1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req
*our_req(struct usb_request
*req
)
39 return container_of(req
, struct dwc2_hsotg_req
, req
);
42 static inline struct dwc2_hsotg_ep
*our_ep(struct usb_ep
*ep
)
44 return container_of(ep
, struct dwc2_hsotg_ep
, ep
);
47 static inline struct dwc2_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
49 return container_of(gadget
, struct dwc2_hsotg
, gadget
);
52 static inline void dwc2_set_bit(struct dwc2_hsotg
*hsotg
, u32 offset
, u32 val
)
54 dwc2_writel(hsotg
, dwc2_readl(hsotg
, offset
) | val
, offset
);
57 static inline void dwc2_clear_bit(struct dwc2_hsotg
*hsotg
, u32 offset
, u32 val
)
59 dwc2_writel(hsotg
, dwc2_readl(hsotg
, offset
) & ~val
, offset
);
62 static inline struct dwc2_hsotg_ep
*index_to_ep(struct dwc2_hsotg
*hsotg
,
63 u32 ep_index
, u32 dir_in
)
66 return hsotg
->eps_in
[ep_index
];
68 return hsotg
->eps_out
[ep_index
];
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
);
75 * using_dma - return the DMA status of the driver.
76 * @hsotg: The driver state.
78 * Return true if we're using DMA.
80 * Currently, we have the DMA support code worked into everywhere
81 * that needs it, but the AMBA DMA implementation in the hardware can
82 * only DMA from 32bit aligned addresses. This means that gadgets such
83 * as the CDC Ethernet cannot work as they often pass packets which are
86 * Unfortunately the choice to use DMA or not is global to the controller
87 * and seems to be only settable when the controller is being put through
88 * a core reset. This means we either need to fix the gadgets to take
89 * account of DMA alignment, or add bounce buffers (yuerk).
91 * g_using_dma is set depending on dts flag.
93 static inline bool using_dma(struct dwc2_hsotg
*hsotg
)
95 return hsotg
->params
.g_dma
;
99 * using_desc_dma - return the descriptor DMA status of the driver.
100 * @hsotg: The driver state.
102 * Return true if we're using descriptor DMA.
104 static inline bool using_desc_dma(struct dwc2_hsotg
*hsotg
)
106 return hsotg
->params
.g_dma_desc
;
110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111 * @hs_ep: The endpoint
113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep
*hs_ep
)
118 hs_ep
->target_frame
+= hs_ep
->interval
;
119 if (hs_ep
->target_frame
> DSTS_SOFFN_LIMIT
) {
120 hs_ep
->frame_overrun
= true;
121 hs_ep
->target_frame
&= DSTS_SOFFN_LIMIT
;
123 hs_ep
->frame_overrun
= false;
128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
130 * @hs_ep: The endpoint.
132 * This function used in service interval based scheduling flow to calculate
133 * descriptor frame number filed value. For service interval mode frame
134 * number in descriptor should point to last (u)frame in the interval.
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep
*hs_ep
)
139 if (hs_ep
->target_frame
)
140 hs_ep
->target_frame
-= 1;
142 hs_ep
->target_frame
= DSTS_SOFFN_LIMIT
;
146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147 * @hsotg: The device state
148 * @ints: A bitmask of the interrupts to enable
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
152 u32 gsintmsk
= dwc2_readl(hsotg
, GINTMSK
);
155 new_gsintmsk
= gsintmsk
| ints
;
157 if (new_gsintmsk
!= gsintmsk
) {
158 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
159 dwc2_writel(hsotg
, new_gsintmsk
, GINTMSK
);
164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165 * @hsotg: The device state
166 * @ints: A bitmask of the interrupts to enable
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
170 u32 gsintmsk
= dwc2_readl(hsotg
, GINTMSK
);
173 new_gsintmsk
= gsintmsk
& ~ints
;
175 if (new_gsintmsk
!= gsintmsk
)
176 dwc2_writel(hsotg
, new_gsintmsk
, GINTMSK
);
180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181 * @hsotg: The device state
182 * @ep: The endpoint index
183 * @dir_in: True if direction is in.
184 * @en: The enable value, true to enable
186 * Set or clear the mask for an individual endpoint's interrupt
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg
*hsotg
,
190 unsigned int ep
, unsigned int dir_in
,
200 local_irq_save(flags
);
201 daint
= dwc2_readl(hsotg
, DAINTMSK
);
206 dwc2_writel(hsotg
, daint
, DAINTMSK
);
207 local_irq_restore(flags
);
211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
213 * @hsotg: Programming view of the DWC_otg controller
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg
*hsotg
)
217 if (hsotg
->hw_params
.en_multiple_tx_fifo
)
218 /* In dedicated FIFO mode we need count of IN EPs */
219 return hsotg
->hw_params
.num_dev_in_eps
;
221 /* In shared FIFO mode we need count of Periodic IN EPs */
222 return hsotg
->hw_params
.num_dev_perio_in_ep
;
226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227 * device mode TX FIFOs
229 * @hsotg: Programming view of the DWC_otg controller
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg
*hsotg
)
237 np_tx_fifo_size
= min_t(u32
, hsotg
->hw_params
.dev_nperio_tx_fifo_size
,
238 hsotg
->params
.g_np_tx_fifo_size
);
240 /* Get Endpoint Info Control block size in DWORDs. */
241 tx_addr_max
= hsotg
->hw_params
.total_fifo_size
;
243 addr
= hsotg
->params
.g_rx_fifo_size
+ np_tx_fifo_size
;
244 if (tx_addr_max
<= addr
)
247 return tx_addr_max
- addr
;
251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
253 * @hsotg: Programming view of the DWC_otg controller
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg
*hsotg
)
261 gintsts2
= dwc2_readl(hsotg
, GINTSTS2
);
262 gintmsk2
= dwc2_readl(hsotg
, GINTMSK2
);
263 gintsts2
&= gintmsk2
;
265 if (gintsts2
& GINTSTS2_WKUP_ALERT_INT
) {
266 dev_dbg(hsotg
->dev
, "%s: Wkup_Alert_Int\n", __func__
);
267 dwc2_set_bit(hsotg
, GINTSTS2
, GINTSTS2_WKUP_ALERT_INT
);
268 dwc2_set_bit(hsotg
, DCTL
, DCTL_RMTWKUPSIG
);
273 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
276 * @hsotg: Programming view of the DWC_otg controller
278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg
*hsotg
)
283 tx_fifo_depth
= dwc2_hsotg_tx_fifo_total_depth(hsotg
);
285 tx_fifo_count
= dwc2_hsotg_tx_fifo_count(hsotg
);
288 return tx_fifo_depth
;
290 return tx_fifo_depth
/ tx_fifo_count
;
294 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
295 * @hsotg: The device instance.
297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg
*hsotg
)
304 u32
*txfsz
= hsotg
->params
.g_tx_fifo_size
;
306 /* Reset fifo map if not correctly cleared during previous session */
307 WARN_ON(hsotg
->fifo_map
);
310 /* set RX/NPTX FIFO sizes */
311 dwc2_writel(hsotg
, hsotg
->params
.g_rx_fifo_size
, GRXFSIZ
);
312 dwc2_writel(hsotg
, (hsotg
->params
.g_rx_fifo_size
<<
313 FIFOSIZE_STARTADDR_SHIFT
) |
314 (hsotg
->params
.g_np_tx_fifo_size
<< FIFOSIZE_DEPTH_SHIFT
),
318 * arange all the rest of the TX FIFOs, as some versions of this
319 * block have overlapping default addresses. This also ensures
320 * that if the settings have been changed, then they are set to
324 /* start at the end of the GNPTXFSIZ, rounded up */
325 addr
= hsotg
->params
.g_rx_fifo_size
+ hsotg
->params
.g_np_tx_fifo_size
;
328 * Configure fifos sizes from provided configuration and assign
329 * them to endpoints dynamically according to maxpacket size value of
332 for (ep
= 1; ep
< MAX_EPS_CHANNELS
; ep
++) {
336 val
|= txfsz
[ep
] << FIFOSIZE_DEPTH_SHIFT
;
337 WARN_ONCE(addr
+ txfsz
[ep
] > hsotg
->fifo_mem
,
338 "insufficient fifo memory");
341 dwc2_writel(hsotg
, val
, DPTXFSIZN(ep
));
342 val
= dwc2_readl(hsotg
, DPTXFSIZN(ep
));
345 dwc2_writel(hsotg
, hsotg
->hw_params
.total_fifo_size
|
346 addr
<< GDFIFOCFG_EPINFOBASE_SHIFT
,
349 * according to p428 of the design guide, we need to ensure that
350 * all fifos are flushed before continuing
353 dwc2_writel(hsotg
, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH
|
354 GRSTCTL_RXFFLSH
, GRSTCTL
);
356 /* wait until the fifos are both flushed */
359 val
= dwc2_readl(hsotg
, GRSTCTL
);
361 if ((val
& (GRSTCTL_TXFFLSH
| GRSTCTL_RXFFLSH
)) == 0)
364 if (--timeout
== 0) {
366 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
374 dev_dbg(hsotg
->dev
, "FIFOs reset, timeout at %d\n", timeout
);
378 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
379 * @ep: USB endpoint to allocate request for.
380 * @flags: Allocation flags
382 * Allocate a new USB request structure appropriate for the specified endpoint
384 static struct usb_request
*dwc2_hsotg_ep_alloc_request(struct usb_ep
*ep
,
387 struct dwc2_hsotg_req
*req
;
389 req
= kzalloc(sizeof(*req
), flags
);
393 INIT_LIST_HEAD(&req
->queue
);
399 * is_ep_periodic - return true if the endpoint is in periodic mode.
400 * @hs_ep: The endpoint to query.
402 * Returns true if the endpoint is in periodic mode, meaning it is being
403 * used for an Interrupt or ISO transfer.
405 static inline int is_ep_periodic(struct dwc2_hsotg_ep
*hs_ep
)
407 return hs_ep
->periodic
;
411 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
412 * @hsotg: The device state.
413 * @hs_ep: The endpoint for the request
414 * @hs_req: The request being processed.
416 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
417 * of a request to ensure the buffer is ready for access by the caller.
419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg
*hsotg
,
420 struct dwc2_hsotg_ep
*hs_ep
,
421 struct dwc2_hsotg_req
*hs_req
)
423 struct usb_request
*req
= &hs_req
->req
;
425 usb_gadget_unmap_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
429 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
430 * for Control endpoint
431 * @hsotg: The device state.
433 * This function will allocate 4 descriptor chains for EP 0: 2 for
434 * Setup stage, per one for IN and OUT data/status transactions.
436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg
*hsotg
)
438 hsotg
->setup_desc
[0] =
439 dmam_alloc_coherent(hsotg
->dev
,
440 sizeof(struct dwc2_dma_desc
),
441 &hsotg
->setup_desc_dma
[0],
443 if (!hsotg
->setup_desc
[0])
446 hsotg
->setup_desc
[1] =
447 dmam_alloc_coherent(hsotg
->dev
,
448 sizeof(struct dwc2_dma_desc
),
449 &hsotg
->setup_desc_dma
[1],
451 if (!hsotg
->setup_desc
[1])
454 hsotg
->ctrl_in_desc
=
455 dmam_alloc_coherent(hsotg
->dev
,
456 sizeof(struct dwc2_dma_desc
),
457 &hsotg
->ctrl_in_desc_dma
,
459 if (!hsotg
->ctrl_in_desc
)
462 hsotg
->ctrl_out_desc
=
463 dmam_alloc_coherent(hsotg
->dev
,
464 sizeof(struct dwc2_dma_desc
),
465 &hsotg
->ctrl_out_desc_dma
,
467 if (!hsotg
->ctrl_out_desc
)
477 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
478 * @hsotg: The controller state.
479 * @hs_ep: The endpoint we're going to write for.
480 * @hs_req: The request to write data for.
482 * This is called when the TxFIFO has some space in it to hold a new
483 * transmission and we have something to give it. The actual setup of
484 * the data size is done elsewhere, so all we have to do is to actually
487 * The return value is zero if there is more space (or nothing was done)
488 * otherwise -ENOSPC is returned if the FIFO space was used up.
490 * This routine is only needed for PIO
492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg
*hsotg
,
493 struct dwc2_hsotg_ep
*hs_ep
,
494 struct dwc2_hsotg_req
*hs_req
)
496 bool periodic
= is_ep_periodic(hs_ep
);
497 u32 gnptxsts
= dwc2_readl(hsotg
, GNPTXSTS
);
498 int buf_pos
= hs_req
->req
.actual
;
499 int to_write
= hs_ep
->size_loaded
;
505 to_write
-= (buf_pos
- hs_ep
->last_load
);
507 /* if there's nothing to write, get out early */
511 if (periodic
&& !hsotg
->dedicated_fifos
) {
512 u32 epsize
= dwc2_readl(hsotg
, DIEPTSIZ(hs_ep
->index
));
517 * work out how much data was loaded so we can calculate
518 * how much data is left in the fifo.
521 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
524 * if shared fifo, we cannot write anything until the
525 * previous data has been completely sent.
527 if (hs_ep
->fifo_load
!= 0) {
528 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
532 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
534 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
536 /* how much of the data has moved */
537 size_done
= hs_ep
->size_loaded
- size_left
;
539 /* how much data is left in the fifo */
540 can_write
= hs_ep
->fifo_load
- size_done
;
541 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
542 __func__
, can_write
);
544 can_write
= hs_ep
->fifo_size
- can_write
;
545 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
546 __func__
, can_write
);
548 if (can_write
<= 0) {
549 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
552 } else if (hsotg
->dedicated_fifos
&& hs_ep
->index
!= 0) {
553 can_write
= dwc2_readl(hsotg
,
554 DTXFSTS(hs_ep
->fifo_index
));
559 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts
) == 0) {
561 "%s: no queue slots available (0x%08x)\n",
564 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_NPTXFEMP
);
568 can_write
= GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts
);
569 can_write
*= 4; /* fifo size is in 32bit quantities. */
572 max_transfer
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
574 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
575 __func__
, gnptxsts
, can_write
, to_write
, max_transfer
);
578 * limit to 512 bytes of data, it seems at least on the non-periodic
579 * FIFO, requests of >512 cause the endpoint to get stuck with a
580 * fragment of the end of the transfer in it.
582 if (can_write
> 512 && !periodic
)
586 * limit the write to one max-packet size worth of data, but allow
587 * the transfer to return that it did not run out of fifo space
590 if (to_write
> max_transfer
) {
591 to_write
= max_transfer
;
593 /* it's needed only when we do not use dedicated fifos */
594 if (!hsotg
->dedicated_fifos
)
595 dwc2_hsotg_en_gsint(hsotg
,
596 periodic
? GINTSTS_PTXFEMP
:
600 /* see if we can write data */
602 if (to_write
> can_write
) {
603 to_write
= can_write
;
604 pkt_round
= to_write
% max_transfer
;
607 * Round the write down to an
608 * exact number of packets.
610 * Note, we do not currently check to see if we can ever
611 * write a full packet or not to the FIFO.
615 to_write
-= pkt_round
;
618 * enable correct FIFO interrupt to alert us when there
622 /* it's needed only when we do not use dedicated fifos */
623 if (!hsotg
->dedicated_fifos
)
624 dwc2_hsotg_en_gsint(hsotg
,
625 periodic
? GINTSTS_PTXFEMP
:
629 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
630 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
635 hs_req
->req
.actual
= buf_pos
+ to_write
;
636 hs_ep
->total_data
+= to_write
;
639 hs_ep
->fifo_load
+= to_write
;
641 to_write
= DIV_ROUND_UP(to_write
, 4);
642 data
= hs_req
->req
.buf
+ buf_pos
;
644 dwc2_writel_rep(hsotg
, EPFIFO(hs_ep
->index
), data
, to_write
);
646 return (to_write
>= can_write
) ? -ENOSPC
: 0;
650 * get_ep_limit - get the maximum data legnth for this endpoint
651 * @hs_ep: The endpoint
653 * Return the maximum data that can be queued in one go on a given endpoint
654 * so that transfers that are too long can be split.
656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep
*hs_ep
)
658 int index
= hs_ep
->index
;
659 unsigned int maxsize
;
663 maxsize
= DXEPTSIZ_XFERSIZE_LIMIT
+ 1;
664 maxpkt
= DXEPTSIZ_PKTCNT_LIMIT
+ 1;
668 maxpkt
= DIEPTSIZ0_PKTCNT_LIMIT
+ 1;
673 /* we made the constant loading easier above by using +1 */
678 * constrain by packet count if maxpkts*pktsize is greater
679 * than the length register size.
682 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
683 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
689 * dwc2_hsotg_read_frameno - read current frame number
690 * @hsotg: The device instance
692 * Return the current frame number
694 static u32
dwc2_hsotg_read_frameno(struct dwc2_hsotg
*hsotg
)
698 dsts
= dwc2_readl(hsotg
, DSTS
);
699 dsts
&= DSTS_SOFFN_MASK
;
700 dsts
>>= DSTS_SOFFN_SHIFT
;
706 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
707 * DMA descriptor chain prepared for specific endpoint
708 * @hs_ep: The endpoint
710 * Return the maximum data that can be queued in one go on a given endpoint
711 * depending on its descriptor chain capacity so that transfers that
712 * are too long can be split.
714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep
*hs_ep
)
716 const struct usb_endpoint_descriptor
*ep_desc
= hs_ep
->ep
.desc
;
717 int is_isoc
= hs_ep
->isochronous
;
718 unsigned int maxsize
;
719 u32 mps
= hs_ep
->ep
.maxpacket
;
720 int dir_in
= hs_ep
->dir_in
;
723 maxsize
= (hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_LIMIT
:
724 DEV_DMA_ISOC_RX_NBYTES_LIMIT
) *
725 MAX_DMA_DESC_NUM_HS_ISOC
;
727 maxsize
= DEV_DMA_NBYTES_LIMIT
* MAX_DMA_DESC_NUM_GENERIC
;
729 /* Interrupt OUT EP with mps not multiple of 4 */
731 if (usb_endpoint_xfer_int(ep_desc
) && !dir_in
&& (mps
% 4))
732 maxsize
= mps
* MAX_DMA_DESC_NUM_GENERIC
;
738 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
739 * @hs_ep: The endpoint
740 * @mask: RX/TX bytes mask to be defined
742 * Returns maximum data payload for one descriptor after analyzing endpoint
744 * DMA descriptor transfer bytes limit depends on EP type:
746 * Isochronous - descriptor rx/tx bytes bitfield limit,
747 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
748 * have concatenations from various descriptors within one packet.
749 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
750 * to a single descriptor.
752 * Selects corresponding mask for RX/TX bytes as well.
754 static u32
dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep
*hs_ep
, u32
*mask
)
756 const struct usb_endpoint_descriptor
*ep_desc
= hs_ep
->ep
.desc
;
757 u32 mps
= hs_ep
->ep
.maxpacket
;
758 int dir_in
= hs_ep
->dir_in
;
761 if (!hs_ep
->index
&& !dir_in
) {
763 *mask
= DEV_DMA_NBYTES_MASK
;
764 } else if (hs_ep
->isochronous
) {
766 desc_size
= DEV_DMA_ISOC_TX_NBYTES_LIMIT
;
767 *mask
= DEV_DMA_ISOC_TX_NBYTES_MASK
;
769 desc_size
= DEV_DMA_ISOC_RX_NBYTES_LIMIT
;
770 *mask
= DEV_DMA_ISOC_RX_NBYTES_MASK
;
773 desc_size
= DEV_DMA_NBYTES_LIMIT
;
774 *mask
= DEV_DMA_NBYTES_MASK
;
776 /* Round down desc_size to be mps multiple */
777 desc_size
-= desc_size
% mps
;
780 /* Interrupt OUT EP with mps not multiple of 4 */
782 if (usb_endpoint_xfer_int(ep_desc
) && !dir_in
&& (mps
% 4)) {
784 *mask
= DEV_DMA_NBYTES_MASK
;
790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep
*hs_ep
,
791 struct dwc2_dma_desc
**desc
,
796 int dir_in
= hs_ep
->dir_in
;
797 u32 mps
= hs_ep
->ep
.maxpacket
;
803 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
805 hs_ep
->desc_count
= (len
/ maxsize
) +
806 ((len
% maxsize
) ? 1 : 0);
808 hs_ep
->desc_count
= 1;
810 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
812 (*desc
)->status
|= (DEV_DMA_BUFF_STS_HBUSY
813 << DEV_DMA_BUFF_STS_SHIFT
);
816 if (!hs_ep
->index
&& !dir_in
)
817 (*desc
)->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
820 maxsize
<< DEV_DMA_NBYTES_SHIFT
& mask
;
821 (*desc
)->buf
= dma_buff
+ offset
;
827 (*desc
)->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
830 (*desc
)->status
|= (len
% mps
) ? DEV_DMA_SHORT
:
831 ((hs_ep
->send_zlp
&& true_last
) ?
835 len
<< DEV_DMA_NBYTES_SHIFT
& mask
;
836 (*desc
)->buf
= dma_buff
+ offset
;
839 (*desc
)->status
&= ~DEV_DMA_BUFF_STS_MASK
;
840 (*desc
)->status
|= (DEV_DMA_BUFF_STS_HREADY
841 << DEV_DMA_BUFF_STS_SHIFT
);
847 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
848 * @hs_ep: The endpoint
849 * @ureq: Request to transfer
850 * @offset: offset in bytes
851 * @len: Length of the transfer
853 * This function will iterate over descriptor chain and fill its entries
854 * with corresponding information based on transfer data.
856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep
*hs_ep
,
860 struct usb_request
*ureq
= NULL
;
861 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
862 struct scatterlist
*sg
;
867 ureq
= &hs_ep
->req
->req
;
869 /* non-DMA sg buffer */
870 if (!ureq
|| !ureq
->num_sgs
) {
871 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep
, &desc
,
872 dma_buff
, len
, true);
877 for_each_sg(ureq
->sg
, sg
, ureq
->num_sgs
, i
) {
878 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep
, &desc
,
879 sg_dma_address(sg
) + sg
->offset
, sg_dma_len(sg
),
881 desc_count
+= hs_ep
->desc_count
;
884 hs_ep
->desc_count
= desc_count
;
888 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
889 * @hs_ep: The isochronous endpoint.
890 * @dma_buff: usb requests dma buffer.
891 * @len: usb request transfer length.
893 * Fills next free descriptor with the data of the arrived usb request,
894 * frame info, sets Last and IOC bits increments next_desc. If filled
895 * descriptor is not the first one, removes L bit from the previous descriptor
898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep
*hs_ep
,
899 dma_addr_t dma_buff
, unsigned int len
)
901 struct dwc2_dma_desc
*desc
;
902 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
907 dwc2_gadget_get_desc_params(hs_ep
, &mask
);
909 index
= hs_ep
->next_desc
;
910 desc
= &hs_ep
->desc_list
[index
];
912 /* Check if descriptor chain full */
913 if ((desc
->status
>> DEV_DMA_BUFF_STS_SHIFT
) ==
914 DEV_DMA_BUFF_STS_HREADY
) {
915 dev_dbg(hsotg
->dev
, "%s: desc chain full\n", __func__
);
919 /* Clear L bit of previous desc if more than one entries in the chain */
920 if (hs_ep
->next_desc
)
921 hs_ep
->desc_list
[index
- 1].status
&= ~DEV_DMA_L
;
923 dev_dbg(hsotg
->dev
, "%s: Filling ep %d, dir %s isoc desc # %d\n",
924 __func__
, hs_ep
->index
, hs_ep
->dir_in
? "in" : "out", index
);
927 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
<< DEV_DMA_BUFF_STS_SHIFT
);
929 desc
->buf
= dma_buff
;
930 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
|
931 ((len
<< DEV_DMA_NBYTES_SHIFT
) & mask
));
935 pid
= DIV_ROUND_UP(len
, hs_ep
->ep
.maxpacket
);
938 desc
->status
|= ((pid
<< DEV_DMA_ISOC_PID_SHIFT
) &
939 DEV_DMA_ISOC_PID_MASK
) |
940 ((len
% hs_ep
->ep
.maxpacket
) ?
942 ((hs_ep
->target_frame
<<
943 DEV_DMA_ISOC_FRNUM_SHIFT
) &
944 DEV_DMA_ISOC_FRNUM_MASK
);
947 desc
->status
&= ~DEV_DMA_BUFF_STS_MASK
;
948 desc
->status
|= (DEV_DMA_BUFF_STS_HREADY
<< DEV_DMA_BUFF_STS_SHIFT
);
950 /* Increment frame number by interval for IN */
952 dwc2_gadget_incr_frame_num(hs_ep
);
954 /* Update index of last configured entry in the chain */
956 if (hs_ep
->next_desc
>= MAX_DMA_DESC_NUM_HS_ISOC
)
957 hs_ep
->next_desc
= 0;
963 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
964 * @hs_ep: The isochronous endpoint.
966 * Prepare descriptor chain for isochronous endpoints. Afterwards
967 * write DMA address to HW and enable the endpoint.
969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep
*hs_ep
)
971 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
972 struct dwc2_hsotg_req
*hs_req
, *treq
;
973 int index
= hs_ep
->index
;
979 struct dwc2_dma_desc
*desc
;
981 if (list_empty(&hs_ep
->queue
)) {
982 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
983 dev_dbg(hsotg
->dev
, "%s: No requests in queue\n", __func__
);
987 /* Initialize descriptor chain by Host Busy status */
988 for (i
= 0; i
< MAX_DMA_DESC_NUM_HS_ISOC
; i
++) {
989 desc
= &hs_ep
->desc_list
[i
];
991 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
992 << DEV_DMA_BUFF_STS_SHIFT
);
995 hs_ep
->next_desc
= 0;
996 list_for_each_entry_safe(hs_req
, treq
, &hs_ep
->queue
, queue
) {
997 dma_addr_t dma_addr
= hs_req
->req
.dma
;
999 if (hs_req
->req
.num_sgs
) {
1000 WARN_ON(hs_req
->req
.num_sgs
> 1);
1001 dma_addr
= sg_dma_address(hs_req
->req
.sg
);
1003 ret
= dwc2_gadget_fill_isoc_desc(hs_ep
, dma_addr
,
1004 hs_req
->req
.length
);
1009 hs_ep
->compl_desc
= 0;
1010 depctl
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
1011 dma_reg
= hs_ep
->dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
1013 /* write descriptor chain address to control register */
1014 dwc2_writel(hsotg
, hs_ep
->desc_list_dma
, dma_reg
);
1016 ctrl
= dwc2_readl(hsotg
, depctl
);
1017 ctrl
|= DXEPCTL_EPENA
| DXEPCTL_CNAK
;
1018 dwc2_writel(hsotg
, ctrl
, depctl
);
1022 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1023 * @hsotg: The controller state.
1024 * @hs_ep: The endpoint to process a request for
1025 * @hs_req: The request to start.
1026 * @continuing: True if we are doing more for the current request.
1028 * Start the given request running by setting the endpoint registers
1029 * appropriately, and writing any data to the FIFOs.
1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg
*hsotg
,
1032 struct dwc2_hsotg_ep
*hs_ep
,
1033 struct dwc2_hsotg_req
*hs_req
,
1036 struct usb_request
*ureq
= &hs_req
->req
;
1037 int index
= hs_ep
->index
;
1038 int dir_in
= hs_ep
->dir_in
;
1043 unsigned int length
;
1044 unsigned int packets
;
1045 unsigned int maxreq
;
1046 unsigned int dma_reg
;
1049 if (hs_ep
->req
&& !continuing
) {
1050 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
1053 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
1055 "%s: continue different req\n", __func__
);
1061 dma_reg
= dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
1062 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
1063 epsize_reg
= dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
1065 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1066 __func__
, dwc2_readl(hsotg
, epctrl_reg
), index
,
1067 hs_ep
->dir_in
? "in" : "out");
1069 /* If endpoint is stalled, we will restart request later */
1070 ctrl
= dwc2_readl(hsotg
, epctrl_reg
);
1072 if (index
&& ctrl
& DXEPCTL_STALL
) {
1073 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
1077 length
= ureq
->length
- ureq
->actual
;
1078 dev_dbg(hsotg
->dev
, "ureq->length:%d ureq->actual:%d\n",
1079 ureq
->length
, ureq
->actual
);
1081 if (!using_desc_dma(hsotg
))
1082 maxreq
= get_ep_limit(hs_ep
);
1084 maxreq
= dwc2_gadget_get_chain_limit(hs_ep
);
1086 if (length
> maxreq
) {
1087 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
1089 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
1090 __func__
, length
, maxreq
, round
);
1092 /* round down to multiple of packets */
1100 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
1102 packets
= 1; /* send one packet if length is zero. */
1104 if (dir_in
&& index
!= 0)
1105 if (hs_ep
->isochronous
)
1106 epsize
= DXEPTSIZ_MC(packets
);
1108 epsize
= DXEPTSIZ_MC(1);
1113 * zero length packet should be programmed on its own and should not
1114 * be counted in DIEPTSIZ.PktCnt with other packets.
1116 if (dir_in
&& ureq
->zero
&& !continuing
) {
1117 /* Test if zlp is actually required. */
1118 if ((ureq
->length
>= hs_ep
->ep
.maxpacket
) &&
1119 !(ureq
->length
% hs_ep
->ep
.maxpacket
))
1120 hs_ep
->send_zlp
= 1;
1123 epsize
|= DXEPTSIZ_PKTCNT(packets
);
1124 epsize
|= DXEPTSIZ_XFERSIZE(length
);
1126 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1127 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
1129 /* store the request as the current one we're doing */
1130 hs_ep
->req
= hs_req
;
1132 if (using_desc_dma(hsotg
)) {
1134 u32 mps
= hs_ep
->ep
.maxpacket
;
1136 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1140 else if (length
% mps
)
1141 length
+= (mps
- (length
% mps
));
1145 offset
= ureq
->actual
;
1147 /* Fill DDMA chain entries */
1148 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, ureq
->dma
+ offset
,
1151 /* write descriptor chain address to control register */
1152 dwc2_writel(hsotg
, hs_ep
->desc_list_dma
, dma_reg
);
1154 dev_dbg(hsotg
->dev
, "%s: %08x pad => 0x%08x\n",
1155 __func__
, (u32
)hs_ep
->desc_list_dma
, dma_reg
);
1157 /* write size / packets */
1158 dwc2_writel(hsotg
, epsize
, epsize_reg
);
1160 if (using_dma(hsotg
) && !continuing
&& (length
!= 0)) {
1162 * write DMA address to control register, buffer
1163 * already synced by dwc2_hsotg_ep_queue().
1166 dwc2_writel(hsotg
, ureq
->dma
, dma_reg
);
1168 dev_dbg(hsotg
->dev
, "%s: %pad => 0x%08x\n",
1169 __func__
, &ureq
->dma
, dma_reg
);
1173 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1) {
1174 hs_ep
->target_frame
= dwc2_hsotg_read_frameno(hsotg
);
1175 dwc2_gadget_incr_frame_num(hs_ep
);
1177 if (hs_ep
->target_frame
& 0x1)
1178 ctrl
|= DXEPCTL_SETODDFR
;
1180 ctrl
|= DXEPCTL_SETEVENFR
;
1183 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
1185 dev_dbg(hsotg
->dev
, "ep0 state:%d\n", hsotg
->ep0_state
);
1187 /* For Setup request do not clear NAK */
1188 if (!(index
== 0 && hsotg
->ep0_state
== DWC2_EP0_SETUP
))
1189 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
1191 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
1192 dwc2_writel(hsotg
, ctrl
, epctrl_reg
);
1195 * set these, it seems that DMA support increments past the end
1196 * of the packet buffer so we need to calculate the length from
1199 hs_ep
->size_loaded
= length
;
1200 hs_ep
->last_load
= ureq
->actual
;
1202 if (dir_in
&& !using_dma(hsotg
)) {
1203 /* set these anyway, we may need them for non-periodic in */
1204 hs_ep
->fifo_load
= 0;
1206 dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1210 * Note, trying to clear the NAK here causes problems with transmit
1211 * on the S3C6400 ending up with the TXFIFO becoming full.
1214 /* check ep is enabled */
1215 if (!(dwc2_readl(hsotg
, epctrl_reg
) & DXEPCTL_EPENA
))
1217 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1218 index
, dwc2_readl(hsotg
, epctrl_reg
));
1220 dev_dbg(hsotg
->dev
, "%s: DXEPCTL=0x%08x\n",
1221 __func__
, dwc2_readl(hsotg
, epctrl_reg
));
1223 /* enable ep interrupts */
1224 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 1);
1228 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1229 * @hsotg: The device state.
1230 * @hs_ep: The endpoint the request is on.
1231 * @req: The request being processed.
1233 * We've been asked to queue a request, so ensure that the memory buffer
1234 * is correctly setup for DMA. If we've been passed an extant DMA address
1235 * then ensure the buffer has been synced to memory. If our buffer has no
1236 * DMA memory, then we map the memory and mark our request to allow us to
1237 * cleanup on completion.
1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg
*hsotg
,
1240 struct dwc2_hsotg_ep
*hs_ep
,
1241 struct usb_request
*req
)
1245 ret
= usb_gadget_map_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
1252 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
1253 __func__
, req
->buf
, req
->length
);
1258 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg
*hsotg
,
1259 struct dwc2_hsotg_ep
*hs_ep
,
1260 struct dwc2_hsotg_req
*hs_req
)
1262 void *req_buf
= hs_req
->req
.buf
;
1264 /* If dma is not being used or buffer is aligned */
1265 if (!using_dma(hsotg
) || !((long)req_buf
& 3))
1268 WARN_ON(hs_req
->saved_req_buf
);
1270 dev_dbg(hsotg
->dev
, "%s: %s: buf=%p length=%d\n", __func__
,
1271 hs_ep
->ep
.name
, req_buf
, hs_req
->req
.length
);
1273 hs_req
->req
.buf
= kmalloc(hs_req
->req
.length
, GFP_ATOMIC
);
1274 if (!hs_req
->req
.buf
) {
1275 hs_req
->req
.buf
= req_buf
;
1277 "%s: unable to allocate memory for bounce buffer\n",
1282 /* Save actual buffer */
1283 hs_req
->saved_req_buf
= req_buf
;
1286 memcpy(hs_req
->req
.buf
, req_buf
, hs_req
->req
.length
);
1291 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg
*hsotg
,
1292 struct dwc2_hsotg_ep
*hs_ep
,
1293 struct dwc2_hsotg_req
*hs_req
)
1295 /* If dma is not being used or buffer was aligned */
1296 if (!using_dma(hsotg
) || !hs_req
->saved_req_buf
)
1299 dev_dbg(hsotg
->dev
, "%s: %s: status=%d actual-length=%d\n", __func__
,
1300 hs_ep
->ep
.name
, hs_req
->req
.status
, hs_req
->req
.actual
);
1302 /* Copy data from bounce buffer on successful out transfer */
1303 if (!hs_ep
->dir_in
&& !hs_req
->req
.status
)
1304 memcpy(hs_req
->saved_req_buf
, hs_req
->req
.buf
,
1305 hs_req
->req
.actual
);
1307 /* Free bounce buffer */
1308 kfree(hs_req
->req
.buf
);
1310 hs_req
->req
.buf
= hs_req
->saved_req_buf
;
1311 hs_req
->saved_req_buf
= NULL
;
1315 * dwc2_gadget_target_frame_elapsed - Checks target frame
1316 * @hs_ep: The driver endpoint to check
1318 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1319 * corresponding transfer.
1321 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep
*hs_ep
)
1323 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1324 u32 target_frame
= hs_ep
->target_frame
;
1325 u32 current_frame
= hsotg
->frame_number
;
1326 bool frame_overrun
= hs_ep
->frame_overrun
;
1328 if (!frame_overrun
&& current_frame
>= target_frame
)
1331 if (frame_overrun
&& current_frame
>= target_frame
&&
1332 ((current_frame
- target_frame
) < DSTS_SOFFN_LIMIT
/ 2))
1339 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1340 * @hsotg: The driver state
1341 * @hs_ep: the ep descriptor chain is for
1343 * Called to update EP0 structure's pointers depend on stage of
1346 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg
*hsotg
,
1347 struct dwc2_hsotg_ep
*hs_ep
)
1349 switch (hsotg
->ep0_state
) {
1350 case DWC2_EP0_SETUP
:
1351 case DWC2_EP0_STATUS_OUT
:
1352 hs_ep
->desc_list
= hsotg
->setup_desc
[0];
1353 hs_ep
->desc_list_dma
= hsotg
->setup_desc_dma
[0];
1355 case DWC2_EP0_DATA_IN
:
1356 case DWC2_EP0_STATUS_IN
:
1357 hs_ep
->desc_list
= hsotg
->ctrl_in_desc
;
1358 hs_ep
->desc_list_dma
= hsotg
->ctrl_in_desc_dma
;
1360 case DWC2_EP0_DATA_OUT
:
1361 hs_ep
->desc_list
= hsotg
->ctrl_out_desc
;
1362 hs_ep
->desc_list_dma
= hsotg
->ctrl_out_desc_dma
;
1365 dev_err(hsotg
->dev
, "invalid EP 0 state in queue %d\n",
1373 static int dwc2_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
1376 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1377 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1378 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1385 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1386 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
1387 req
->zero
, req
->short_not_ok
);
1389 /* Prevent new request submission when controller is suspended */
1390 if (hs
->lx_state
!= DWC2_L0
) {
1391 dev_dbg(hs
->dev
, "%s: submit request only in active state\n",
1396 /* initialise status of the request */
1397 INIT_LIST_HEAD(&hs_req
->queue
);
1399 req
->status
= -EINPROGRESS
;
1401 /* Don't queue ISOC request if length greater than mps*mc */
1402 if (hs_ep
->isochronous
&&
1403 req
->length
> (hs_ep
->mc
* hs_ep
->ep
.maxpacket
)) {
1404 dev_err(hs
->dev
, "req length > maxpacket*mc\n");
1408 /* In DDMA mode for ISOC's don't queue request if length greater
1409 * than descriptor limits.
1411 if (using_desc_dma(hs
) && hs_ep
->isochronous
) {
1412 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
1413 if (hs_ep
->dir_in
&& req
->length
> maxsize
) {
1414 dev_err(hs
->dev
, "wrong length %d (maxsize=%d)\n",
1415 req
->length
, maxsize
);
1419 if (!hs_ep
->dir_in
&& req
->length
> hs_ep
->ep
.maxpacket
) {
1420 dev_err(hs
->dev
, "ISOC OUT: wrong length %d (mps=%d)\n",
1421 req
->length
, hs_ep
->ep
.maxpacket
);
1426 ret
= dwc2_hsotg_handle_unaligned_buf_start(hs
, hs_ep
, hs_req
);
1430 /* if we're using DMA, sync the buffers as necessary */
1431 if (using_dma(hs
)) {
1432 ret
= dwc2_hsotg_map_dma(hs
, hs_ep
, req
);
1436 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1437 if (using_desc_dma(hs
) && !hs_ep
->index
) {
1438 ret
= dwc2_gadget_set_ep0_desc_chain(hs
, hs_ep
);
1443 first
= list_empty(&hs_ep
->queue
);
1444 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
1447 * Handle DDMA isochronous transfers separately - just add new entry
1448 * to the descriptor chain.
1449 * Transfer will be started once SW gets either one of NAK or
1450 * OutTknEpDis interrupts.
1452 if (using_desc_dma(hs
) && hs_ep
->isochronous
) {
1453 if (hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
) {
1454 dma_addr_t dma_addr
= hs_req
->req
.dma
;
1456 if (hs_req
->req
.num_sgs
) {
1457 WARN_ON(hs_req
->req
.num_sgs
> 1);
1458 dma_addr
= sg_dma_address(hs_req
->req
.sg
);
1460 dwc2_gadget_fill_isoc_desc(hs_ep
, dma_addr
,
1461 hs_req
->req
.length
);
1466 /* Change EP direction if status phase request is after data out */
1467 if (!hs_ep
->index
&& !req
->length
&& !hs_ep
->dir_in
&&
1468 hs
->ep0_state
== DWC2_EP0_DATA_OUT
)
1472 if (!hs_ep
->isochronous
) {
1473 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1477 /* Update current frame number value. */
1478 hs
->frame_number
= dwc2_hsotg_read_frameno(hs
);
1479 while (dwc2_gadget_target_frame_elapsed(hs_ep
)) {
1480 dwc2_gadget_incr_frame_num(hs_ep
);
1481 /* Update current frame number value once more as it
1484 hs
->frame_number
= dwc2_hsotg_read_frameno(hs
);
1487 if (hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
)
1488 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1493 static int dwc2_hsotg_ep_queue_lock(struct usb_ep
*ep
, struct usb_request
*req
,
1496 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1497 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1498 unsigned long flags
= 0;
1501 spin_lock_irqsave(&hs
->lock
, flags
);
1502 ret
= dwc2_hsotg_ep_queue(ep
, req
, gfp_flags
);
1503 spin_unlock_irqrestore(&hs
->lock
, flags
);
1508 static void dwc2_hsotg_ep_free_request(struct usb_ep
*ep
,
1509 struct usb_request
*req
)
1511 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1517 * dwc2_hsotg_complete_oursetup - setup completion callback
1518 * @ep: The endpoint the request was on.
1519 * @req: The request completed.
1521 * Called on completion of any requests the driver itself
1522 * submitted that need cleaning up.
1524 static void dwc2_hsotg_complete_oursetup(struct usb_ep
*ep
,
1525 struct usb_request
*req
)
1527 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1528 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1530 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
1532 dwc2_hsotg_ep_free_request(ep
, req
);
1536 * ep_from_windex - convert control wIndex value to endpoint
1537 * @hsotg: The driver state.
1538 * @windex: The control request wIndex field (in host order).
1540 * Convert the given wIndex into a pointer to an driver endpoint
1541 * structure, or return NULL if it is not a valid endpoint.
1543 static struct dwc2_hsotg_ep
*ep_from_windex(struct dwc2_hsotg
*hsotg
,
1546 struct dwc2_hsotg_ep
*ep
;
1547 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
1548 int idx
= windex
& 0x7F;
1550 if (windex
>= 0x100)
1553 if (idx
> hsotg
->num_of_eps
)
1556 ep
= index_to_ep(hsotg
, idx
, dir
);
1558 if (idx
&& ep
->dir_in
!= dir
)
1565 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1566 * @hsotg: The driver state.
1567 * @testmode: requested usb test mode
1568 * Enable usb Test Mode requested by the Host.
1570 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg
*hsotg
, int testmode
)
1572 int dctl
= dwc2_readl(hsotg
, DCTL
);
1574 dctl
&= ~DCTL_TSTCTL_MASK
;
1578 case USB_TEST_SE0_NAK
:
1579 case USB_TEST_PACKET
:
1580 case USB_TEST_FORCE_ENABLE
:
1581 dctl
|= testmode
<< DCTL_TSTCTL_SHIFT
;
1586 dwc2_writel(hsotg
, dctl
, DCTL
);
1591 * dwc2_hsotg_send_reply - send reply to control request
1592 * @hsotg: The device state
1594 * @buff: Buffer for request
1595 * @length: Length of reply.
1597 * Create a request and queue it on the given endpoint. This is useful as
1598 * an internal method of sending replies to certain control requests, etc.
1600 static int dwc2_hsotg_send_reply(struct dwc2_hsotg
*hsotg
,
1601 struct dwc2_hsotg_ep
*ep
,
1605 struct usb_request
*req
;
1608 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
1610 req
= dwc2_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
1611 hsotg
->ep0_reply
= req
;
1613 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
1617 req
->buf
= hsotg
->ep0_buff
;
1618 req
->length
= length
;
1620 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1624 req
->complete
= dwc2_hsotg_complete_oursetup
;
1627 memcpy(req
->buf
, buff
, length
);
1629 ret
= dwc2_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
1631 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
1639 * dwc2_hsotg_process_req_status - process request GET_STATUS
1640 * @hsotg: The device state
1641 * @ctrl: USB control request
1643 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg
*hsotg
,
1644 struct usb_ctrlrequest
*ctrl
)
1646 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1647 struct dwc2_hsotg_ep
*ep
;
1652 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
1655 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
1659 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
1660 case USB_RECIP_DEVICE
:
1661 status
= hsotg
->gadget
.is_selfpowered
<<
1662 USB_DEVICE_SELF_POWERED
;
1663 status
|= hsotg
->remote_wakeup_allowed
<<
1664 USB_DEVICE_REMOTE_WAKEUP
;
1665 reply
= cpu_to_le16(status
);
1668 case USB_RECIP_INTERFACE
:
1669 /* currently, the data result should be zero */
1670 reply
= cpu_to_le16(0);
1673 case USB_RECIP_ENDPOINT
:
1674 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1678 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
1685 if (le16_to_cpu(ctrl
->wLength
) != 2)
1688 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
1690 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
1697 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
);
1700 * get_ep_head - return the first request on the endpoint
1701 * @hs_ep: The controller endpoint to get
1703 * Get the first request on the endpoint.
1705 static struct dwc2_hsotg_req
*get_ep_head(struct dwc2_hsotg_ep
*hs_ep
)
1707 return list_first_entry_or_null(&hs_ep
->queue
, struct dwc2_hsotg_req
,
1712 * dwc2_gadget_start_next_request - Starts next request from ep queue
1713 * @hs_ep: Endpoint structure
1715 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1716 * in its handler. Hence we need to unmask it here to be able to do
1717 * resynchronization.
1719 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep
*hs_ep
)
1722 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1723 int dir_in
= hs_ep
->dir_in
;
1724 struct dwc2_hsotg_req
*hs_req
;
1725 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
1727 if (!list_empty(&hs_ep
->queue
)) {
1728 hs_req
= get_ep_head(hs_ep
);
1729 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1732 if (!hs_ep
->isochronous
)
1736 dev_dbg(hsotg
->dev
, "%s: No more ISOC-IN requests\n",
1739 dev_dbg(hsotg
->dev
, "%s: No more ISOC-OUT requests\n",
1741 mask
= dwc2_readl(hsotg
, epmsk_reg
);
1742 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
1743 dwc2_writel(hsotg
, mask
, epmsk_reg
);
1748 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1749 * @hsotg: The device state
1750 * @ctrl: USB control request
1752 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg
*hsotg
,
1753 struct usb_ctrlrequest
*ctrl
)
1755 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1756 struct dwc2_hsotg_req
*hs_req
;
1757 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
1758 struct dwc2_hsotg_ep
*ep
;
1765 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
1766 __func__
, set
? "SET" : "CLEAR");
1768 wValue
= le16_to_cpu(ctrl
->wValue
);
1769 wIndex
= le16_to_cpu(ctrl
->wIndex
);
1770 recip
= ctrl
->bRequestType
& USB_RECIP_MASK
;
1773 case USB_RECIP_DEVICE
:
1775 case USB_DEVICE_REMOTE_WAKEUP
:
1777 hsotg
->remote_wakeup_allowed
= 1;
1779 hsotg
->remote_wakeup_allowed
= 0;
1782 case USB_DEVICE_TEST_MODE
:
1783 if ((wIndex
& 0xff) != 0)
1788 hsotg
->test_mode
= wIndex
>> 8;
1794 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1797 "%s: failed to send reply\n", __func__
);
1802 case USB_RECIP_ENDPOINT
:
1803 ep
= ep_from_windex(hsotg
, wIndex
);
1805 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
1811 case USB_ENDPOINT_HALT
:
1812 halted
= ep
->halted
;
1814 dwc2_hsotg_ep_sethalt(&ep
->ep
, set
, true);
1816 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1819 "%s: failed to send reply\n", __func__
);
1824 * we have to complete all requests for ep if it was
1825 * halted, and the halt was cleared by CLEAR_FEATURE
1828 if (!set
&& halted
) {
1830 * If we have request in progress,
1836 list_del_init(&hs_req
->queue
);
1837 if (hs_req
->req
.complete
) {
1838 spin_unlock(&hsotg
->lock
);
1839 usb_gadget_giveback_request(
1840 &ep
->ep
, &hs_req
->req
);
1841 spin_lock(&hsotg
->lock
);
1845 /* If we have pending request, then start it */
1847 dwc2_gadget_start_next_request(ep
);
1862 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
);
1865 * dwc2_hsotg_stall_ep0 - stall ep0
1866 * @hsotg: The device state
1868 * Set stall for ep0 as response for setup request.
1870 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg
*hsotg
)
1872 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1876 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1877 reg
= (ep0
->dir_in
) ? DIEPCTL0
: DOEPCTL0
;
1880 * DxEPCTL_Stall will be cleared by EP once it has
1881 * taken effect, so no need to clear later.
1884 ctrl
= dwc2_readl(hsotg
, reg
);
1885 ctrl
|= DXEPCTL_STALL
;
1886 ctrl
|= DXEPCTL_CNAK
;
1887 dwc2_writel(hsotg
, ctrl
, reg
);
1890 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1891 ctrl
, reg
, dwc2_readl(hsotg
, reg
));
1894 * complete won't be called, so we enqueue
1895 * setup request here
1897 dwc2_hsotg_enqueue_setup(hsotg
);
1901 * dwc2_hsotg_process_control - process a control request
1902 * @hsotg: The device state
1903 * @ctrl: The control request received
1905 * The controller has received the SETUP phase of a control request, and
1906 * needs to work out what to do next (and whether to pass it on to the
1909 static void dwc2_hsotg_process_control(struct dwc2_hsotg
*hsotg
,
1910 struct usb_ctrlrequest
*ctrl
)
1912 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1917 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1918 ctrl
->bRequestType
, ctrl
->bRequest
, ctrl
->wValue
,
1919 ctrl
->wIndex
, ctrl
->wLength
);
1921 if (ctrl
->wLength
== 0) {
1923 hsotg
->ep0_state
= DWC2_EP0_STATUS_IN
;
1924 } else if (ctrl
->bRequestType
& USB_DIR_IN
) {
1926 hsotg
->ep0_state
= DWC2_EP0_DATA_IN
;
1929 hsotg
->ep0_state
= DWC2_EP0_DATA_OUT
;
1932 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1933 switch (ctrl
->bRequest
) {
1934 case USB_REQ_SET_ADDRESS
:
1935 hsotg
->connected
= 1;
1936 dcfg
= dwc2_readl(hsotg
, DCFG
);
1937 dcfg
&= ~DCFG_DEVADDR_MASK
;
1938 dcfg
|= (le16_to_cpu(ctrl
->wValue
) <<
1939 DCFG_DEVADDR_SHIFT
) & DCFG_DEVADDR_MASK
;
1940 dwc2_writel(hsotg
, dcfg
, DCFG
);
1942 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1944 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1947 case USB_REQ_GET_STATUS
:
1948 ret
= dwc2_hsotg_process_req_status(hsotg
, ctrl
);
1951 case USB_REQ_CLEAR_FEATURE
:
1952 case USB_REQ_SET_FEATURE
:
1953 ret
= dwc2_hsotg_process_req_feature(hsotg
, ctrl
);
1958 /* as a fallback, try delivering it to the driver to deal with */
1960 if (ret
== 0 && hsotg
->driver
) {
1961 spin_unlock(&hsotg
->lock
);
1962 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1963 spin_lock(&hsotg
->lock
);
1965 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1968 hsotg
->delayed_status
= false;
1969 if (ret
== USB_GADGET_DELAYED_STATUS
)
1970 hsotg
->delayed_status
= true;
1973 * the request is either unhandlable, or is not formatted correctly
1974 * so respond with a STALL for the status stage to indicate failure.
1978 dwc2_hsotg_stall_ep0(hsotg
);
1982 * dwc2_hsotg_complete_setup - completion of a setup transfer
1983 * @ep: The endpoint the request was on.
1984 * @req: The request completed.
1986 * Called on completion of any requests the driver itself submitted for
1989 static void dwc2_hsotg_complete_setup(struct usb_ep
*ep
,
1990 struct usb_request
*req
)
1992 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1993 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1995 if (req
->status
< 0) {
1996 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
2000 spin_lock(&hsotg
->lock
);
2001 if (req
->actual
== 0)
2002 dwc2_hsotg_enqueue_setup(hsotg
);
2004 dwc2_hsotg_process_control(hsotg
, req
->buf
);
2005 spin_unlock(&hsotg
->lock
);
2009 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2010 * @hsotg: The device state.
2012 * Enqueue a request on EP0 if necessary to received any SETUP packets
2013 * received from the host.
2015 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
)
2017 struct usb_request
*req
= hsotg
->ctrl_req
;
2018 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
2021 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
2025 req
->buf
= hsotg
->ctrl_buff
;
2026 req
->complete
= dwc2_hsotg_complete_setup
;
2028 if (!list_empty(&hs_req
->queue
)) {
2029 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
2033 hsotg
->eps_out
[0]->dir_in
= 0;
2034 hsotg
->eps_out
[0]->send_zlp
= 0;
2035 hsotg
->ep0_state
= DWC2_EP0_SETUP
;
2037 ret
= dwc2_hsotg_ep_queue(&hsotg
->eps_out
[0]->ep
, req
, GFP_ATOMIC
);
2039 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
2041 * Don't think there's much we can do other than watch the
2047 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg
*hsotg
,
2048 struct dwc2_hsotg_ep
*hs_ep
)
2051 u8 index
= hs_ep
->index
;
2052 u32 epctl_reg
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
2053 u32 epsiz_reg
= hs_ep
->dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
2056 dev_dbg(hsotg
->dev
, "Sending zero-length packet on ep%d\n",
2059 dev_dbg(hsotg
->dev
, "Receiving zero-length packet on ep%d\n",
2061 if (using_desc_dma(hsotg
)) {
2062 /* Not specific buffer needed for ep0 ZLP */
2063 dma_addr_t dma
= hs_ep
->desc_list_dma
;
2066 dwc2_gadget_set_ep0_desc_chain(hsotg
, hs_ep
);
2068 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, dma
, 0);
2070 dwc2_writel(hsotg
, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2071 DXEPTSIZ_XFERSIZE(0),
2075 ctrl
= dwc2_readl(hsotg
, epctl_reg
);
2076 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
2077 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
2078 ctrl
|= DXEPCTL_USBACTEP
;
2079 dwc2_writel(hsotg
, ctrl
, epctl_reg
);
2083 * dwc2_hsotg_complete_request - complete a request given to us
2084 * @hsotg: The device state.
2085 * @hs_ep: The endpoint the request was on.
2086 * @hs_req: The request to complete.
2087 * @result: The result code (0 => Ok, otherwise errno)
2089 * The given request has finished, so call the necessary completion
2090 * if it has one and then look to see if we can start a new request
2093 * Note, expects the ep to already be locked as appropriate.
2095 static void dwc2_hsotg_complete_request(struct dwc2_hsotg
*hsotg
,
2096 struct dwc2_hsotg_ep
*hs_ep
,
2097 struct dwc2_hsotg_req
*hs_req
,
2101 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
2105 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
2106 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
2109 * only replace the status if we've not already set an error
2110 * from a previous transaction
2113 if (hs_req
->req
.status
== -EINPROGRESS
)
2114 hs_req
->req
.status
= result
;
2116 if (using_dma(hsotg
))
2117 dwc2_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
2119 dwc2_hsotg_handle_unaligned_buf_complete(hsotg
, hs_ep
, hs_req
);
2122 list_del_init(&hs_req
->queue
);
2125 * call the complete request with the locks off, just in case the
2126 * request tries to queue more work for this endpoint.
2129 if (hs_req
->req
.complete
) {
2130 spin_unlock(&hsotg
->lock
);
2131 usb_gadget_giveback_request(&hs_ep
->ep
, &hs_req
->req
);
2132 spin_lock(&hsotg
->lock
);
2135 /* In DDMA don't need to proceed to starting of next ISOC request */
2136 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
)
2140 * Look to see if there is anything else to do. Note, the completion
2141 * of the previous request may have caused a new request to be started
2142 * so be careful when doing this.
2145 if (!hs_ep
->req
&& result
>= 0)
2146 dwc2_gadget_start_next_request(hs_ep
);
2150 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2151 * @hs_ep: The endpoint the request was on.
2153 * Get first request from the ep queue, determine descriptor on which complete
2154 * happened. SW discovers which descriptor currently in use by HW, adjusts
2155 * dma_address and calculates index of completed descriptor based on the value
2156 * of DEPDMA register. Update actual length of request, giveback to gadget.
2158 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2160 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2161 struct dwc2_hsotg_req
*hs_req
;
2162 struct usb_request
*ureq
;
2166 desc_sts
= hs_ep
->desc_list
[hs_ep
->compl_desc
].status
;
2168 /* Process only descriptors with buffer status set to DMA done */
2169 while ((desc_sts
& DEV_DMA_BUFF_STS_MASK
) >>
2170 DEV_DMA_BUFF_STS_SHIFT
== DEV_DMA_BUFF_STS_DMADONE
) {
2172 hs_req
= get_ep_head(hs_ep
);
2174 dev_warn(hsotg
->dev
, "%s: ISOC EP queue empty\n", __func__
);
2177 ureq
= &hs_req
->req
;
2179 /* Check completion status */
2180 if ((desc_sts
& DEV_DMA_STS_MASK
) >> DEV_DMA_STS_SHIFT
==
2182 mask
= hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_MASK
:
2183 DEV_DMA_ISOC_RX_NBYTES_MASK
;
2184 ureq
->actual
= ureq
->length
- ((desc_sts
& mask
) >>
2185 DEV_DMA_ISOC_NBYTES_SHIFT
);
2187 /* Adjust actual len for ISOC Out if len is
2190 if (!hs_ep
->dir_in
&& ureq
->length
& 0x3)
2191 ureq
->actual
+= 4 - (ureq
->length
& 0x3);
2193 /* Set actual frame number for completed transfers */
2194 ureq
->frame_number
=
2195 (desc_sts
& DEV_DMA_ISOC_FRNUM_MASK
) >>
2196 DEV_DMA_ISOC_FRNUM_SHIFT
;
2199 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2201 hs_ep
->compl_desc
++;
2202 if (hs_ep
->compl_desc
> (MAX_DMA_DESC_NUM_HS_ISOC
- 1))
2203 hs_ep
->compl_desc
= 0;
2204 desc_sts
= hs_ep
->desc_list
[hs_ep
->compl_desc
].status
;
2209 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2210 * @hs_ep: The isochronous endpoint.
2212 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2213 * interrupt. Reset target frame and next_desc to allow to start
2214 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2215 * interrupt for OUT direction.
2217 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep
*hs_ep
)
2219 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2222 dwc2_flush_rx_fifo(hsotg
);
2223 dwc2_hsotg_complete_request(hsotg
, hs_ep
, get_ep_head(hs_ep
), 0);
2225 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
2226 hs_ep
->next_desc
= 0;
2227 hs_ep
->compl_desc
= 0;
2231 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2232 * @hsotg: The device state.
2233 * @ep_idx: The endpoint index for the data
2234 * @size: The size of data in the fifo, in bytes
2236 * The FIFO status shows there is data to read from the FIFO for a given
2237 * endpoint, so sort out whether we need to read the data into a request
2238 * that has been made for that endpoint.
2240 static void dwc2_hsotg_rx_data(struct dwc2_hsotg
*hsotg
, int ep_idx
, int size
)
2242 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[ep_idx
];
2243 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2249 u32 epctl
= dwc2_readl(hsotg
, DOEPCTL(ep_idx
));
2253 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2254 __func__
, size
, ep_idx
, epctl
);
2256 /* dump the data from the FIFO, we've nothing we can do */
2257 for (ptr
= 0; ptr
< size
; ptr
+= 4)
2258 (void)dwc2_readl(hsotg
, EPFIFO(ep_idx
));
2264 read_ptr
= hs_req
->req
.actual
;
2265 max_req
= hs_req
->req
.length
- read_ptr
;
2267 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
2268 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
2270 if (to_read
> max_req
) {
2272 * more data appeared than we where willing
2273 * to deal with in this request.
2276 /* currently we don't deal this */
2280 hs_ep
->total_data
+= to_read
;
2281 hs_req
->req
.actual
+= to_read
;
2282 to_read
= DIV_ROUND_UP(to_read
, 4);
2285 * note, we might over-write the buffer end by 3 bytes depending on
2286 * alignment of the data.
2288 dwc2_readl_rep(hsotg
, EPFIFO(ep_idx
),
2289 hs_req
->req
.buf
+ read_ptr
, to_read
);
2293 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2294 * @hsotg: The device instance
2295 * @dir_in: If IN zlp
2297 * Generate a zero-length IN packet request for terminating a SETUP
2300 * Note, since we don't write any data to the TxFIFO, then it is
2301 * currently believed that we do not need to wait for any space in
2304 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg
*hsotg
, bool dir_in
)
2306 /* eps_out[0] is used in both directions */
2307 hsotg
->eps_out
[0]->dir_in
= dir_in
;
2308 hsotg
->ep0_state
= dir_in
? DWC2_EP0_STATUS_IN
: DWC2_EP0_STATUS_OUT
;
2310 dwc2_hsotg_program_zlp(hsotg
, hsotg
->eps_out
[0]);
2313 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg
*hsotg
,
2318 ctrl
= dwc2_readl(hsotg
, epctl_reg
);
2319 if (ctrl
& DXEPCTL_EOFRNUM
)
2320 ctrl
|= DXEPCTL_SETEVENFR
;
2322 ctrl
|= DXEPCTL_SETODDFR
;
2323 dwc2_writel(hsotg
, ctrl
, epctl_reg
);
2327 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2328 * @hs_ep - The endpoint on which transfer went
2330 * Iterate over endpoints descriptor chain and get info on bytes remained
2331 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2333 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2335 const struct usb_endpoint_descriptor
*ep_desc
= hs_ep
->ep
.desc
;
2336 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2337 unsigned int bytes_rem
= 0;
2338 unsigned int bytes_rem_correction
= 0;
2339 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
2342 u32 mps
= hs_ep
->ep
.maxpacket
;
2343 int dir_in
= hs_ep
->dir_in
;
2348 /* Interrupt OUT EP with mps not multiple of 4 */
2350 if (usb_endpoint_xfer_int(ep_desc
) && !dir_in
&& (mps
% 4))
2351 bytes_rem_correction
= 4 - (mps
% 4);
2353 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
2354 status
= desc
->status
;
2355 bytes_rem
+= status
& DEV_DMA_NBYTES_MASK
;
2356 bytes_rem
-= bytes_rem_correction
;
2358 if (status
& DEV_DMA_STS_MASK
)
2359 dev_err(hsotg
->dev
, "descriptor %d closed with %x\n",
2360 i
, status
& DEV_DMA_STS_MASK
);
2362 if (status
& DEV_DMA_L
)
2372 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2373 * @hsotg: The device instance
2374 * @epnum: The endpoint received from
2376 * The RXFIFO has delivered an OutDone event, which means that the data
2377 * transfer for an OUT endpoint has been completed, either by a short
2378 * packet or by the finish of a transfer.
2380 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg
*hsotg
, int epnum
)
2382 u32 epsize
= dwc2_readl(hsotg
, DOEPTSIZ(epnum
));
2383 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[epnum
];
2384 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2385 struct usb_request
*req
= &hs_req
->req
;
2386 unsigned int size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2390 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
2394 if (epnum
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_OUT
) {
2395 dev_dbg(hsotg
->dev
, "zlp packet received\n");
2396 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2397 dwc2_hsotg_enqueue_setup(hsotg
);
2401 if (using_desc_dma(hsotg
))
2402 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2404 if (using_dma(hsotg
)) {
2405 unsigned int size_done
;
2408 * Calculate the size of the transfer by checking how much
2409 * is left in the endpoint size register and then working it
2410 * out from the amount we loaded for the transfer.
2412 * We need to do this as DMA pointers are always 32bit aligned
2413 * so may overshoot/undershoot the transfer.
2416 size_done
= hs_ep
->size_loaded
- size_left
;
2417 size_done
+= hs_ep
->last_load
;
2419 req
->actual
= size_done
;
2422 /* if there is more request to do, schedule new transfer */
2423 if (req
->actual
< req
->length
&& size_left
== 0) {
2424 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2428 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
2429 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
2430 __func__
, req
->actual
, req
->length
);
2433 * todo - what should we return here? there's no one else
2434 * even bothering to check the status.
2438 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2439 if (!using_desc_dma(hsotg
) && epnum
== 0 &&
2440 hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
2441 /* Move to STATUS IN */
2442 if (!hsotg
->delayed_status
)
2443 dwc2_hsotg_ep0_zlp(hsotg
, true);
2447 * Slave mode OUT transfers do not go through XferComplete so
2448 * adjust the ISOC parity here.
2450 if (!using_dma(hsotg
)) {
2451 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1)
2452 dwc2_hsotg_change_ep_iso_parity(hsotg
, DOEPCTL(epnum
));
2453 else if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
2454 dwc2_gadget_incr_frame_num(hs_ep
);
2457 /* Set actual frame number for completed transfers */
2458 if (!using_desc_dma(hsotg
) && hs_ep
->isochronous
)
2459 req
->frame_number
= hsotg
->frame_number
;
2461 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
2465 * dwc2_hsotg_handle_rx - RX FIFO has data
2466 * @hsotg: The device instance
2468 * The IRQ handler has detected that the RX FIFO has some data in it
2469 * that requires processing, so find out what is in there and do the
2472 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2473 * chunks, so if you have x packets received on an endpoint you'll get x
2474 * FIFO events delivered, each with a packet's worth of data in it.
2476 * When using DMA, we should not be processing events from the RXFIFO
2477 * as the actual data should be sent to the memory directly and we turn
2478 * on the completion interrupts to get notifications of transfer completion.
2480 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg
*hsotg
)
2482 u32 grxstsr
= dwc2_readl(hsotg
, GRXSTSP
);
2483 u32 epnum
, status
, size
;
2485 WARN_ON(using_dma(hsotg
));
2487 epnum
= grxstsr
& GRXSTS_EPNUM_MASK
;
2488 status
= grxstsr
& GRXSTS_PKTSTS_MASK
;
2490 size
= grxstsr
& GRXSTS_BYTECNT_MASK
;
2491 size
>>= GRXSTS_BYTECNT_SHIFT
;
2493 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2494 __func__
, grxstsr
, size
, epnum
);
2496 switch ((status
& GRXSTS_PKTSTS_MASK
) >> GRXSTS_PKTSTS_SHIFT
) {
2497 case GRXSTS_PKTSTS_GLOBALOUTNAK
:
2498 dev_dbg(hsotg
->dev
, "GLOBALOUTNAK\n");
2501 case GRXSTS_PKTSTS_OUTDONE
:
2502 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
2503 dwc2_hsotg_read_frameno(hsotg
));
2505 if (!using_dma(hsotg
))
2506 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2509 case GRXSTS_PKTSTS_SETUPDONE
:
2511 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2512 dwc2_hsotg_read_frameno(hsotg
),
2513 dwc2_readl(hsotg
, DOEPCTL(0)));
2515 * Call dwc2_hsotg_handle_outdone here if it was not called from
2516 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2517 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2519 if (hsotg
->ep0_state
== DWC2_EP0_SETUP
)
2520 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2523 case GRXSTS_PKTSTS_OUTRX
:
2524 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2527 case GRXSTS_PKTSTS_SETUPRX
:
2529 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2530 dwc2_hsotg_read_frameno(hsotg
),
2531 dwc2_readl(hsotg
, DOEPCTL(0)));
2533 WARN_ON(hsotg
->ep0_state
!= DWC2_EP0_SETUP
);
2535 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2539 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
2542 dwc2_hsotg_dump(hsotg
);
2548 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2549 * @mps: The maximum packet size in bytes.
2551 static u32
dwc2_hsotg_ep0_mps(unsigned int mps
)
2555 return D0EPCTL_MPS_64
;
2557 return D0EPCTL_MPS_32
;
2559 return D0EPCTL_MPS_16
;
2561 return D0EPCTL_MPS_8
;
2564 /* bad max packet size, warn and return invalid result */
2570 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2571 * @hsotg: The driver state.
2572 * @ep: The index number of the endpoint
2573 * @mps: The maximum packet size in bytes
2574 * @mc: The multicount value
2575 * @dir_in: True if direction is in.
2577 * Configure the maximum packet size for the given endpoint, updating
2578 * the hardware control registers to reflect this.
2580 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg
*hsotg
,
2581 unsigned int ep
, unsigned int mps
,
2582 unsigned int mc
, unsigned int dir_in
)
2584 struct dwc2_hsotg_ep
*hs_ep
;
2587 hs_ep
= index_to_ep(hsotg
, ep
, dir_in
);
2592 u32 mps_bytes
= mps
;
2594 /* EP0 is a special case */
2595 mps
= dwc2_hsotg_ep0_mps(mps_bytes
);
2598 hs_ep
->ep
.maxpacket
= mps_bytes
;
2606 hs_ep
->ep
.maxpacket
= mps
;
2610 reg
= dwc2_readl(hsotg
, DIEPCTL(ep
));
2611 reg
&= ~DXEPCTL_MPS_MASK
;
2613 dwc2_writel(hsotg
, reg
, DIEPCTL(ep
));
2615 reg
= dwc2_readl(hsotg
, DOEPCTL(ep
));
2616 reg
&= ~DXEPCTL_MPS_MASK
;
2618 dwc2_writel(hsotg
, reg
, DOEPCTL(ep
));
2624 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
2628 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2629 * @hsotg: The driver state
2630 * @idx: The index for the endpoint (0..15)
2632 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg
*hsotg
, unsigned int idx
)
2634 dwc2_writel(hsotg
, GRSTCTL_TXFNUM(idx
) | GRSTCTL_TXFFLSH
,
2637 /* wait until the fifo is flushed */
2638 if (dwc2_hsotg_wait_bit_clear(hsotg
, GRSTCTL
, GRSTCTL_TXFFLSH
, 100))
2639 dev_warn(hsotg
->dev
, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2644 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2645 * @hsotg: The driver state
2646 * @hs_ep: The driver endpoint to check.
2648 * Check to see if there is a request that has data to send, and if so
2649 * make an attempt to write data into the FIFO.
2651 static int dwc2_hsotg_trytx(struct dwc2_hsotg
*hsotg
,
2652 struct dwc2_hsotg_ep
*hs_ep
)
2654 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2656 if (!hs_ep
->dir_in
|| !hs_req
) {
2658 * if request is not enqueued, we disable interrupts
2659 * for endpoints, excepting ep0
2661 if (hs_ep
->index
!= 0)
2662 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
,
2667 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
2668 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
2670 return dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
2677 * dwc2_hsotg_complete_in - complete IN transfer
2678 * @hsotg: The device state.
2679 * @hs_ep: The endpoint that has just completed.
2681 * An IN transfer has been completed, update the transfer's state and then
2682 * call the relevant completion routines.
2684 static void dwc2_hsotg_complete_in(struct dwc2_hsotg
*hsotg
,
2685 struct dwc2_hsotg_ep
*hs_ep
)
2687 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2688 u32 epsize
= dwc2_readl(hsotg
, DIEPTSIZ(hs_ep
->index
));
2689 int size_left
, size_done
;
2692 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
2696 /* Finish ZLP handling for IN EP0 transactions */
2697 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_IN
) {
2698 dev_dbg(hsotg
->dev
, "zlp packet sent\n");
2701 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2702 * changed to IN. Change back to complete OUT transfer request
2706 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2707 if (hsotg
->test_mode
) {
2710 ret
= dwc2_hsotg_set_test_mode(hsotg
, hsotg
->test_mode
);
2712 dev_dbg(hsotg
->dev
, "Invalid Test #%d\n",
2714 dwc2_hsotg_stall_ep0(hsotg
);
2718 dwc2_hsotg_enqueue_setup(hsotg
);
2723 * Calculate the size of the transfer by checking how much is left
2724 * in the endpoint size register and then working it out from
2725 * the amount we loaded for the transfer.
2727 * We do this even for DMA, as the transfer may have incremented
2728 * past the end of the buffer (DMA transfers are always 32bit
2731 if (using_desc_dma(hsotg
)) {
2732 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2734 dev_err(hsotg
->dev
, "error parsing DDMA results %d\n",
2737 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2740 size_done
= hs_ep
->size_loaded
- size_left
;
2741 size_done
+= hs_ep
->last_load
;
2743 if (hs_req
->req
.actual
!= size_done
)
2744 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
2745 __func__
, hs_req
->req
.actual
, size_done
);
2747 hs_req
->req
.actual
= size_done
;
2748 dev_dbg(hsotg
->dev
, "req->length:%d req->actual:%d req->zero:%d\n",
2749 hs_req
->req
.length
, hs_req
->req
.actual
, hs_req
->req
.zero
);
2751 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
2752 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
2753 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2757 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2758 if (hs_ep
->send_zlp
) {
2759 dwc2_hsotg_program_zlp(hsotg
, hs_ep
);
2760 hs_ep
->send_zlp
= 0;
2761 /* transfer will be completed on next complete interrupt */
2765 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_DATA_IN
) {
2766 /* Move to STATUS OUT */
2767 dwc2_hsotg_ep0_zlp(hsotg
, false);
2771 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2775 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2776 * @hsotg: The device state.
2777 * @idx: Index of ep.
2778 * @dir_in: Endpoint direction 1-in 0-out.
2780 * Reads for endpoint with given index and direction, by masking
2781 * epint_reg with coresponding mask.
2783 static u32
dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg
*hsotg
,
2784 unsigned int idx
, int dir_in
)
2786 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
2787 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
2792 mask
= dwc2_readl(hsotg
, epmsk_reg
);
2793 diepempmsk
= dwc2_readl(hsotg
, DIEPEMPMSK
);
2794 mask
|= ((diepempmsk
>> idx
) & 0x1) ? DIEPMSK_TXFIFOEMPTY
: 0;
2795 mask
|= DXEPINT_SETUP_RCVD
;
2797 ints
= dwc2_readl(hsotg
, epint_reg
);
2803 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2804 * @hs_ep: The endpoint on which interrupt is asserted.
2806 * This interrupt indicates that the endpoint has been disabled per the
2807 * application's request.
2809 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2810 * in case of ISOC completes current request.
2812 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2813 * request starts it.
2815 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep
*hs_ep
)
2817 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2818 struct dwc2_hsotg_req
*hs_req
;
2819 unsigned char idx
= hs_ep
->index
;
2820 int dir_in
= hs_ep
->dir_in
;
2821 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
2822 int dctl
= dwc2_readl(hsotg
, DCTL
);
2824 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
2827 int epctl
= dwc2_readl(hsotg
, epctl_reg
);
2829 dwc2_hsotg_txfifo_flush(hsotg
, hs_ep
->fifo_index
);
2831 if (hs_ep
->isochronous
) {
2832 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
2836 if ((epctl
& DXEPCTL_STALL
) && (epctl
& DXEPCTL_EPTYPE_BULK
)) {
2837 int dctl
= dwc2_readl(hsotg
, DCTL
);
2839 dctl
|= DCTL_CGNPINNAK
;
2840 dwc2_writel(hsotg
, dctl
, DCTL
);
2845 if (dctl
& DCTL_GOUTNAKSTS
) {
2846 dctl
|= DCTL_CGOUTNAK
;
2847 dwc2_writel(hsotg
, dctl
, DCTL
);
2850 if (!hs_ep
->isochronous
)
2853 if (list_empty(&hs_ep
->queue
)) {
2854 dev_dbg(hsotg
->dev
, "%s: complete_ep 0x%p, ep->queue empty!\n",
2860 hs_req
= get_ep_head(hs_ep
);
2862 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
,
2864 dwc2_gadget_incr_frame_num(hs_ep
);
2865 /* Update current frame number value. */
2866 hsotg
->frame_number
= dwc2_hsotg_read_frameno(hsotg
);
2867 } while (dwc2_gadget_target_frame_elapsed(hs_ep
));
2869 dwc2_gadget_start_next_request(hs_ep
);
2873 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2874 * @ep: The endpoint on which interrupt is asserted.
2876 * This is starting point for ISOC-OUT transfer, synchronization done with
2877 * first out token received from host while corresponding EP is disabled.
2879 * Device does not know initial frame in which out token will come. For this
2880 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2881 * getting this interrupt SW starts calculation for next transfer frame.
2883 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep
*ep
)
2885 struct dwc2_hsotg
*hsotg
= ep
->parent
;
2886 int dir_in
= ep
->dir_in
;
2889 if (dir_in
|| !ep
->isochronous
)
2892 if (using_desc_dma(hsotg
)) {
2893 if (ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2894 /* Start first ISO Out */
2895 ep
->target_frame
= hsotg
->frame_number
;
2896 dwc2_gadget_start_isoc_ddma(ep
);
2901 if (ep
->interval
> 1 &&
2902 ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2905 ep
->target_frame
= hsotg
->frame_number
;
2906 dwc2_gadget_incr_frame_num(ep
);
2908 ctrl
= dwc2_readl(hsotg
, DOEPCTL(ep
->index
));
2909 if (ep
->target_frame
& 0x1)
2910 ctrl
|= DXEPCTL_SETODDFR
;
2912 ctrl
|= DXEPCTL_SETEVENFR
;
2914 dwc2_writel(hsotg
, ctrl
, DOEPCTL(ep
->index
));
2917 dwc2_gadget_start_next_request(ep
);
2918 doepmsk
= dwc2_readl(hsotg
, DOEPMSK
);
2919 doepmsk
&= ~DOEPMSK_OUTTKNEPDISMSK
;
2920 dwc2_writel(hsotg
, doepmsk
, DOEPMSK
);
2924 * dwc2_gadget_handle_nak - handle NAK interrupt
2925 * @hs_ep: The endpoint on which interrupt is asserted.
2927 * This is starting point for ISOC-IN transfer, synchronization done with
2928 * first IN token received from host while corresponding EP is disabled.
2930 * Device does not know when first one token will arrive from host. On first
2931 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2932 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2933 * sent in response to that as there was no data in FIFO. SW is basing on this
2934 * interrupt to obtain frame in which token has come and then based on the
2935 * interval calculates next frame for transfer.
2937 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep
*hs_ep
)
2939 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2940 int dir_in
= hs_ep
->dir_in
;
2942 if (!dir_in
|| !hs_ep
->isochronous
)
2945 if (hs_ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2947 if (using_desc_dma(hsotg
)) {
2948 hs_ep
->target_frame
= hsotg
->frame_number
;
2949 dwc2_gadget_incr_frame_num(hs_ep
);
2951 /* In service interval mode target_frame must
2952 * be set to last (u)frame of the service interval.
2954 if (hsotg
->params
.service_interval
) {
2955 /* Set target_frame to the first (u)frame of
2956 * the service interval
2958 hs_ep
->target_frame
&= ~hs_ep
->interval
+ 1;
2960 /* Set target_frame to the last (u)frame of
2961 * the service interval
2963 dwc2_gadget_incr_frame_num(hs_ep
);
2964 dwc2_gadget_dec_frame_num_by_one(hs_ep
);
2967 dwc2_gadget_start_isoc_ddma(hs_ep
);
2971 hs_ep
->target_frame
= hsotg
->frame_number
;
2972 if (hs_ep
->interval
> 1) {
2973 u32 ctrl
= dwc2_readl(hsotg
,
2974 DIEPCTL(hs_ep
->index
));
2975 if (hs_ep
->target_frame
& 0x1)
2976 ctrl
|= DXEPCTL_SETODDFR
;
2978 ctrl
|= DXEPCTL_SETEVENFR
;
2980 dwc2_writel(hsotg
, ctrl
, DIEPCTL(hs_ep
->index
));
2983 dwc2_hsotg_complete_request(hsotg
, hs_ep
,
2984 get_ep_head(hs_ep
), 0);
2987 if (!using_desc_dma(hsotg
))
2988 dwc2_gadget_incr_frame_num(hs_ep
);
2992 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2993 * @hsotg: The driver state
2994 * @idx: The index for the endpoint (0..15)
2995 * @dir_in: Set if this is an IN endpoint
2997 * Process and clear any interrupt pending for an individual endpoint
2999 static void dwc2_hsotg_epint(struct dwc2_hsotg
*hsotg
, unsigned int idx
,
3002 struct dwc2_hsotg_ep
*hs_ep
= index_to_ep(hsotg
, idx
, dir_in
);
3003 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
3004 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
3005 u32 epsiz_reg
= dir_in
? DIEPTSIZ(idx
) : DOEPTSIZ(idx
);
3008 ints
= dwc2_gadget_read_ep_interrupts(hsotg
, idx
, dir_in
);
3010 /* Clear endpoint interrupts */
3011 dwc2_writel(hsotg
, ints
, epint_reg
);
3014 dev_err(hsotg
->dev
, "%s:Interrupt for unconfigured ep%d(%s)\n",
3015 __func__
, idx
, dir_in
? "in" : "out");
3019 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3020 __func__
, idx
, dir_in
? "in" : "out", ints
);
3022 /* Don't process XferCompl interrupt if it is a setup packet */
3023 if (idx
== 0 && (ints
& (DXEPINT_SETUP
| DXEPINT_SETUP_RCVD
)))
3024 ints
&= ~DXEPINT_XFERCOMPL
;
3027 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3028 * stage and xfercomplete was generated without SETUP phase done
3029 * interrupt. SW should parse received setup packet only after host's
3030 * exit from setup phase of control transfer.
3032 if (using_desc_dma(hsotg
) && idx
== 0 && !hs_ep
->dir_in
&&
3033 hsotg
->ep0_state
== DWC2_EP0_SETUP
&& !(ints
& DXEPINT_SETUP
))
3034 ints
&= ~DXEPINT_XFERCOMPL
;
3036 if (ints
& DXEPINT_XFERCOMPL
) {
3038 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3039 __func__
, dwc2_readl(hsotg
, epctl_reg
),
3040 dwc2_readl(hsotg
, epsiz_reg
));
3042 /* In DDMA handle isochronous requests separately */
3043 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
) {
3044 /* XferCompl set along with BNA */
3045 if (!(ints
& DXEPINT_BNAINTR
))
3046 dwc2_gadget_complete_isoc_request_ddma(hs_ep
);
3047 } else if (dir_in
) {
3049 * We get OutDone from the FIFO, so we only
3050 * need to look at completing IN requests here
3051 * if operating slave mode
3053 if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
3054 dwc2_gadget_incr_frame_num(hs_ep
);
3056 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
3057 if (ints
& DXEPINT_NAKINTRPT
)
3058 ints
&= ~DXEPINT_NAKINTRPT
;
3060 if (idx
== 0 && !hs_ep
->req
)
3061 dwc2_hsotg_enqueue_setup(hsotg
);
3062 } else if (using_dma(hsotg
)) {
3064 * We're using DMA, we need to fire an OutDone here
3065 * as we ignore the RXFIFO.
3067 if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
3068 dwc2_gadget_incr_frame_num(hs_ep
);
3070 dwc2_hsotg_handle_outdone(hsotg
, idx
);
3074 if (ints
& DXEPINT_EPDISBLD
)
3075 dwc2_gadget_handle_ep_disabled(hs_ep
);
3077 if (ints
& DXEPINT_OUTTKNEPDIS
)
3078 dwc2_gadget_handle_out_token_ep_disabled(hs_ep
);
3080 if (ints
& DXEPINT_NAKINTRPT
)
3081 dwc2_gadget_handle_nak(hs_ep
);
3083 if (ints
& DXEPINT_AHBERR
)
3084 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
3086 if (ints
& DXEPINT_SETUP
) { /* Setup or Timeout */
3087 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
3089 if (using_dma(hsotg
) && idx
== 0) {
3091 * this is the notification we've received a
3092 * setup packet. In non-DMA mode we'd get this
3093 * from the RXFIFO, instead we need to process
3100 dwc2_hsotg_handle_outdone(hsotg
, 0);
3104 if (ints
& DXEPINT_STSPHSERCVD
) {
3105 dev_dbg(hsotg
->dev
, "%s: StsPhseRcvd\n", __func__
);
3107 /* Safety check EP0 state when STSPHSERCVD asserted */
3108 if (hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
3109 /* Move to STATUS IN for DDMA */
3110 if (using_desc_dma(hsotg
)) {
3111 if (!hsotg
->delayed_status
)
3112 dwc2_hsotg_ep0_zlp(hsotg
, true);
3114 /* In case of 3 stage Control Write with delayed
3115 * status, when Status IN transfer started
3116 * before STSPHSERCVD asserted, NAKSTS bit not
3117 * cleared by CNAK in dwc2_hsotg_start_req()
3118 * function. Clear now NAKSTS to allow complete
3121 dwc2_set_bit(hsotg
, DIEPCTL(0),
3128 if (ints
& DXEPINT_BACK2BACKSETUP
)
3129 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
3131 if (ints
& DXEPINT_BNAINTR
) {
3132 dev_dbg(hsotg
->dev
, "%s: BNA interrupt\n", __func__
);
3133 if (hs_ep
->isochronous
)
3134 dwc2_gadget_handle_isoc_bna(hs_ep
);
3137 if (dir_in
&& !hs_ep
->isochronous
) {
3138 /* not sure if this is important, but we'll clear it anyway */
3139 if (ints
& DXEPINT_INTKNTXFEMP
) {
3140 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
3144 /* this probably means something bad is happening */
3145 if (ints
& DXEPINT_INTKNEPMIS
) {
3146 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
3150 /* FIFO has space or is empty (see GAHBCFG) */
3151 if (hsotg
->dedicated_fifos
&&
3152 ints
& DXEPINT_TXFEMP
) {
3153 dev_dbg(hsotg
->dev
, "%s: ep%d: TxFIFOEmpty\n",
3155 if (!using_dma(hsotg
))
3156 dwc2_hsotg_trytx(hsotg
, hs_ep
);
3162 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3163 * @hsotg: The device state.
3165 * Handle updating the device settings after the enumeration phase has
3168 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg
*hsotg
)
3170 u32 dsts
= dwc2_readl(hsotg
, DSTS
);
3171 int ep0_mps
= 0, ep_mps
= 8;
3174 * This should signal the finish of the enumeration phase
3175 * of the USB handshaking, so we should now know what rate
3179 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
3182 * note, since we're limited by the size of transfer on EP0, and
3183 * it seems IN transfers must be a even number of packets we do
3184 * not advertise a 64byte MPS on EP0.
3187 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3188 switch ((dsts
& DSTS_ENUMSPD_MASK
) >> DSTS_ENUMSPD_SHIFT
) {
3189 case DSTS_ENUMSPD_FS
:
3190 case DSTS_ENUMSPD_FS48
:
3191 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
3192 ep0_mps
= EP0_MPS_LIMIT
;
3196 case DSTS_ENUMSPD_HS
:
3197 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
3198 ep0_mps
= EP0_MPS_LIMIT
;
3202 case DSTS_ENUMSPD_LS
:
3203 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
3207 * note, we don't actually support LS in this driver at the
3208 * moment, and the documentation seems to imply that it isn't
3209 * supported by the PHYs on some of the devices.
3213 dev_info(hsotg
->dev
, "new device is %s\n",
3214 usb_speed_string(hsotg
->gadget
.speed
));
3217 * we should now know the maximum packet size for an
3218 * endpoint, so set the endpoints to a default value.
3223 /* Initialize ep0 for both in and out directions */
3224 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 1);
3225 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 0);
3226 for (i
= 1; i
< hsotg
->num_of_eps
; i
++) {
3227 if (hsotg
->eps_in
[i
])
3228 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3230 if (hsotg
->eps_out
[i
])
3231 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3236 /* ensure after enumeration our EP0 is active */
3238 dwc2_hsotg_enqueue_setup(hsotg
);
3240 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3241 dwc2_readl(hsotg
, DIEPCTL0
),
3242 dwc2_readl(hsotg
, DOEPCTL0
));
3246 * kill_all_requests - remove all requests from the endpoint's queue
3247 * @hsotg: The device state.
3248 * @ep: The endpoint the requests may be on.
3249 * @result: The result code to use.
3251 * Go through the requests on the given endpoint and mark them
3252 * completed with the given result code.
3254 static void kill_all_requests(struct dwc2_hsotg
*hsotg
,
3255 struct dwc2_hsotg_ep
*ep
,
3262 while (!list_empty(&ep
->queue
)) {
3263 struct dwc2_hsotg_req
*req
= get_ep_head(ep
);
3265 dwc2_hsotg_complete_request(hsotg
, ep
, req
, result
);
3268 if (!hsotg
->dedicated_fifos
)
3270 size
= (dwc2_readl(hsotg
, DTXFSTS(ep
->fifo_index
)) & 0xffff) * 4;
3271 if (size
< ep
->fifo_size
)
3272 dwc2_hsotg_txfifo_flush(hsotg
, ep
->fifo_index
);
3276 * dwc2_hsotg_disconnect - disconnect service
3277 * @hsotg: The device state.
3279 * The device has been disconnected. Remove all current
3280 * transactions and signal the gadget driver that this
3283 void dwc2_hsotg_disconnect(struct dwc2_hsotg
*hsotg
)
3287 if (!hsotg
->connected
)
3290 hsotg
->connected
= 0;
3291 hsotg
->test_mode
= 0;
3293 /* all endpoints should be shutdown */
3294 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
3295 if (hsotg
->eps_in
[ep
])
3296 kill_all_requests(hsotg
, hsotg
->eps_in
[ep
],
3298 if (hsotg
->eps_out
[ep
])
3299 kill_all_requests(hsotg
, hsotg
->eps_out
[ep
],
3303 call_gadget(hsotg
, disconnect
);
3304 hsotg
->lx_state
= DWC2_L3
;
3306 usb_gadget_set_state(&hsotg
->gadget
, USB_STATE_NOTATTACHED
);
3310 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3311 * @hsotg: The device state:
3312 * @periodic: True if this is a periodic FIFO interrupt
3314 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg
*hsotg
, bool periodic
)
3316 struct dwc2_hsotg_ep
*ep
;
3319 /* look through for any more data to transmit */
3320 for (epno
= 0; epno
< hsotg
->num_of_eps
; epno
++) {
3321 ep
= index_to_ep(hsotg
, epno
, 1);
3329 if ((periodic
&& !ep
->periodic
) ||
3330 (!periodic
&& ep
->periodic
))
3333 ret
= dwc2_hsotg_trytx(hsotg
, ep
);
3339 /* IRQ flags which will trigger a retry around the IRQ loop */
3340 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3344 static int dwc2_hsotg_ep_disable(struct usb_ep
*ep
);
3346 * dwc2_hsotg_core_init - issue softreset to the core
3347 * @hsotg: The device state
3348 * @is_usb_reset: Usb resetting flag
3350 * Issue a soft reset to the core, and await the core finishing it.
3352 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg
*hsotg
,
3361 /* Kill any ep0 requests as controller will be reinitialized */
3362 kill_all_requests(hsotg
, hsotg
->eps_out
[0], -ECONNRESET
);
3364 if (!is_usb_reset
) {
3365 if (dwc2_core_reset(hsotg
, true))
3368 /* all endpoints should be shutdown */
3369 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
3370 if (hsotg
->eps_in
[ep
])
3371 dwc2_hsotg_ep_disable(&hsotg
->eps_in
[ep
]->ep
);
3372 if (hsotg
->eps_out
[ep
])
3373 dwc2_hsotg_ep_disable(&hsotg
->eps_out
[ep
]->ep
);
3378 * we must now enable ep0 ready for host detection and then
3379 * set configuration.
3382 /* keep other bits untouched (so e.g. forced modes are not lost) */
3383 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
3384 usbcfg
&= ~GUSBCFG_TOUTCAL_MASK
;
3385 usbcfg
|= GUSBCFG_TOUTCAL(7);
3387 /* remove the HNP/SRP and set the PHY */
3388 usbcfg
&= ~(GUSBCFG_SRPCAP
| GUSBCFG_HNPCAP
);
3389 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
3391 dwc2_phy_init(hsotg
, true);
3393 dwc2_hsotg_init_fifo(hsotg
);
3396 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3398 dcfg
|= DCFG_EPMISCNT(1);
3400 switch (hsotg
->params
.speed
) {
3401 case DWC2_SPEED_PARAM_LOW
:
3402 dcfg
|= DCFG_DEVSPD_LS
;
3404 case DWC2_SPEED_PARAM_FULL
:
3405 if (hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
)
3406 dcfg
|= DCFG_DEVSPD_FS48
;
3408 dcfg
|= DCFG_DEVSPD_FS
;
3411 dcfg
|= DCFG_DEVSPD_HS
;
3414 if (hsotg
->params
.ipg_isoc_en
)
3415 dcfg
|= DCFG_IPG_ISOC_SUPPORDED
;
3417 dwc2_writel(hsotg
, dcfg
, DCFG
);
3419 /* Clear any pending OTG interrupts */
3420 dwc2_writel(hsotg
, 0xffffffff, GOTGINT
);
3422 /* Clear any pending interrupts */
3423 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
3424 intmsk
= GINTSTS_ERLYSUSP
| GINTSTS_SESSREQINT
|
3425 GINTSTS_GOUTNAKEFF
| GINTSTS_GINNAKEFF
|
3426 GINTSTS_USBRST
| GINTSTS_RESETDET
|
3427 GINTSTS_ENUMDONE
| GINTSTS_OTGINT
|
3428 GINTSTS_USBSUSP
| GINTSTS_WKUPINT
|
3429 GINTSTS_LPMTRANRCVD
;
3431 if (!using_desc_dma(hsotg
))
3432 intmsk
|= GINTSTS_INCOMPL_SOIN
| GINTSTS_INCOMPL_SOOUT
;
3434 if (!hsotg
->params
.external_id_pin_ctl
)
3435 intmsk
|= GINTSTS_CONIDSTSCHNG
;
3437 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
3439 if (using_dma(hsotg
)) {
3440 dwc2_writel(hsotg
, GAHBCFG_GLBL_INTR_EN
| GAHBCFG_DMA_EN
|
3441 hsotg
->params
.ahbcfg
,
3444 /* Set DDMA mode support in the core if needed */
3445 if (using_desc_dma(hsotg
))
3446 dwc2_set_bit(hsotg
, DCFG
, DCFG_DESCDMA_EN
);
3449 dwc2_writel(hsotg
, ((hsotg
->dedicated_fifos
) ?
3450 (GAHBCFG_NP_TXF_EMP_LVL
|
3451 GAHBCFG_P_TXF_EMP_LVL
) : 0) |
3452 GAHBCFG_GLBL_INTR_EN
, GAHBCFG
);
3456 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3457 * when we have no data to transfer. Otherwise we get being flooded by
3461 dwc2_writel(hsotg
, ((hsotg
->dedicated_fifos
&& !using_dma(hsotg
)) ?
3462 DIEPMSK_TXFIFOEMPTY
| DIEPMSK_INTKNTXFEMPMSK
: 0) |
3463 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
|
3464 DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
,
3468 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3469 * DMA mode we may need this and StsPhseRcvd.
3471 dwc2_writel(hsotg
, (using_dma(hsotg
) ? (DIEPMSK_XFERCOMPLMSK
|
3472 DOEPMSK_STSPHSERCVDMSK
) : 0) |
3473 DOEPMSK_EPDISBLDMSK
| DOEPMSK_AHBERRMSK
|
3477 /* Enable BNA interrupt for DDMA */
3478 if (using_desc_dma(hsotg
)) {
3479 dwc2_set_bit(hsotg
, DOEPMSK
, DOEPMSK_BNAMSK
);
3480 dwc2_set_bit(hsotg
, DIEPMSK
, DIEPMSK_BNAININTRMSK
);
3483 /* Enable Service Interval mode if supported */
3484 if (using_desc_dma(hsotg
) && hsotg
->params
.service_interval
)
3485 dwc2_set_bit(hsotg
, DCTL
, DCTL_SERVICE_INTERVAL_SUPPORTED
);
3487 dwc2_writel(hsotg
, 0, DAINTMSK
);
3489 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3490 dwc2_readl(hsotg
, DIEPCTL0
),
3491 dwc2_readl(hsotg
, DOEPCTL0
));
3493 /* enable in and out endpoint interrupts */
3494 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_OEPINT
| GINTSTS_IEPINT
);
3497 * Enable the RXFIFO when in slave mode, as this is how we collect
3498 * the data. In DMA mode, we get events from the FIFO but also
3499 * things we cannot process, so do not use it.
3501 if (!using_dma(hsotg
))
3502 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_RXFLVL
);
3504 /* Enable interrupts for EP0 in and out */
3505 dwc2_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
3506 dwc2_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
3508 if (!is_usb_reset
) {
3509 dwc2_set_bit(hsotg
, DCTL
, DCTL_PWRONPRGDONE
);
3510 udelay(10); /* see openiboot */
3511 dwc2_clear_bit(hsotg
, DCTL
, DCTL_PWRONPRGDONE
);
3514 dev_dbg(hsotg
->dev
, "DCTL=0x%08x\n", dwc2_readl(hsotg
, DCTL
));
3517 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3518 * writing to the EPCTL register..
3521 /* set to read 1 8byte packet */
3522 dwc2_writel(hsotg
, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3523 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0
);
3525 dwc2_writel(hsotg
, dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3526 DXEPCTL_CNAK
| DXEPCTL_EPENA
|
3530 /* enable, but don't activate EP0in */
3531 dwc2_writel(hsotg
, dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3532 DXEPCTL_USBACTEP
, DIEPCTL0
);
3534 /* clear global NAKs */
3535 val
= DCTL_CGOUTNAK
| DCTL_CGNPINNAK
;
3537 val
|= DCTL_SFTDISCON
;
3538 dwc2_set_bit(hsotg
, DCTL
, val
);
3540 /* configure the core to support LPM */
3541 dwc2_gadget_init_lpm(hsotg
);
3543 /* program GREFCLK register if needed */
3544 if (using_desc_dma(hsotg
) && hsotg
->params
.service_interval
)
3545 dwc2_gadget_program_ref_clk(hsotg
);
3547 /* must be at-least 3ms to allow bus to see disconnect */
3550 hsotg
->lx_state
= DWC2_L0
;
3552 dwc2_hsotg_enqueue_setup(hsotg
);
3554 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3555 dwc2_readl(hsotg
, DIEPCTL0
),
3556 dwc2_readl(hsotg
, DOEPCTL0
));
3559 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg
*hsotg
)
3561 /* set the soft-disconnect bit */
3562 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3565 void dwc2_hsotg_core_connect(struct dwc2_hsotg
*hsotg
)
3567 /* remove the soft-disconnect and let's go */
3568 dwc2_clear_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3572 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3573 * @hsotg: The device state:
3575 * This interrupt indicates one of the following conditions occurred while
3576 * transmitting an ISOC transaction.
3577 * - Corrupted IN Token for ISOC EP.
3578 * - Packet not complete in FIFO.
3580 * The following actions will be taken:
3581 * - Determine the EP
3582 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3584 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg
*hsotg
)
3586 struct dwc2_hsotg_ep
*hs_ep
;
3591 dev_dbg(hsotg
->dev
, "Incomplete isoc in interrupt received:\n");
3593 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3595 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3596 hs_ep
= hsotg
->eps_in
[idx
];
3597 /* Proceed only unmasked ISOC EPs */
3598 if ((BIT(idx
) & ~daintmsk
) || !hs_ep
->isochronous
)
3601 epctrl
= dwc2_readl(hsotg
, DIEPCTL(idx
));
3602 if ((epctrl
& DXEPCTL_EPENA
) &&
3603 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3604 epctrl
|= DXEPCTL_SNAK
;
3605 epctrl
|= DXEPCTL_EPDIS
;
3606 dwc2_writel(hsotg
, epctrl
, DIEPCTL(idx
));
3610 /* Clear interrupt */
3611 dwc2_writel(hsotg
, GINTSTS_INCOMPL_SOIN
, GINTSTS
);
3615 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3616 * @hsotg: The device state:
3618 * This interrupt indicates one of the following conditions occurred while
3619 * transmitting an ISOC transaction.
3620 * - Corrupted OUT Token for ISOC EP.
3621 * - Packet not complete in FIFO.
3623 * The following actions will be taken:
3624 * - Determine the EP
3625 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3627 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg
*hsotg
)
3633 struct dwc2_hsotg_ep
*hs_ep
;
3636 dev_dbg(hsotg
->dev
, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__
);
3638 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3639 daintmsk
>>= DAINT_OUTEP_SHIFT
;
3641 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3642 hs_ep
= hsotg
->eps_out
[idx
];
3643 /* Proceed only unmasked ISOC EPs */
3644 if ((BIT(idx
) & ~daintmsk
) || !hs_ep
->isochronous
)
3647 epctrl
= dwc2_readl(hsotg
, DOEPCTL(idx
));
3648 if ((epctrl
& DXEPCTL_EPENA
) &&
3649 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3650 /* Unmask GOUTNAKEFF interrupt */
3651 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3652 gintmsk
|= GINTSTS_GOUTNAKEFF
;
3653 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3655 gintsts
= dwc2_readl(hsotg
, GINTSTS
);
3656 if (!(gintsts
& GINTSTS_GOUTNAKEFF
)) {
3657 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGOUTNAK
);
3663 /* Clear interrupt */
3664 dwc2_writel(hsotg
, GINTSTS_INCOMPL_SOOUT
, GINTSTS
);
3668 * dwc2_hsotg_irq - handle device interrupt
3669 * @irq: The IRQ number triggered
3670 * @pw: The pw value when registered the handler.
3672 static irqreturn_t
dwc2_hsotg_irq(int irq
, void *pw
)
3674 struct dwc2_hsotg
*hsotg
= pw
;
3675 int retry_count
= 8;
3679 if (!dwc2_is_device_mode(hsotg
))
3682 spin_lock(&hsotg
->lock
);
3684 gintsts
= dwc2_readl(hsotg
, GINTSTS
);
3685 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3687 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
3688 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
3692 if (gintsts
& GINTSTS_RESETDET
) {
3693 dev_dbg(hsotg
->dev
, "%s: USBRstDet\n", __func__
);
3695 dwc2_writel(hsotg
, GINTSTS_RESETDET
, GINTSTS
);
3697 /* This event must be used only if controller is suspended */
3698 if (hsotg
->lx_state
== DWC2_L2
) {
3699 dwc2_exit_partial_power_down(hsotg
, true);
3700 hsotg
->lx_state
= DWC2_L0
;
3704 if (gintsts
& (GINTSTS_USBRST
| GINTSTS_RESETDET
)) {
3705 u32 usb_status
= dwc2_readl(hsotg
, GOTGCTL
);
3706 u32 connected
= hsotg
->connected
;
3708 dev_dbg(hsotg
->dev
, "%s: USBRst\n", __func__
);
3709 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
3710 dwc2_readl(hsotg
, GNPTXSTS
));
3712 dwc2_writel(hsotg
, GINTSTS_USBRST
, GINTSTS
);
3714 /* Report disconnection if it is not already done. */
3715 dwc2_hsotg_disconnect(hsotg
);
3717 /* Reset device address to zero */
3718 dwc2_clear_bit(hsotg
, DCFG
, DCFG_DEVADDR_MASK
);
3720 if (usb_status
& GOTGCTL_BSESVLD
&& connected
)
3721 dwc2_hsotg_core_init_disconnected(hsotg
, true);
3724 if (gintsts
& GINTSTS_ENUMDONE
) {
3725 dwc2_writel(hsotg
, GINTSTS_ENUMDONE
, GINTSTS
);
3727 dwc2_hsotg_irq_enumdone(hsotg
);
3730 if (gintsts
& (GINTSTS_OEPINT
| GINTSTS_IEPINT
)) {
3731 u32 daint
= dwc2_readl(hsotg
, DAINT
);
3732 u32 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3733 u32 daint_out
, daint_in
;
3737 daint_out
= daint
>> DAINT_OUTEP_SHIFT
;
3738 daint_in
= daint
& ~(daint_out
<< DAINT_OUTEP_SHIFT
);
3740 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
3742 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_out
;
3743 ep
++, daint_out
>>= 1) {
3745 dwc2_hsotg_epint(hsotg
, ep
, 0);
3748 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_in
;
3749 ep
++, daint_in
>>= 1) {
3751 dwc2_hsotg_epint(hsotg
, ep
, 1);
3755 /* check both FIFOs */
3757 if (gintsts
& GINTSTS_NPTXFEMP
) {
3758 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
3761 * Disable the interrupt to stop it happening again
3762 * unless one of these endpoint routines decides that
3763 * it needs re-enabling
3766 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_NPTXFEMP
);
3767 dwc2_hsotg_irq_fifoempty(hsotg
, false);
3770 if (gintsts
& GINTSTS_PTXFEMP
) {
3771 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
3773 /* See note in GINTSTS_NPTxFEmp */
3775 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_PTXFEMP
);
3776 dwc2_hsotg_irq_fifoempty(hsotg
, true);
3779 if (gintsts
& GINTSTS_RXFLVL
) {
3781 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3782 * we need to retry dwc2_hsotg_handle_rx if this is still
3786 dwc2_hsotg_handle_rx(hsotg
);
3789 if (gintsts
& GINTSTS_ERLYSUSP
) {
3790 dev_dbg(hsotg
->dev
, "GINTSTS_ErlySusp\n");
3791 dwc2_writel(hsotg
, GINTSTS_ERLYSUSP
, GINTSTS
);
3795 * these next two seem to crop-up occasionally causing the core
3796 * to shutdown the USB transfer, so try clearing them and logging
3800 if (gintsts
& GINTSTS_GOUTNAKEFF
) {
3805 struct dwc2_hsotg_ep
*hs_ep
;
3807 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3808 daintmsk
>>= DAINT_OUTEP_SHIFT
;
3809 /* Mask this interrupt */
3810 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3811 gintmsk
&= ~GINTSTS_GOUTNAKEFF
;
3812 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3814 dev_dbg(hsotg
->dev
, "GOUTNakEff triggered\n");
3815 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3816 hs_ep
= hsotg
->eps_out
[idx
];
3817 /* Proceed only unmasked ISOC EPs */
3818 if (BIT(idx
) & ~daintmsk
)
3821 epctrl
= dwc2_readl(hsotg
, DOEPCTL(idx
));
3824 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
) {
3825 epctrl
|= DXEPCTL_SNAK
;
3826 epctrl
|= DXEPCTL_EPDIS
;
3827 dwc2_writel(hsotg
, epctrl
, DOEPCTL(idx
));
3832 if (hs_ep
->halted
) {
3833 if (!(epctrl
& DXEPCTL_EPENA
))
3834 epctrl
|= DXEPCTL_EPENA
;
3835 epctrl
|= DXEPCTL_EPDIS
;
3836 epctrl
|= DXEPCTL_STALL
;
3837 dwc2_writel(hsotg
, epctrl
, DOEPCTL(idx
));
3841 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3844 if (gintsts
& GINTSTS_GINNAKEFF
) {
3845 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
3847 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGNPINNAK
);
3849 dwc2_hsotg_dump(hsotg
);
3852 if (gintsts
& GINTSTS_INCOMPL_SOIN
)
3853 dwc2_gadget_handle_incomplete_isoc_in(hsotg
);
3855 if (gintsts
& GINTSTS_INCOMPL_SOOUT
)
3856 dwc2_gadget_handle_incomplete_isoc_out(hsotg
);
3859 * if we've had fifo events, we should try and go around the
3860 * loop again to see if there's any point in returning yet.
3863 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
3866 /* Check WKUP_ALERT interrupt*/
3867 if (hsotg
->params
.service_interval
)
3868 dwc2_gadget_wkup_alert_handler(hsotg
);
3870 spin_unlock(&hsotg
->lock
);
3875 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg
*hsotg
,
3876 struct dwc2_hsotg_ep
*hs_ep
)
3881 epctrl_reg
= hs_ep
->dir_in
? DIEPCTL(hs_ep
->index
) :
3882 DOEPCTL(hs_ep
->index
);
3883 epint_reg
= hs_ep
->dir_in
? DIEPINT(hs_ep
->index
) :
3884 DOEPINT(hs_ep
->index
);
3886 dev_dbg(hsotg
->dev
, "%s: stopping transfer on %s\n", __func__
,
3889 if (hs_ep
->dir_in
) {
3890 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
) {
3891 dwc2_set_bit(hsotg
, epctrl_reg
, DXEPCTL_SNAK
);
3892 /* Wait for Nak effect */
3893 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
,
3894 DXEPINT_INEPNAKEFF
, 100))
3895 dev_warn(hsotg
->dev
,
3896 "%s: timeout DIEPINT.NAKEFF\n",
3899 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGNPINNAK
);
3900 /* Wait for Nak effect */
3901 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3902 GINTSTS_GINNAKEFF
, 100))
3903 dev_warn(hsotg
->dev
,
3904 "%s: timeout GINTSTS.GINNAKEFF\n",
3908 if (!(dwc2_readl(hsotg
, GINTSTS
) & GINTSTS_GOUTNAKEFF
))
3909 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGOUTNAK
);
3911 /* Wait for global nak to take effect */
3912 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3913 GINTSTS_GOUTNAKEFF
, 100))
3914 dev_warn(hsotg
->dev
, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3919 dwc2_set_bit(hsotg
, epctrl_reg
, DXEPCTL_EPDIS
| DXEPCTL_SNAK
);
3921 /* Wait for ep to be disabled */
3922 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
, DXEPINT_EPDISBLD
, 100))
3923 dev_warn(hsotg
->dev
,
3924 "%s: timeout DOEPCTL.EPDisable\n", __func__
);
3926 /* Clear EPDISBLD interrupt */
3927 dwc2_set_bit(hsotg
, epint_reg
, DXEPINT_EPDISBLD
);
3929 if (hs_ep
->dir_in
) {
3930 unsigned short fifo_index
;
3932 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
)
3933 fifo_index
= hs_ep
->fifo_index
;
3938 dwc2_flush_tx_fifo(hsotg
, fifo_index
);
3940 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3941 if (!hsotg
->dedicated_fifos
&& !hs_ep
->periodic
)
3942 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGNPINNAK
);
3945 /* Remove global NAKs */
3946 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGOUTNAK
);
3951 * dwc2_hsotg_ep_enable - enable the given endpoint
3952 * @ep: The USB endpint to configure
3953 * @desc: The USB endpoint descriptor to configure with.
3955 * This is called from the USB gadget code's usb_ep_enable().
3957 static int dwc2_hsotg_ep_enable(struct usb_ep
*ep
,
3958 const struct usb_endpoint_descriptor
*desc
)
3960 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
3961 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
3962 unsigned long flags
;
3963 unsigned int index
= hs_ep
->index
;
3969 unsigned int dir_in
;
3970 unsigned int i
, val
, size
;
3972 unsigned char ep_type
;
3976 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3977 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
3978 desc
->wMaxPacketSize
, desc
->bInterval
);
3980 /* not to be called for EP0 */
3982 dev_err(hsotg
->dev
, "%s: called for EP 0\n", __func__
);
3986 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
3987 if (dir_in
!= hs_ep
->dir_in
) {
3988 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
3992 ep_type
= desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
;
3993 mps
= usb_endpoint_maxp(desc
);
3994 mc
= usb_endpoint_maxp_mult(desc
);
3996 /* ISOC IN in DDMA supported bInterval up to 10 */
3997 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
&&
3998 dir_in
&& desc
->bInterval
> 10) {
4000 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__
);
4004 /* High bandwidth ISOC OUT in DDMA not supported */
4005 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
&&
4006 !dir_in
&& mc
> 1) {
4008 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__
);
4012 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4014 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
4015 epctrl
= dwc2_readl(hsotg
, epctrl_reg
);
4017 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4018 __func__
, epctrl
, epctrl_reg
);
4020 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
)
4021 desc_num
= MAX_DMA_DESC_NUM_HS_ISOC
;
4023 desc_num
= MAX_DMA_DESC_NUM_GENERIC
;
4025 /* Allocate DMA descriptor chain for non-ctrl endpoints */
4026 if (using_desc_dma(hsotg
) && !hs_ep
->desc_list
) {
4027 hs_ep
->desc_list
= dmam_alloc_coherent(hsotg
->dev
,
4028 desc_num
* sizeof(struct dwc2_dma_desc
),
4029 &hs_ep
->desc_list_dma
, GFP_ATOMIC
);
4030 if (!hs_ep
->desc_list
) {
4036 spin_lock_irqsave(&hsotg
->lock
, flags
);
4038 epctrl
&= ~(DXEPCTL_EPTYPE_MASK
| DXEPCTL_MPS_MASK
);
4039 epctrl
|= DXEPCTL_MPS(mps
);
4042 * mark the endpoint as active, otherwise the core may ignore
4043 * transactions entirely for this endpoint
4045 epctrl
|= DXEPCTL_USBACTEP
;
4047 /* update the endpoint state */
4048 dwc2_hsotg_set_ep_maxpacket(hsotg
, hs_ep
->index
, mps
, mc
, dir_in
);
4050 /* default, set to non-periodic */
4051 hs_ep
->isochronous
= 0;
4052 hs_ep
->periodic
= 0;
4054 hs_ep
->interval
= desc
->bInterval
;
4057 case USB_ENDPOINT_XFER_ISOC
:
4058 epctrl
|= DXEPCTL_EPTYPE_ISO
;
4059 epctrl
|= DXEPCTL_SETEVENFR
;
4060 hs_ep
->isochronous
= 1;
4061 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
4062 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
4063 hs_ep
->next_desc
= 0;
4064 hs_ep
->compl_desc
= 0;
4066 hs_ep
->periodic
= 1;
4067 mask
= dwc2_readl(hsotg
, DIEPMSK
);
4068 mask
|= DIEPMSK_NAKMSK
;
4069 dwc2_writel(hsotg
, mask
, DIEPMSK
);
4071 mask
= dwc2_readl(hsotg
, DOEPMSK
);
4072 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
4073 dwc2_writel(hsotg
, mask
, DOEPMSK
);
4077 case USB_ENDPOINT_XFER_BULK
:
4078 epctrl
|= DXEPCTL_EPTYPE_BULK
;
4081 case USB_ENDPOINT_XFER_INT
:
4083 hs_ep
->periodic
= 1;
4085 if (hsotg
->gadget
.speed
== USB_SPEED_HIGH
)
4086 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
4088 epctrl
|= DXEPCTL_EPTYPE_INTERRUPT
;
4091 case USB_ENDPOINT_XFER_CONTROL
:
4092 epctrl
|= DXEPCTL_EPTYPE_CONTROL
;
4097 * if the hardware has dedicated fifos, we must give each IN EP
4098 * a unique tx-fifo even if it is non-periodic.
4100 if (dir_in
&& hsotg
->dedicated_fifos
) {
4101 unsigned fifo_count
= dwc2_hsotg_tx_fifo_count(hsotg
);
4103 u32 fifo_size
= UINT_MAX
;
4105 size
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
4106 for (i
= 1; i
<= fifo_count
; ++i
) {
4107 if (hsotg
->fifo_map
& (1 << i
))
4109 val
= dwc2_readl(hsotg
, DPTXFSIZN(i
));
4110 val
= (val
>> FIFOSIZE_DEPTH_SHIFT
) * 4;
4113 /* Search for smallest acceptable fifo */
4114 if (val
< fifo_size
) {
4121 "%s: No suitable fifo found\n", __func__
);
4125 epctrl
&= ~(DXEPCTL_TXFNUM_LIMIT
<< DXEPCTL_TXFNUM_SHIFT
);
4126 hsotg
->fifo_map
|= 1 << fifo_index
;
4127 epctrl
|= DXEPCTL_TXFNUM(fifo_index
);
4128 hs_ep
->fifo_index
= fifo_index
;
4129 hs_ep
->fifo_size
= fifo_size
;
4132 /* for non control endpoints, set PID to D0 */
4133 if (index
&& !hs_ep
->isochronous
)
4134 epctrl
|= DXEPCTL_SETD0PID
;
4136 /* WA for Full speed ISOC IN in DDMA mode.
4137 * By Clear NAK status of EP, core will send ZLP
4138 * to IN token and assert NAK interrupt relying
4139 * on TxFIFO status only
4142 if (hsotg
->gadget
.speed
== USB_SPEED_FULL
&&
4143 hs_ep
->isochronous
&& dir_in
) {
4144 /* The WA applies only to core versions from 2.72a
4145 * to 4.00a (including both). Also for FS_IOT_1.00a
4148 u32 gsnpsid
= dwc2_readl(hsotg
, GSNPSID
);
4150 if ((gsnpsid
>= DWC2_CORE_REV_2_72a
&&
4151 gsnpsid
<= DWC2_CORE_REV_4_00a
) ||
4152 gsnpsid
== DWC2_FS_IOT_REV_1_00a
||
4153 gsnpsid
== DWC2_HS_IOT_REV_1_00a
)
4154 epctrl
|= DXEPCTL_CNAK
;
4157 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
4160 dwc2_writel(hsotg
, epctrl
, epctrl_reg
);
4161 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
4162 __func__
, dwc2_readl(hsotg
, epctrl_reg
));
4164 /* enable the endpoint interrupt */
4165 dwc2_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
4168 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4171 if (ret
&& using_desc_dma(hsotg
) && hs_ep
->desc_list
) {
4172 dmam_free_coherent(hsotg
->dev
, desc_num
*
4173 sizeof(struct dwc2_dma_desc
),
4174 hs_ep
->desc_list
, hs_ep
->desc_list_dma
);
4175 hs_ep
->desc_list
= NULL
;
4182 * dwc2_hsotg_ep_disable - disable given endpoint
4183 * @ep: The endpoint to disable.
4185 static int dwc2_hsotg_ep_disable(struct usb_ep
*ep
)
4187 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4188 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
4189 int dir_in
= hs_ep
->dir_in
;
4190 int index
= hs_ep
->index
;
4194 dev_dbg(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
4196 if (ep
== &hsotg
->eps_out
[0]->ep
) {
4197 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
4201 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
4202 dev_err(hsotg
->dev
, "%s: called in host mode?\n", __func__
);
4206 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
4208 ctrl
= dwc2_readl(hsotg
, epctrl_reg
);
4210 if (ctrl
& DXEPCTL_EPENA
)
4211 dwc2_hsotg_ep_stop_xfr(hsotg
, hs_ep
);
4213 ctrl
&= ~DXEPCTL_EPENA
;
4214 ctrl
&= ~DXEPCTL_USBACTEP
;
4215 ctrl
|= DXEPCTL_SNAK
;
4217 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
4218 dwc2_writel(hsotg
, ctrl
, epctrl_reg
);
4220 /* disable endpoint interrupts */
4221 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
4223 /* terminate all requests with shutdown */
4224 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
);
4226 hsotg
->fifo_map
&= ~(1 << hs_ep
->fifo_index
);
4227 hs_ep
->fifo_index
= 0;
4228 hs_ep
->fifo_size
= 0;
4233 static int dwc2_hsotg_ep_disable_lock(struct usb_ep
*ep
)
4235 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4236 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
4237 unsigned long flags
;
4240 spin_lock_irqsave(&hsotg
->lock
, flags
);
4241 ret
= dwc2_hsotg_ep_disable(ep
);
4242 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4247 * on_list - check request is on the given endpoint
4248 * @ep: The endpoint to check.
4249 * @test: The request to test if it is on the endpoint.
4251 static bool on_list(struct dwc2_hsotg_ep
*ep
, struct dwc2_hsotg_req
*test
)
4253 struct dwc2_hsotg_req
*req
, *treq
;
4255 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
4264 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4265 * @ep: The endpoint to dequeue.
4266 * @req: The request to be removed from a queue.
4268 static int dwc2_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
4270 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
4271 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4272 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4273 unsigned long flags
;
4275 dev_dbg(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
4277 spin_lock_irqsave(&hs
->lock
, flags
);
4279 if (!on_list(hs_ep
, hs_req
)) {
4280 spin_unlock_irqrestore(&hs
->lock
, flags
);
4284 /* Dequeue already started request */
4285 if (req
== &hs_ep
->req
->req
)
4286 dwc2_hsotg_ep_stop_xfr(hs
, hs_ep
);
4288 dwc2_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
4289 spin_unlock_irqrestore(&hs
->lock
, flags
);
4295 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4296 * @ep: The endpoint to set halt.
4297 * @value: Set or unset the halt.
4298 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4299 * the endpoint is busy processing requests.
4301 * We need to stall the endpoint immediately if request comes from set_feature
4302 * protocol command handler.
4304 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
)
4306 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4307 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4308 int index
= hs_ep
->index
;
4313 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
4317 dwc2_hsotg_stall_ep0(hs
);
4320 "%s: can't clear halt on ep0\n", __func__
);
4324 if (hs_ep
->isochronous
) {
4325 dev_err(hs
->dev
, "%s is Isochronous Endpoint\n", ep
->name
);
4329 if (!now
&& value
&& !list_empty(&hs_ep
->queue
)) {
4330 dev_dbg(hs
->dev
, "%s request is pending, cannot halt\n",
4335 if (hs_ep
->dir_in
) {
4336 epreg
= DIEPCTL(index
);
4337 epctl
= dwc2_readl(hs
, epreg
);
4340 epctl
|= DXEPCTL_STALL
| DXEPCTL_SNAK
;
4341 if (epctl
& DXEPCTL_EPENA
)
4342 epctl
|= DXEPCTL_EPDIS
;
4344 epctl
&= ~DXEPCTL_STALL
;
4345 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4346 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4347 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4348 epctl
|= DXEPCTL_SETD0PID
;
4350 dwc2_writel(hs
, epctl
, epreg
);
4352 epreg
= DOEPCTL(index
);
4353 epctl
= dwc2_readl(hs
, epreg
);
4356 if (!(dwc2_readl(hs
, GINTSTS
) & GINTSTS_GOUTNAKEFF
))
4357 dwc2_set_bit(hs
, DCTL
, DCTL_SGOUTNAK
);
4358 // STALL bit will be set in GOUTNAKEFF interrupt handler
4360 epctl
&= ~DXEPCTL_STALL
;
4361 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4362 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4363 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4364 epctl
|= DXEPCTL_SETD0PID
;
4365 dwc2_writel(hs
, epctl
, epreg
);
4369 hs_ep
->halted
= value
;
4374 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4375 * @ep: The endpoint to set halt.
4376 * @value: Set or unset the halt.
4378 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep
*ep
, int value
)
4380 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4381 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4382 unsigned long flags
= 0;
4385 spin_lock_irqsave(&hs
->lock
, flags
);
4386 ret
= dwc2_hsotg_ep_sethalt(ep
, value
, false);
4387 spin_unlock_irqrestore(&hs
->lock
, flags
);
4392 static const struct usb_ep_ops dwc2_hsotg_ep_ops
= {
4393 .enable
= dwc2_hsotg_ep_enable
,
4394 .disable
= dwc2_hsotg_ep_disable_lock
,
4395 .alloc_request
= dwc2_hsotg_ep_alloc_request
,
4396 .free_request
= dwc2_hsotg_ep_free_request
,
4397 .queue
= dwc2_hsotg_ep_queue_lock
,
4398 .dequeue
= dwc2_hsotg_ep_dequeue
,
4399 .set_halt
= dwc2_hsotg_ep_sethalt_lock
,
4400 /* note, don't believe we have any call for the fifo routines */
4404 * dwc2_hsotg_init - initialize the usb core
4405 * @hsotg: The driver state
4407 static void dwc2_hsotg_init(struct dwc2_hsotg
*hsotg
)
4409 /* unmask subset of endpoint interrupts */
4411 dwc2_writel(hsotg
, DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
|
4412 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
,
4415 dwc2_writel(hsotg
, DOEPMSK_SETUPMSK
| DOEPMSK_AHBERRMSK
|
4416 DOEPMSK_EPDISBLDMSK
| DOEPMSK_XFERCOMPLMSK
,
4419 dwc2_writel(hsotg
, 0, DAINTMSK
);
4421 /* Be in disconnected state until gadget is registered */
4422 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
4426 dev_dbg(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4427 dwc2_readl(hsotg
, GRXFSIZ
),
4428 dwc2_readl(hsotg
, GNPTXFSIZ
));
4430 dwc2_hsotg_init_fifo(hsotg
);
4432 if (using_dma(hsotg
))
4433 dwc2_set_bit(hsotg
, GAHBCFG
, GAHBCFG_DMA_EN
);
4437 * dwc2_hsotg_udc_start - prepare the udc for work
4438 * @gadget: The usb gadget state
4439 * @driver: The usb gadget driver
4441 * Perform initialization to prepare udc device and driver
4444 static int dwc2_hsotg_udc_start(struct usb_gadget
*gadget
,
4445 struct usb_gadget_driver
*driver
)
4447 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4448 unsigned long flags
;
4452 pr_err("%s: called with no device\n", __func__
);
4457 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
4461 if (driver
->max_speed
< USB_SPEED_FULL
)
4462 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
4464 if (!driver
->setup
) {
4465 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
4469 WARN_ON(hsotg
->driver
);
4471 driver
->driver
.bus
= NULL
;
4472 hsotg
->driver
= driver
;
4473 hsotg
->gadget
.dev
.of_node
= hsotg
->dev
->of_node
;
4474 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4476 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
) {
4477 ret
= dwc2_lowlevel_hw_enable(hsotg
);
4482 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4483 otg_set_peripheral(hsotg
->uphy
->otg
, &hsotg
->gadget
);
4485 spin_lock_irqsave(&hsotg
->lock
, flags
);
4486 if (dwc2_hw_is_device(hsotg
)) {
4487 dwc2_hsotg_init(hsotg
);
4488 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4492 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4494 gadget
->sg_supported
= using_desc_dma(hsotg
);
4495 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
4500 hsotg
->driver
= NULL
;
4505 * dwc2_hsotg_udc_stop - stop the udc
4506 * @gadget: The usb gadget state
4508 * Stop udc hw block and stay tunned for future transmissions
4510 static int dwc2_hsotg_udc_stop(struct usb_gadget
*gadget
)
4512 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4513 unsigned long flags
= 0;
4519 /* all endpoints should be shutdown */
4520 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
4521 if (hsotg
->eps_in
[ep
])
4522 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_in
[ep
]->ep
);
4523 if (hsotg
->eps_out
[ep
])
4524 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_out
[ep
]->ep
);
4527 spin_lock_irqsave(&hsotg
->lock
, flags
);
4529 hsotg
->driver
= NULL
;
4530 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4533 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4535 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4536 otg_set_peripheral(hsotg
->uphy
->otg
, NULL
);
4538 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4539 dwc2_lowlevel_hw_disable(hsotg
);
4545 * dwc2_hsotg_gadget_getframe - read the frame number
4546 * @gadget: The usb gadget state
4548 * Read the {micro} frame number
4550 static int dwc2_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
4552 return dwc2_hsotg_read_frameno(to_hsotg(gadget
));
4556 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4557 * @gadget: The usb gadget state
4558 * @is_selfpowered: Whether the device is self-powered
4560 * Set if the device is self or bus powered.
4562 static int dwc2_hsotg_set_selfpowered(struct usb_gadget
*gadget
,
4565 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4566 unsigned long flags
;
4568 spin_lock_irqsave(&hsotg
->lock
, flags
);
4569 gadget
->is_selfpowered
= !!is_selfpowered
;
4570 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4576 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4577 * @gadget: The usb gadget state
4578 * @is_on: Current state of the USB PHY
4580 * Connect/Disconnect the USB PHY pullup
4582 static int dwc2_hsotg_pullup(struct usb_gadget
*gadget
, int is_on
)
4584 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4585 unsigned long flags
= 0;
4587 dev_dbg(hsotg
->dev
, "%s: is_on: %d op_state: %d\n", __func__
, is_on
,
4590 /* Don't modify pullup state while in host mode */
4591 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
4592 hsotg
->enabled
= is_on
;
4596 spin_lock_irqsave(&hsotg
->lock
, flags
);
4599 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4600 /* Enable ACG feature in device mode,if supported */
4601 dwc2_enable_acg(hsotg
);
4602 dwc2_hsotg_core_connect(hsotg
);
4604 dwc2_hsotg_core_disconnect(hsotg
);
4605 dwc2_hsotg_disconnect(hsotg
);
4609 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4610 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4615 static int dwc2_hsotg_vbus_session(struct usb_gadget
*gadget
, int is_active
)
4617 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4618 unsigned long flags
;
4620 dev_dbg(hsotg
->dev
, "%s: is_active: %d\n", __func__
, is_active
);
4621 spin_lock_irqsave(&hsotg
->lock
, flags
);
4624 * If controller is hibernated, it must exit from power_down
4625 * before being initialized / de-initialized
4627 if (hsotg
->lx_state
== DWC2_L2
)
4628 dwc2_exit_partial_power_down(hsotg
, false);
4631 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4633 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4634 if (hsotg
->enabled
) {
4635 /* Enable ACG feature in device mode,if supported */
4636 dwc2_enable_acg(hsotg
);
4637 dwc2_hsotg_core_connect(hsotg
);
4640 dwc2_hsotg_core_disconnect(hsotg
);
4641 dwc2_hsotg_disconnect(hsotg
);
4644 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4649 * dwc2_hsotg_vbus_draw - report bMaxPower field
4650 * @gadget: The usb gadget state
4651 * @mA: Amount of current
4653 * Report how much power the device may consume to the phy.
4655 static int dwc2_hsotg_vbus_draw(struct usb_gadget
*gadget
, unsigned int mA
)
4657 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4659 if (IS_ERR_OR_NULL(hsotg
->uphy
))
4661 return usb_phy_set_power(hsotg
->uphy
, mA
);
4664 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops
= {
4665 .get_frame
= dwc2_hsotg_gadget_getframe
,
4666 .set_selfpowered
= dwc2_hsotg_set_selfpowered
,
4667 .udc_start
= dwc2_hsotg_udc_start
,
4668 .udc_stop
= dwc2_hsotg_udc_stop
,
4669 .pullup
= dwc2_hsotg_pullup
,
4670 .vbus_session
= dwc2_hsotg_vbus_session
,
4671 .vbus_draw
= dwc2_hsotg_vbus_draw
,
4675 * dwc2_hsotg_initep - initialise a single endpoint
4676 * @hsotg: The device state.
4677 * @hs_ep: The endpoint to be initialised.
4678 * @epnum: The endpoint number
4679 * @dir_in: True if direction is in.
4681 * Initialise the given endpoint (as part of the probe and device state
4682 * creation) to give to the gadget driver. Setup the endpoint name, any
4683 * direction information and other state that may be required.
4685 static void dwc2_hsotg_initep(struct dwc2_hsotg
*hsotg
,
4686 struct dwc2_hsotg_ep
*hs_ep
,
4699 hs_ep
->dir_in
= dir_in
;
4700 hs_ep
->index
= epnum
;
4702 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
4704 INIT_LIST_HEAD(&hs_ep
->queue
);
4705 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
4707 /* add to the list of endpoints known by the gadget driver */
4709 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
4711 hs_ep
->parent
= hsotg
;
4712 hs_ep
->ep
.name
= hs_ep
->name
;
4714 if (hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
)
4715 usb_ep_set_maxpacket_limit(&hs_ep
->ep
, 8);
4717 usb_ep_set_maxpacket_limit(&hs_ep
->ep
,
4718 epnum
? 1024 : EP0_MPS_LIMIT
);
4719 hs_ep
->ep
.ops
= &dwc2_hsotg_ep_ops
;
4722 hs_ep
->ep
.caps
.type_control
= true;
4724 if (hsotg
->params
.speed
!= DWC2_SPEED_PARAM_LOW
) {
4725 hs_ep
->ep
.caps
.type_iso
= true;
4726 hs_ep
->ep
.caps
.type_bulk
= true;
4728 hs_ep
->ep
.caps
.type_int
= true;
4732 hs_ep
->ep
.caps
.dir_in
= true;
4734 hs_ep
->ep
.caps
.dir_out
= true;
4737 * if we're using dma, we need to set the next-endpoint pointer
4738 * to be something valid.
4741 if (using_dma(hsotg
)) {
4742 u32 next
= DXEPCTL_NEXTEP((epnum
+ 1) % 15);
4745 dwc2_writel(hsotg
, next
, DIEPCTL(epnum
));
4747 dwc2_writel(hsotg
, next
, DOEPCTL(epnum
));
4752 * dwc2_hsotg_hw_cfg - read HW configuration registers
4753 * @hsotg: Programming view of the DWC_otg controller
4755 * Read the USB core HW configuration registers
4757 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg
*hsotg
)
4763 /* check hardware configuration */
4765 hsotg
->num_of_eps
= hsotg
->hw_params
.num_dev_ep
;
4768 hsotg
->num_of_eps
++;
4770 hsotg
->eps_in
[0] = devm_kzalloc(hsotg
->dev
,
4771 sizeof(struct dwc2_hsotg_ep
),
4773 if (!hsotg
->eps_in
[0])
4775 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4776 hsotg
->eps_out
[0] = hsotg
->eps_in
[0];
4778 cfg
= hsotg
->hw_params
.dev_ep_dirs
;
4779 for (i
= 1, cfg
>>= 2; i
< hsotg
->num_of_eps
; i
++, cfg
>>= 2) {
4781 /* Direction in or both */
4782 if (!(ep_type
& 2)) {
4783 hsotg
->eps_in
[i
] = devm_kzalloc(hsotg
->dev
,
4784 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4785 if (!hsotg
->eps_in
[i
])
4788 /* Direction out or both */
4789 if (!(ep_type
& 1)) {
4790 hsotg
->eps_out
[i
] = devm_kzalloc(hsotg
->dev
,
4791 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4792 if (!hsotg
->eps_out
[i
])
4797 hsotg
->fifo_mem
= hsotg
->hw_params
.total_fifo_size
;
4798 hsotg
->dedicated_fifos
= hsotg
->hw_params
.en_multiple_tx_fifo
;
4800 dev_info(hsotg
->dev
, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4802 hsotg
->dedicated_fifos
? "dedicated" : "shared",
4808 * dwc2_hsotg_dump - dump state of the udc
4809 * @hsotg: Programming view of the DWC_otg controller
4812 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
)
4815 struct device
*dev
= hsotg
->dev
;
4819 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4820 dwc2_readl(hsotg
, DCFG
), dwc2_readl(hsotg
, DCTL
),
4821 dwc2_readl(hsotg
, DIEPMSK
));
4823 dev_info(dev
, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4824 dwc2_readl(hsotg
, GAHBCFG
), dwc2_readl(hsotg
, GHWCFG1
));
4826 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4827 dwc2_readl(hsotg
, GRXFSIZ
), dwc2_readl(hsotg
, GNPTXFSIZ
));
4829 /* show periodic fifo settings */
4831 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
4832 val
= dwc2_readl(hsotg
, DPTXFSIZN(idx
));
4833 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
4834 val
>> FIFOSIZE_DEPTH_SHIFT
,
4835 val
& FIFOSIZE_STARTADDR_MASK
);
4838 for (idx
= 0; idx
< hsotg
->num_of_eps
; idx
++) {
4840 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
4841 dwc2_readl(hsotg
, DIEPCTL(idx
)),
4842 dwc2_readl(hsotg
, DIEPTSIZ(idx
)),
4843 dwc2_readl(hsotg
, DIEPDMA(idx
)));
4845 val
= dwc2_readl(hsotg
, DOEPCTL(idx
));
4847 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4848 idx
, dwc2_readl(hsotg
, DOEPCTL(idx
)),
4849 dwc2_readl(hsotg
, DOEPTSIZ(idx
)),
4850 dwc2_readl(hsotg
, DOEPDMA(idx
)));
4853 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4854 dwc2_readl(hsotg
, DVBUSDIS
), dwc2_readl(hsotg
, DVBUSPULSE
));
4859 * dwc2_gadget_init - init function for gadget
4860 * @hsotg: Programming view of the DWC_otg controller
4863 int dwc2_gadget_init(struct dwc2_hsotg
*hsotg
)
4865 struct device
*dev
= hsotg
->dev
;
4869 /* Dump fifo information */
4870 dev_dbg(dev
, "NonPeriodic TXFIFO size: %d\n",
4871 hsotg
->params
.g_np_tx_fifo_size
);
4872 dev_dbg(dev
, "RXFIFO size: %d\n", hsotg
->params
.g_rx_fifo_size
);
4874 hsotg
->gadget
.max_speed
= USB_SPEED_HIGH
;
4875 hsotg
->gadget
.ops
= &dwc2_hsotg_gadget_ops
;
4876 hsotg
->gadget
.name
= dev_name(dev
);
4877 hsotg
->remote_wakeup_allowed
= 0;
4879 if (hsotg
->params
.lpm
)
4880 hsotg
->gadget
.lpm_capable
= true;
4882 if (hsotg
->dr_mode
== USB_DR_MODE_OTG
)
4883 hsotg
->gadget
.is_otg
= 1;
4884 else if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4885 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4887 ret
= dwc2_hsotg_hw_cfg(hsotg
);
4889 dev_err(hsotg
->dev
, "Hardware configuration failed: %d\n", ret
);
4893 hsotg
->ctrl_buff
= devm_kzalloc(hsotg
->dev
,
4894 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
4895 if (!hsotg
->ctrl_buff
)
4898 hsotg
->ep0_buff
= devm_kzalloc(hsotg
->dev
,
4899 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
4900 if (!hsotg
->ep0_buff
)
4903 if (using_desc_dma(hsotg
)) {
4904 ret
= dwc2_gadget_alloc_ctrl_desc_chains(hsotg
);
4909 ret
= devm_request_irq(hsotg
->dev
, hsotg
->irq
, dwc2_hsotg_irq
,
4910 IRQF_SHARED
, dev_name(hsotg
->dev
), hsotg
);
4912 dev_err(dev
, "cannot claim IRQ for gadget\n");
4916 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4918 if (hsotg
->num_of_eps
== 0) {
4919 dev_err(dev
, "wrong number of EPs (zero)\n");
4923 /* setup endpoint information */
4925 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
4926 hsotg
->gadget
.ep0
= &hsotg
->eps_out
[0]->ep
;
4928 /* allocate EP0 request */
4930 hsotg
->ctrl_req
= dwc2_hsotg_ep_alloc_request(&hsotg
->eps_out
[0]->ep
,
4932 if (!hsotg
->ctrl_req
) {
4933 dev_err(dev
, "failed to allocate ctrl req\n");
4937 /* initialise the endpoints now the core has been initialised */
4938 for (epnum
= 0; epnum
< hsotg
->num_of_eps
; epnum
++) {
4939 if (hsotg
->eps_in
[epnum
])
4940 dwc2_hsotg_initep(hsotg
, hsotg
->eps_in
[epnum
],
4942 if (hsotg
->eps_out
[epnum
])
4943 dwc2_hsotg_initep(hsotg
, hsotg
->eps_out
[epnum
],
4947 dwc2_hsotg_dump(hsotg
);
4953 * dwc2_hsotg_remove - remove function for hsotg driver
4954 * @hsotg: Programming view of the DWC_otg controller
4957 int dwc2_hsotg_remove(struct dwc2_hsotg
*hsotg
)
4959 usb_del_gadget_udc(&hsotg
->gadget
);
4960 dwc2_hsotg_ep_free_request(&hsotg
->eps_out
[0]->ep
, hsotg
->ctrl_req
);
4965 int dwc2_hsotg_suspend(struct dwc2_hsotg
*hsotg
)
4967 unsigned long flags
;
4969 if (hsotg
->lx_state
!= DWC2_L0
)
4972 if (hsotg
->driver
) {
4975 dev_info(hsotg
->dev
, "suspending usb gadget %s\n",
4976 hsotg
->driver
->driver
.name
);
4978 spin_lock_irqsave(&hsotg
->lock
, flags
);
4980 dwc2_hsotg_core_disconnect(hsotg
);
4981 dwc2_hsotg_disconnect(hsotg
);
4982 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4983 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4985 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
4986 if (hsotg
->eps_in
[ep
])
4987 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_in
[ep
]->ep
);
4988 if (hsotg
->eps_out
[ep
])
4989 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_out
[ep
]->ep
);
4996 int dwc2_hsotg_resume(struct dwc2_hsotg
*hsotg
)
4998 unsigned long flags
;
5000 if (hsotg
->lx_state
== DWC2_L2
)
5003 if (hsotg
->driver
) {
5004 dev_info(hsotg
->dev
, "resuming usb gadget %s\n",
5005 hsotg
->driver
->driver
.name
);
5007 spin_lock_irqsave(&hsotg
->lock
, flags
);
5008 dwc2_hsotg_core_init_disconnected(hsotg
, false);
5009 if (hsotg
->enabled
) {
5010 /* Enable ACG feature in device mode,if supported */
5011 dwc2_enable_acg(hsotg
);
5012 dwc2_hsotg_core_connect(hsotg
);
5014 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
5021 * dwc2_backup_device_registers() - Backup controller device registers.
5022 * When suspending usb bus, registers needs to be backuped
5023 * if controller power is disabled once suspended.
5025 * @hsotg: Programming view of the DWC_otg controller
5027 int dwc2_backup_device_registers(struct dwc2_hsotg
*hsotg
)
5029 struct dwc2_dregs_backup
*dr
;
5032 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5034 /* Backup dev regs */
5035 dr
= &hsotg
->dr_backup
;
5037 dr
->dcfg
= dwc2_readl(hsotg
, DCFG
);
5038 dr
->dctl
= dwc2_readl(hsotg
, DCTL
);
5039 dr
->daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
5040 dr
->diepmsk
= dwc2_readl(hsotg
, DIEPMSK
);
5041 dr
->doepmsk
= dwc2_readl(hsotg
, DOEPMSK
);
5043 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
5045 dr
->diepctl
[i
] = dwc2_readl(hsotg
, DIEPCTL(i
));
5047 /* Ensure DATA PID is correctly configured */
5048 if (dr
->diepctl
[i
] & DXEPCTL_DPID
)
5049 dr
->diepctl
[i
] |= DXEPCTL_SETD1PID
;
5051 dr
->diepctl
[i
] |= DXEPCTL_SETD0PID
;
5053 dr
->dieptsiz
[i
] = dwc2_readl(hsotg
, DIEPTSIZ(i
));
5054 dr
->diepdma
[i
] = dwc2_readl(hsotg
, DIEPDMA(i
));
5056 /* Backup OUT EPs */
5057 dr
->doepctl
[i
] = dwc2_readl(hsotg
, DOEPCTL(i
));
5059 /* Ensure DATA PID is correctly configured */
5060 if (dr
->doepctl
[i
] & DXEPCTL_DPID
)
5061 dr
->doepctl
[i
] |= DXEPCTL_SETD1PID
;
5063 dr
->doepctl
[i
] |= DXEPCTL_SETD0PID
;
5065 dr
->doeptsiz
[i
] = dwc2_readl(hsotg
, DOEPTSIZ(i
));
5066 dr
->doepdma
[i
] = dwc2_readl(hsotg
, DOEPDMA(i
));
5067 dr
->dtxfsiz
[i
] = dwc2_readl(hsotg
, DPTXFSIZN(i
));
5074 * dwc2_restore_device_registers() - Restore controller device registers.
5075 * When resuming usb bus, device registers needs to be restored
5076 * if controller power were disabled.
5078 * @hsotg: Programming view of the DWC_otg controller
5079 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5081 * Return: 0 if successful, negative error code otherwise
5083 int dwc2_restore_device_registers(struct dwc2_hsotg
*hsotg
, int remote_wakeup
)
5085 struct dwc2_dregs_backup
*dr
;
5088 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5090 /* Restore dev regs */
5091 dr
= &hsotg
->dr_backup
;
5093 dev_err(hsotg
->dev
, "%s: no device registers to restore\n",
5100 dwc2_writel(hsotg
, dr
->dctl
, DCTL
);
5102 dwc2_writel(hsotg
, dr
->daintmsk
, DAINTMSK
);
5103 dwc2_writel(hsotg
, dr
->diepmsk
, DIEPMSK
);
5104 dwc2_writel(hsotg
, dr
->doepmsk
, DOEPMSK
);
5106 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
5107 /* Restore IN EPs */
5108 dwc2_writel(hsotg
, dr
->dieptsiz
[i
], DIEPTSIZ(i
));
5109 dwc2_writel(hsotg
, dr
->diepdma
[i
], DIEPDMA(i
));
5110 dwc2_writel(hsotg
, dr
->doeptsiz
[i
], DOEPTSIZ(i
));
5111 /** WA for enabled EPx's IN in DDMA mode. On entering to
5112 * hibernation wrong value read and saved from DIEPDMAx,
5113 * as result BNA interrupt asserted on hibernation exit
5114 * by restoring from saved area.
5116 if (hsotg
->params
.g_dma_desc
&&
5117 (dr
->diepctl
[i
] & DXEPCTL_EPENA
))
5118 dr
->diepdma
[i
] = hsotg
->eps_in
[i
]->desc_list_dma
;
5119 dwc2_writel(hsotg
, dr
->dtxfsiz
[i
], DPTXFSIZN(i
));
5120 dwc2_writel(hsotg
, dr
->diepctl
[i
], DIEPCTL(i
));
5121 /* Restore OUT EPs */
5122 dwc2_writel(hsotg
, dr
->doeptsiz
[i
], DOEPTSIZ(i
));
5123 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5124 * hibernation wrong value read and saved from DOEPDMAx,
5125 * as result BNA interrupt asserted on hibernation exit
5126 * by restoring from saved area.
5128 if (hsotg
->params
.g_dma_desc
&&
5129 (dr
->doepctl
[i
] & DXEPCTL_EPENA
))
5130 dr
->doepdma
[i
] = hsotg
->eps_out
[i
]->desc_list_dma
;
5131 dwc2_writel(hsotg
, dr
->doepdma
[i
], DOEPDMA(i
));
5132 dwc2_writel(hsotg
, dr
->doepctl
[i
], DOEPCTL(i
));
5139 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5141 * @hsotg: Programming view of DWC_otg controller
5144 void dwc2_gadget_init_lpm(struct dwc2_hsotg
*hsotg
)
5148 if (!hsotg
->params
.lpm
)
5151 val
= GLPMCFG_LPMCAP
| GLPMCFG_APPL1RES
;
5152 val
|= hsotg
->params
.hird_threshold_en
? GLPMCFG_HIRD_THRES_EN
: 0;
5153 val
|= hsotg
->params
.lpm_clock_gating
? GLPMCFG_ENBLSLPM
: 0;
5154 val
|= hsotg
->params
.hird_threshold
<< GLPMCFG_HIRD_THRES_SHIFT
;
5155 val
|= hsotg
->params
.besl
? GLPMCFG_ENBESL
: 0;
5156 val
|= GLPMCFG_LPM_REJECT_CTRL_CONTROL
;
5157 val
|= GLPMCFG_LPM_ACCEPT_CTRL_ISOC
;
5158 dwc2_writel(hsotg
, val
, GLPMCFG
);
5159 dev_dbg(hsotg
->dev
, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg
, GLPMCFG
));
5161 /* Unmask WKUP_ALERT Interrupt */
5162 if (hsotg
->params
.service_interval
)
5163 dwc2_set_bit(hsotg
, GINTMSK2
, GINTMSK2_WKUP_ALERT_INT_MSK
);
5167 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5169 * @hsotg: Programming view of DWC_otg controller
5172 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg
*hsotg
)
5176 val
|= GREFCLK_REF_CLK_MODE
;
5177 val
|= hsotg
->params
.ref_clk_per
<< GREFCLK_REFCLKPER_SHIFT
;
5178 val
|= hsotg
->params
.sof_cnt_wkup_alert
<<
5179 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT
;
5181 dwc2_writel(hsotg
, val
, GREFCLK
);
5182 dev_dbg(hsotg
->dev
, "GREFCLK=0x%08x\n", dwc2_readl(hsotg
, GREFCLK
));
5186 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5188 * @hsotg: Programming view of the DWC_otg controller
5190 * Return non-zero if failed to enter to hibernation.
5192 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg
*hsotg
)
5197 /* Change to L2(suspend) state */
5198 hsotg
->lx_state
= DWC2_L2
;
5199 dev_dbg(hsotg
->dev
, "Start of hibernation completed\n");
5200 ret
= dwc2_backup_global_registers(hsotg
);
5202 dev_err(hsotg
->dev
, "%s: failed to backup global registers\n",
5206 ret
= dwc2_backup_device_registers(hsotg
);
5208 dev_err(hsotg
->dev
, "%s: failed to backup device registers\n",
5213 gpwrdn
= GPWRDN_PWRDNRSTN
;
5214 gpwrdn
|= GPWRDN_PMUACTV
;
5215 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5218 /* Set flag to indicate that we are in hibernation */
5219 hsotg
->hibernated
= 1;
5221 /* Enable interrupts from wake up logic */
5222 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5223 gpwrdn
|= GPWRDN_PMUINTSEL
;
5224 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5227 /* Unmask device mode interrupts in GPWRDN */
5228 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5229 gpwrdn
|= GPWRDN_RST_DET_MSK
;
5230 gpwrdn
|= GPWRDN_LNSTSCHG_MSK
;
5231 gpwrdn
|= GPWRDN_STS_CHGINT_MSK
;
5232 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5235 /* Enable Power Down Clamp */
5236 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5237 gpwrdn
|= GPWRDN_PWRDNCLMP
;
5238 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5241 /* Switch off VDD */
5242 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5243 gpwrdn
|= GPWRDN_PWRDNSWTCH
;
5244 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5247 /* Save gpwrdn register for further usage if stschng interrupt */
5248 hsotg
->gr_backup
.gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5249 dev_dbg(hsotg
->dev
, "Hibernation completed\n");
5255 * dwc2_gadget_exit_hibernation()
5256 * This function is for exiting from Device mode hibernation by host initiated
5257 * resume/reset and device initiated remote-wakeup.
5259 * @hsotg: Programming view of the DWC_otg controller
5260 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5261 * @reset: indicates whether resume is initiated by Reset.
5263 * Return non-zero if failed to exit from hibernation.
5265 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg
*hsotg
,
5266 int rem_wakeup
, int reset
)
5272 struct dwc2_gregs_backup
*gr
;
5273 struct dwc2_dregs_backup
*dr
;
5275 gr
= &hsotg
->gr_backup
;
5276 dr
= &hsotg
->dr_backup
;
5278 if (!hsotg
->hibernated
) {
5279 dev_dbg(hsotg
->dev
, "Already exited from Hibernation\n");
5283 "%s: called with rem_wakeup = %d reset = %d\n",
5284 __func__
, rem_wakeup
, reset
);
5286 dwc2_hib_restore_common(hsotg
, rem_wakeup
, 0);
5289 /* Clear all pending interupts */
5290 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5293 /* De-assert Restore */
5294 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5295 gpwrdn
&= ~GPWRDN_RESTORE
;
5296 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5300 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5301 pcgcctl
&= ~PCGCTL_RSTPDWNMODULE
;
5302 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5305 /* Restore GUSBCFG, DCFG and DCTL */
5306 dwc2_writel(hsotg
, gr
->gusbcfg
, GUSBCFG
);
5307 dwc2_writel(hsotg
, dr
->dcfg
, DCFG
);
5308 dwc2_writel(hsotg
, dr
->dctl
, DCTL
);
5310 /* De-assert Wakeup Logic */
5311 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5312 gpwrdn
&= ~GPWRDN_PMUACTV
;
5313 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5317 /* Start Remote Wakeup Signaling */
5318 dwc2_writel(hsotg
, dr
->dctl
| DCTL_RMTWKUPSIG
, DCTL
);
5321 /* Set Device programming done bit */
5322 dctl
= dwc2_readl(hsotg
, DCTL
);
5323 dctl
|= DCTL_PWRONPRGDONE
;
5324 dwc2_writel(hsotg
, dctl
, DCTL
);
5326 /* Wait for interrupts which must be cleared */
5328 /* Clear all pending interupts */
5329 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5331 /* Restore global registers */
5332 ret
= dwc2_restore_global_registers(hsotg
);
5334 dev_err(hsotg
->dev
, "%s: failed to restore registers\n",
5339 /* Restore device registers */
5340 ret
= dwc2_restore_device_registers(hsotg
, rem_wakeup
);
5342 dev_err(hsotg
->dev
, "%s: failed to restore device registers\n",
5349 dctl
= dwc2_readl(hsotg
, DCTL
);
5350 dctl
&= ~DCTL_RMTWKUPSIG
;
5351 dwc2_writel(hsotg
, dctl
, DCTL
);
5354 hsotg
->hibernated
= 0;
5355 hsotg
->lx_state
= DWC2_L0
;
5356 dev_dbg(hsotg
->dev
, "Hibernation recovery completes here\n");