io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / drivers / usb / dwc2 / gadget.c
blob0a0d11151cfb88cb6ecbd7e9264f26e75de148d6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
33 #include "core.h"
34 #include "hw.h"
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39 return container_of(req, struct dwc2_hsotg_req, req);
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44 return container_of(ep, struct dwc2_hsotg_ep, ep);
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49 return container_of(gadget, struct dwc2_hsotg, gadget);
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
54 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
59 dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 u32 ep_index, u32 dir_in)
65 if (dir_in)
66 return hsotg->eps_in[ep_index];
67 else
68 return hsotg->eps_out[ep_index];
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 /**
75 * using_dma - return the DMA status of the driver.
76 * @hsotg: The driver state.
78 * Return true if we're using DMA.
80 * Currently, we have the DMA support code worked into everywhere
81 * that needs it, but the AMBA DMA implementation in the hardware can
82 * only DMA from 32bit aligned addresses. This means that gadgets such
83 * as the CDC Ethernet cannot work as they often pass packets which are
84 * not 32bit aligned.
86 * Unfortunately the choice to use DMA or not is global to the controller
87 * and seems to be only settable when the controller is being put through
88 * a core reset. This means we either need to fix the gadgets to take
89 * account of DMA alignment, or add bounce buffers (yuerk).
91 * g_using_dma is set depending on dts flag.
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
95 return hsotg->params.g_dma;
99 * using_desc_dma - return the descriptor DMA status of the driver.
100 * @hsotg: The driver state.
102 * Return true if we're using descriptor DMA.
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
106 return hsotg->params.g_dma_desc;
110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111 * @hs_ep: The endpoint
113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
118 hs_ep->target_frame += hs_ep->interval;
119 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 hs_ep->frame_overrun = true;
121 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 } else {
123 hs_ep->frame_overrun = false;
128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129 * by one.
130 * @hs_ep: The endpoint.
132 * This function used in service interval based scheduling flow to calculate
133 * descriptor frame number filed value. For service interval mode frame
134 * number in descriptor should point to last (u)frame in the interval.
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
139 if (hs_ep->target_frame)
140 hs_ep->target_frame -= 1;
141 else
142 hs_ep->target_frame = DSTS_SOFFN_LIMIT;
146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147 * @hsotg: The device state
148 * @ints: A bitmask of the interrupts to enable
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
152 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 u32 new_gsintmsk;
155 new_gsintmsk = gsintmsk | ints;
157 if (new_gsintmsk != gsintmsk) {
158 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165 * @hsotg: The device state
166 * @ints: A bitmask of the interrupts to enable
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
170 u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 u32 new_gsintmsk;
173 new_gsintmsk = gsintmsk & ~ints;
175 if (new_gsintmsk != gsintmsk)
176 dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181 * @hsotg: The device state
182 * @ep: The endpoint index
183 * @dir_in: True if direction is in.
184 * @en: The enable value, true to enable
186 * Set or clear the mask for an individual endpoint's interrupt
187 * request.
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 unsigned int ep, unsigned int dir_in,
191 unsigned int en)
193 unsigned long flags;
194 u32 bit = 1 << ep;
195 u32 daint;
197 if (!dir_in)
198 bit <<= 16;
200 local_irq_save(flags);
201 daint = dwc2_readl(hsotg, DAINTMSK);
202 if (en)
203 daint |= bit;
204 else
205 daint &= ~bit;
206 dwc2_writel(hsotg, daint, DAINTMSK);
207 local_irq_restore(flags);
211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
213 * @hsotg: Programming view of the DWC_otg controller
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
217 if (hsotg->hw_params.en_multiple_tx_fifo)
218 /* In dedicated FIFO mode we need count of IN EPs */
219 return hsotg->hw_params.num_dev_in_eps;
220 else
221 /* In shared FIFO mode we need count of Periodic IN EPs */
222 return hsotg->hw_params.num_dev_perio_in_ep;
226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227 * device mode TX FIFOs
229 * @hsotg: Programming view of the DWC_otg controller
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
233 int addr;
234 int tx_addr_max;
235 u32 np_tx_fifo_size;
237 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 hsotg->params.g_np_tx_fifo_size);
240 /* Get Endpoint Info Control block size in DWORDs. */
241 tx_addr_max = hsotg->hw_params.total_fifo_size;
243 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 if (tx_addr_max <= addr)
245 return 0;
247 return tx_addr_max - addr;
251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
253 * @hsotg: Programming view of the DWC_otg controller
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
258 u32 gintsts2;
259 u32 gintmsk2;
261 gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 gintsts2 &= gintmsk2;
265 if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
266 dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
267 dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
268 dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
273 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
274 * TX FIFOs
276 * @hsotg: Programming view of the DWC_otg controller
278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
280 int tx_fifo_count;
281 int tx_fifo_depth;
283 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
285 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
287 if (!tx_fifo_count)
288 return tx_fifo_depth;
289 else
290 return tx_fifo_depth / tx_fifo_count;
294 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
295 * @hsotg: The device instance.
297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
299 unsigned int ep;
300 unsigned int addr;
301 int timeout;
303 u32 val;
304 u32 *txfsz = hsotg->params.g_tx_fifo_size;
306 /* Reset fifo map if not correctly cleared during previous session */
307 WARN_ON(hsotg->fifo_map);
308 hsotg->fifo_map = 0;
310 /* set RX/NPTX FIFO sizes */
311 dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
312 dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
313 FIFOSIZE_STARTADDR_SHIFT) |
314 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
315 GNPTXFSIZ);
318 * arange all the rest of the TX FIFOs, as some versions of this
319 * block have overlapping default addresses. This also ensures
320 * that if the settings have been changed, then they are set to
321 * known values.
324 /* start at the end of the GNPTXFSIZ, rounded up */
325 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
328 * Configure fifos sizes from provided configuration and assign
329 * them to endpoints dynamically according to maxpacket size value of
330 * given endpoint.
332 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
333 if (!txfsz[ep])
334 continue;
335 val = addr;
336 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
337 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
338 "insufficient fifo memory");
339 addr += txfsz[ep];
341 dwc2_writel(hsotg, val, DPTXFSIZN(ep));
342 val = dwc2_readl(hsotg, DPTXFSIZN(ep));
345 dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
346 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
347 GDFIFOCFG);
349 * according to p428 of the design guide, we need to ensure that
350 * all fifos are flushed before continuing
353 dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
354 GRSTCTL_RXFFLSH, GRSTCTL);
356 /* wait until the fifos are both flushed */
357 timeout = 100;
358 while (1) {
359 val = dwc2_readl(hsotg, GRSTCTL);
361 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
362 break;
364 if (--timeout == 0) {
365 dev_err(hsotg->dev,
366 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
367 __func__, val);
368 break;
371 udelay(1);
374 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
378 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
379 * @ep: USB endpoint to allocate request for.
380 * @flags: Allocation flags
382 * Allocate a new USB request structure appropriate for the specified endpoint
384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
385 gfp_t flags)
387 struct dwc2_hsotg_req *req;
389 req = kzalloc(sizeof(*req), flags);
390 if (!req)
391 return NULL;
393 INIT_LIST_HEAD(&req->queue);
395 return &req->req;
399 * is_ep_periodic - return true if the endpoint is in periodic mode.
400 * @hs_ep: The endpoint to query.
402 * Returns true if the endpoint is in periodic mode, meaning it is being
403 * used for an Interrupt or ISO transfer.
405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
407 return hs_ep->periodic;
411 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
412 * @hsotg: The device state.
413 * @hs_ep: The endpoint for the request
414 * @hs_req: The request being processed.
416 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
417 * of a request to ensure the buffer is ready for access by the caller.
419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
420 struct dwc2_hsotg_ep *hs_ep,
421 struct dwc2_hsotg_req *hs_req)
423 struct usb_request *req = &hs_req->req;
425 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
429 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
430 * for Control endpoint
431 * @hsotg: The device state.
433 * This function will allocate 4 descriptor chains for EP 0: 2 for
434 * Setup stage, per one for IN and OUT data/status transactions.
436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
438 hsotg->setup_desc[0] =
439 dmam_alloc_coherent(hsotg->dev,
440 sizeof(struct dwc2_dma_desc),
441 &hsotg->setup_desc_dma[0],
442 GFP_KERNEL);
443 if (!hsotg->setup_desc[0])
444 goto fail;
446 hsotg->setup_desc[1] =
447 dmam_alloc_coherent(hsotg->dev,
448 sizeof(struct dwc2_dma_desc),
449 &hsotg->setup_desc_dma[1],
450 GFP_KERNEL);
451 if (!hsotg->setup_desc[1])
452 goto fail;
454 hsotg->ctrl_in_desc =
455 dmam_alloc_coherent(hsotg->dev,
456 sizeof(struct dwc2_dma_desc),
457 &hsotg->ctrl_in_desc_dma,
458 GFP_KERNEL);
459 if (!hsotg->ctrl_in_desc)
460 goto fail;
462 hsotg->ctrl_out_desc =
463 dmam_alloc_coherent(hsotg->dev,
464 sizeof(struct dwc2_dma_desc),
465 &hsotg->ctrl_out_desc_dma,
466 GFP_KERNEL);
467 if (!hsotg->ctrl_out_desc)
468 goto fail;
470 return 0;
472 fail:
473 return -ENOMEM;
477 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
478 * @hsotg: The controller state.
479 * @hs_ep: The endpoint we're going to write for.
480 * @hs_req: The request to write data for.
482 * This is called when the TxFIFO has some space in it to hold a new
483 * transmission and we have something to give it. The actual setup of
484 * the data size is done elsewhere, so all we have to do is to actually
485 * write the data.
487 * The return value is zero if there is more space (or nothing was done)
488 * otherwise -ENOSPC is returned if the FIFO space was used up.
490 * This routine is only needed for PIO
492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
493 struct dwc2_hsotg_ep *hs_ep,
494 struct dwc2_hsotg_req *hs_req)
496 bool periodic = is_ep_periodic(hs_ep);
497 u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
498 int buf_pos = hs_req->req.actual;
499 int to_write = hs_ep->size_loaded;
500 void *data;
501 int can_write;
502 int pkt_round;
503 int max_transfer;
505 to_write -= (buf_pos - hs_ep->last_load);
507 /* if there's nothing to write, get out early */
508 if (to_write == 0)
509 return 0;
511 if (periodic && !hsotg->dedicated_fifos) {
512 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
513 int size_left;
514 int size_done;
517 * work out how much data was loaded so we can calculate
518 * how much data is left in the fifo.
521 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
524 * if shared fifo, we cannot write anything until the
525 * previous data has been completely sent.
527 if (hs_ep->fifo_load != 0) {
528 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
529 return -ENOSPC;
532 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
533 __func__, size_left,
534 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
536 /* how much of the data has moved */
537 size_done = hs_ep->size_loaded - size_left;
539 /* how much data is left in the fifo */
540 can_write = hs_ep->fifo_load - size_done;
541 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
542 __func__, can_write);
544 can_write = hs_ep->fifo_size - can_write;
545 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
546 __func__, can_write);
548 if (can_write <= 0) {
549 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
550 return -ENOSPC;
552 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
553 can_write = dwc2_readl(hsotg,
554 DTXFSTS(hs_ep->fifo_index));
556 can_write &= 0xffff;
557 can_write *= 4;
558 } else {
559 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
560 dev_dbg(hsotg->dev,
561 "%s: no queue slots available (0x%08x)\n",
562 __func__, gnptxsts);
564 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
565 return -ENOSPC;
568 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
569 can_write *= 4; /* fifo size is in 32bit quantities. */
572 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
574 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
575 __func__, gnptxsts, can_write, to_write, max_transfer);
578 * limit to 512 bytes of data, it seems at least on the non-periodic
579 * FIFO, requests of >512 cause the endpoint to get stuck with a
580 * fragment of the end of the transfer in it.
582 if (can_write > 512 && !periodic)
583 can_write = 512;
586 * limit the write to one max-packet size worth of data, but allow
587 * the transfer to return that it did not run out of fifo space
588 * doing it.
590 if (to_write > max_transfer) {
591 to_write = max_transfer;
593 /* it's needed only when we do not use dedicated fifos */
594 if (!hsotg->dedicated_fifos)
595 dwc2_hsotg_en_gsint(hsotg,
596 periodic ? GINTSTS_PTXFEMP :
597 GINTSTS_NPTXFEMP);
600 /* see if we can write data */
602 if (to_write > can_write) {
603 to_write = can_write;
604 pkt_round = to_write % max_transfer;
607 * Round the write down to an
608 * exact number of packets.
610 * Note, we do not currently check to see if we can ever
611 * write a full packet or not to the FIFO.
614 if (pkt_round)
615 to_write -= pkt_round;
618 * enable correct FIFO interrupt to alert us when there
619 * is more room left.
622 /* it's needed only when we do not use dedicated fifos */
623 if (!hsotg->dedicated_fifos)
624 dwc2_hsotg_en_gsint(hsotg,
625 periodic ? GINTSTS_PTXFEMP :
626 GINTSTS_NPTXFEMP);
629 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
630 to_write, hs_req->req.length, can_write, buf_pos);
632 if (to_write <= 0)
633 return -ENOSPC;
635 hs_req->req.actual = buf_pos + to_write;
636 hs_ep->total_data += to_write;
638 if (periodic)
639 hs_ep->fifo_load += to_write;
641 to_write = DIV_ROUND_UP(to_write, 4);
642 data = hs_req->req.buf + buf_pos;
644 dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
646 return (to_write >= can_write) ? -ENOSPC : 0;
650 * get_ep_limit - get the maximum data legnth for this endpoint
651 * @hs_ep: The endpoint
653 * Return the maximum data that can be queued in one go on a given endpoint
654 * so that transfers that are too long can be split.
656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
658 int index = hs_ep->index;
659 unsigned int maxsize;
660 unsigned int maxpkt;
662 if (index != 0) {
663 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
664 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
665 } else {
666 maxsize = 64 + 64;
667 if (hs_ep->dir_in)
668 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
669 else
670 maxpkt = 2;
673 /* we made the constant loading easier above by using +1 */
674 maxpkt--;
675 maxsize--;
678 * constrain by packet count if maxpkts*pktsize is greater
679 * than the length register size.
682 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
683 maxsize = maxpkt * hs_ep->ep.maxpacket;
685 return maxsize;
689 * dwc2_hsotg_read_frameno - read current frame number
690 * @hsotg: The device instance
692 * Return the current frame number
694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
696 u32 dsts;
698 dsts = dwc2_readl(hsotg, DSTS);
699 dsts &= DSTS_SOFFN_MASK;
700 dsts >>= DSTS_SOFFN_SHIFT;
702 return dsts;
706 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
707 * DMA descriptor chain prepared for specific endpoint
708 * @hs_ep: The endpoint
710 * Return the maximum data that can be queued in one go on a given endpoint
711 * depending on its descriptor chain capacity so that transfers that
712 * are too long can be split.
714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
716 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
717 int is_isoc = hs_ep->isochronous;
718 unsigned int maxsize;
719 u32 mps = hs_ep->ep.maxpacket;
720 int dir_in = hs_ep->dir_in;
722 if (is_isoc)
723 maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
724 DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
725 MAX_DMA_DESC_NUM_HS_ISOC;
726 else
727 maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
729 /* Interrupt OUT EP with mps not multiple of 4 */
730 if (hs_ep->index)
731 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
732 maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
734 return maxsize;
738 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
739 * @hs_ep: The endpoint
740 * @mask: RX/TX bytes mask to be defined
742 * Returns maximum data payload for one descriptor after analyzing endpoint
743 * characteristics.
744 * DMA descriptor transfer bytes limit depends on EP type:
745 * Control out - MPS,
746 * Isochronous - descriptor rx/tx bytes bitfield limit,
747 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
748 * have concatenations from various descriptors within one packet.
749 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
750 * to a single descriptor.
752 * Selects corresponding mask for RX/TX bytes as well.
754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
756 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
757 u32 mps = hs_ep->ep.maxpacket;
758 int dir_in = hs_ep->dir_in;
759 u32 desc_size = 0;
761 if (!hs_ep->index && !dir_in) {
762 desc_size = mps;
763 *mask = DEV_DMA_NBYTES_MASK;
764 } else if (hs_ep->isochronous) {
765 if (dir_in) {
766 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
767 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
768 } else {
769 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
770 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
772 } else {
773 desc_size = DEV_DMA_NBYTES_LIMIT;
774 *mask = DEV_DMA_NBYTES_MASK;
776 /* Round down desc_size to be mps multiple */
777 desc_size -= desc_size % mps;
780 /* Interrupt OUT EP with mps not multiple of 4 */
781 if (hs_ep->index)
782 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
783 desc_size = mps;
784 *mask = DEV_DMA_NBYTES_MASK;
787 return desc_size;
790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
791 struct dwc2_dma_desc **desc,
792 dma_addr_t dma_buff,
793 unsigned int len,
794 bool true_last)
796 int dir_in = hs_ep->dir_in;
797 u32 mps = hs_ep->ep.maxpacket;
798 u32 maxsize = 0;
799 u32 offset = 0;
800 u32 mask = 0;
801 int i;
803 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
805 hs_ep->desc_count = (len / maxsize) +
806 ((len % maxsize) ? 1 : 0);
807 if (len == 0)
808 hs_ep->desc_count = 1;
810 for (i = 0; i < hs_ep->desc_count; ++i) {
811 (*desc)->status = 0;
812 (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
813 << DEV_DMA_BUFF_STS_SHIFT);
815 if (len > maxsize) {
816 if (!hs_ep->index && !dir_in)
817 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
819 (*desc)->status |=
820 maxsize << DEV_DMA_NBYTES_SHIFT & mask;
821 (*desc)->buf = dma_buff + offset;
823 len -= maxsize;
824 offset += maxsize;
825 } else {
826 if (true_last)
827 (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
829 if (dir_in)
830 (*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
831 ((hs_ep->send_zlp && true_last) ?
832 DEV_DMA_SHORT : 0);
834 (*desc)->status |=
835 len << DEV_DMA_NBYTES_SHIFT & mask;
836 (*desc)->buf = dma_buff + offset;
839 (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
840 (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
841 << DEV_DMA_BUFF_STS_SHIFT);
842 (*desc)++;
847 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
848 * @hs_ep: The endpoint
849 * @ureq: Request to transfer
850 * @offset: offset in bytes
851 * @len: Length of the transfer
853 * This function will iterate over descriptor chain and fill its entries
854 * with corresponding information based on transfer data.
856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
857 dma_addr_t dma_buff,
858 unsigned int len)
860 struct usb_request *ureq = NULL;
861 struct dwc2_dma_desc *desc = hs_ep->desc_list;
862 struct scatterlist *sg;
863 int i;
864 u8 desc_count = 0;
866 if (hs_ep->req)
867 ureq = &hs_ep->req->req;
869 /* non-DMA sg buffer */
870 if (!ureq || !ureq->num_sgs) {
871 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
872 dma_buff, len, true);
873 return;
876 /* DMA sg buffer */
877 for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
878 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
879 sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
880 sg_is_last(sg));
881 desc_count += hs_ep->desc_count;
884 hs_ep->desc_count = desc_count;
888 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
889 * @hs_ep: The isochronous endpoint.
890 * @dma_buff: usb requests dma buffer.
891 * @len: usb request transfer length.
893 * Fills next free descriptor with the data of the arrived usb request,
894 * frame info, sets Last and IOC bits increments next_desc. If filled
895 * descriptor is not the first one, removes L bit from the previous descriptor
896 * status.
898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
899 dma_addr_t dma_buff, unsigned int len)
901 struct dwc2_dma_desc *desc;
902 struct dwc2_hsotg *hsotg = hs_ep->parent;
903 u32 index;
904 u32 mask = 0;
905 u8 pid = 0;
907 dwc2_gadget_get_desc_params(hs_ep, &mask);
909 index = hs_ep->next_desc;
910 desc = &hs_ep->desc_list[index];
912 /* Check if descriptor chain full */
913 if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
914 DEV_DMA_BUFF_STS_HREADY) {
915 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
916 return 1;
919 /* Clear L bit of previous desc if more than one entries in the chain */
920 if (hs_ep->next_desc)
921 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
923 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
924 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
926 desc->status = 0;
927 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
929 desc->buf = dma_buff;
930 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
931 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
933 if (hs_ep->dir_in) {
934 if (len)
935 pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
936 else
937 pid = 1;
938 desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
939 DEV_DMA_ISOC_PID_MASK) |
940 ((len % hs_ep->ep.maxpacket) ?
941 DEV_DMA_SHORT : 0) |
942 ((hs_ep->target_frame <<
943 DEV_DMA_ISOC_FRNUM_SHIFT) &
944 DEV_DMA_ISOC_FRNUM_MASK);
947 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
948 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
950 /* Increment frame number by interval for IN */
951 if (hs_ep->dir_in)
952 dwc2_gadget_incr_frame_num(hs_ep);
954 /* Update index of last configured entry in the chain */
955 hs_ep->next_desc++;
956 if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
957 hs_ep->next_desc = 0;
959 return 0;
963 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
964 * @hs_ep: The isochronous endpoint.
966 * Prepare descriptor chain for isochronous endpoints. Afterwards
967 * write DMA address to HW and enable the endpoint.
969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
971 struct dwc2_hsotg *hsotg = hs_ep->parent;
972 struct dwc2_hsotg_req *hs_req, *treq;
973 int index = hs_ep->index;
974 int ret;
975 int i;
976 u32 dma_reg;
977 u32 depctl;
978 u32 ctrl;
979 struct dwc2_dma_desc *desc;
981 if (list_empty(&hs_ep->queue)) {
982 hs_ep->target_frame = TARGET_FRAME_INITIAL;
983 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
984 return;
987 /* Initialize descriptor chain by Host Busy status */
988 for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
989 desc = &hs_ep->desc_list[i];
990 desc->status = 0;
991 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
992 << DEV_DMA_BUFF_STS_SHIFT);
995 hs_ep->next_desc = 0;
996 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
997 dma_addr_t dma_addr = hs_req->req.dma;
999 if (hs_req->req.num_sgs) {
1000 WARN_ON(hs_req->req.num_sgs > 1);
1001 dma_addr = sg_dma_address(hs_req->req.sg);
1003 ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1004 hs_req->req.length);
1005 if (ret)
1006 break;
1009 hs_ep->compl_desc = 0;
1010 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1011 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1013 /* write descriptor chain address to control register */
1014 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1016 ctrl = dwc2_readl(hsotg, depctl);
1017 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1018 dwc2_writel(hsotg, ctrl, depctl);
1022 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1023 * @hsotg: The controller state.
1024 * @hs_ep: The endpoint to process a request for
1025 * @hs_req: The request to start.
1026 * @continuing: True if we are doing more for the current request.
1028 * Start the given request running by setting the endpoint registers
1029 * appropriately, and writing any data to the FIFOs.
1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1032 struct dwc2_hsotg_ep *hs_ep,
1033 struct dwc2_hsotg_req *hs_req,
1034 bool continuing)
1036 struct usb_request *ureq = &hs_req->req;
1037 int index = hs_ep->index;
1038 int dir_in = hs_ep->dir_in;
1039 u32 epctrl_reg;
1040 u32 epsize_reg;
1041 u32 epsize;
1042 u32 ctrl;
1043 unsigned int length;
1044 unsigned int packets;
1045 unsigned int maxreq;
1046 unsigned int dma_reg;
1048 if (index != 0) {
1049 if (hs_ep->req && !continuing) {
1050 dev_err(hsotg->dev, "%s: active request\n", __func__);
1051 WARN_ON(1);
1052 return;
1053 } else if (hs_ep->req != hs_req && continuing) {
1054 dev_err(hsotg->dev,
1055 "%s: continue different req\n", __func__);
1056 WARN_ON(1);
1057 return;
1061 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1062 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1063 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1065 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1066 __func__, dwc2_readl(hsotg, epctrl_reg), index,
1067 hs_ep->dir_in ? "in" : "out");
1069 /* If endpoint is stalled, we will restart request later */
1070 ctrl = dwc2_readl(hsotg, epctrl_reg);
1072 if (index && ctrl & DXEPCTL_STALL) {
1073 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1074 return;
1077 length = ureq->length - ureq->actual;
1078 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1079 ureq->length, ureq->actual);
1081 if (!using_desc_dma(hsotg))
1082 maxreq = get_ep_limit(hs_ep);
1083 else
1084 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1086 if (length > maxreq) {
1087 int round = maxreq % hs_ep->ep.maxpacket;
1089 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1090 __func__, length, maxreq, round);
1092 /* round down to multiple of packets */
1093 if (round)
1094 maxreq -= round;
1096 length = maxreq;
1099 if (length)
1100 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1101 else
1102 packets = 1; /* send one packet if length is zero. */
1104 if (dir_in && index != 0)
1105 if (hs_ep->isochronous)
1106 epsize = DXEPTSIZ_MC(packets);
1107 else
1108 epsize = DXEPTSIZ_MC(1);
1109 else
1110 epsize = 0;
1113 * zero length packet should be programmed on its own and should not
1114 * be counted in DIEPTSIZ.PktCnt with other packets.
1116 if (dir_in && ureq->zero && !continuing) {
1117 /* Test if zlp is actually required. */
1118 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1119 !(ureq->length % hs_ep->ep.maxpacket))
1120 hs_ep->send_zlp = 1;
1123 epsize |= DXEPTSIZ_PKTCNT(packets);
1124 epsize |= DXEPTSIZ_XFERSIZE(length);
1126 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1127 __func__, packets, length, ureq->length, epsize, epsize_reg);
1129 /* store the request as the current one we're doing */
1130 hs_ep->req = hs_req;
1132 if (using_desc_dma(hsotg)) {
1133 u32 offset = 0;
1134 u32 mps = hs_ep->ep.maxpacket;
1136 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1137 if (!dir_in) {
1138 if (!index)
1139 length = mps;
1140 else if (length % mps)
1141 length += (mps - (length % mps));
1144 if (continuing)
1145 offset = ureq->actual;
1147 /* Fill DDMA chain entries */
1148 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1149 length);
1151 /* write descriptor chain address to control register */
1152 dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1154 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1155 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1156 } else {
1157 /* write size / packets */
1158 dwc2_writel(hsotg, epsize, epsize_reg);
1160 if (using_dma(hsotg) && !continuing && (length != 0)) {
1162 * write DMA address to control register, buffer
1163 * already synced by dwc2_hsotg_ep_queue().
1166 dwc2_writel(hsotg, ureq->dma, dma_reg);
1168 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1169 __func__, &ureq->dma, dma_reg);
1173 if (hs_ep->isochronous && hs_ep->interval == 1) {
1174 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1175 dwc2_gadget_incr_frame_num(hs_ep);
1177 if (hs_ep->target_frame & 0x1)
1178 ctrl |= DXEPCTL_SETODDFR;
1179 else
1180 ctrl |= DXEPCTL_SETEVENFR;
1183 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1185 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1187 /* For Setup request do not clear NAK */
1188 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1189 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1191 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1192 dwc2_writel(hsotg, ctrl, epctrl_reg);
1195 * set these, it seems that DMA support increments past the end
1196 * of the packet buffer so we need to calculate the length from
1197 * this information.
1199 hs_ep->size_loaded = length;
1200 hs_ep->last_load = ureq->actual;
1202 if (dir_in && !using_dma(hsotg)) {
1203 /* set these anyway, we may need them for non-periodic in */
1204 hs_ep->fifo_load = 0;
1206 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1210 * Note, trying to clear the NAK here causes problems with transmit
1211 * on the S3C6400 ending up with the TXFIFO becoming full.
1214 /* check ep is enabled */
1215 if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1216 dev_dbg(hsotg->dev,
1217 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1218 index, dwc2_readl(hsotg, epctrl_reg));
1220 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1221 __func__, dwc2_readl(hsotg, epctrl_reg));
1223 /* enable ep interrupts */
1224 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1228 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1229 * @hsotg: The device state.
1230 * @hs_ep: The endpoint the request is on.
1231 * @req: The request being processed.
1233 * We've been asked to queue a request, so ensure that the memory buffer
1234 * is correctly setup for DMA. If we've been passed an extant DMA address
1235 * then ensure the buffer has been synced to memory. If our buffer has no
1236 * DMA memory, then we map the memory and mark our request to allow us to
1237 * cleanup on completion.
1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1240 struct dwc2_hsotg_ep *hs_ep,
1241 struct usb_request *req)
1243 int ret;
1245 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1246 if (ret)
1247 goto dma_error;
1249 return 0;
1251 dma_error:
1252 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1253 __func__, req->buf, req->length);
1255 return -EIO;
1258 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1259 struct dwc2_hsotg_ep *hs_ep,
1260 struct dwc2_hsotg_req *hs_req)
1262 void *req_buf = hs_req->req.buf;
1264 /* If dma is not being used or buffer is aligned */
1265 if (!using_dma(hsotg) || !((long)req_buf & 3))
1266 return 0;
1268 WARN_ON(hs_req->saved_req_buf);
1270 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1271 hs_ep->ep.name, req_buf, hs_req->req.length);
1273 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1274 if (!hs_req->req.buf) {
1275 hs_req->req.buf = req_buf;
1276 dev_err(hsotg->dev,
1277 "%s: unable to allocate memory for bounce buffer\n",
1278 __func__);
1279 return -ENOMEM;
1282 /* Save actual buffer */
1283 hs_req->saved_req_buf = req_buf;
1285 if (hs_ep->dir_in)
1286 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1287 return 0;
1290 static void
1291 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1292 struct dwc2_hsotg_ep *hs_ep,
1293 struct dwc2_hsotg_req *hs_req)
1295 /* If dma is not being used or buffer was aligned */
1296 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1297 return;
1299 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1300 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1302 /* Copy data from bounce buffer on successful out transfer */
1303 if (!hs_ep->dir_in && !hs_req->req.status)
1304 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1305 hs_req->req.actual);
1307 /* Free bounce buffer */
1308 kfree(hs_req->req.buf);
1310 hs_req->req.buf = hs_req->saved_req_buf;
1311 hs_req->saved_req_buf = NULL;
1315 * dwc2_gadget_target_frame_elapsed - Checks target frame
1316 * @hs_ep: The driver endpoint to check
1318 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1319 * corresponding transfer.
1321 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1323 struct dwc2_hsotg *hsotg = hs_ep->parent;
1324 u32 target_frame = hs_ep->target_frame;
1325 u32 current_frame = hsotg->frame_number;
1326 bool frame_overrun = hs_ep->frame_overrun;
1328 if (!frame_overrun && current_frame >= target_frame)
1329 return true;
1331 if (frame_overrun && current_frame >= target_frame &&
1332 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1333 return true;
1335 return false;
1339 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1340 * @hsotg: The driver state
1341 * @hs_ep: the ep descriptor chain is for
1343 * Called to update EP0 structure's pointers depend on stage of
1344 * control transfer.
1346 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1347 struct dwc2_hsotg_ep *hs_ep)
1349 switch (hsotg->ep0_state) {
1350 case DWC2_EP0_SETUP:
1351 case DWC2_EP0_STATUS_OUT:
1352 hs_ep->desc_list = hsotg->setup_desc[0];
1353 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1354 break;
1355 case DWC2_EP0_DATA_IN:
1356 case DWC2_EP0_STATUS_IN:
1357 hs_ep->desc_list = hsotg->ctrl_in_desc;
1358 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1359 break;
1360 case DWC2_EP0_DATA_OUT:
1361 hs_ep->desc_list = hsotg->ctrl_out_desc;
1362 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1363 break;
1364 default:
1365 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1366 hsotg->ep0_state);
1367 return -EINVAL;
1370 return 0;
1373 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1374 gfp_t gfp_flags)
1376 struct dwc2_hsotg_req *hs_req = our_req(req);
1377 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1378 struct dwc2_hsotg *hs = hs_ep->parent;
1379 bool first;
1380 int ret;
1381 u32 maxsize = 0;
1382 u32 mask = 0;
1385 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1386 ep->name, req, req->length, req->buf, req->no_interrupt,
1387 req->zero, req->short_not_ok);
1389 /* Prevent new request submission when controller is suspended */
1390 if (hs->lx_state != DWC2_L0) {
1391 dev_dbg(hs->dev, "%s: submit request only in active state\n",
1392 __func__);
1393 return -EAGAIN;
1396 /* initialise status of the request */
1397 INIT_LIST_HEAD(&hs_req->queue);
1398 req->actual = 0;
1399 req->status = -EINPROGRESS;
1401 /* Don't queue ISOC request if length greater than mps*mc */
1402 if (hs_ep->isochronous &&
1403 req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1404 dev_err(hs->dev, "req length > maxpacket*mc\n");
1405 return -EINVAL;
1408 /* In DDMA mode for ISOC's don't queue request if length greater
1409 * than descriptor limits.
1411 if (using_desc_dma(hs) && hs_ep->isochronous) {
1412 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1413 if (hs_ep->dir_in && req->length > maxsize) {
1414 dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1415 req->length, maxsize);
1416 return -EINVAL;
1419 if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1420 dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1421 req->length, hs_ep->ep.maxpacket);
1422 return -EINVAL;
1426 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1427 if (ret)
1428 return ret;
1430 /* if we're using DMA, sync the buffers as necessary */
1431 if (using_dma(hs)) {
1432 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1433 if (ret)
1434 return ret;
1436 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1437 if (using_desc_dma(hs) && !hs_ep->index) {
1438 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1439 if (ret)
1440 return ret;
1443 first = list_empty(&hs_ep->queue);
1444 list_add_tail(&hs_req->queue, &hs_ep->queue);
1447 * Handle DDMA isochronous transfers separately - just add new entry
1448 * to the descriptor chain.
1449 * Transfer will be started once SW gets either one of NAK or
1450 * OutTknEpDis interrupts.
1452 if (using_desc_dma(hs) && hs_ep->isochronous) {
1453 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1454 dma_addr_t dma_addr = hs_req->req.dma;
1456 if (hs_req->req.num_sgs) {
1457 WARN_ON(hs_req->req.num_sgs > 1);
1458 dma_addr = sg_dma_address(hs_req->req.sg);
1460 dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1461 hs_req->req.length);
1463 return 0;
1466 /* Change EP direction if status phase request is after data out */
1467 if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1468 hs->ep0_state == DWC2_EP0_DATA_OUT)
1469 hs_ep->dir_in = 1;
1471 if (first) {
1472 if (!hs_ep->isochronous) {
1473 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1474 return 0;
1477 /* Update current frame number value. */
1478 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1479 while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1480 dwc2_gadget_incr_frame_num(hs_ep);
1481 /* Update current frame number value once more as it
1482 * changes here.
1484 hs->frame_number = dwc2_hsotg_read_frameno(hs);
1487 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1488 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1490 return 0;
1493 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1494 gfp_t gfp_flags)
1496 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1497 struct dwc2_hsotg *hs = hs_ep->parent;
1498 unsigned long flags = 0;
1499 int ret = 0;
1501 spin_lock_irqsave(&hs->lock, flags);
1502 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1503 spin_unlock_irqrestore(&hs->lock, flags);
1505 return ret;
1508 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1509 struct usb_request *req)
1511 struct dwc2_hsotg_req *hs_req = our_req(req);
1513 kfree(hs_req);
1517 * dwc2_hsotg_complete_oursetup - setup completion callback
1518 * @ep: The endpoint the request was on.
1519 * @req: The request completed.
1521 * Called on completion of any requests the driver itself
1522 * submitted that need cleaning up.
1524 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1525 struct usb_request *req)
1527 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1528 struct dwc2_hsotg *hsotg = hs_ep->parent;
1530 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1532 dwc2_hsotg_ep_free_request(ep, req);
1536 * ep_from_windex - convert control wIndex value to endpoint
1537 * @hsotg: The driver state.
1538 * @windex: The control request wIndex field (in host order).
1540 * Convert the given wIndex into a pointer to an driver endpoint
1541 * structure, or return NULL if it is not a valid endpoint.
1543 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1544 u32 windex)
1546 struct dwc2_hsotg_ep *ep;
1547 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1548 int idx = windex & 0x7F;
1550 if (windex >= 0x100)
1551 return NULL;
1553 if (idx > hsotg->num_of_eps)
1554 return NULL;
1556 ep = index_to_ep(hsotg, idx, dir);
1558 if (idx && ep->dir_in != dir)
1559 return NULL;
1561 return ep;
1565 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1566 * @hsotg: The driver state.
1567 * @testmode: requested usb test mode
1568 * Enable usb Test Mode requested by the Host.
1570 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1572 int dctl = dwc2_readl(hsotg, DCTL);
1574 dctl &= ~DCTL_TSTCTL_MASK;
1575 switch (testmode) {
1576 case USB_TEST_J:
1577 case USB_TEST_K:
1578 case USB_TEST_SE0_NAK:
1579 case USB_TEST_PACKET:
1580 case USB_TEST_FORCE_ENABLE:
1581 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1582 break;
1583 default:
1584 return -EINVAL;
1586 dwc2_writel(hsotg, dctl, DCTL);
1587 return 0;
1591 * dwc2_hsotg_send_reply - send reply to control request
1592 * @hsotg: The device state
1593 * @ep: Endpoint 0
1594 * @buff: Buffer for request
1595 * @length: Length of reply.
1597 * Create a request and queue it on the given endpoint. This is useful as
1598 * an internal method of sending replies to certain control requests, etc.
1600 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1601 struct dwc2_hsotg_ep *ep,
1602 void *buff,
1603 int length)
1605 struct usb_request *req;
1606 int ret;
1608 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1610 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1611 hsotg->ep0_reply = req;
1612 if (!req) {
1613 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1614 return -ENOMEM;
1617 req->buf = hsotg->ep0_buff;
1618 req->length = length;
1620 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1621 * STATUS stage.
1623 req->zero = 0;
1624 req->complete = dwc2_hsotg_complete_oursetup;
1626 if (length)
1627 memcpy(req->buf, buff, length);
1629 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1630 if (ret) {
1631 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1632 return ret;
1635 return 0;
1639 * dwc2_hsotg_process_req_status - process request GET_STATUS
1640 * @hsotg: The device state
1641 * @ctrl: USB control request
1643 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1644 struct usb_ctrlrequest *ctrl)
1646 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1647 struct dwc2_hsotg_ep *ep;
1648 __le16 reply;
1649 u16 status;
1650 int ret;
1652 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1654 if (!ep0->dir_in) {
1655 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1656 return -EINVAL;
1659 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1660 case USB_RECIP_DEVICE:
1661 status = hsotg->gadget.is_selfpowered <<
1662 USB_DEVICE_SELF_POWERED;
1663 status |= hsotg->remote_wakeup_allowed <<
1664 USB_DEVICE_REMOTE_WAKEUP;
1665 reply = cpu_to_le16(status);
1666 break;
1668 case USB_RECIP_INTERFACE:
1669 /* currently, the data result should be zero */
1670 reply = cpu_to_le16(0);
1671 break;
1673 case USB_RECIP_ENDPOINT:
1674 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1675 if (!ep)
1676 return -ENOENT;
1678 reply = cpu_to_le16(ep->halted ? 1 : 0);
1679 break;
1681 default:
1682 return 0;
1685 if (le16_to_cpu(ctrl->wLength) != 2)
1686 return -EINVAL;
1688 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1689 if (ret) {
1690 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1691 return ret;
1694 return 1;
1697 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1700 * get_ep_head - return the first request on the endpoint
1701 * @hs_ep: The controller endpoint to get
1703 * Get the first request on the endpoint.
1705 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1707 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1708 queue);
1712 * dwc2_gadget_start_next_request - Starts next request from ep queue
1713 * @hs_ep: Endpoint structure
1715 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1716 * in its handler. Hence we need to unmask it here to be able to do
1717 * resynchronization.
1719 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1721 u32 mask;
1722 struct dwc2_hsotg *hsotg = hs_ep->parent;
1723 int dir_in = hs_ep->dir_in;
1724 struct dwc2_hsotg_req *hs_req;
1725 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1727 if (!list_empty(&hs_ep->queue)) {
1728 hs_req = get_ep_head(hs_ep);
1729 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1730 return;
1732 if (!hs_ep->isochronous)
1733 return;
1735 if (dir_in) {
1736 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1737 __func__);
1738 } else {
1739 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1740 __func__);
1741 mask = dwc2_readl(hsotg, epmsk_reg);
1742 mask |= DOEPMSK_OUTTKNEPDISMSK;
1743 dwc2_writel(hsotg, mask, epmsk_reg);
1748 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1749 * @hsotg: The device state
1750 * @ctrl: USB control request
1752 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1753 struct usb_ctrlrequest *ctrl)
1755 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1756 struct dwc2_hsotg_req *hs_req;
1757 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1758 struct dwc2_hsotg_ep *ep;
1759 int ret;
1760 bool halted;
1761 u32 recip;
1762 u32 wValue;
1763 u32 wIndex;
1765 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1766 __func__, set ? "SET" : "CLEAR");
1768 wValue = le16_to_cpu(ctrl->wValue);
1769 wIndex = le16_to_cpu(ctrl->wIndex);
1770 recip = ctrl->bRequestType & USB_RECIP_MASK;
1772 switch (recip) {
1773 case USB_RECIP_DEVICE:
1774 switch (wValue) {
1775 case USB_DEVICE_REMOTE_WAKEUP:
1776 if (set)
1777 hsotg->remote_wakeup_allowed = 1;
1778 else
1779 hsotg->remote_wakeup_allowed = 0;
1780 break;
1782 case USB_DEVICE_TEST_MODE:
1783 if ((wIndex & 0xff) != 0)
1784 return -EINVAL;
1785 if (!set)
1786 return -EINVAL;
1788 hsotg->test_mode = wIndex >> 8;
1789 break;
1790 default:
1791 return -ENOENT;
1794 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1795 if (ret) {
1796 dev_err(hsotg->dev,
1797 "%s: failed to send reply\n", __func__);
1798 return ret;
1800 break;
1802 case USB_RECIP_ENDPOINT:
1803 ep = ep_from_windex(hsotg, wIndex);
1804 if (!ep) {
1805 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1806 __func__, wIndex);
1807 return -ENOENT;
1810 switch (wValue) {
1811 case USB_ENDPOINT_HALT:
1812 halted = ep->halted;
1814 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1816 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1817 if (ret) {
1818 dev_err(hsotg->dev,
1819 "%s: failed to send reply\n", __func__);
1820 return ret;
1824 * we have to complete all requests for ep if it was
1825 * halted, and the halt was cleared by CLEAR_FEATURE
1828 if (!set && halted) {
1830 * If we have request in progress,
1831 * then complete it
1833 if (ep->req) {
1834 hs_req = ep->req;
1835 ep->req = NULL;
1836 list_del_init(&hs_req->queue);
1837 if (hs_req->req.complete) {
1838 spin_unlock(&hsotg->lock);
1839 usb_gadget_giveback_request(
1840 &ep->ep, &hs_req->req);
1841 spin_lock(&hsotg->lock);
1845 /* If we have pending request, then start it */
1846 if (!ep->req)
1847 dwc2_gadget_start_next_request(ep);
1850 break;
1852 default:
1853 return -ENOENT;
1855 break;
1856 default:
1857 return -ENOENT;
1859 return 1;
1862 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1865 * dwc2_hsotg_stall_ep0 - stall ep0
1866 * @hsotg: The device state
1868 * Set stall for ep0 as response for setup request.
1870 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1872 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1873 u32 reg;
1874 u32 ctrl;
1876 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1877 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1880 * DxEPCTL_Stall will be cleared by EP once it has
1881 * taken effect, so no need to clear later.
1884 ctrl = dwc2_readl(hsotg, reg);
1885 ctrl |= DXEPCTL_STALL;
1886 ctrl |= DXEPCTL_CNAK;
1887 dwc2_writel(hsotg, ctrl, reg);
1889 dev_dbg(hsotg->dev,
1890 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1891 ctrl, reg, dwc2_readl(hsotg, reg));
1894 * complete won't be called, so we enqueue
1895 * setup request here
1897 dwc2_hsotg_enqueue_setup(hsotg);
1901 * dwc2_hsotg_process_control - process a control request
1902 * @hsotg: The device state
1903 * @ctrl: The control request received
1905 * The controller has received the SETUP phase of a control request, and
1906 * needs to work out what to do next (and whether to pass it on to the
1907 * gadget driver).
1909 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1910 struct usb_ctrlrequest *ctrl)
1912 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1913 int ret = 0;
1914 u32 dcfg;
1916 dev_dbg(hsotg->dev,
1917 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1918 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1919 ctrl->wIndex, ctrl->wLength);
1921 if (ctrl->wLength == 0) {
1922 ep0->dir_in = 1;
1923 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1924 } else if (ctrl->bRequestType & USB_DIR_IN) {
1925 ep0->dir_in = 1;
1926 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1927 } else {
1928 ep0->dir_in = 0;
1929 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1932 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1933 switch (ctrl->bRequest) {
1934 case USB_REQ_SET_ADDRESS:
1935 hsotg->connected = 1;
1936 dcfg = dwc2_readl(hsotg, DCFG);
1937 dcfg &= ~DCFG_DEVADDR_MASK;
1938 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1939 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1940 dwc2_writel(hsotg, dcfg, DCFG);
1942 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1944 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1945 return;
1947 case USB_REQ_GET_STATUS:
1948 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1949 break;
1951 case USB_REQ_CLEAR_FEATURE:
1952 case USB_REQ_SET_FEATURE:
1953 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1954 break;
1958 /* as a fallback, try delivering it to the driver to deal with */
1960 if (ret == 0 && hsotg->driver) {
1961 spin_unlock(&hsotg->lock);
1962 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1963 spin_lock(&hsotg->lock);
1964 if (ret < 0)
1965 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1968 hsotg->delayed_status = false;
1969 if (ret == USB_GADGET_DELAYED_STATUS)
1970 hsotg->delayed_status = true;
1973 * the request is either unhandlable, or is not formatted correctly
1974 * so respond with a STALL for the status stage to indicate failure.
1977 if (ret < 0)
1978 dwc2_hsotg_stall_ep0(hsotg);
1982 * dwc2_hsotg_complete_setup - completion of a setup transfer
1983 * @ep: The endpoint the request was on.
1984 * @req: The request completed.
1986 * Called on completion of any requests the driver itself submitted for
1987 * EP0 setup packets
1989 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1990 struct usb_request *req)
1992 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1993 struct dwc2_hsotg *hsotg = hs_ep->parent;
1995 if (req->status < 0) {
1996 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1997 return;
2000 spin_lock(&hsotg->lock);
2001 if (req->actual == 0)
2002 dwc2_hsotg_enqueue_setup(hsotg);
2003 else
2004 dwc2_hsotg_process_control(hsotg, req->buf);
2005 spin_unlock(&hsotg->lock);
2009 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2010 * @hsotg: The device state.
2012 * Enqueue a request on EP0 if necessary to received any SETUP packets
2013 * received from the host.
2015 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2017 struct usb_request *req = hsotg->ctrl_req;
2018 struct dwc2_hsotg_req *hs_req = our_req(req);
2019 int ret;
2021 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2023 req->zero = 0;
2024 req->length = 8;
2025 req->buf = hsotg->ctrl_buff;
2026 req->complete = dwc2_hsotg_complete_setup;
2028 if (!list_empty(&hs_req->queue)) {
2029 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2030 return;
2033 hsotg->eps_out[0]->dir_in = 0;
2034 hsotg->eps_out[0]->send_zlp = 0;
2035 hsotg->ep0_state = DWC2_EP0_SETUP;
2037 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2038 if (ret < 0) {
2039 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2041 * Don't think there's much we can do other than watch the
2042 * driver fail.
2047 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2048 struct dwc2_hsotg_ep *hs_ep)
2050 u32 ctrl;
2051 u8 index = hs_ep->index;
2052 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2053 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2055 if (hs_ep->dir_in)
2056 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2057 index);
2058 else
2059 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2060 index);
2061 if (using_desc_dma(hsotg)) {
2062 /* Not specific buffer needed for ep0 ZLP */
2063 dma_addr_t dma = hs_ep->desc_list_dma;
2065 if (!index)
2066 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2068 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2069 } else {
2070 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2071 DXEPTSIZ_XFERSIZE(0),
2072 epsiz_reg);
2075 ctrl = dwc2_readl(hsotg, epctl_reg);
2076 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
2077 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2078 ctrl |= DXEPCTL_USBACTEP;
2079 dwc2_writel(hsotg, ctrl, epctl_reg);
2083 * dwc2_hsotg_complete_request - complete a request given to us
2084 * @hsotg: The device state.
2085 * @hs_ep: The endpoint the request was on.
2086 * @hs_req: The request to complete.
2087 * @result: The result code (0 => Ok, otherwise errno)
2089 * The given request has finished, so call the necessary completion
2090 * if it has one and then look to see if we can start a new request
2091 * on the endpoint.
2093 * Note, expects the ep to already be locked as appropriate.
2095 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2096 struct dwc2_hsotg_ep *hs_ep,
2097 struct dwc2_hsotg_req *hs_req,
2098 int result)
2100 if (!hs_req) {
2101 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2102 return;
2105 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2106 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2109 * only replace the status if we've not already set an error
2110 * from a previous transaction
2113 if (hs_req->req.status == -EINPROGRESS)
2114 hs_req->req.status = result;
2116 if (using_dma(hsotg))
2117 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2119 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2121 hs_ep->req = NULL;
2122 list_del_init(&hs_req->queue);
2125 * call the complete request with the locks off, just in case the
2126 * request tries to queue more work for this endpoint.
2129 if (hs_req->req.complete) {
2130 spin_unlock(&hsotg->lock);
2131 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2132 spin_lock(&hsotg->lock);
2135 /* In DDMA don't need to proceed to starting of next ISOC request */
2136 if (using_desc_dma(hsotg) && hs_ep->isochronous)
2137 return;
2140 * Look to see if there is anything else to do. Note, the completion
2141 * of the previous request may have caused a new request to be started
2142 * so be careful when doing this.
2145 if (!hs_ep->req && result >= 0)
2146 dwc2_gadget_start_next_request(hs_ep);
2150 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2151 * @hs_ep: The endpoint the request was on.
2153 * Get first request from the ep queue, determine descriptor on which complete
2154 * happened. SW discovers which descriptor currently in use by HW, adjusts
2155 * dma_address and calculates index of completed descriptor based on the value
2156 * of DEPDMA register. Update actual length of request, giveback to gadget.
2158 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2160 struct dwc2_hsotg *hsotg = hs_ep->parent;
2161 struct dwc2_hsotg_req *hs_req;
2162 struct usb_request *ureq;
2163 u32 desc_sts;
2164 u32 mask;
2166 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2168 /* Process only descriptors with buffer status set to DMA done */
2169 while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2170 DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2172 hs_req = get_ep_head(hs_ep);
2173 if (!hs_req) {
2174 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2175 return;
2177 ureq = &hs_req->req;
2179 /* Check completion status */
2180 if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2181 DEV_DMA_STS_SUCC) {
2182 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2183 DEV_DMA_ISOC_RX_NBYTES_MASK;
2184 ureq->actual = ureq->length - ((desc_sts & mask) >>
2185 DEV_DMA_ISOC_NBYTES_SHIFT);
2187 /* Adjust actual len for ISOC Out if len is
2188 * not align of 4
2190 if (!hs_ep->dir_in && ureq->length & 0x3)
2191 ureq->actual += 4 - (ureq->length & 0x3);
2193 /* Set actual frame number for completed transfers */
2194 ureq->frame_number =
2195 (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2196 DEV_DMA_ISOC_FRNUM_SHIFT;
2199 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2201 hs_ep->compl_desc++;
2202 if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2203 hs_ep->compl_desc = 0;
2204 desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2209 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2210 * @hs_ep: The isochronous endpoint.
2212 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2213 * interrupt. Reset target frame and next_desc to allow to start
2214 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2215 * interrupt for OUT direction.
2217 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2219 struct dwc2_hsotg *hsotg = hs_ep->parent;
2221 if (!hs_ep->dir_in)
2222 dwc2_flush_rx_fifo(hsotg);
2223 dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2225 hs_ep->target_frame = TARGET_FRAME_INITIAL;
2226 hs_ep->next_desc = 0;
2227 hs_ep->compl_desc = 0;
2231 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2232 * @hsotg: The device state.
2233 * @ep_idx: The endpoint index for the data
2234 * @size: The size of data in the fifo, in bytes
2236 * The FIFO status shows there is data to read from the FIFO for a given
2237 * endpoint, so sort out whether we need to read the data into a request
2238 * that has been made for that endpoint.
2240 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2242 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2243 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2244 int to_read;
2245 int max_req;
2246 int read_ptr;
2248 if (!hs_req) {
2249 u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2250 int ptr;
2252 dev_dbg(hsotg->dev,
2253 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2254 __func__, size, ep_idx, epctl);
2256 /* dump the data from the FIFO, we've nothing we can do */
2257 for (ptr = 0; ptr < size; ptr += 4)
2258 (void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2260 return;
2263 to_read = size;
2264 read_ptr = hs_req->req.actual;
2265 max_req = hs_req->req.length - read_ptr;
2267 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2268 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2270 if (to_read > max_req) {
2272 * more data appeared than we where willing
2273 * to deal with in this request.
2276 /* currently we don't deal this */
2277 WARN_ON_ONCE(1);
2280 hs_ep->total_data += to_read;
2281 hs_req->req.actual += to_read;
2282 to_read = DIV_ROUND_UP(to_read, 4);
2285 * note, we might over-write the buffer end by 3 bytes depending on
2286 * alignment of the data.
2288 dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2289 hs_req->req.buf + read_ptr, to_read);
2293 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2294 * @hsotg: The device instance
2295 * @dir_in: If IN zlp
2297 * Generate a zero-length IN packet request for terminating a SETUP
2298 * transaction.
2300 * Note, since we don't write any data to the TxFIFO, then it is
2301 * currently believed that we do not need to wait for any space in
2302 * the TxFIFO.
2304 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2306 /* eps_out[0] is used in both directions */
2307 hsotg->eps_out[0]->dir_in = dir_in;
2308 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2310 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2313 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2314 u32 epctl_reg)
2316 u32 ctrl;
2318 ctrl = dwc2_readl(hsotg, epctl_reg);
2319 if (ctrl & DXEPCTL_EOFRNUM)
2320 ctrl |= DXEPCTL_SETEVENFR;
2321 else
2322 ctrl |= DXEPCTL_SETODDFR;
2323 dwc2_writel(hsotg, ctrl, epctl_reg);
2327 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2328 * @hs_ep - The endpoint on which transfer went
2330 * Iterate over endpoints descriptor chain and get info on bytes remained
2331 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2333 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2335 const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2336 struct dwc2_hsotg *hsotg = hs_ep->parent;
2337 unsigned int bytes_rem = 0;
2338 unsigned int bytes_rem_correction = 0;
2339 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2340 int i;
2341 u32 status;
2342 u32 mps = hs_ep->ep.maxpacket;
2343 int dir_in = hs_ep->dir_in;
2345 if (!desc)
2346 return -EINVAL;
2348 /* Interrupt OUT EP with mps not multiple of 4 */
2349 if (hs_ep->index)
2350 if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2351 bytes_rem_correction = 4 - (mps % 4);
2353 for (i = 0; i < hs_ep->desc_count; ++i) {
2354 status = desc->status;
2355 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2356 bytes_rem -= bytes_rem_correction;
2358 if (status & DEV_DMA_STS_MASK)
2359 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2360 i, status & DEV_DMA_STS_MASK);
2362 if (status & DEV_DMA_L)
2363 break;
2365 desc++;
2368 return bytes_rem;
2372 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2373 * @hsotg: The device instance
2374 * @epnum: The endpoint received from
2376 * The RXFIFO has delivered an OutDone event, which means that the data
2377 * transfer for an OUT endpoint has been completed, either by a short
2378 * packet or by the finish of a transfer.
2380 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2382 u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2383 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2384 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2385 struct usb_request *req = &hs_req->req;
2386 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2387 int result = 0;
2389 if (!hs_req) {
2390 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2391 return;
2394 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2395 dev_dbg(hsotg->dev, "zlp packet received\n");
2396 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2397 dwc2_hsotg_enqueue_setup(hsotg);
2398 return;
2401 if (using_desc_dma(hsotg))
2402 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2404 if (using_dma(hsotg)) {
2405 unsigned int size_done;
2408 * Calculate the size of the transfer by checking how much
2409 * is left in the endpoint size register and then working it
2410 * out from the amount we loaded for the transfer.
2412 * We need to do this as DMA pointers are always 32bit aligned
2413 * so may overshoot/undershoot the transfer.
2416 size_done = hs_ep->size_loaded - size_left;
2417 size_done += hs_ep->last_load;
2419 req->actual = size_done;
2422 /* if there is more request to do, schedule new transfer */
2423 if (req->actual < req->length && size_left == 0) {
2424 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2425 return;
2428 if (req->actual < req->length && req->short_not_ok) {
2429 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2430 __func__, req->actual, req->length);
2433 * todo - what should we return here? there's no one else
2434 * even bothering to check the status.
2438 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2439 if (!using_desc_dma(hsotg) && epnum == 0 &&
2440 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2441 /* Move to STATUS IN */
2442 if (!hsotg->delayed_status)
2443 dwc2_hsotg_ep0_zlp(hsotg, true);
2447 * Slave mode OUT transfers do not go through XferComplete so
2448 * adjust the ISOC parity here.
2450 if (!using_dma(hsotg)) {
2451 if (hs_ep->isochronous && hs_ep->interval == 1)
2452 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2453 else if (hs_ep->isochronous && hs_ep->interval > 1)
2454 dwc2_gadget_incr_frame_num(hs_ep);
2457 /* Set actual frame number for completed transfers */
2458 if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2459 req->frame_number = hsotg->frame_number;
2461 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2465 * dwc2_hsotg_handle_rx - RX FIFO has data
2466 * @hsotg: The device instance
2468 * The IRQ handler has detected that the RX FIFO has some data in it
2469 * that requires processing, so find out what is in there and do the
2470 * appropriate read.
2472 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2473 * chunks, so if you have x packets received on an endpoint you'll get x
2474 * FIFO events delivered, each with a packet's worth of data in it.
2476 * When using DMA, we should not be processing events from the RXFIFO
2477 * as the actual data should be sent to the memory directly and we turn
2478 * on the completion interrupts to get notifications of transfer completion.
2480 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2482 u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2483 u32 epnum, status, size;
2485 WARN_ON(using_dma(hsotg));
2487 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2488 status = grxstsr & GRXSTS_PKTSTS_MASK;
2490 size = grxstsr & GRXSTS_BYTECNT_MASK;
2491 size >>= GRXSTS_BYTECNT_SHIFT;
2493 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2494 __func__, grxstsr, size, epnum);
2496 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2497 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2498 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2499 break;
2501 case GRXSTS_PKTSTS_OUTDONE:
2502 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2503 dwc2_hsotg_read_frameno(hsotg));
2505 if (!using_dma(hsotg))
2506 dwc2_hsotg_handle_outdone(hsotg, epnum);
2507 break;
2509 case GRXSTS_PKTSTS_SETUPDONE:
2510 dev_dbg(hsotg->dev,
2511 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2512 dwc2_hsotg_read_frameno(hsotg),
2513 dwc2_readl(hsotg, DOEPCTL(0)));
2515 * Call dwc2_hsotg_handle_outdone here if it was not called from
2516 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2517 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2519 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2520 dwc2_hsotg_handle_outdone(hsotg, epnum);
2521 break;
2523 case GRXSTS_PKTSTS_OUTRX:
2524 dwc2_hsotg_rx_data(hsotg, epnum, size);
2525 break;
2527 case GRXSTS_PKTSTS_SETUPRX:
2528 dev_dbg(hsotg->dev,
2529 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2530 dwc2_hsotg_read_frameno(hsotg),
2531 dwc2_readl(hsotg, DOEPCTL(0)));
2533 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2535 dwc2_hsotg_rx_data(hsotg, epnum, size);
2536 break;
2538 default:
2539 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2540 __func__, grxstsr);
2542 dwc2_hsotg_dump(hsotg);
2543 break;
2548 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2549 * @mps: The maximum packet size in bytes.
2551 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2553 switch (mps) {
2554 case 64:
2555 return D0EPCTL_MPS_64;
2556 case 32:
2557 return D0EPCTL_MPS_32;
2558 case 16:
2559 return D0EPCTL_MPS_16;
2560 case 8:
2561 return D0EPCTL_MPS_8;
2564 /* bad max packet size, warn and return invalid result */
2565 WARN_ON(1);
2566 return (u32)-1;
2570 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2571 * @hsotg: The driver state.
2572 * @ep: The index number of the endpoint
2573 * @mps: The maximum packet size in bytes
2574 * @mc: The multicount value
2575 * @dir_in: True if direction is in.
2577 * Configure the maximum packet size for the given endpoint, updating
2578 * the hardware control registers to reflect this.
2580 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2581 unsigned int ep, unsigned int mps,
2582 unsigned int mc, unsigned int dir_in)
2584 struct dwc2_hsotg_ep *hs_ep;
2585 u32 reg;
2587 hs_ep = index_to_ep(hsotg, ep, dir_in);
2588 if (!hs_ep)
2589 return;
2591 if (ep == 0) {
2592 u32 mps_bytes = mps;
2594 /* EP0 is a special case */
2595 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2596 if (mps > 3)
2597 goto bad_mps;
2598 hs_ep->ep.maxpacket = mps_bytes;
2599 hs_ep->mc = 1;
2600 } else {
2601 if (mps > 1024)
2602 goto bad_mps;
2603 hs_ep->mc = mc;
2604 if (mc > 3)
2605 goto bad_mps;
2606 hs_ep->ep.maxpacket = mps;
2609 if (dir_in) {
2610 reg = dwc2_readl(hsotg, DIEPCTL(ep));
2611 reg &= ~DXEPCTL_MPS_MASK;
2612 reg |= mps;
2613 dwc2_writel(hsotg, reg, DIEPCTL(ep));
2614 } else {
2615 reg = dwc2_readl(hsotg, DOEPCTL(ep));
2616 reg &= ~DXEPCTL_MPS_MASK;
2617 reg |= mps;
2618 dwc2_writel(hsotg, reg, DOEPCTL(ep));
2621 return;
2623 bad_mps:
2624 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2628 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2629 * @hsotg: The driver state
2630 * @idx: The index for the endpoint (0..15)
2632 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2634 dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2635 GRSTCTL);
2637 /* wait until the fifo is flushed */
2638 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2639 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2640 __func__);
2644 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2645 * @hsotg: The driver state
2646 * @hs_ep: The driver endpoint to check.
2648 * Check to see if there is a request that has data to send, and if so
2649 * make an attempt to write data into the FIFO.
2651 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2652 struct dwc2_hsotg_ep *hs_ep)
2654 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2656 if (!hs_ep->dir_in || !hs_req) {
2658 * if request is not enqueued, we disable interrupts
2659 * for endpoints, excepting ep0
2661 if (hs_ep->index != 0)
2662 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2663 hs_ep->dir_in, 0);
2664 return 0;
2667 if (hs_req->req.actual < hs_req->req.length) {
2668 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2669 hs_ep->index);
2670 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2673 return 0;
2677 * dwc2_hsotg_complete_in - complete IN transfer
2678 * @hsotg: The device state.
2679 * @hs_ep: The endpoint that has just completed.
2681 * An IN transfer has been completed, update the transfer's state and then
2682 * call the relevant completion routines.
2684 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2685 struct dwc2_hsotg_ep *hs_ep)
2687 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2688 u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2689 int size_left, size_done;
2691 if (!hs_req) {
2692 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2693 return;
2696 /* Finish ZLP handling for IN EP0 transactions */
2697 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2698 dev_dbg(hsotg->dev, "zlp packet sent\n");
2701 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2702 * changed to IN. Change back to complete OUT transfer request
2704 hs_ep->dir_in = 0;
2706 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2707 if (hsotg->test_mode) {
2708 int ret;
2710 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2711 if (ret < 0) {
2712 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2713 hsotg->test_mode);
2714 dwc2_hsotg_stall_ep0(hsotg);
2715 return;
2718 dwc2_hsotg_enqueue_setup(hsotg);
2719 return;
2723 * Calculate the size of the transfer by checking how much is left
2724 * in the endpoint size register and then working it out from
2725 * the amount we loaded for the transfer.
2727 * We do this even for DMA, as the transfer may have incremented
2728 * past the end of the buffer (DMA transfers are always 32bit
2729 * aligned).
2731 if (using_desc_dma(hsotg)) {
2732 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2733 if (size_left < 0)
2734 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2735 size_left);
2736 } else {
2737 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2740 size_done = hs_ep->size_loaded - size_left;
2741 size_done += hs_ep->last_load;
2743 if (hs_req->req.actual != size_done)
2744 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2745 __func__, hs_req->req.actual, size_done);
2747 hs_req->req.actual = size_done;
2748 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2749 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2751 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2752 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2753 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2754 return;
2757 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2758 if (hs_ep->send_zlp) {
2759 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2760 hs_ep->send_zlp = 0;
2761 /* transfer will be completed on next complete interrupt */
2762 return;
2765 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2766 /* Move to STATUS OUT */
2767 dwc2_hsotg_ep0_zlp(hsotg, false);
2768 return;
2771 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2775 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2776 * @hsotg: The device state.
2777 * @idx: Index of ep.
2778 * @dir_in: Endpoint direction 1-in 0-out.
2780 * Reads for endpoint with given index and direction, by masking
2781 * epint_reg with coresponding mask.
2783 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2784 unsigned int idx, int dir_in)
2786 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2787 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2788 u32 ints;
2789 u32 mask;
2790 u32 diepempmsk;
2792 mask = dwc2_readl(hsotg, epmsk_reg);
2793 diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2794 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2795 mask |= DXEPINT_SETUP_RCVD;
2797 ints = dwc2_readl(hsotg, epint_reg);
2798 ints &= mask;
2799 return ints;
2803 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2804 * @hs_ep: The endpoint on which interrupt is asserted.
2806 * This interrupt indicates that the endpoint has been disabled per the
2807 * application's request.
2809 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2810 * in case of ISOC completes current request.
2812 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2813 * request starts it.
2815 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2817 struct dwc2_hsotg *hsotg = hs_ep->parent;
2818 struct dwc2_hsotg_req *hs_req;
2819 unsigned char idx = hs_ep->index;
2820 int dir_in = hs_ep->dir_in;
2821 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2822 int dctl = dwc2_readl(hsotg, DCTL);
2824 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2826 if (dir_in) {
2827 int epctl = dwc2_readl(hsotg, epctl_reg);
2829 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2831 if (hs_ep->isochronous) {
2832 dwc2_hsotg_complete_in(hsotg, hs_ep);
2833 return;
2836 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2837 int dctl = dwc2_readl(hsotg, DCTL);
2839 dctl |= DCTL_CGNPINNAK;
2840 dwc2_writel(hsotg, dctl, DCTL);
2842 return;
2845 if (dctl & DCTL_GOUTNAKSTS) {
2846 dctl |= DCTL_CGOUTNAK;
2847 dwc2_writel(hsotg, dctl, DCTL);
2850 if (!hs_ep->isochronous)
2851 return;
2853 if (list_empty(&hs_ep->queue)) {
2854 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855 __func__, hs_ep);
2856 return;
2859 do {
2860 hs_req = get_ep_head(hs_ep);
2861 if (hs_req)
2862 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2863 -ENODATA);
2864 dwc2_gadget_incr_frame_num(hs_ep);
2865 /* Update current frame number value. */
2866 hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2867 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2869 dwc2_gadget_start_next_request(hs_ep);
2873 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2874 * @ep: The endpoint on which interrupt is asserted.
2876 * This is starting point for ISOC-OUT transfer, synchronization done with
2877 * first out token received from host while corresponding EP is disabled.
2879 * Device does not know initial frame in which out token will come. For this
2880 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2881 * getting this interrupt SW starts calculation for next transfer frame.
2883 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2885 struct dwc2_hsotg *hsotg = ep->parent;
2886 int dir_in = ep->dir_in;
2887 u32 doepmsk;
2889 if (dir_in || !ep->isochronous)
2890 return;
2892 if (using_desc_dma(hsotg)) {
2893 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2894 /* Start first ISO Out */
2895 ep->target_frame = hsotg->frame_number;
2896 dwc2_gadget_start_isoc_ddma(ep);
2898 return;
2901 if (ep->interval > 1 &&
2902 ep->target_frame == TARGET_FRAME_INITIAL) {
2903 u32 ctrl;
2905 ep->target_frame = hsotg->frame_number;
2906 dwc2_gadget_incr_frame_num(ep);
2908 ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2909 if (ep->target_frame & 0x1)
2910 ctrl |= DXEPCTL_SETODDFR;
2911 else
2912 ctrl |= DXEPCTL_SETEVENFR;
2914 dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2917 dwc2_gadget_start_next_request(ep);
2918 doepmsk = dwc2_readl(hsotg, DOEPMSK);
2919 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2920 dwc2_writel(hsotg, doepmsk, DOEPMSK);
2924 * dwc2_gadget_handle_nak - handle NAK interrupt
2925 * @hs_ep: The endpoint on which interrupt is asserted.
2927 * This is starting point for ISOC-IN transfer, synchronization done with
2928 * first IN token received from host while corresponding EP is disabled.
2930 * Device does not know when first one token will arrive from host. On first
2931 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2932 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2933 * sent in response to that as there was no data in FIFO. SW is basing on this
2934 * interrupt to obtain frame in which token has come and then based on the
2935 * interval calculates next frame for transfer.
2937 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2939 struct dwc2_hsotg *hsotg = hs_ep->parent;
2940 int dir_in = hs_ep->dir_in;
2942 if (!dir_in || !hs_ep->isochronous)
2943 return;
2945 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2947 if (using_desc_dma(hsotg)) {
2948 hs_ep->target_frame = hsotg->frame_number;
2949 dwc2_gadget_incr_frame_num(hs_ep);
2951 /* In service interval mode target_frame must
2952 * be set to last (u)frame of the service interval.
2954 if (hsotg->params.service_interval) {
2955 /* Set target_frame to the first (u)frame of
2956 * the service interval
2958 hs_ep->target_frame &= ~hs_ep->interval + 1;
2960 /* Set target_frame to the last (u)frame of
2961 * the service interval
2963 dwc2_gadget_incr_frame_num(hs_ep);
2964 dwc2_gadget_dec_frame_num_by_one(hs_ep);
2967 dwc2_gadget_start_isoc_ddma(hs_ep);
2968 return;
2971 hs_ep->target_frame = hsotg->frame_number;
2972 if (hs_ep->interval > 1) {
2973 u32 ctrl = dwc2_readl(hsotg,
2974 DIEPCTL(hs_ep->index));
2975 if (hs_ep->target_frame & 0x1)
2976 ctrl |= DXEPCTL_SETODDFR;
2977 else
2978 ctrl |= DXEPCTL_SETEVENFR;
2980 dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2983 dwc2_hsotg_complete_request(hsotg, hs_ep,
2984 get_ep_head(hs_ep), 0);
2987 if (!using_desc_dma(hsotg))
2988 dwc2_gadget_incr_frame_num(hs_ep);
2992 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2993 * @hsotg: The driver state
2994 * @idx: The index for the endpoint (0..15)
2995 * @dir_in: Set if this is an IN endpoint
2997 * Process and clear any interrupt pending for an individual endpoint
2999 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3000 int dir_in)
3002 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3003 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3004 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3005 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3006 u32 ints;
3008 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3010 /* Clear endpoint interrupts */
3011 dwc2_writel(hsotg, ints, epint_reg);
3013 if (!hs_ep) {
3014 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3015 __func__, idx, dir_in ? "in" : "out");
3016 return;
3019 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3020 __func__, idx, dir_in ? "in" : "out", ints);
3022 /* Don't process XferCompl interrupt if it is a setup packet */
3023 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3024 ints &= ~DXEPINT_XFERCOMPL;
3027 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3028 * stage and xfercomplete was generated without SETUP phase done
3029 * interrupt. SW should parse received setup packet only after host's
3030 * exit from setup phase of control transfer.
3032 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3033 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3034 ints &= ~DXEPINT_XFERCOMPL;
3036 if (ints & DXEPINT_XFERCOMPL) {
3037 dev_dbg(hsotg->dev,
3038 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3039 __func__, dwc2_readl(hsotg, epctl_reg),
3040 dwc2_readl(hsotg, epsiz_reg));
3042 /* In DDMA handle isochronous requests separately */
3043 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3044 /* XferCompl set along with BNA */
3045 if (!(ints & DXEPINT_BNAINTR))
3046 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3047 } else if (dir_in) {
3049 * We get OutDone from the FIFO, so we only
3050 * need to look at completing IN requests here
3051 * if operating slave mode
3053 if (hs_ep->isochronous && hs_ep->interval > 1)
3054 dwc2_gadget_incr_frame_num(hs_ep);
3056 dwc2_hsotg_complete_in(hsotg, hs_ep);
3057 if (ints & DXEPINT_NAKINTRPT)
3058 ints &= ~DXEPINT_NAKINTRPT;
3060 if (idx == 0 && !hs_ep->req)
3061 dwc2_hsotg_enqueue_setup(hsotg);
3062 } else if (using_dma(hsotg)) {
3064 * We're using DMA, we need to fire an OutDone here
3065 * as we ignore the RXFIFO.
3067 if (hs_ep->isochronous && hs_ep->interval > 1)
3068 dwc2_gadget_incr_frame_num(hs_ep);
3070 dwc2_hsotg_handle_outdone(hsotg, idx);
3074 if (ints & DXEPINT_EPDISBLD)
3075 dwc2_gadget_handle_ep_disabled(hs_ep);
3077 if (ints & DXEPINT_OUTTKNEPDIS)
3078 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3080 if (ints & DXEPINT_NAKINTRPT)
3081 dwc2_gadget_handle_nak(hs_ep);
3083 if (ints & DXEPINT_AHBERR)
3084 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3086 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
3087 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
3089 if (using_dma(hsotg) && idx == 0) {
3091 * this is the notification we've received a
3092 * setup packet. In non-DMA mode we'd get this
3093 * from the RXFIFO, instead we need to process
3094 * the setup here.
3097 if (dir_in)
3098 WARN_ON_ONCE(1);
3099 else
3100 dwc2_hsotg_handle_outdone(hsotg, 0);
3104 if (ints & DXEPINT_STSPHSERCVD) {
3105 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3107 /* Safety check EP0 state when STSPHSERCVD asserted */
3108 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3109 /* Move to STATUS IN for DDMA */
3110 if (using_desc_dma(hsotg)) {
3111 if (!hsotg->delayed_status)
3112 dwc2_hsotg_ep0_zlp(hsotg, true);
3113 else
3114 /* In case of 3 stage Control Write with delayed
3115 * status, when Status IN transfer started
3116 * before STSPHSERCVD asserted, NAKSTS bit not
3117 * cleared by CNAK in dwc2_hsotg_start_req()
3118 * function. Clear now NAKSTS to allow complete
3119 * transfer.
3121 dwc2_set_bit(hsotg, DIEPCTL(0),
3122 DXEPCTL_CNAK);
3128 if (ints & DXEPINT_BACK2BACKSETUP)
3129 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3131 if (ints & DXEPINT_BNAINTR) {
3132 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3133 if (hs_ep->isochronous)
3134 dwc2_gadget_handle_isoc_bna(hs_ep);
3137 if (dir_in && !hs_ep->isochronous) {
3138 /* not sure if this is important, but we'll clear it anyway */
3139 if (ints & DXEPINT_INTKNTXFEMP) {
3140 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3141 __func__, idx);
3144 /* this probably means something bad is happening */
3145 if (ints & DXEPINT_INTKNEPMIS) {
3146 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3147 __func__, idx);
3150 /* FIFO has space or is empty (see GAHBCFG) */
3151 if (hsotg->dedicated_fifos &&
3152 ints & DXEPINT_TXFEMP) {
3153 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3154 __func__, idx);
3155 if (!using_dma(hsotg))
3156 dwc2_hsotg_trytx(hsotg, hs_ep);
3162 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3163 * @hsotg: The device state.
3165 * Handle updating the device settings after the enumeration phase has
3166 * been completed.
3168 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3170 u32 dsts = dwc2_readl(hsotg, DSTS);
3171 int ep0_mps = 0, ep_mps = 8;
3174 * This should signal the finish of the enumeration phase
3175 * of the USB handshaking, so we should now know what rate
3176 * we connected at.
3179 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3182 * note, since we're limited by the size of transfer on EP0, and
3183 * it seems IN transfers must be a even number of packets we do
3184 * not advertise a 64byte MPS on EP0.
3187 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3188 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3189 case DSTS_ENUMSPD_FS:
3190 case DSTS_ENUMSPD_FS48:
3191 hsotg->gadget.speed = USB_SPEED_FULL;
3192 ep0_mps = EP0_MPS_LIMIT;
3193 ep_mps = 1023;
3194 break;
3196 case DSTS_ENUMSPD_HS:
3197 hsotg->gadget.speed = USB_SPEED_HIGH;
3198 ep0_mps = EP0_MPS_LIMIT;
3199 ep_mps = 1024;
3200 break;
3202 case DSTS_ENUMSPD_LS:
3203 hsotg->gadget.speed = USB_SPEED_LOW;
3204 ep0_mps = 8;
3205 ep_mps = 8;
3207 * note, we don't actually support LS in this driver at the
3208 * moment, and the documentation seems to imply that it isn't
3209 * supported by the PHYs on some of the devices.
3211 break;
3213 dev_info(hsotg->dev, "new device is %s\n",
3214 usb_speed_string(hsotg->gadget.speed));
3217 * we should now know the maximum packet size for an
3218 * endpoint, so set the endpoints to a default value.
3221 if (ep0_mps) {
3222 int i;
3223 /* Initialize ep0 for both in and out directions */
3224 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3225 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3226 for (i = 1; i < hsotg->num_of_eps; i++) {
3227 if (hsotg->eps_in[i])
3228 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3229 0, 1);
3230 if (hsotg->eps_out[i])
3231 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3232 0, 0);
3236 /* ensure after enumeration our EP0 is active */
3238 dwc2_hsotg_enqueue_setup(hsotg);
3240 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3241 dwc2_readl(hsotg, DIEPCTL0),
3242 dwc2_readl(hsotg, DOEPCTL0));
3246 * kill_all_requests - remove all requests from the endpoint's queue
3247 * @hsotg: The device state.
3248 * @ep: The endpoint the requests may be on.
3249 * @result: The result code to use.
3251 * Go through the requests on the given endpoint and mark them
3252 * completed with the given result code.
3254 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3255 struct dwc2_hsotg_ep *ep,
3256 int result)
3258 unsigned int size;
3260 ep->req = NULL;
3262 while (!list_empty(&ep->queue)) {
3263 struct dwc2_hsotg_req *req = get_ep_head(ep);
3265 dwc2_hsotg_complete_request(hsotg, ep, req, result);
3268 if (!hsotg->dedicated_fifos)
3269 return;
3270 size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3271 if (size < ep->fifo_size)
3272 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3276 * dwc2_hsotg_disconnect - disconnect service
3277 * @hsotg: The device state.
3279 * The device has been disconnected. Remove all current
3280 * transactions and signal the gadget driver that this
3281 * has happened.
3283 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3285 unsigned int ep;
3287 if (!hsotg->connected)
3288 return;
3290 hsotg->connected = 0;
3291 hsotg->test_mode = 0;
3293 /* all endpoints should be shutdown */
3294 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3295 if (hsotg->eps_in[ep])
3296 kill_all_requests(hsotg, hsotg->eps_in[ep],
3297 -ESHUTDOWN);
3298 if (hsotg->eps_out[ep])
3299 kill_all_requests(hsotg, hsotg->eps_out[ep],
3300 -ESHUTDOWN);
3303 call_gadget(hsotg, disconnect);
3304 hsotg->lx_state = DWC2_L3;
3306 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3310 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3311 * @hsotg: The device state:
3312 * @periodic: True if this is a periodic FIFO interrupt
3314 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3316 struct dwc2_hsotg_ep *ep;
3317 int epno, ret;
3319 /* look through for any more data to transmit */
3320 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3321 ep = index_to_ep(hsotg, epno, 1);
3323 if (!ep)
3324 continue;
3326 if (!ep->dir_in)
3327 continue;
3329 if ((periodic && !ep->periodic) ||
3330 (!periodic && ep->periodic))
3331 continue;
3333 ret = dwc2_hsotg_trytx(hsotg, ep);
3334 if (ret < 0)
3335 break;
3339 /* IRQ flags which will trigger a retry around the IRQ loop */
3340 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3341 GINTSTS_PTXFEMP | \
3342 GINTSTS_RXFLVL)
3344 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3346 * dwc2_hsotg_core_init - issue softreset to the core
3347 * @hsotg: The device state
3348 * @is_usb_reset: Usb resetting flag
3350 * Issue a soft reset to the core, and await the core finishing it.
3352 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3353 bool is_usb_reset)
3355 u32 intmsk;
3356 u32 val;
3357 u32 usbcfg;
3358 u32 dcfg = 0;
3359 int ep;
3361 /* Kill any ep0 requests as controller will be reinitialized */
3362 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3364 if (!is_usb_reset) {
3365 if (dwc2_core_reset(hsotg, true))
3366 return;
3367 } else {
3368 /* all endpoints should be shutdown */
3369 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3370 if (hsotg->eps_in[ep])
3371 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3372 if (hsotg->eps_out[ep])
3373 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3378 * we must now enable ep0 ready for host detection and then
3379 * set configuration.
3382 /* keep other bits untouched (so e.g. forced modes are not lost) */
3383 usbcfg = dwc2_readl(hsotg, GUSBCFG);
3384 usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3385 usbcfg |= GUSBCFG_TOUTCAL(7);
3387 /* remove the HNP/SRP and set the PHY */
3388 usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3389 dwc2_writel(hsotg, usbcfg, GUSBCFG);
3391 dwc2_phy_init(hsotg, true);
3393 dwc2_hsotg_init_fifo(hsotg);
3395 if (!is_usb_reset)
3396 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3398 dcfg |= DCFG_EPMISCNT(1);
3400 switch (hsotg->params.speed) {
3401 case DWC2_SPEED_PARAM_LOW:
3402 dcfg |= DCFG_DEVSPD_LS;
3403 break;
3404 case DWC2_SPEED_PARAM_FULL:
3405 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3406 dcfg |= DCFG_DEVSPD_FS48;
3407 else
3408 dcfg |= DCFG_DEVSPD_FS;
3409 break;
3410 default:
3411 dcfg |= DCFG_DEVSPD_HS;
3414 if (hsotg->params.ipg_isoc_en)
3415 dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3417 dwc2_writel(hsotg, dcfg, DCFG);
3419 /* Clear any pending OTG interrupts */
3420 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3422 /* Clear any pending interrupts */
3423 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3424 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3425 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3426 GINTSTS_USBRST | GINTSTS_RESETDET |
3427 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3428 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3429 GINTSTS_LPMTRANRCVD;
3431 if (!using_desc_dma(hsotg))
3432 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3434 if (!hsotg->params.external_id_pin_ctl)
3435 intmsk |= GINTSTS_CONIDSTSCHNG;
3437 dwc2_writel(hsotg, intmsk, GINTMSK);
3439 if (using_dma(hsotg)) {
3440 dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3441 hsotg->params.ahbcfg,
3442 GAHBCFG);
3444 /* Set DDMA mode support in the core if needed */
3445 if (using_desc_dma(hsotg))
3446 dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3448 } else {
3449 dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3450 (GAHBCFG_NP_TXF_EMP_LVL |
3451 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3452 GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3456 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3457 * when we have no data to transfer. Otherwise we get being flooded by
3458 * interrupts.
3461 dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3462 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3463 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3464 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3465 DIEPMSK);
3468 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3469 * DMA mode we may need this and StsPhseRcvd.
3471 dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3472 DOEPMSK_STSPHSERCVDMSK) : 0) |
3473 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3474 DOEPMSK_SETUPMSK,
3475 DOEPMSK);
3477 /* Enable BNA interrupt for DDMA */
3478 if (using_desc_dma(hsotg)) {
3479 dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3480 dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3483 /* Enable Service Interval mode if supported */
3484 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3485 dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3487 dwc2_writel(hsotg, 0, DAINTMSK);
3489 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3490 dwc2_readl(hsotg, DIEPCTL0),
3491 dwc2_readl(hsotg, DOEPCTL0));
3493 /* enable in and out endpoint interrupts */
3494 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3497 * Enable the RXFIFO when in slave mode, as this is how we collect
3498 * the data. In DMA mode, we get events from the FIFO but also
3499 * things we cannot process, so do not use it.
3501 if (!using_dma(hsotg))
3502 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3504 /* Enable interrupts for EP0 in and out */
3505 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3506 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3508 if (!is_usb_reset) {
3509 dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3510 udelay(10); /* see openiboot */
3511 dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3514 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3517 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3518 * writing to the EPCTL register..
3521 /* set to read 1 8byte packet */
3522 dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3523 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3525 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3526 DXEPCTL_CNAK | DXEPCTL_EPENA |
3527 DXEPCTL_USBACTEP,
3528 DOEPCTL0);
3530 /* enable, but don't activate EP0in */
3531 dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3532 DXEPCTL_USBACTEP, DIEPCTL0);
3534 /* clear global NAKs */
3535 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3536 if (!is_usb_reset)
3537 val |= DCTL_SFTDISCON;
3538 dwc2_set_bit(hsotg, DCTL, val);
3540 /* configure the core to support LPM */
3541 dwc2_gadget_init_lpm(hsotg);
3543 /* program GREFCLK register if needed */
3544 if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3545 dwc2_gadget_program_ref_clk(hsotg);
3547 /* must be at-least 3ms to allow bus to see disconnect */
3548 mdelay(3);
3550 hsotg->lx_state = DWC2_L0;
3552 dwc2_hsotg_enqueue_setup(hsotg);
3554 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3555 dwc2_readl(hsotg, DIEPCTL0),
3556 dwc2_readl(hsotg, DOEPCTL0));
3559 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3561 /* set the soft-disconnect bit */
3562 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3565 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3567 /* remove the soft-disconnect and let's go */
3568 dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3572 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3573 * @hsotg: The device state:
3575 * This interrupt indicates one of the following conditions occurred while
3576 * transmitting an ISOC transaction.
3577 * - Corrupted IN Token for ISOC EP.
3578 * - Packet not complete in FIFO.
3580 * The following actions will be taken:
3581 * - Determine the EP
3582 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3584 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3586 struct dwc2_hsotg_ep *hs_ep;
3587 u32 epctrl;
3588 u32 daintmsk;
3589 u32 idx;
3591 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3593 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3595 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3596 hs_ep = hsotg->eps_in[idx];
3597 /* Proceed only unmasked ISOC EPs */
3598 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3599 continue;
3601 epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3602 if ((epctrl & DXEPCTL_EPENA) &&
3603 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3604 epctrl |= DXEPCTL_SNAK;
3605 epctrl |= DXEPCTL_EPDIS;
3606 dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3610 /* Clear interrupt */
3611 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3615 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3616 * @hsotg: The device state:
3618 * This interrupt indicates one of the following conditions occurred while
3619 * transmitting an ISOC transaction.
3620 * - Corrupted OUT Token for ISOC EP.
3621 * - Packet not complete in FIFO.
3623 * The following actions will be taken:
3624 * - Determine the EP
3625 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3627 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3629 u32 gintsts;
3630 u32 gintmsk;
3631 u32 daintmsk;
3632 u32 epctrl;
3633 struct dwc2_hsotg_ep *hs_ep;
3634 int idx;
3636 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3638 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3639 daintmsk >>= DAINT_OUTEP_SHIFT;
3641 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3642 hs_ep = hsotg->eps_out[idx];
3643 /* Proceed only unmasked ISOC EPs */
3644 if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3645 continue;
3647 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3648 if ((epctrl & DXEPCTL_EPENA) &&
3649 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3650 /* Unmask GOUTNAKEFF interrupt */
3651 gintmsk = dwc2_readl(hsotg, GINTMSK);
3652 gintmsk |= GINTSTS_GOUTNAKEFF;
3653 dwc2_writel(hsotg, gintmsk, GINTMSK);
3655 gintsts = dwc2_readl(hsotg, GINTSTS);
3656 if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3657 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3658 break;
3663 /* Clear interrupt */
3664 dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3668 * dwc2_hsotg_irq - handle device interrupt
3669 * @irq: The IRQ number triggered
3670 * @pw: The pw value when registered the handler.
3672 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3674 struct dwc2_hsotg *hsotg = pw;
3675 int retry_count = 8;
3676 u32 gintsts;
3677 u32 gintmsk;
3679 if (!dwc2_is_device_mode(hsotg))
3680 return IRQ_NONE;
3682 spin_lock(&hsotg->lock);
3683 irq_retry:
3684 gintsts = dwc2_readl(hsotg, GINTSTS);
3685 gintmsk = dwc2_readl(hsotg, GINTMSK);
3687 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3688 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3690 gintsts &= gintmsk;
3692 if (gintsts & GINTSTS_RESETDET) {
3693 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3695 dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3697 /* This event must be used only if controller is suspended */
3698 if (hsotg->lx_state == DWC2_L2) {
3699 dwc2_exit_partial_power_down(hsotg, true);
3700 hsotg->lx_state = DWC2_L0;
3704 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3705 u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3706 u32 connected = hsotg->connected;
3708 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3709 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3710 dwc2_readl(hsotg, GNPTXSTS));
3712 dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3714 /* Report disconnection if it is not already done. */
3715 dwc2_hsotg_disconnect(hsotg);
3717 /* Reset device address to zero */
3718 dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3720 if (usb_status & GOTGCTL_BSESVLD && connected)
3721 dwc2_hsotg_core_init_disconnected(hsotg, true);
3724 if (gintsts & GINTSTS_ENUMDONE) {
3725 dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3727 dwc2_hsotg_irq_enumdone(hsotg);
3730 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3731 u32 daint = dwc2_readl(hsotg, DAINT);
3732 u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3733 u32 daint_out, daint_in;
3734 int ep;
3736 daint &= daintmsk;
3737 daint_out = daint >> DAINT_OUTEP_SHIFT;
3738 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3740 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3742 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3743 ep++, daint_out >>= 1) {
3744 if (daint_out & 1)
3745 dwc2_hsotg_epint(hsotg, ep, 0);
3748 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3749 ep++, daint_in >>= 1) {
3750 if (daint_in & 1)
3751 dwc2_hsotg_epint(hsotg, ep, 1);
3755 /* check both FIFOs */
3757 if (gintsts & GINTSTS_NPTXFEMP) {
3758 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3761 * Disable the interrupt to stop it happening again
3762 * unless one of these endpoint routines decides that
3763 * it needs re-enabling
3766 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3767 dwc2_hsotg_irq_fifoempty(hsotg, false);
3770 if (gintsts & GINTSTS_PTXFEMP) {
3771 dev_dbg(hsotg->dev, "PTxFEmp\n");
3773 /* See note in GINTSTS_NPTxFEmp */
3775 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3776 dwc2_hsotg_irq_fifoempty(hsotg, true);
3779 if (gintsts & GINTSTS_RXFLVL) {
3781 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3782 * we need to retry dwc2_hsotg_handle_rx if this is still
3783 * set.
3786 dwc2_hsotg_handle_rx(hsotg);
3789 if (gintsts & GINTSTS_ERLYSUSP) {
3790 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3791 dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3795 * these next two seem to crop-up occasionally causing the core
3796 * to shutdown the USB transfer, so try clearing them and logging
3797 * the occurrence.
3800 if (gintsts & GINTSTS_GOUTNAKEFF) {
3801 u8 idx;
3802 u32 epctrl;
3803 u32 gintmsk;
3804 u32 daintmsk;
3805 struct dwc2_hsotg_ep *hs_ep;
3807 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3808 daintmsk >>= DAINT_OUTEP_SHIFT;
3809 /* Mask this interrupt */
3810 gintmsk = dwc2_readl(hsotg, GINTMSK);
3811 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3812 dwc2_writel(hsotg, gintmsk, GINTMSK);
3814 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3815 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3816 hs_ep = hsotg->eps_out[idx];
3817 /* Proceed only unmasked ISOC EPs */
3818 if (BIT(idx) & ~daintmsk)
3819 continue;
3821 epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3823 //ISOC Ep's only
3824 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3825 epctrl |= DXEPCTL_SNAK;
3826 epctrl |= DXEPCTL_EPDIS;
3827 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3828 continue;
3831 //Non-ISOC EP's
3832 if (hs_ep->halted) {
3833 if (!(epctrl & DXEPCTL_EPENA))
3834 epctrl |= DXEPCTL_EPENA;
3835 epctrl |= DXEPCTL_EPDIS;
3836 epctrl |= DXEPCTL_STALL;
3837 dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3841 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3844 if (gintsts & GINTSTS_GINNAKEFF) {
3845 dev_info(hsotg->dev, "GINNakEff triggered\n");
3847 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3849 dwc2_hsotg_dump(hsotg);
3852 if (gintsts & GINTSTS_INCOMPL_SOIN)
3853 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3855 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3856 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3859 * if we've had fifo events, we should try and go around the
3860 * loop again to see if there's any point in returning yet.
3863 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3864 goto irq_retry;
3866 /* Check WKUP_ALERT interrupt*/
3867 if (hsotg->params.service_interval)
3868 dwc2_gadget_wkup_alert_handler(hsotg);
3870 spin_unlock(&hsotg->lock);
3872 return IRQ_HANDLED;
3875 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3876 struct dwc2_hsotg_ep *hs_ep)
3878 u32 epctrl_reg;
3879 u32 epint_reg;
3881 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3882 DOEPCTL(hs_ep->index);
3883 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3884 DOEPINT(hs_ep->index);
3886 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3887 hs_ep->name);
3889 if (hs_ep->dir_in) {
3890 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3891 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3892 /* Wait for Nak effect */
3893 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3894 DXEPINT_INEPNAKEFF, 100))
3895 dev_warn(hsotg->dev,
3896 "%s: timeout DIEPINT.NAKEFF\n",
3897 __func__);
3898 } else {
3899 dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3900 /* Wait for Nak effect */
3901 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3902 GINTSTS_GINNAKEFF, 100))
3903 dev_warn(hsotg->dev,
3904 "%s: timeout GINTSTS.GINNAKEFF\n",
3905 __func__);
3907 } else {
3908 if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3909 dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3911 /* Wait for global nak to take effect */
3912 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3913 GINTSTS_GOUTNAKEFF, 100))
3914 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3915 __func__);
3918 /* Disable ep */
3919 dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3921 /* Wait for ep to be disabled */
3922 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3923 dev_warn(hsotg->dev,
3924 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3926 /* Clear EPDISBLD interrupt */
3927 dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3929 if (hs_ep->dir_in) {
3930 unsigned short fifo_index;
3932 if (hsotg->dedicated_fifos || hs_ep->periodic)
3933 fifo_index = hs_ep->fifo_index;
3934 else
3935 fifo_index = 0;
3937 /* Flush TX FIFO */
3938 dwc2_flush_tx_fifo(hsotg, fifo_index);
3940 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3941 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3942 dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3944 } else {
3945 /* Remove global NAKs */
3946 dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3951 * dwc2_hsotg_ep_enable - enable the given endpoint
3952 * @ep: The USB endpint to configure
3953 * @desc: The USB endpoint descriptor to configure with.
3955 * This is called from the USB gadget code's usb_ep_enable().
3957 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3958 const struct usb_endpoint_descriptor *desc)
3960 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3961 struct dwc2_hsotg *hsotg = hs_ep->parent;
3962 unsigned long flags;
3963 unsigned int index = hs_ep->index;
3964 u32 epctrl_reg;
3965 u32 epctrl;
3966 u32 mps;
3967 u32 mc;
3968 u32 mask;
3969 unsigned int dir_in;
3970 unsigned int i, val, size;
3971 int ret = 0;
3972 unsigned char ep_type;
3973 int desc_num;
3975 dev_dbg(hsotg->dev,
3976 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3977 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3978 desc->wMaxPacketSize, desc->bInterval);
3980 /* not to be called for EP0 */
3981 if (index == 0) {
3982 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3983 return -EINVAL;
3986 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3987 if (dir_in != hs_ep->dir_in) {
3988 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3989 return -EINVAL;
3992 ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3993 mps = usb_endpoint_maxp(desc);
3994 mc = usb_endpoint_maxp_mult(desc);
3996 /* ISOC IN in DDMA supported bInterval up to 10 */
3997 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3998 dir_in && desc->bInterval > 10) {
3999 dev_err(hsotg->dev,
4000 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4001 return -EINVAL;
4004 /* High bandwidth ISOC OUT in DDMA not supported */
4005 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4006 !dir_in && mc > 1) {
4007 dev_err(hsotg->dev,
4008 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4009 return -EINVAL;
4012 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4014 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4015 epctrl = dwc2_readl(hsotg, epctrl_reg);
4017 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4018 __func__, epctrl, epctrl_reg);
4020 if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4021 desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4022 else
4023 desc_num = MAX_DMA_DESC_NUM_GENERIC;
4025 /* Allocate DMA descriptor chain for non-ctrl endpoints */
4026 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4027 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4028 desc_num * sizeof(struct dwc2_dma_desc),
4029 &hs_ep->desc_list_dma, GFP_ATOMIC);
4030 if (!hs_ep->desc_list) {
4031 ret = -ENOMEM;
4032 goto error2;
4036 spin_lock_irqsave(&hsotg->lock, flags);
4038 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4039 epctrl |= DXEPCTL_MPS(mps);
4042 * mark the endpoint as active, otherwise the core may ignore
4043 * transactions entirely for this endpoint
4045 epctrl |= DXEPCTL_USBACTEP;
4047 /* update the endpoint state */
4048 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4050 /* default, set to non-periodic */
4051 hs_ep->isochronous = 0;
4052 hs_ep->periodic = 0;
4053 hs_ep->halted = 0;
4054 hs_ep->interval = desc->bInterval;
4056 switch (ep_type) {
4057 case USB_ENDPOINT_XFER_ISOC:
4058 epctrl |= DXEPCTL_EPTYPE_ISO;
4059 epctrl |= DXEPCTL_SETEVENFR;
4060 hs_ep->isochronous = 1;
4061 hs_ep->interval = 1 << (desc->bInterval - 1);
4062 hs_ep->target_frame = TARGET_FRAME_INITIAL;
4063 hs_ep->next_desc = 0;
4064 hs_ep->compl_desc = 0;
4065 if (dir_in) {
4066 hs_ep->periodic = 1;
4067 mask = dwc2_readl(hsotg, DIEPMSK);
4068 mask |= DIEPMSK_NAKMSK;
4069 dwc2_writel(hsotg, mask, DIEPMSK);
4070 } else {
4071 mask = dwc2_readl(hsotg, DOEPMSK);
4072 mask |= DOEPMSK_OUTTKNEPDISMSK;
4073 dwc2_writel(hsotg, mask, DOEPMSK);
4075 break;
4077 case USB_ENDPOINT_XFER_BULK:
4078 epctrl |= DXEPCTL_EPTYPE_BULK;
4079 break;
4081 case USB_ENDPOINT_XFER_INT:
4082 if (dir_in)
4083 hs_ep->periodic = 1;
4085 if (hsotg->gadget.speed == USB_SPEED_HIGH)
4086 hs_ep->interval = 1 << (desc->bInterval - 1);
4088 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4089 break;
4091 case USB_ENDPOINT_XFER_CONTROL:
4092 epctrl |= DXEPCTL_EPTYPE_CONTROL;
4093 break;
4097 * if the hardware has dedicated fifos, we must give each IN EP
4098 * a unique tx-fifo even if it is non-periodic.
4100 if (dir_in && hsotg->dedicated_fifos) {
4101 unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4102 u32 fifo_index = 0;
4103 u32 fifo_size = UINT_MAX;
4105 size = hs_ep->ep.maxpacket * hs_ep->mc;
4106 for (i = 1; i <= fifo_count; ++i) {
4107 if (hsotg->fifo_map & (1 << i))
4108 continue;
4109 val = dwc2_readl(hsotg, DPTXFSIZN(i));
4110 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4111 if (val < size)
4112 continue;
4113 /* Search for smallest acceptable fifo */
4114 if (val < fifo_size) {
4115 fifo_size = val;
4116 fifo_index = i;
4119 if (!fifo_index) {
4120 dev_err(hsotg->dev,
4121 "%s: No suitable fifo found\n", __func__);
4122 ret = -ENOMEM;
4123 goto error1;
4125 epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4126 hsotg->fifo_map |= 1 << fifo_index;
4127 epctrl |= DXEPCTL_TXFNUM(fifo_index);
4128 hs_ep->fifo_index = fifo_index;
4129 hs_ep->fifo_size = fifo_size;
4132 /* for non control endpoints, set PID to D0 */
4133 if (index && !hs_ep->isochronous)
4134 epctrl |= DXEPCTL_SETD0PID;
4136 /* WA for Full speed ISOC IN in DDMA mode.
4137 * By Clear NAK status of EP, core will send ZLP
4138 * to IN token and assert NAK interrupt relying
4139 * on TxFIFO status only
4142 if (hsotg->gadget.speed == USB_SPEED_FULL &&
4143 hs_ep->isochronous && dir_in) {
4144 /* The WA applies only to core versions from 2.72a
4145 * to 4.00a (including both). Also for FS_IOT_1.00a
4146 * and HS_IOT_1.00a.
4148 u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4150 if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4151 gsnpsid <= DWC2_CORE_REV_4_00a) ||
4152 gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4153 gsnpsid == DWC2_HS_IOT_REV_1_00a)
4154 epctrl |= DXEPCTL_CNAK;
4157 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4158 __func__, epctrl);
4160 dwc2_writel(hsotg, epctrl, epctrl_reg);
4161 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4162 __func__, dwc2_readl(hsotg, epctrl_reg));
4164 /* enable the endpoint interrupt */
4165 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4167 error1:
4168 spin_unlock_irqrestore(&hsotg->lock, flags);
4170 error2:
4171 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4172 dmam_free_coherent(hsotg->dev, desc_num *
4173 sizeof(struct dwc2_dma_desc),
4174 hs_ep->desc_list, hs_ep->desc_list_dma);
4175 hs_ep->desc_list = NULL;
4178 return ret;
4182 * dwc2_hsotg_ep_disable - disable given endpoint
4183 * @ep: The endpoint to disable.
4185 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4187 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4188 struct dwc2_hsotg *hsotg = hs_ep->parent;
4189 int dir_in = hs_ep->dir_in;
4190 int index = hs_ep->index;
4191 u32 epctrl_reg;
4192 u32 ctrl;
4194 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4196 if (ep == &hsotg->eps_out[0]->ep) {
4197 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4198 return -EINVAL;
4201 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4202 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4203 return -EINVAL;
4206 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4208 ctrl = dwc2_readl(hsotg, epctrl_reg);
4210 if (ctrl & DXEPCTL_EPENA)
4211 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4213 ctrl &= ~DXEPCTL_EPENA;
4214 ctrl &= ~DXEPCTL_USBACTEP;
4215 ctrl |= DXEPCTL_SNAK;
4217 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4218 dwc2_writel(hsotg, ctrl, epctrl_reg);
4220 /* disable endpoint interrupts */
4221 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4223 /* terminate all requests with shutdown */
4224 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4226 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4227 hs_ep->fifo_index = 0;
4228 hs_ep->fifo_size = 0;
4230 return 0;
4233 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4235 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4236 struct dwc2_hsotg *hsotg = hs_ep->parent;
4237 unsigned long flags;
4238 int ret;
4240 spin_lock_irqsave(&hsotg->lock, flags);
4241 ret = dwc2_hsotg_ep_disable(ep);
4242 spin_unlock_irqrestore(&hsotg->lock, flags);
4243 return ret;
4247 * on_list - check request is on the given endpoint
4248 * @ep: The endpoint to check.
4249 * @test: The request to test if it is on the endpoint.
4251 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4253 struct dwc2_hsotg_req *req, *treq;
4255 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4256 if (req == test)
4257 return true;
4260 return false;
4264 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4265 * @ep: The endpoint to dequeue.
4266 * @req: The request to be removed from a queue.
4268 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4270 struct dwc2_hsotg_req *hs_req = our_req(req);
4271 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4272 struct dwc2_hsotg *hs = hs_ep->parent;
4273 unsigned long flags;
4275 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4277 spin_lock_irqsave(&hs->lock, flags);
4279 if (!on_list(hs_ep, hs_req)) {
4280 spin_unlock_irqrestore(&hs->lock, flags);
4281 return -EINVAL;
4284 /* Dequeue already started request */
4285 if (req == &hs_ep->req->req)
4286 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4288 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4289 spin_unlock_irqrestore(&hs->lock, flags);
4291 return 0;
4295 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4296 * @ep: The endpoint to set halt.
4297 * @value: Set or unset the halt.
4298 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4299 * the endpoint is busy processing requests.
4301 * We need to stall the endpoint immediately if request comes from set_feature
4302 * protocol command handler.
4304 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4306 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4307 struct dwc2_hsotg *hs = hs_ep->parent;
4308 int index = hs_ep->index;
4309 u32 epreg;
4310 u32 epctl;
4311 u32 xfertype;
4313 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4315 if (index == 0) {
4316 if (value)
4317 dwc2_hsotg_stall_ep0(hs);
4318 else
4319 dev_warn(hs->dev,
4320 "%s: can't clear halt on ep0\n", __func__);
4321 return 0;
4324 if (hs_ep->isochronous) {
4325 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4326 return -EINVAL;
4329 if (!now && value && !list_empty(&hs_ep->queue)) {
4330 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4331 ep->name);
4332 return -EAGAIN;
4335 if (hs_ep->dir_in) {
4336 epreg = DIEPCTL(index);
4337 epctl = dwc2_readl(hs, epreg);
4339 if (value) {
4340 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4341 if (epctl & DXEPCTL_EPENA)
4342 epctl |= DXEPCTL_EPDIS;
4343 } else {
4344 epctl &= ~DXEPCTL_STALL;
4345 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4346 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4347 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4348 epctl |= DXEPCTL_SETD0PID;
4350 dwc2_writel(hs, epctl, epreg);
4351 } else {
4352 epreg = DOEPCTL(index);
4353 epctl = dwc2_readl(hs, epreg);
4355 if (value) {
4356 if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4357 dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4358 // STALL bit will be set in GOUTNAKEFF interrupt handler
4359 } else {
4360 epctl &= ~DXEPCTL_STALL;
4361 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4362 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4363 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4364 epctl |= DXEPCTL_SETD0PID;
4365 dwc2_writel(hs, epctl, epreg);
4369 hs_ep->halted = value;
4370 return 0;
4374 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4375 * @ep: The endpoint to set halt.
4376 * @value: Set or unset the halt.
4378 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4380 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4381 struct dwc2_hsotg *hs = hs_ep->parent;
4382 unsigned long flags = 0;
4383 int ret = 0;
4385 spin_lock_irqsave(&hs->lock, flags);
4386 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4387 spin_unlock_irqrestore(&hs->lock, flags);
4389 return ret;
4392 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4393 .enable = dwc2_hsotg_ep_enable,
4394 .disable = dwc2_hsotg_ep_disable_lock,
4395 .alloc_request = dwc2_hsotg_ep_alloc_request,
4396 .free_request = dwc2_hsotg_ep_free_request,
4397 .queue = dwc2_hsotg_ep_queue_lock,
4398 .dequeue = dwc2_hsotg_ep_dequeue,
4399 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4400 /* note, don't believe we have any call for the fifo routines */
4404 * dwc2_hsotg_init - initialize the usb core
4405 * @hsotg: The driver state
4407 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4409 /* unmask subset of endpoint interrupts */
4411 dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4412 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4413 DIEPMSK);
4415 dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4416 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4417 DOEPMSK);
4419 dwc2_writel(hsotg, 0, DAINTMSK);
4421 /* Be in disconnected state until gadget is registered */
4422 dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4424 /* setup fifos */
4426 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4427 dwc2_readl(hsotg, GRXFSIZ),
4428 dwc2_readl(hsotg, GNPTXFSIZ));
4430 dwc2_hsotg_init_fifo(hsotg);
4432 if (using_dma(hsotg))
4433 dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4437 * dwc2_hsotg_udc_start - prepare the udc for work
4438 * @gadget: The usb gadget state
4439 * @driver: The usb gadget driver
4441 * Perform initialization to prepare udc device and driver
4442 * to work.
4444 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4445 struct usb_gadget_driver *driver)
4447 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4448 unsigned long flags;
4449 int ret;
4451 if (!hsotg) {
4452 pr_err("%s: called with no device\n", __func__);
4453 return -ENODEV;
4456 if (!driver) {
4457 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4458 return -EINVAL;
4461 if (driver->max_speed < USB_SPEED_FULL)
4462 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4464 if (!driver->setup) {
4465 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4466 return -EINVAL;
4469 WARN_ON(hsotg->driver);
4471 driver->driver.bus = NULL;
4472 hsotg->driver = driver;
4473 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4474 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4476 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4477 ret = dwc2_lowlevel_hw_enable(hsotg);
4478 if (ret)
4479 goto err;
4482 if (!IS_ERR_OR_NULL(hsotg->uphy))
4483 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4485 spin_lock_irqsave(&hsotg->lock, flags);
4486 if (dwc2_hw_is_device(hsotg)) {
4487 dwc2_hsotg_init(hsotg);
4488 dwc2_hsotg_core_init_disconnected(hsotg, false);
4491 hsotg->enabled = 0;
4492 spin_unlock_irqrestore(&hsotg->lock, flags);
4494 gadget->sg_supported = using_desc_dma(hsotg);
4495 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4497 return 0;
4499 err:
4500 hsotg->driver = NULL;
4501 return ret;
4505 * dwc2_hsotg_udc_stop - stop the udc
4506 * @gadget: The usb gadget state
4508 * Stop udc hw block and stay tunned for future transmissions
4510 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4512 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4513 unsigned long flags = 0;
4514 int ep;
4516 if (!hsotg)
4517 return -ENODEV;
4519 /* all endpoints should be shutdown */
4520 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4521 if (hsotg->eps_in[ep])
4522 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4523 if (hsotg->eps_out[ep])
4524 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4527 spin_lock_irqsave(&hsotg->lock, flags);
4529 hsotg->driver = NULL;
4530 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4531 hsotg->enabled = 0;
4533 spin_unlock_irqrestore(&hsotg->lock, flags);
4535 if (!IS_ERR_OR_NULL(hsotg->uphy))
4536 otg_set_peripheral(hsotg->uphy->otg, NULL);
4538 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4539 dwc2_lowlevel_hw_disable(hsotg);
4541 return 0;
4545 * dwc2_hsotg_gadget_getframe - read the frame number
4546 * @gadget: The usb gadget state
4548 * Read the {micro} frame number
4550 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4552 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4556 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4557 * @gadget: The usb gadget state
4558 * @is_selfpowered: Whether the device is self-powered
4560 * Set if the device is self or bus powered.
4562 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4563 int is_selfpowered)
4565 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4566 unsigned long flags;
4568 spin_lock_irqsave(&hsotg->lock, flags);
4569 gadget->is_selfpowered = !!is_selfpowered;
4570 spin_unlock_irqrestore(&hsotg->lock, flags);
4572 return 0;
4576 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4577 * @gadget: The usb gadget state
4578 * @is_on: Current state of the USB PHY
4580 * Connect/Disconnect the USB PHY pullup
4582 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4584 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4585 unsigned long flags = 0;
4587 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4588 hsotg->op_state);
4590 /* Don't modify pullup state while in host mode */
4591 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4592 hsotg->enabled = is_on;
4593 return 0;
4596 spin_lock_irqsave(&hsotg->lock, flags);
4597 if (is_on) {
4598 hsotg->enabled = 1;
4599 dwc2_hsotg_core_init_disconnected(hsotg, false);
4600 /* Enable ACG feature in device mode,if supported */
4601 dwc2_enable_acg(hsotg);
4602 dwc2_hsotg_core_connect(hsotg);
4603 } else {
4604 dwc2_hsotg_core_disconnect(hsotg);
4605 dwc2_hsotg_disconnect(hsotg);
4606 hsotg->enabled = 0;
4609 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4610 spin_unlock_irqrestore(&hsotg->lock, flags);
4612 return 0;
4615 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4617 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4618 unsigned long flags;
4620 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4621 spin_lock_irqsave(&hsotg->lock, flags);
4624 * If controller is hibernated, it must exit from power_down
4625 * before being initialized / de-initialized
4627 if (hsotg->lx_state == DWC2_L2)
4628 dwc2_exit_partial_power_down(hsotg, false);
4630 if (is_active) {
4631 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4633 dwc2_hsotg_core_init_disconnected(hsotg, false);
4634 if (hsotg->enabled) {
4635 /* Enable ACG feature in device mode,if supported */
4636 dwc2_enable_acg(hsotg);
4637 dwc2_hsotg_core_connect(hsotg);
4639 } else {
4640 dwc2_hsotg_core_disconnect(hsotg);
4641 dwc2_hsotg_disconnect(hsotg);
4644 spin_unlock_irqrestore(&hsotg->lock, flags);
4645 return 0;
4649 * dwc2_hsotg_vbus_draw - report bMaxPower field
4650 * @gadget: The usb gadget state
4651 * @mA: Amount of current
4653 * Report how much power the device may consume to the phy.
4655 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4657 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4659 if (IS_ERR_OR_NULL(hsotg->uphy))
4660 return -ENOTSUPP;
4661 return usb_phy_set_power(hsotg->uphy, mA);
4664 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4665 .get_frame = dwc2_hsotg_gadget_getframe,
4666 .set_selfpowered = dwc2_hsotg_set_selfpowered,
4667 .udc_start = dwc2_hsotg_udc_start,
4668 .udc_stop = dwc2_hsotg_udc_stop,
4669 .pullup = dwc2_hsotg_pullup,
4670 .vbus_session = dwc2_hsotg_vbus_session,
4671 .vbus_draw = dwc2_hsotg_vbus_draw,
4675 * dwc2_hsotg_initep - initialise a single endpoint
4676 * @hsotg: The device state.
4677 * @hs_ep: The endpoint to be initialised.
4678 * @epnum: The endpoint number
4679 * @dir_in: True if direction is in.
4681 * Initialise the given endpoint (as part of the probe and device state
4682 * creation) to give to the gadget driver. Setup the endpoint name, any
4683 * direction information and other state that may be required.
4685 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4686 struct dwc2_hsotg_ep *hs_ep,
4687 int epnum,
4688 bool dir_in)
4690 char *dir;
4692 if (epnum == 0)
4693 dir = "";
4694 else if (dir_in)
4695 dir = "in";
4696 else
4697 dir = "out";
4699 hs_ep->dir_in = dir_in;
4700 hs_ep->index = epnum;
4702 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4704 INIT_LIST_HEAD(&hs_ep->queue);
4705 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4707 /* add to the list of endpoints known by the gadget driver */
4708 if (epnum)
4709 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4711 hs_ep->parent = hsotg;
4712 hs_ep->ep.name = hs_ep->name;
4714 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4715 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4716 else
4717 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4718 epnum ? 1024 : EP0_MPS_LIMIT);
4719 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4721 if (epnum == 0) {
4722 hs_ep->ep.caps.type_control = true;
4723 } else {
4724 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4725 hs_ep->ep.caps.type_iso = true;
4726 hs_ep->ep.caps.type_bulk = true;
4728 hs_ep->ep.caps.type_int = true;
4731 if (dir_in)
4732 hs_ep->ep.caps.dir_in = true;
4733 else
4734 hs_ep->ep.caps.dir_out = true;
4737 * if we're using dma, we need to set the next-endpoint pointer
4738 * to be something valid.
4741 if (using_dma(hsotg)) {
4742 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4744 if (dir_in)
4745 dwc2_writel(hsotg, next, DIEPCTL(epnum));
4746 else
4747 dwc2_writel(hsotg, next, DOEPCTL(epnum));
4752 * dwc2_hsotg_hw_cfg - read HW configuration registers
4753 * @hsotg: Programming view of the DWC_otg controller
4755 * Read the USB core HW configuration registers
4757 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4759 u32 cfg;
4760 u32 ep_type;
4761 u32 i;
4763 /* check hardware configuration */
4765 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4767 /* Add ep0 */
4768 hsotg->num_of_eps++;
4770 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4771 sizeof(struct dwc2_hsotg_ep),
4772 GFP_KERNEL);
4773 if (!hsotg->eps_in[0])
4774 return -ENOMEM;
4775 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4776 hsotg->eps_out[0] = hsotg->eps_in[0];
4778 cfg = hsotg->hw_params.dev_ep_dirs;
4779 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4780 ep_type = cfg & 3;
4781 /* Direction in or both */
4782 if (!(ep_type & 2)) {
4783 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4784 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4785 if (!hsotg->eps_in[i])
4786 return -ENOMEM;
4788 /* Direction out or both */
4789 if (!(ep_type & 1)) {
4790 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4791 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4792 if (!hsotg->eps_out[i])
4793 return -ENOMEM;
4797 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4798 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4800 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4801 hsotg->num_of_eps,
4802 hsotg->dedicated_fifos ? "dedicated" : "shared",
4803 hsotg->fifo_mem);
4804 return 0;
4808 * dwc2_hsotg_dump - dump state of the udc
4809 * @hsotg: Programming view of the DWC_otg controller
4812 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4814 #ifdef DEBUG
4815 struct device *dev = hsotg->dev;
4816 u32 val;
4817 int idx;
4819 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4820 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4821 dwc2_readl(hsotg, DIEPMSK));
4823 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4824 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4826 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4827 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4829 /* show periodic fifo settings */
4831 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4832 val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4833 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4834 val >> FIFOSIZE_DEPTH_SHIFT,
4835 val & FIFOSIZE_STARTADDR_MASK);
4838 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4839 dev_info(dev,
4840 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4841 dwc2_readl(hsotg, DIEPCTL(idx)),
4842 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4843 dwc2_readl(hsotg, DIEPDMA(idx)));
4845 val = dwc2_readl(hsotg, DOEPCTL(idx));
4846 dev_info(dev,
4847 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4848 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4849 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4850 dwc2_readl(hsotg, DOEPDMA(idx)));
4853 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4854 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4855 #endif
4859 * dwc2_gadget_init - init function for gadget
4860 * @hsotg: Programming view of the DWC_otg controller
4863 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4865 struct device *dev = hsotg->dev;
4866 int epnum;
4867 int ret;
4869 /* Dump fifo information */
4870 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4871 hsotg->params.g_np_tx_fifo_size);
4872 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4874 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4875 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4876 hsotg->gadget.name = dev_name(dev);
4877 hsotg->remote_wakeup_allowed = 0;
4879 if (hsotg->params.lpm)
4880 hsotg->gadget.lpm_capable = true;
4882 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4883 hsotg->gadget.is_otg = 1;
4884 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4885 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4887 ret = dwc2_hsotg_hw_cfg(hsotg);
4888 if (ret) {
4889 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4890 return ret;
4893 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4894 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4895 if (!hsotg->ctrl_buff)
4896 return -ENOMEM;
4898 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4899 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4900 if (!hsotg->ep0_buff)
4901 return -ENOMEM;
4903 if (using_desc_dma(hsotg)) {
4904 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4905 if (ret < 0)
4906 return ret;
4909 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4910 IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4911 if (ret < 0) {
4912 dev_err(dev, "cannot claim IRQ for gadget\n");
4913 return ret;
4916 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4918 if (hsotg->num_of_eps == 0) {
4919 dev_err(dev, "wrong number of EPs (zero)\n");
4920 return -EINVAL;
4923 /* setup endpoint information */
4925 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4926 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4928 /* allocate EP0 request */
4930 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4931 GFP_KERNEL);
4932 if (!hsotg->ctrl_req) {
4933 dev_err(dev, "failed to allocate ctrl req\n");
4934 return -ENOMEM;
4937 /* initialise the endpoints now the core has been initialised */
4938 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4939 if (hsotg->eps_in[epnum])
4940 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4941 epnum, 1);
4942 if (hsotg->eps_out[epnum])
4943 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4944 epnum, 0);
4947 dwc2_hsotg_dump(hsotg);
4949 return 0;
4953 * dwc2_hsotg_remove - remove function for hsotg driver
4954 * @hsotg: Programming view of the DWC_otg controller
4957 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4959 usb_del_gadget_udc(&hsotg->gadget);
4960 dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4962 return 0;
4965 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4967 unsigned long flags;
4969 if (hsotg->lx_state != DWC2_L0)
4970 return 0;
4972 if (hsotg->driver) {
4973 int ep;
4975 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4976 hsotg->driver->driver.name);
4978 spin_lock_irqsave(&hsotg->lock, flags);
4979 if (hsotg->enabled)
4980 dwc2_hsotg_core_disconnect(hsotg);
4981 dwc2_hsotg_disconnect(hsotg);
4982 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4983 spin_unlock_irqrestore(&hsotg->lock, flags);
4985 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4986 if (hsotg->eps_in[ep])
4987 dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4988 if (hsotg->eps_out[ep])
4989 dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4993 return 0;
4996 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4998 unsigned long flags;
5000 if (hsotg->lx_state == DWC2_L2)
5001 return 0;
5003 if (hsotg->driver) {
5004 dev_info(hsotg->dev, "resuming usb gadget %s\n",
5005 hsotg->driver->driver.name);
5007 spin_lock_irqsave(&hsotg->lock, flags);
5008 dwc2_hsotg_core_init_disconnected(hsotg, false);
5009 if (hsotg->enabled) {
5010 /* Enable ACG feature in device mode,if supported */
5011 dwc2_enable_acg(hsotg);
5012 dwc2_hsotg_core_connect(hsotg);
5014 spin_unlock_irqrestore(&hsotg->lock, flags);
5017 return 0;
5021 * dwc2_backup_device_registers() - Backup controller device registers.
5022 * When suspending usb bus, registers needs to be backuped
5023 * if controller power is disabled once suspended.
5025 * @hsotg: Programming view of the DWC_otg controller
5027 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5029 struct dwc2_dregs_backup *dr;
5030 int i;
5032 dev_dbg(hsotg->dev, "%s\n", __func__);
5034 /* Backup dev regs */
5035 dr = &hsotg->dr_backup;
5037 dr->dcfg = dwc2_readl(hsotg, DCFG);
5038 dr->dctl = dwc2_readl(hsotg, DCTL);
5039 dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5040 dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5041 dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5043 for (i = 0; i < hsotg->num_of_eps; i++) {
5044 /* Backup IN EPs */
5045 dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5047 /* Ensure DATA PID is correctly configured */
5048 if (dr->diepctl[i] & DXEPCTL_DPID)
5049 dr->diepctl[i] |= DXEPCTL_SETD1PID;
5050 else
5051 dr->diepctl[i] |= DXEPCTL_SETD0PID;
5053 dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5054 dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5056 /* Backup OUT EPs */
5057 dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5059 /* Ensure DATA PID is correctly configured */
5060 if (dr->doepctl[i] & DXEPCTL_DPID)
5061 dr->doepctl[i] |= DXEPCTL_SETD1PID;
5062 else
5063 dr->doepctl[i] |= DXEPCTL_SETD0PID;
5065 dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5066 dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5067 dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5069 dr->valid = true;
5070 return 0;
5074 * dwc2_restore_device_registers() - Restore controller device registers.
5075 * When resuming usb bus, device registers needs to be restored
5076 * if controller power were disabled.
5078 * @hsotg: Programming view of the DWC_otg controller
5079 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5081 * Return: 0 if successful, negative error code otherwise
5083 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5085 struct dwc2_dregs_backup *dr;
5086 int i;
5088 dev_dbg(hsotg->dev, "%s\n", __func__);
5090 /* Restore dev regs */
5091 dr = &hsotg->dr_backup;
5092 if (!dr->valid) {
5093 dev_err(hsotg->dev, "%s: no device registers to restore\n",
5094 __func__);
5095 return -EINVAL;
5097 dr->valid = false;
5099 if (!remote_wakeup)
5100 dwc2_writel(hsotg, dr->dctl, DCTL);
5102 dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5103 dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5104 dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5106 for (i = 0; i < hsotg->num_of_eps; i++) {
5107 /* Restore IN EPs */
5108 dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5109 dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5110 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5111 /** WA for enabled EPx's IN in DDMA mode. On entering to
5112 * hibernation wrong value read and saved from DIEPDMAx,
5113 * as result BNA interrupt asserted on hibernation exit
5114 * by restoring from saved area.
5116 if (hsotg->params.g_dma_desc &&
5117 (dr->diepctl[i] & DXEPCTL_EPENA))
5118 dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5119 dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5120 dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5121 /* Restore OUT EPs */
5122 dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5123 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5124 * hibernation wrong value read and saved from DOEPDMAx,
5125 * as result BNA interrupt asserted on hibernation exit
5126 * by restoring from saved area.
5128 if (hsotg->params.g_dma_desc &&
5129 (dr->doepctl[i] & DXEPCTL_EPENA))
5130 dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5131 dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5132 dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5135 return 0;
5139 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5141 * @hsotg: Programming view of DWC_otg controller
5144 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5146 u32 val;
5148 if (!hsotg->params.lpm)
5149 return;
5151 val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5152 val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5153 val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5154 val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5155 val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5156 val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5157 val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5158 dwc2_writel(hsotg, val, GLPMCFG);
5159 dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5161 /* Unmask WKUP_ALERT Interrupt */
5162 if (hsotg->params.service_interval)
5163 dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5167 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5169 * @hsotg: Programming view of DWC_otg controller
5172 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5174 u32 val = 0;
5176 val |= GREFCLK_REF_CLK_MODE;
5177 val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5178 val |= hsotg->params.sof_cnt_wkup_alert <<
5179 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5181 dwc2_writel(hsotg, val, GREFCLK);
5182 dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5186 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5188 * @hsotg: Programming view of the DWC_otg controller
5190 * Return non-zero if failed to enter to hibernation.
5192 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5194 u32 gpwrdn;
5195 int ret = 0;
5197 /* Change to L2(suspend) state */
5198 hsotg->lx_state = DWC2_L2;
5199 dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5200 ret = dwc2_backup_global_registers(hsotg);
5201 if (ret) {
5202 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5203 __func__);
5204 return ret;
5206 ret = dwc2_backup_device_registers(hsotg);
5207 if (ret) {
5208 dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5209 __func__);
5210 return ret;
5213 gpwrdn = GPWRDN_PWRDNRSTN;
5214 gpwrdn |= GPWRDN_PMUACTV;
5215 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5216 udelay(10);
5218 /* Set flag to indicate that we are in hibernation */
5219 hsotg->hibernated = 1;
5221 /* Enable interrupts from wake up logic */
5222 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5223 gpwrdn |= GPWRDN_PMUINTSEL;
5224 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5225 udelay(10);
5227 /* Unmask device mode interrupts in GPWRDN */
5228 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5229 gpwrdn |= GPWRDN_RST_DET_MSK;
5230 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5231 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5232 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5233 udelay(10);
5235 /* Enable Power Down Clamp */
5236 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5237 gpwrdn |= GPWRDN_PWRDNCLMP;
5238 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5239 udelay(10);
5241 /* Switch off VDD */
5242 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5243 gpwrdn |= GPWRDN_PWRDNSWTCH;
5244 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5245 udelay(10);
5247 /* Save gpwrdn register for further usage if stschng interrupt */
5248 hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5249 dev_dbg(hsotg->dev, "Hibernation completed\n");
5251 return ret;
5255 * dwc2_gadget_exit_hibernation()
5256 * This function is for exiting from Device mode hibernation by host initiated
5257 * resume/reset and device initiated remote-wakeup.
5259 * @hsotg: Programming view of the DWC_otg controller
5260 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5261 * @reset: indicates whether resume is initiated by Reset.
5263 * Return non-zero if failed to exit from hibernation.
5265 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5266 int rem_wakeup, int reset)
5268 u32 pcgcctl;
5269 u32 gpwrdn;
5270 u32 dctl;
5271 int ret = 0;
5272 struct dwc2_gregs_backup *gr;
5273 struct dwc2_dregs_backup *dr;
5275 gr = &hsotg->gr_backup;
5276 dr = &hsotg->dr_backup;
5278 if (!hsotg->hibernated) {
5279 dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5280 return 1;
5282 dev_dbg(hsotg->dev,
5283 "%s: called with rem_wakeup = %d reset = %d\n",
5284 __func__, rem_wakeup, reset);
5286 dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5288 if (!reset) {
5289 /* Clear all pending interupts */
5290 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5293 /* De-assert Restore */
5294 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5295 gpwrdn &= ~GPWRDN_RESTORE;
5296 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5297 udelay(10);
5299 if (!rem_wakeup) {
5300 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5301 pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5302 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5305 /* Restore GUSBCFG, DCFG and DCTL */
5306 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5307 dwc2_writel(hsotg, dr->dcfg, DCFG);
5308 dwc2_writel(hsotg, dr->dctl, DCTL);
5310 /* De-assert Wakeup Logic */
5311 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5312 gpwrdn &= ~GPWRDN_PMUACTV;
5313 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5315 if (rem_wakeup) {
5316 udelay(10);
5317 /* Start Remote Wakeup Signaling */
5318 dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5319 } else {
5320 udelay(50);
5321 /* Set Device programming done bit */
5322 dctl = dwc2_readl(hsotg, DCTL);
5323 dctl |= DCTL_PWRONPRGDONE;
5324 dwc2_writel(hsotg, dctl, DCTL);
5326 /* Wait for interrupts which must be cleared */
5327 mdelay(2);
5328 /* Clear all pending interupts */
5329 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5331 /* Restore global registers */
5332 ret = dwc2_restore_global_registers(hsotg);
5333 if (ret) {
5334 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5335 __func__);
5336 return ret;
5339 /* Restore device registers */
5340 ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5341 if (ret) {
5342 dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5343 __func__);
5344 return ret;
5347 if (rem_wakeup) {
5348 mdelay(10);
5349 dctl = dwc2_readl(hsotg, DCTL);
5350 dctl &= ~DCTL_RMTWKUPSIG;
5351 dwc2_writel(hsotg, dctl, DCTL);
5354 hsotg->hibernated = 0;
5355 hsotg->lx_state = DWC2_L0;
5356 dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5358 return ret;