 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1276 if (!ifx_dev->power_status)
1277 pm_runtime_suspend(dev);
1279 return 0;
1282 static const struct dev_pm_ops ifx_spi_pm = {
1283 .resume = ifx_spi_pm_resume,
1284 .suspend = ifx_spi_pm_suspend,
1285 .runtime_resume = ifx_spi_pm_runtime_resume,
1286 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1287 .runtime_idle = ifx_spi_pm_runtime_idle
1290 static const struct spi_device_id ifx_id_table[] = {
1291 {"ifx6160", 0},
1292 {"ifx6260", 0},
1295 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1297 /* spi operations */
1298 static struct spi_driver ifx_spi_driver = {
1299 .driver = {
1300 .name = DRVNAME,
1301 .pm = &ifx_spi_pm,
1303 .probe = ifx_spi_spi_probe,
1304 .shutdown = ifx_spi_spi_shutdown,
1305 .remove = ifx_spi_spi_remove,
1306 .id_table = ifx_id_table
1310 * ifx_spi_exit - module exit
1312 * Unload the module.
1315 static void __exit ifx_spi_exit(void)
1317 /* unregister */
1318 spi_unregister_driver(&ifx_spi_driver);
1319 tty_unregister_driver(tty_drv);
1320 put_tty_driver(tty_drv);
1321 unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1325 * ifx_spi_init - module entry point
1327 * Initialise the SPI and tty interfaces for the IFX SPI driver
1328 * We need to initialize upper-edge spi driver after the tty
1329 * driver because otherwise the spi probe will race
1332 static int __init ifx_spi_init(void)
1334 int result;
1336 tty_drv = alloc_tty_driver(1);
1337 if (!tty_drv) {
1338 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1339 return -ENOMEM;
1342 tty_drv->driver_name = DRVNAME;
1343 tty_drv->name = TTYNAME;
1344 tty_drv->minor_start = IFX_SPI_TTY_ID;
1345 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1346 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1347 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1348 tty_drv->init_termios = tty_std_termios;
1350 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1352 result = tty_register_driver(tty_drv);
1353 if (result) {
1354 pr_err("%s: tty_register_driver failed(%d)",
1355 DRVNAME, result);
1356 goto err_free_tty;
1359 result = spi_register_driver(&ifx_spi_driver);
1360 if (result) {
1361 pr_err("%s: spi_register_driver failed(%d)",
1362 DRVNAME, result);
1363 goto err_unreg_tty;
1366 result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1367 if (result) {
1368 pr_err("%s: register ifx modem reboot notifier failed(%d)",
1369 DRVNAME, result);
1370 goto err_unreg_spi;
1373 return 0;
1374 err_unreg_spi:
1375 spi_unregister_driver(&ifx_spi_driver);
1376 err_unreg_tty:
1377 tty_unregister_driver(tty_drv);
1378 err_free_tty:
1379 put_tty_driver(tty_drv);
1381 return result;
1384 module_init(ifx_spi_init);
1385 module_exit(ifx_spi_exit);
1387 MODULE_AUTHOR("Intel");
1388 MODULE_DESCRIPTION("IFX6x60 spi driver");
1389 MODULE_LICENSE("GPL");
1390 MODULE_INFO(Version, "0.1-IFX6x60");