io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / fs / dax.c
blob26d5dcd2d69e5c0afd2c93d7042b54c3324b7342
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
57 static int __init init_dax_wait_table(void)
59 int i;
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
65 fs_initcall(init_dax_wait_table);
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
77 #define DAX_SHIFT (4)
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
83 static unsigned long dax_to_pfn(void *entry)
85 return xa_to_value(entry) >> DAX_SHIFT;
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
93 static bool dax_is_locked(void *entry)
95 return xa_to_value(entry) & DAX_LOCKED;
98 static unsigned int dax_entry_order(void *entry)
100 if (xa_to_value(entry) & DAX_PMD)
101 return PMD_ORDER;
102 return 0;
105 static unsigned long dax_is_pmd_entry(void *entry)
107 return xa_to_value(entry) & DAX_PMD;
110 static bool dax_is_pte_entry(void *entry)
112 return !(xa_to_value(entry) & DAX_PMD);
115 static int dax_is_zero_entry(void *entry)
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
120 static int dax_is_empty_entry(void *entry)
122 return xa_to_value(entry) & DAX_EMPTY;
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
129 static bool dax_is_conflict(void *entry)
131 return entry == XA_RETRY_ENTRY;
135 * DAX page cache entry locking
137 struct exceptional_entry_key {
138 struct xarray *xa;
139 pgoff_t entry_start;
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 void *entry, struct exceptional_entry_key *key)
150 unsigned long hash;
151 unsigned long index = xas->xa_index;
154 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 * queue to the start of that PMD. This ensures that all offsets in
156 * the range covered by the PMD map to the same bit lock.
158 if (dax_is_pmd_entry(entry))
159 index &= ~PG_PMD_COLOUR;
160 key->xa = xas->xa;
161 key->entry_start = index;
163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 return wait_table + hash;
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 unsigned int mode, int sync, void *keyp)
170 struct exceptional_entry_key *key = keyp;
171 struct wait_exceptional_entry_queue *ewait =
172 container_of(wait, struct wait_exceptional_entry_queue, wait);
174 if (key->xa != ewait->key.xa ||
175 key->entry_start != ewait->key.entry_start)
176 return 0;
177 return autoremove_wake_function(wait, mode, sync, NULL);
181 * @entry may no longer be the entry at the index in the mapping.
182 * The important information it's conveying is whether the entry at
183 * this index used to be a PMD entry.
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
187 struct exceptional_entry_key key;
188 wait_queue_head_t *wq;
190 wq = dax_entry_waitqueue(xas, entry, &key);
193 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 * under the i_pages lock, ditto for entry handling in our callers.
195 * So at this point all tasks that could have seen our entry locked
196 * must be in the waitqueue and the following check will see them.
198 if (waitqueue_active(wq))
199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
203 * Look up entry in page cache, wait for it to become unlocked if it
204 * is a DAX entry and return it. The caller must subsequently call
205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206 * if it did. The entry returned may have a larger order than @order.
207 * If @order is larger than the order of the entry found in i_pages, this
208 * function returns a dax_is_conflict entry.
210 * Must be called with the i_pages lock held.
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
214 void *entry;
215 struct wait_exceptional_entry_queue ewait;
216 wait_queue_head_t *wq;
218 init_wait(&ewait.wait);
219 ewait.wait.func = wake_exceptional_entry_func;
221 for (;;) {
222 entry = xas_find_conflict(xas);
223 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224 return entry;
225 if (dax_entry_order(entry) < order)
226 return XA_RETRY_ENTRY;
227 if (!dax_is_locked(entry))
228 return entry;
230 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231 prepare_to_wait_exclusive(wq, &ewait.wait,
232 TASK_UNINTERRUPTIBLE);
233 xas_unlock_irq(xas);
234 xas_reset(xas);
235 schedule();
236 finish_wait(wq, &ewait.wait);
237 xas_lock_irq(xas);
242 * The only thing keeping the address space around is the i_pages lock
243 * (it's cycled in clear_inode() after removing the entries from i_pages)
244 * After we call xas_unlock_irq(), we cannot touch xas->xa.
246 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
248 struct wait_exceptional_entry_queue ewait;
249 wait_queue_head_t *wq;
251 init_wait(&ewait.wait);
252 ewait.wait.func = wake_exceptional_entry_func;
254 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
256 * Unlike get_unlocked_entry() there is no guarantee that this
257 * path ever successfully retrieves an unlocked entry before an
258 * inode dies. Perform a non-exclusive wait in case this path
259 * never successfully performs its own wake up.
261 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262 xas_unlock_irq(xas);
263 schedule();
264 finish_wait(wq, &ewait.wait);
267 static void put_unlocked_entry(struct xa_state *xas, void *entry)
269 /* If we were the only waiter woken, wake the next one */
270 if (entry && !dax_is_conflict(entry))
271 dax_wake_entry(xas, entry, false);
275 * We used the xa_state to get the entry, but then we locked the entry and
276 * dropped the xa_lock, so we know the xa_state is stale and must be reset
277 * before use.
279 static void dax_unlock_entry(struct xa_state *xas, void *entry)
281 void *old;
283 BUG_ON(dax_is_locked(entry));
284 xas_reset(xas);
285 xas_lock_irq(xas);
286 old = xas_store(xas, entry);
287 xas_unlock_irq(xas);
288 BUG_ON(!dax_is_locked(old));
289 dax_wake_entry(xas, entry, false);
293 * Return: The entry stored at this location before it was locked.
295 static void *dax_lock_entry(struct xa_state *xas, void *entry)
297 unsigned long v = xa_to_value(entry);
298 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
301 static unsigned long dax_entry_size(void *entry)
303 if (dax_is_zero_entry(entry))
304 return 0;
305 else if (dax_is_empty_entry(entry))
306 return 0;
307 else if (dax_is_pmd_entry(entry))
308 return PMD_SIZE;
309 else
310 return PAGE_SIZE;
313 static unsigned long dax_end_pfn(void *entry)
315 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
319 * Iterate through all mapped pfns represented by an entry, i.e. skip
320 * 'empty' and 'zero' entries.
322 #define for_each_mapped_pfn(entry, pfn) \
323 for (pfn = dax_to_pfn(entry); \
324 pfn < dax_end_pfn(entry); pfn++)
327 * TODO: for reflink+dax we need a way to associate a single page with
328 * multiple address_space instances at different linear_page_index()
329 * offsets.
331 static void dax_associate_entry(void *entry, struct address_space *mapping,
332 struct vm_area_struct *vma, unsigned long address)
334 unsigned long size = dax_entry_size(entry), pfn, index;
335 int i = 0;
337 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338 return;
340 index = linear_page_index(vma, address & ~(size - 1));
341 for_each_mapped_pfn(entry, pfn) {
342 struct page *page = pfn_to_page(pfn);
344 WARN_ON_ONCE(page->mapping);
345 page->mapping = mapping;
346 page->index = index + i++;
350 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351 bool trunc)
353 unsigned long pfn;
355 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356 return;
358 for_each_mapped_pfn(entry, pfn) {
359 struct page *page = pfn_to_page(pfn);
361 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363 page->mapping = NULL;
364 page->index = 0;
368 static struct page *dax_busy_page(void *entry)
370 unsigned long pfn;
372 for_each_mapped_pfn(entry, pfn) {
373 struct page *page = pfn_to_page(pfn);
375 if (page_ref_count(page) > 1)
376 return page;
378 return NULL;
382 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383 * @page: The page whose entry we want to lock
385 * Context: Process context.
386 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387 * not be locked.
389 dax_entry_t dax_lock_page(struct page *page)
391 XA_STATE(xas, NULL, 0);
392 void *entry;
394 /* Ensure page->mapping isn't freed while we look at it */
395 rcu_read_lock();
396 for (;;) {
397 struct address_space *mapping = READ_ONCE(page->mapping);
399 entry = NULL;
400 if (!mapping || !dax_mapping(mapping))
401 break;
404 * In the device-dax case there's no need to lock, a
405 * struct dev_pagemap pin is sufficient to keep the
406 * inode alive, and we assume we have dev_pagemap pin
407 * otherwise we would not have a valid pfn_to_page()
408 * translation.
410 entry = (void *)~0UL;
411 if (S_ISCHR(mapping->host->i_mode))
412 break;
414 xas.xa = &mapping->i_pages;
415 xas_lock_irq(&xas);
416 if (mapping != page->mapping) {
417 xas_unlock_irq(&xas);
418 continue;
420 xas_set(&xas, page->index);
421 entry = xas_load(&xas);
422 if (dax_is_locked(entry)) {
423 rcu_read_unlock();
424 wait_entry_unlocked(&xas, entry);
425 rcu_read_lock();
426 continue;
428 dax_lock_entry(&xas, entry);
429 xas_unlock_irq(&xas);
430 break;
432 rcu_read_unlock();
433 return (dax_entry_t)entry;
436 void dax_unlock_page(struct page *page, dax_entry_t cookie)
438 struct address_space *mapping = page->mapping;
439 XA_STATE(xas, &mapping->i_pages, page->index);
441 if (S_ISCHR(mapping->host->i_mode))
442 return;
444 dax_unlock_entry(&xas, (void *)cookie);
448 * Find page cache entry at given index. If it is a DAX entry, return it
449 * with the entry locked. If the page cache doesn't contain an entry at
450 * that index, add a locked empty entry.
452 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453 * either return that locked entry or will return VM_FAULT_FALLBACK.
454 * This will happen if there are any PTE entries within the PMD range
455 * that we are requesting.
457 * We always favor PTE entries over PMD entries. There isn't a flow where we
458 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
459 * insertion will fail if it finds any PTE entries already in the tree, and a
460 * PTE insertion will cause an existing PMD entry to be unmapped and
461 * downgraded to PTE entries. This happens for both PMD zero pages as
462 * well as PMD empty entries.
464 * The exception to this downgrade path is for PMD entries that have
465 * real storage backing them. We will leave these real PMD entries in
466 * the tree, and PTE writes will simply dirty the entire PMD entry.
468 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469 * persistent memory the benefit is doubtful. We can add that later if we can
470 * show it helps.
472 * On error, this function does not return an ERR_PTR. Instead it returns
473 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
474 * overlap with xarray value entries.
476 static void *grab_mapping_entry(struct xa_state *xas,
477 struct address_space *mapping, unsigned int order)
479 unsigned long index = xas->xa_index;
480 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481 void *entry;
483 retry:
484 xas_lock_irq(xas);
485 entry = get_unlocked_entry(xas, order);
487 if (entry) {
488 if (dax_is_conflict(entry))
489 goto fallback;
490 if (!xa_is_value(entry)) {
491 xas_set_err(xas, -EIO);
492 goto out_unlock;
495 if (order == 0) {
496 if (dax_is_pmd_entry(entry) &&
497 (dax_is_zero_entry(entry) ||
498 dax_is_empty_entry(entry))) {
499 pmd_downgrade = true;
504 if (pmd_downgrade) {
506 * Make sure 'entry' remains valid while we drop
507 * the i_pages lock.
509 dax_lock_entry(xas, entry);
512 * Besides huge zero pages the only other thing that gets
513 * downgraded are empty entries which don't need to be
514 * unmapped.
516 if (dax_is_zero_entry(entry)) {
517 xas_unlock_irq(xas);
518 unmap_mapping_pages(mapping,
519 xas->xa_index & ~PG_PMD_COLOUR,
520 PG_PMD_NR, false);
521 xas_reset(xas);
522 xas_lock_irq(xas);
525 dax_disassociate_entry(entry, mapping, false);
526 xas_store(xas, NULL); /* undo the PMD join */
527 dax_wake_entry(xas, entry, true);
528 mapping->nrexceptional--;
529 entry = NULL;
530 xas_set(xas, index);
533 if (entry) {
534 dax_lock_entry(xas, entry);
535 } else {
536 unsigned long flags = DAX_EMPTY;
538 if (order > 0)
539 flags |= DAX_PMD;
540 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
541 dax_lock_entry(xas, entry);
542 if (xas_error(xas))
543 goto out_unlock;
544 mapping->nrexceptional++;
547 out_unlock:
548 xas_unlock_irq(xas);
549 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550 goto retry;
551 if (xas->xa_node == XA_ERROR(-ENOMEM))
552 return xa_mk_internal(VM_FAULT_OOM);
553 if (xas_error(xas))
554 return xa_mk_internal(VM_FAULT_SIGBUS);
555 return entry;
556 fallback:
557 xas_unlock_irq(xas);
558 return xa_mk_internal(VM_FAULT_FALLBACK);
562 * dax_layout_busy_page_range - find first pinned page in @mapping
563 * @mapping: address space to scan for a page with ref count > 1
564 * @start: Starting offset. Page containing 'start' is included.
565 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
566 * pages from 'start' till the end of file are included.
568 * DAX requires ZONE_DEVICE mapped pages. These pages are never
569 * 'onlined' to the page allocator so they are considered idle when
570 * page->count == 1. A filesystem uses this interface to determine if
571 * any page in the mapping is busy, i.e. for DMA, or other
572 * get_user_pages() usages.
574 * It is expected that the filesystem is holding locks to block the
575 * establishment of new mappings in this address_space. I.e. it expects
576 * to be able to run unmap_mapping_range() and subsequently not race
577 * mapping_mapped() becoming true.
579 struct page *dax_layout_busy_page_range(struct address_space *mapping,
580 loff_t start, loff_t end)
582 void *entry;
583 unsigned int scanned = 0;
584 struct page *page = NULL;
585 pgoff_t start_idx = start >> PAGE_SHIFT;
586 pgoff_t end_idx;
587 XA_STATE(xas, &mapping->i_pages, start_idx);
590 * In the 'limited' case get_user_pages() for dax is disabled.
592 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
593 return NULL;
595 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
596 return NULL;
598 /* If end == LLONG_MAX, all pages from start to till end of file */
599 if (end == LLONG_MAX)
600 end_idx = ULONG_MAX;
601 else
602 end_idx = end >> PAGE_SHIFT;
604 * If we race get_user_pages_fast() here either we'll see the
605 * elevated page count in the iteration and wait, or
606 * get_user_pages_fast() will see that the page it took a reference
607 * against is no longer mapped in the page tables and bail to the
608 * get_user_pages() slow path. The slow path is protected by
609 * pte_lock() and pmd_lock(). New references are not taken without
610 * holding those locks, and unmap_mapping_pages() will not zero the
611 * pte or pmd without holding the respective lock, so we are
612 * guaranteed to either see new references or prevent new
613 * references from being established.
615 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
617 xas_lock_irq(&xas);
618 xas_for_each(&xas, entry, end_idx) {
619 if (WARN_ON_ONCE(!xa_is_value(entry)))
620 continue;
621 if (unlikely(dax_is_locked(entry)))
622 entry = get_unlocked_entry(&xas, 0);
623 if (entry)
624 page = dax_busy_page(entry);
625 put_unlocked_entry(&xas, entry);
626 if (page)
627 break;
628 if (++scanned % XA_CHECK_SCHED)
629 continue;
631 xas_pause(&xas);
632 xas_unlock_irq(&xas);
633 cond_resched();
634 xas_lock_irq(&xas);
636 xas_unlock_irq(&xas);
637 return page;
639 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
641 struct page *dax_layout_busy_page(struct address_space *mapping)
643 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
645 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
647 static int __dax_invalidate_entry(struct address_space *mapping,
648 pgoff_t index, bool trunc)
650 XA_STATE(xas, &mapping->i_pages, index);
651 int ret = 0;
652 void *entry;
654 xas_lock_irq(&xas);
655 entry = get_unlocked_entry(&xas, 0);
656 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
657 goto out;
658 if (!trunc &&
659 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
660 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
661 goto out;
662 dax_disassociate_entry(entry, mapping, trunc);
663 xas_store(&xas, NULL);
664 mapping->nrexceptional--;
665 ret = 1;
666 out:
667 put_unlocked_entry(&xas, entry);
668 xas_unlock_irq(&xas);
669 return ret;
673 * Delete DAX entry at @index from @mapping. Wait for it
674 * to be unlocked before deleting it.
676 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
678 int ret = __dax_invalidate_entry(mapping, index, true);
681 * This gets called from truncate / punch_hole path. As such, the caller
682 * must hold locks protecting against concurrent modifications of the
683 * page cache (usually fs-private i_mmap_sem for writing). Since the
684 * caller has seen a DAX entry for this index, we better find it
685 * at that index as well...
687 WARN_ON_ONCE(!ret);
688 return ret;
692 * Invalidate DAX entry if it is clean.
694 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
695 pgoff_t index)
697 return __dax_invalidate_entry(mapping, index, false);
700 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
701 sector_t sector, struct page *to, unsigned long vaddr)
703 void *vto, *kaddr;
704 pgoff_t pgoff;
705 long rc;
706 int id;
708 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
709 if (rc)
710 return rc;
712 id = dax_read_lock();
713 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
714 if (rc < 0) {
715 dax_read_unlock(id);
716 return rc;
718 vto = kmap_atomic(to);
719 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
720 kunmap_atomic(vto);
721 dax_read_unlock(id);
722 return 0;
726 * By this point grab_mapping_entry() has ensured that we have a locked entry
727 * of the appropriate size so we don't have to worry about downgrading PMDs to
728 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
729 * already in the tree, we will skip the insertion and just dirty the PMD as
730 * appropriate.
732 static void *dax_insert_entry(struct xa_state *xas,
733 struct address_space *mapping, struct vm_fault *vmf,
734 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
736 void *new_entry = dax_make_entry(pfn, flags);
738 if (dirty)
739 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
741 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
742 unsigned long index = xas->xa_index;
743 /* we are replacing a zero page with block mapping */
744 if (dax_is_pmd_entry(entry))
745 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
746 PG_PMD_NR, false);
747 else /* pte entry */
748 unmap_mapping_pages(mapping, index, 1, false);
751 xas_reset(xas);
752 xas_lock_irq(xas);
753 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
754 void *old;
756 dax_disassociate_entry(entry, mapping, false);
757 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
759 * Only swap our new entry into the page cache if the current
760 * entry is a zero page or an empty entry. If a normal PTE or
761 * PMD entry is already in the cache, we leave it alone. This
762 * means that if we are trying to insert a PTE and the
763 * existing entry is a PMD, we will just leave the PMD in the
764 * tree and dirty it if necessary.
766 old = dax_lock_entry(xas, new_entry);
767 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
768 DAX_LOCKED));
769 entry = new_entry;
770 } else {
771 xas_load(xas); /* Walk the xa_state */
774 if (dirty)
775 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
777 xas_unlock_irq(xas);
778 return entry;
781 static inline
782 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
784 unsigned long address;
786 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
787 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
788 return address;
791 /* Walk all mappings of a given index of a file and writeprotect them */
792 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
793 unsigned long pfn)
795 struct vm_area_struct *vma;
796 pte_t pte, *ptep = NULL;
797 pmd_t *pmdp = NULL;
798 spinlock_t *ptl;
800 i_mmap_lock_read(mapping);
801 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
802 struct mmu_notifier_range range;
803 unsigned long address;
805 cond_resched();
807 if (!(vma->vm_flags & VM_SHARED))
808 continue;
810 address = pgoff_address(index, vma);
813 * Note because we provide range to follow_pte it will call
814 * mmu_notifier_invalidate_range_start() on our behalf before
815 * taking any lock.
817 if (follow_pte(vma->vm_mm, address, &range, &ptep, &pmdp, &ptl))
818 continue;
821 * No need to call mmu_notifier_invalidate_range() as we are
822 * downgrading page table protection not changing it to point
823 * to a new page.
825 * See Documentation/vm/mmu_notifier.rst
827 if (pmdp) {
828 #ifdef CONFIG_FS_DAX_PMD
829 pmd_t pmd;
831 if (pfn != pmd_pfn(*pmdp))
832 goto unlock_pmd;
833 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
834 goto unlock_pmd;
836 flush_cache_page(vma, address, pfn);
837 pmd = pmdp_invalidate(vma, address, pmdp);
838 pmd = pmd_wrprotect(pmd);
839 pmd = pmd_mkclean(pmd);
840 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
841 unlock_pmd:
842 #endif
843 spin_unlock(ptl);
844 } else {
845 if (pfn != pte_pfn(*ptep))
846 goto unlock_pte;
847 if (!pte_dirty(*ptep) && !pte_write(*ptep))
848 goto unlock_pte;
850 flush_cache_page(vma, address, pfn);
851 pte = ptep_clear_flush(vma, address, ptep);
852 pte = pte_wrprotect(pte);
853 pte = pte_mkclean(pte);
854 set_pte_at(vma->vm_mm, address, ptep, pte);
855 unlock_pte:
856 pte_unmap_unlock(ptep, ptl);
859 mmu_notifier_invalidate_range_end(&range);
861 i_mmap_unlock_read(mapping);
864 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
865 struct address_space *mapping, void *entry)
867 unsigned long pfn, index, count;
868 long ret = 0;
871 * A page got tagged dirty in DAX mapping? Something is seriously
872 * wrong.
874 if (WARN_ON(!xa_is_value(entry)))
875 return -EIO;
877 if (unlikely(dax_is_locked(entry))) {
878 void *old_entry = entry;
880 entry = get_unlocked_entry(xas, 0);
882 /* Entry got punched out / reallocated? */
883 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
884 goto put_unlocked;
886 * Entry got reallocated elsewhere? No need to writeback.
887 * We have to compare pfns as we must not bail out due to
888 * difference in lockbit or entry type.
890 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
891 goto put_unlocked;
892 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
893 dax_is_zero_entry(entry))) {
894 ret = -EIO;
895 goto put_unlocked;
898 /* Another fsync thread may have already done this entry */
899 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
900 goto put_unlocked;
903 /* Lock the entry to serialize with page faults */
904 dax_lock_entry(xas, entry);
907 * We can clear the tag now but we have to be careful so that concurrent
908 * dax_writeback_one() calls for the same index cannot finish before we
909 * actually flush the caches. This is achieved as the calls will look
910 * at the entry only under the i_pages lock and once they do that
911 * they will see the entry locked and wait for it to unlock.
913 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
914 xas_unlock_irq(xas);
917 * If dax_writeback_mapping_range() was given a wbc->range_start
918 * in the middle of a PMD, the 'index' we use needs to be
919 * aligned to the start of the PMD.
920 * This allows us to flush for PMD_SIZE and not have to worry about
921 * partial PMD writebacks.
923 pfn = dax_to_pfn(entry);
924 count = 1UL << dax_entry_order(entry);
925 index = xas->xa_index & ~(count - 1);
927 dax_entry_mkclean(mapping, index, pfn);
928 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
930 * After we have flushed the cache, we can clear the dirty tag. There
931 * cannot be new dirty data in the pfn after the flush has completed as
932 * the pfn mappings are writeprotected and fault waits for mapping
933 * entry lock.
935 xas_reset(xas);
936 xas_lock_irq(xas);
937 xas_store(xas, entry);
938 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
939 dax_wake_entry(xas, entry, false);
941 trace_dax_writeback_one(mapping->host, index, count);
942 return ret;
944 put_unlocked:
945 put_unlocked_entry(xas, entry);
946 return ret;
950 * Flush the mapping to the persistent domain within the byte range of [start,
951 * end]. This is required by data integrity operations to ensure file data is
952 * on persistent storage prior to completion of the operation.
954 int dax_writeback_mapping_range(struct address_space *mapping,
955 struct dax_device *dax_dev, struct writeback_control *wbc)
957 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
958 struct inode *inode = mapping->host;
959 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
960 void *entry;
961 int ret = 0;
962 unsigned int scanned = 0;
964 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
965 return -EIO;
967 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
968 return 0;
970 trace_dax_writeback_range(inode, xas.xa_index, end_index);
972 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
974 xas_lock_irq(&xas);
975 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
976 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
977 if (ret < 0) {
978 mapping_set_error(mapping, ret);
979 break;
981 if (++scanned % XA_CHECK_SCHED)
982 continue;
984 xas_pause(&xas);
985 xas_unlock_irq(&xas);
986 cond_resched();
987 xas_lock_irq(&xas);
989 xas_unlock_irq(&xas);
990 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
991 return ret;
993 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
995 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
997 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1000 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1001 pfn_t *pfnp)
1003 const sector_t sector = dax_iomap_sector(iomap, pos);
1004 pgoff_t pgoff;
1005 int id, rc;
1006 long length;
1008 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1009 if (rc)
1010 return rc;
1011 id = dax_read_lock();
1012 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1013 NULL, pfnp);
1014 if (length < 0) {
1015 rc = length;
1016 goto out;
1018 rc = -EINVAL;
1019 if (PFN_PHYS(length) < size)
1020 goto out;
1021 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1022 goto out;
1023 /* For larger pages we need devmap */
1024 if (length > 1 && !pfn_t_devmap(*pfnp))
1025 goto out;
1026 rc = 0;
1027 out:
1028 dax_read_unlock(id);
1029 return rc;
1033 * The user has performed a load from a hole in the file. Allocating a new
1034 * page in the file would cause excessive storage usage for workloads with
1035 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1036 * If this page is ever written to we will re-fault and change the mapping to
1037 * point to real DAX storage instead.
1039 static vm_fault_t dax_load_hole(struct xa_state *xas,
1040 struct address_space *mapping, void **entry,
1041 struct vm_fault *vmf)
1043 struct inode *inode = mapping->host;
1044 unsigned long vaddr = vmf->address;
1045 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1046 vm_fault_t ret;
1048 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1049 DAX_ZERO_PAGE, false);
1051 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1052 trace_dax_load_hole(inode, vmf, ret);
1053 return ret;
1056 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1058 sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1059 pgoff_t pgoff;
1060 long rc, id;
1061 void *kaddr;
1062 bool page_aligned = false;
1063 unsigned offset = offset_in_page(pos);
1064 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1066 if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1067 (size == PAGE_SIZE))
1068 page_aligned = true;
1070 rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1071 if (rc)
1072 return rc;
1074 id = dax_read_lock();
1076 if (page_aligned)
1077 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1078 else
1079 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1080 if (rc < 0) {
1081 dax_read_unlock(id);
1082 return rc;
1085 if (!page_aligned) {
1086 memset(kaddr + offset, 0, size);
1087 dax_flush(iomap->dax_dev, kaddr + offset, size);
1089 dax_read_unlock(id);
1090 return size;
1093 static loff_t
1094 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1095 struct iomap *iomap, struct iomap *srcmap)
1097 struct block_device *bdev = iomap->bdev;
1098 struct dax_device *dax_dev = iomap->dax_dev;
1099 struct iov_iter *iter = data;
1100 loff_t end = pos + length, done = 0;
1101 ssize_t ret = 0;
1102 size_t xfer;
1103 int id;
1105 if (iov_iter_rw(iter) == READ) {
1106 end = min(end, i_size_read(inode));
1107 if (pos >= end)
1108 return 0;
1110 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1111 return iov_iter_zero(min(length, end - pos), iter);
1114 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1115 return -EIO;
1118 * Write can allocate block for an area which has a hole page mapped
1119 * into page tables. We have to tear down these mappings so that data
1120 * written by write(2) is visible in mmap.
1122 if (iomap->flags & IOMAP_F_NEW) {
1123 invalidate_inode_pages2_range(inode->i_mapping,
1124 pos >> PAGE_SHIFT,
1125 (end - 1) >> PAGE_SHIFT);
1128 id = dax_read_lock();
1129 while (pos < end) {
1130 unsigned offset = pos & (PAGE_SIZE - 1);
1131 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1132 const sector_t sector = dax_iomap_sector(iomap, pos);
1133 ssize_t map_len;
1134 pgoff_t pgoff;
1135 void *kaddr;
1137 if (fatal_signal_pending(current)) {
1138 ret = -EINTR;
1139 break;
1142 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1143 if (ret)
1144 break;
1146 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1147 &kaddr, NULL);
1148 if (map_len < 0) {
1149 ret = map_len;
1150 break;
1153 map_len = PFN_PHYS(map_len);
1154 kaddr += offset;
1155 map_len -= offset;
1156 if (map_len > end - pos)
1157 map_len = end - pos;
1160 * The userspace address for the memory copy has already been
1161 * validated via access_ok() in either vfs_read() or
1162 * vfs_write(), depending on which operation we are doing.
1164 if (iov_iter_rw(iter) == WRITE)
1165 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1166 map_len, iter);
1167 else
1168 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1169 map_len, iter);
1171 pos += xfer;
1172 length -= xfer;
1173 done += xfer;
1175 if (xfer == 0)
1176 ret = -EFAULT;
1177 if (xfer < map_len)
1178 break;
1180 dax_read_unlock(id);
1182 return done ? done : ret;
1186 * dax_iomap_rw - Perform I/O to a DAX file
1187 * @iocb: The control block for this I/O
1188 * @iter: The addresses to do I/O from or to
1189 * @ops: iomap ops passed from the file system
1191 * This function performs read and write operations to directly mapped
1192 * persistent memory. The callers needs to take care of read/write exclusion
1193 * and evicting any page cache pages in the region under I/O.
1195 ssize_t
1196 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1197 const struct iomap_ops *ops)
1199 struct address_space *mapping = iocb->ki_filp->f_mapping;
1200 struct inode *inode = mapping->host;
1201 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1202 unsigned flags = 0;
1204 if (iov_iter_rw(iter) == WRITE) {
1205 lockdep_assert_held_write(&inode->i_rwsem);
1206 flags |= IOMAP_WRITE;
1207 } else {
1208 lockdep_assert_held(&inode->i_rwsem);
1211 if (iocb->ki_flags & IOCB_NOWAIT)
1212 flags |= IOMAP_NOWAIT;
1214 while (iov_iter_count(iter)) {
1215 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1216 iter, dax_iomap_actor);
1217 if (ret <= 0)
1218 break;
1219 pos += ret;
1220 done += ret;
1223 iocb->ki_pos += done;
1224 return done ? done : ret;
1226 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1228 static vm_fault_t dax_fault_return(int error)
1230 if (error == 0)
1231 return VM_FAULT_NOPAGE;
1232 return vmf_error(error);
1236 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1237 * flushed on write-faults (non-cow), but not read-faults.
1239 static bool dax_fault_is_synchronous(unsigned long flags,
1240 struct vm_area_struct *vma, struct iomap *iomap)
1242 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1243 && (iomap->flags & IOMAP_F_DIRTY);
1246 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1247 int *iomap_errp, const struct iomap_ops *ops)
1249 struct vm_area_struct *vma = vmf->vma;
1250 struct address_space *mapping = vma->vm_file->f_mapping;
1251 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1252 struct inode *inode = mapping->host;
1253 unsigned long vaddr = vmf->address;
1254 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1255 struct iomap iomap = { .type = IOMAP_HOLE };
1256 struct iomap srcmap = { .type = IOMAP_HOLE };
1257 unsigned flags = IOMAP_FAULT;
1258 int error, major = 0;
1259 bool write = vmf->flags & FAULT_FLAG_WRITE;
1260 bool sync;
1261 vm_fault_t ret = 0;
1262 void *entry;
1263 pfn_t pfn;
1265 trace_dax_pte_fault(inode, vmf, ret);
1267 * Check whether offset isn't beyond end of file now. Caller is supposed
1268 * to hold locks serializing us with truncate / punch hole so this is
1269 * a reliable test.
1271 if (pos >= i_size_read(inode)) {
1272 ret = VM_FAULT_SIGBUS;
1273 goto out;
1276 if (write && !vmf->cow_page)
1277 flags |= IOMAP_WRITE;
1279 entry = grab_mapping_entry(&xas, mapping, 0);
1280 if (xa_is_internal(entry)) {
1281 ret = xa_to_internal(entry);
1282 goto out;
1286 * It is possible, particularly with mixed reads & writes to private
1287 * mappings, that we have raced with a PMD fault that overlaps with
1288 * the PTE we need to set up. If so just return and the fault will be
1289 * retried.
1291 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1292 ret = VM_FAULT_NOPAGE;
1293 goto unlock_entry;
1297 * Note that we don't bother to use iomap_apply here: DAX required
1298 * the file system block size to be equal the page size, which means
1299 * that we never have to deal with more than a single extent here.
1301 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1302 if (iomap_errp)
1303 *iomap_errp = error;
1304 if (error) {
1305 ret = dax_fault_return(error);
1306 goto unlock_entry;
1308 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1309 error = -EIO; /* fs corruption? */
1310 goto error_finish_iomap;
1313 if (vmf->cow_page) {
1314 sector_t sector = dax_iomap_sector(&iomap, pos);
1316 switch (iomap.type) {
1317 case IOMAP_HOLE:
1318 case IOMAP_UNWRITTEN:
1319 clear_user_highpage(vmf->cow_page, vaddr);
1320 break;
1321 case IOMAP_MAPPED:
1322 error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1323 sector, vmf->cow_page, vaddr);
1324 break;
1325 default:
1326 WARN_ON_ONCE(1);
1327 error = -EIO;
1328 break;
1331 if (error)
1332 goto error_finish_iomap;
1334 __SetPageUptodate(vmf->cow_page);
1335 ret = finish_fault(vmf);
1336 if (!ret)
1337 ret = VM_FAULT_DONE_COW;
1338 goto finish_iomap;
1341 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1343 switch (iomap.type) {
1344 case IOMAP_MAPPED:
1345 if (iomap.flags & IOMAP_F_NEW) {
1346 count_vm_event(PGMAJFAULT);
1347 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1348 major = VM_FAULT_MAJOR;
1350 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1351 if (error < 0)
1352 goto error_finish_iomap;
1354 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1355 0, write && !sync);
1358 * If we are doing synchronous page fault and inode needs fsync,
1359 * we can insert PTE into page tables only after that happens.
1360 * Skip insertion for now and return the pfn so that caller can
1361 * insert it after fsync is done.
1363 if (sync) {
1364 if (WARN_ON_ONCE(!pfnp)) {
1365 error = -EIO;
1366 goto error_finish_iomap;
1368 *pfnp = pfn;
1369 ret = VM_FAULT_NEEDDSYNC | major;
1370 goto finish_iomap;
1372 trace_dax_insert_mapping(inode, vmf, entry);
1373 if (write)
1374 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1375 else
1376 ret = vmf_insert_mixed(vma, vaddr, pfn);
1378 goto finish_iomap;
1379 case IOMAP_UNWRITTEN:
1380 case IOMAP_HOLE:
1381 if (!write) {
1382 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1383 goto finish_iomap;
1385 fallthrough;
1386 default:
1387 WARN_ON_ONCE(1);
1388 error = -EIO;
1389 break;
1392 error_finish_iomap:
1393 ret = dax_fault_return(error);
1394 finish_iomap:
1395 if (ops->iomap_end) {
1396 int copied = PAGE_SIZE;
1398 if (ret & VM_FAULT_ERROR)
1399 copied = 0;
1401 * The fault is done by now and there's no way back (other
1402 * thread may be already happily using PTE we have installed).
1403 * Just ignore error from ->iomap_end since we cannot do much
1404 * with it.
1406 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1408 unlock_entry:
1409 dax_unlock_entry(&xas, entry);
1410 out:
1411 trace_dax_pte_fault_done(inode, vmf, ret);
1412 return ret | major;
1415 #ifdef CONFIG_FS_DAX_PMD
1416 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1417 struct iomap *iomap, void **entry)
1419 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1420 unsigned long pmd_addr = vmf->address & PMD_MASK;
1421 struct vm_area_struct *vma = vmf->vma;
1422 struct inode *inode = mapping->host;
1423 pgtable_t pgtable = NULL;
1424 struct page *zero_page;
1425 spinlock_t *ptl;
1426 pmd_t pmd_entry;
1427 pfn_t pfn;
1429 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1431 if (unlikely(!zero_page))
1432 goto fallback;
1434 pfn = page_to_pfn_t(zero_page);
1435 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1436 DAX_PMD | DAX_ZERO_PAGE, false);
1438 if (arch_needs_pgtable_deposit()) {
1439 pgtable = pte_alloc_one(vma->vm_mm);
1440 if (!pgtable)
1441 return VM_FAULT_OOM;
1444 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1445 if (!pmd_none(*(vmf->pmd))) {
1446 spin_unlock(ptl);
1447 goto fallback;
1450 if (pgtable) {
1451 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1452 mm_inc_nr_ptes(vma->vm_mm);
1454 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1455 pmd_entry = pmd_mkhuge(pmd_entry);
1456 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1457 spin_unlock(ptl);
1458 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1459 return VM_FAULT_NOPAGE;
1461 fallback:
1462 if (pgtable)
1463 pte_free(vma->vm_mm, pgtable);
1464 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1465 return VM_FAULT_FALLBACK;
1468 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1469 const struct iomap_ops *ops)
1471 struct vm_area_struct *vma = vmf->vma;
1472 struct address_space *mapping = vma->vm_file->f_mapping;
1473 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1474 unsigned long pmd_addr = vmf->address & PMD_MASK;
1475 bool write = vmf->flags & FAULT_FLAG_WRITE;
1476 bool sync;
1477 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1478 struct inode *inode = mapping->host;
1479 vm_fault_t result = VM_FAULT_FALLBACK;
1480 struct iomap iomap = { .type = IOMAP_HOLE };
1481 struct iomap srcmap = { .type = IOMAP_HOLE };
1482 pgoff_t max_pgoff;
1483 void *entry;
1484 loff_t pos;
1485 int error;
1486 pfn_t pfn;
1489 * Check whether offset isn't beyond end of file now. Caller is
1490 * supposed to hold locks serializing us with truncate / punch hole so
1491 * this is a reliable test.
1493 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1495 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1498 * Make sure that the faulting address's PMD offset (color) matches
1499 * the PMD offset from the start of the file. This is necessary so
1500 * that a PMD range in the page table overlaps exactly with a PMD
1501 * range in the page cache.
1503 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1504 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1505 goto fallback;
1507 /* Fall back to PTEs if we're going to COW */
1508 if (write && !(vma->vm_flags & VM_SHARED))
1509 goto fallback;
1511 /* If the PMD would extend outside the VMA */
1512 if (pmd_addr < vma->vm_start)
1513 goto fallback;
1514 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1515 goto fallback;
1517 if (xas.xa_index >= max_pgoff) {
1518 result = VM_FAULT_SIGBUS;
1519 goto out;
1522 /* If the PMD would extend beyond the file size */
1523 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1524 goto fallback;
1527 * grab_mapping_entry() will make sure we get an empty PMD entry,
1528 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1529 * entry is already in the array, for instance), it will return
1530 * VM_FAULT_FALLBACK.
1532 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1533 if (xa_is_internal(entry)) {
1534 result = xa_to_internal(entry);
1535 goto fallback;
1539 * It is possible, particularly with mixed reads & writes to private
1540 * mappings, that we have raced with a PTE fault that overlaps with
1541 * the PMD we need to set up. If so just return and the fault will be
1542 * retried.
1544 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1545 !pmd_devmap(*vmf->pmd)) {
1546 result = 0;
1547 goto unlock_entry;
1551 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1552 * setting up a mapping, so really we're using iomap_begin() as a way
1553 * to look up our filesystem block.
1555 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1556 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1557 &srcmap);
1558 if (error)
1559 goto unlock_entry;
1561 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1562 goto finish_iomap;
1564 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1566 switch (iomap.type) {
1567 case IOMAP_MAPPED:
1568 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1569 if (error < 0)
1570 goto finish_iomap;
1572 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1573 DAX_PMD, write && !sync);
1576 * If we are doing synchronous page fault and inode needs fsync,
1577 * we can insert PMD into page tables only after that happens.
1578 * Skip insertion for now and return the pfn so that caller can
1579 * insert it after fsync is done.
1581 if (sync) {
1582 if (WARN_ON_ONCE(!pfnp))
1583 goto finish_iomap;
1584 *pfnp = pfn;
1585 result = VM_FAULT_NEEDDSYNC;
1586 goto finish_iomap;
1589 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1590 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1591 break;
1592 case IOMAP_UNWRITTEN:
1593 case IOMAP_HOLE:
1594 if (WARN_ON_ONCE(write))
1595 break;
1596 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1597 break;
1598 default:
1599 WARN_ON_ONCE(1);
1600 break;
1603 finish_iomap:
1604 if (ops->iomap_end) {
1605 int copied = PMD_SIZE;
1607 if (result == VM_FAULT_FALLBACK)
1608 copied = 0;
1610 * The fault is done by now and there's no way back (other
1611 * thread may be already happily using PMD we have installed).
1612 * Just ignore error from ->iomap_end since we cannot do much
1613 * with it.
1615 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1616 &iomap);
1618 unlock_entry:
1619 dax_unlock_entry(&xas, entry);
1620 fallback:
1621 if (result == VM_FAULT_FALLBACK) {
1622 split_huge_pmd(vma, vmf->pmd, vmf->address);
1623 count_vm_event(THP_FAULT_FALLBACK);
1625 out:
1626 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1627 return result;
1629 #else
1630 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1631 const struct iomap_ops *ops)
1633 return VM_FAULT_FALLBACK;
1635 #endif /* CONFIG_FS_DAX_PMD */
1638 * dax_iomap_fault - handle a page fault on a DAX file
1639 * @vmf: The description of the fault
1640 * @pe_size: Size of the page to fault in
1641 * @pfnp: PFN to insert for synchronous faults if fsync is required
1642 * @iomap_errp: Storage for detailed error code in case of error
1643 * @ops: Iomap ops passed from the file system
1645 * When a page fault occurs, filesystems may call this helper in
1646 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1647 * has done all the necessary locking for page fault to proceed
1648 * successfully.
1650 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1651 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1653 switch (pe_size) {
1654 case PE_SIZE_PTE:
1655 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1656 case PE_SIZE_PMD:
1657 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1658 default:
1659 return VM_FAULT_FALLBACK;
1662 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1665 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1666 * @vmf: The description of the fault
1667 * @pfn: PFN to insert
1668 * @order: Order of entry to insert.
1670 * This function inserts a writeable PTE or PMD entry into the page tables
1671 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1673 static vm_fault_t
1674 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1676 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1677 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1678 void *entry;
1679 vm_fault_t ret;
1681 xas_lock_irq(&xas);
1682 entry = get_unlocked_entry(&xas, order);
1683 /* Did we race with someone splitting entry or so? */
1684 if (!entry || dax_is_conflict(entry) ||
1685 (order == 0 && !dax_is_pte_entry(entry))) {
1686 put_unlocked_entry(&xas, entry);
1687 xas_unlock_irq(&xas);
1688 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1689 VM_FAULT_NOPAGE);
1690 return VM_FAULT_NOPAGE;
1692 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1693 dax_lock_entry(&xas, entry);
1694 xas_unlock_irq(&xas);
1695 if (order == 0)
1696 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1697 #ifdef CONFIG_FS_DAX_PMD
1698 else if (order == PMD_ORDER)
1699 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1700 #endif
1701 else
1702 ret = VM_FAULT_FALLBACK;
1703 dax_unlock_entry(&xas, entry);
1704 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1705 return ret;
1709 * dax_finish_sync_fault - finish synchronous page fault
1710 * @vmf: The description of the fault
1711 * @pe_size: Size of entry to be inserted
1712 * @pfn: PFN to insert
1714 * This function ensures that the file range touched by the page fault is
1715 * stored persistently on the media and handles inserting of appropriate page
1716 * table entry.
1718 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1719 enum page_entry_size pe_size, pfn_t pfn)
1721 int err;
1722 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1723 unsigned int order = pe_order(pe_size);
1724 size_t len = PAGE_SIZE << order;
1726 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1727 if (err)
1728 return VM_FAULT_SIGBUS;
1729 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1731 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);