1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * eCryptfs: Linux filesystem encryption layer
5 * Copyright (C) 1997-2004 Erez Zadok
6 * Copyright (C) 2001-2004 Stony Brook University
7 * Copyright (C) 2004-2007 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
34 * @dst: Buffer to take the bytes from src hex; must be at least of
36 * @src: Buffer to be converted from a hex string representation to raw value
37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
39 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
44 for (x
= 0; x
< dst_size
; x
++) {
46 tmp
[1] = src
[x
* 2 + 1];
47 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
52 * ecryptfs_calculate_md5 - calculates the md5 of @src
53 * @dst: Pointer to 16 bytes of allocated memory
54 * @crypt_stat: Pointer to crypt_stat struct for the current inode
55 * @src: Data to be md5'd
56 * @len: Length of @src
58 * Uses the allocated crypto context that crypt_stat references to
59 * generate the MD5 sum of the contents of src.
61 static int ecryptfs_calculate_md5(char *dst
,
62 struct ecryptfs_crypt_stat
*crypt_stat
,
65 int rc
= crypto_shash_tfm_digest(crypt_stat
->hash_tfm
, src
, len
, dst
);
69 "%s: Error computing crypto hash; rc = [%d]\n",
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
79 char *chaining_modifier
)
81 int cipher_name_len
= strlen(cipher_name
);
82 int chaining_modifier_len
= strlen(chaining_modifier
);
83 int algified_name_len
;
86 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
87 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
88 if (!(*algified_name
)) {
92 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
93 chaining_modifier
, cipher_name
);
101 * @iv: destination for the derived iv vale
102 * @crypt_stat: Pointer to crypt_stat struct for the current inode
103 * @offset: Offset of the extent whose IV we are to derive
105 * Generate the initialization vector from the given root IV and page
108 * Returns zero on success; non-zero on error.
110 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
114 char dst
[MD5_DIGEST_SIZE
];
115 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
117 if (unlikely(ecryptfs_verbosity
> 0)) {
118 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
119 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
121 /* TODO: It is probably secure to just cast the least
122 * significant bits of the root IV into an unsigned long and
123 * add the offset to that rather than go through all this
124 * hashing business. -Halcrow */
125 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
126 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
127 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
128 if (unlikely(ecryptfs_verbosity
> 0)) {
129 ecryptfs_printk(KERN_DEBUG
, "source:\n");
130 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
132 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
133 (crypt_stat
->iv_bytes
+ 16));
135 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
136 "MD5 while generating IV for a page\n");
139 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
140 if (unlikely(ecryptfs_verbosity
> 0)) {
141 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
142 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
149 * ecryptfs_init_crypt_stat
150 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
152 * Initialize the crypt_stat structure.
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
156 struct crypto_shash
*tfm
;
159 tfm
= crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH
, 0, 0);
162 ecryptfs_printk(KERN_ERR
, "Error attempting to "
163 "allocate crypto context; rc = [%d]\n",
168 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
169 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
170 mutex_init(&crypt_stat
->keysig_list_mutex
);
171 mutex_init(&crypt_stat
->cs_mutex
);
172 mutex_init(&crypt_stat
->cs_tfm_mutex
);
173 crypt_stat
->hash_tfm
= tfm
;
174 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
180 * ecryptfs_destroy_crypt_stat
181 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
183 * Releases all memory associated with a crypt_stat struct.
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
187 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
189 crypto_free_skcipher(crypt_stat
->tfm
);
190 crypto_free_shash(crypt_stat
->hash_tfm
);
191 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
192 &crypt_stat
->keysig_list
, crypt_stat_list
) {
193 list_del(&key_sig
->crypt_stat_list
);
194 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
196 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
199 void ecryptfs_destroy_mount_crypt_stat(
200 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
202 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
204 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
206 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
207 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
208 &mount_crypt_stat
->global_auth_tok_list
,
209 mount_crypt_stat_list
) {
210 list_del(&auth_tok
->mount_crypt_stat_list
);
211 if (!(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
212 key_put(auth_tok
->global_auth_tok_key
);
213 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
215 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
216 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
220 * virt_to_scatterlist
221 * @addr: Virtual address
222 * @size: Size of data; should be an even multiple of the block size
223 * @sg: Pointer to scatterlist array; set to NULL to obtain only
224 * the number of scatterlist structs required in array
225 * @sg_size: Max array size
227 * Fills in a scatterlist array with page references for a passed
230 * Returns the number of scatterlist structs in array used
232 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
238 int remainder_of_page
;
240 sg_init_table(sg
, sg_size
);
242 while (size
> 0 && i
< sg_size
) {
243 pg
= virt_to_page(addr
);
244 offset
= offset_in_page(addr
);
245 sg_set_page(&sg
[i
], pg
, 0, offset
);
246 remainder_of_page
= PAGE_SIZE
- offset
;
247 if (size
>= remainder_of_page
) {
248 sg
[i
].length
= remainder_of_page
;
249 addr
+= remainder_of_page
;
250 size
-= remainder_of_page
;
263 struct extent_crypt_result
{
264 struct completion completion
;
268 static void extent_crypt_complete(struct crypto_async_request
*req
, int rc
)
270 struct extent_crypt_result
*ecr
= req
->data
;
272 if (rc
== -EINPROGRESS
)
276 complete(&ecr
->completion
);
281 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282 * @dst_sg: Destination of the data after performing the crypto operation
283 * @src_sg: Data to be encrypted or decrypted
284 * @size: Length of data
286 * @op: ENCRYPT or DECRYPT to indicate the desired operation
288 * Returns the number of bytes encrypted or decrypted; negative value on error
290 static int crypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
291 struct scatterlist
*dst_sg
,
292 struct scatterlist
*src_sg
, int size
,
293 unsigned char *iv
, int op
)
295 struct skcipher_request
*req
= NULL
;
296 struct extent_crypt_result ecr
;
299 if (!crypt_stat
|| !crypt_stat
->tfm
300 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
))
303 if (unlikely(ecryptfs_verbosity
> 0)) {
304 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
305 crypt_stat
->key_size
);
306 ecryptfs_dump_hex(crypt_stat
->key
,
307 crypt_stat
->key_size
);
310 init_completion(&ecr
.completion
);
312 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
313 req
= skcipher_request_alloc(crypt_stat
->tfm
, GFP_NOFS
);
315 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
320 skcipher_request_set_callback(req
,
321 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
322 extent_crypt_complete
, &ecr
);
323 /* Consider doing this once, when the file is opened */
324 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
325 rc
= crypto_skcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
326 crypt_stat
->key_size
);
328 ecryptfs_printk(KERN_ERR
,
329 "Error setting key; rc = [%d]\n",
331 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
335 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
337 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
338 skcipher_request_set_crypt(req
, src_sg
, dst_sg
, size
, iv
);
339 rc
= op
== ENCRYPT
? crypto_skcipher_encrypt(req
) :
340 crypto_skcipher_decrypt(req
);
341 if (rc
== -EINPROGRESS
|| rc
== -EBUSY
) {
342 struct extent_crypt_result
*ecr
= req
->base
.data
;
344 wait_for_completion(&ecr
->completion
);
346 reinit_completion(&ecr
->completion
);
349 skcipher_request_free(req
);
354 * lower_offset_for_page
356 * Convert an eCryptfs page index into a lower byte offset
358 static loff_t
lower_offset_for_page(struct ecryptfs_crypt_stat
*crypt_stat
,
361 return ecryptfs_lower_header_size(crypt_stat
) +
362 ((loff_t
)page
->index
<< PAGE_SHIFT
);
367 * @crypt_stat: crypt_stat containing cryptographic context for the
368 * encryption operation
369 * @dst_page: The page to write the result into
370 * @src_page: The page to read from
371 * @extent_offset: Page extent offset for use in generating IV
372 * @op: ENCRYPT or DECRYPT to indicate the desired operation
374 * Encrypts or decrypts one extent of data.
376 * Return zero on success; non-zero otherwise
378 static int crypt_extent(struct ecryptfs_crypt_stat
*crypt_stat
,
379 struct page
*dst_page
,
380 struct page
*src_page
,
381 unsigned long extent_offset
, int op
)
383 pgoff_t page_index
= op
== ENCRYPT
? src_page
->index
: dst_page
->index
;
385 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
386 struct scatterlist src_sg
, dst_sg
;
387 size_t extent_size
= crypt_stat
->extent_size
;
390 extent_base
= (((loff_t
)page_index
) * (PAGE_SIZE
/ extent_size
));
391 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
392 (extent_base
+ extent_offset
));
394 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
395 "extent [0x%.16llx]; rc = [%d]\n",
396 (unsigned long long)(extent_base
+ extent_offset
), rc
);
400 sg_init_table(&src_sg
, 1);
401 sg_init_table(&dst_sg
, 1);
403 sg_set_page(&src_sg
, src_page
, extent_size
,
404 extent_offset
* extent_size
);
405 sg_set_page(&dst_sg
, dst_page
, extent_size
,
406 extent_offset
* extent_size
);
408 rc
= crypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, extent_size
,
411 printk(KERN_ERR
"%s: Error attempting to crypt page with "
412 "page_index = [%ld], extent_offset = [%ld]; "
413 "rc = [%d]\n", __func__
, page_index
, extent_offset
, rc
);
422 * ecryptfs_encrypt_page
423 * @page: Page mapped from the eCryptfs inode for the file; contains
424 * decrypted content that needs to be encrypted (to a temporary
425 * page; not in place) and written out to the lower file
427 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
428 * that eCryptfs pages may straddle the lower pages -- for instance,
429 * if the file was created on a machine with an 8K page size
430 * (resulting in an 8K header), and then the file is copied onto a
431 * host with a 32K page size, then when reading page 0 of the eCryptfs
432 * file, 24K of page 0 of the lower file will be read and decrypted,
433 * and then 8K of page 1 of the lower file will be read and decrypted.
435 * Returns zero on success; negative on error
437 int ecryptfs_encrypt_page(struct page
*page
)
439 struct inode
*ecryptfs_inode
;
440 struct ecryptfs_crypt_stat
*crypt_stat
;
441 char *enc_extent_virt
;
442 struct page
*enc_extent_page
= NULL
;
443 loff_t extent_offset
;
447 ecryptfs_inode
= page
->mapping
->host
;
449 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
450 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
451 enc_extent_page
= alloc_page(GFP_USER
);
452 if (!enc_extent_page
) {
454 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
455 "encrypted extent\n");
459 for (extent_offset
= 0;
460 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
462 rc
= crypt_extent(crypt_stat
, enc_extent_page
, page
,
463 extent_offset
, ENCRYPT
);
465 printk(KERN_ERR
"%s: Error encrypting extent; "
466 "rc = [%d]\n", __func__
, rc
);
471 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
472 enc_extent_virt
= kmap(enc_extent_page
);
473 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
, lower_offset
,
475 kunmap(enc_extent_page
);
477 ecryptfs_printk(KERN_ERR
,
478 "Error attempting to write lower page; rc = [%d]\n",
484 if (enc_extent_page
) {
485 __free_page(enc_extent_page
);
491 * ecryptfs_decrypt_page
492 * @page: Page mapped from the eCryptfs inode for the file; data read
493 * and decrypted from the lower file will be written into this
496 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
497 * that eCryptfs pages may straddle the lower pages -- for instance,
498 * if the file was created on a machine with an 8K page size
499 * (resulting in an 8K header), and then the file is copied onto a
500 * host with a 32K page size, then when reading page 0 of the eCryptfs
501 * file, 24K of page 0 of the lower file will be read and decrypted,
502 * and then 8K of page 1 of the lower file will be read and decrypted.
504 * Returns zero on success; negative on error
506 int ecryptfs_decrypt_page(struct page
*page
)
508 struct inode
*ecryptfs_inode
;
509 struct ecryptfs_crypt_stat
*crypt_stat
;
511 unsigned long extent_offset
;
515 ecryptfs_inode
= page
->mapping
->host
;
517 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
518 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
520 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
521 page_virt
= kmap(page
);
522 rc
= ecryptfs_read_lower(page_virt
, lower_offset
, PAGE_SIZE
,
526 ecryptfs_printk(KERN_ERR
,
527 "Error attempting to read lower page; rc = [%d]\n",
532 for (extent_offset
= 0;
533 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
535 rc
= crypt_extent(crypt_stat
, page
, page
,
536 extent_offset
, DECRYPT
);
538 printk(KERN_ERR
"%s: Error encrypting extent; "
539 "rc = [%d]\n", __func__
, rc
);
547 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
550 * ecryptfs_init_crypt_ctx
551 * @crypt_stat: Uninitialized crypt stats structure
553 * Initialize the crypto context.
555 * TODO: Performance: Keep a cache of initialized cipher contexts;
556 * only init if needed
558 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
563 ecryptfs_printk(KERN_DEBUG
,
564 "Initializing cipher [%s]; strlen = [%d]; "
565 "key_size_bits = [%zd]\n",
566 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
567 crypt_stat
->key_size
<< 3);
568 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
569 if (crypt_stat
->tfm
) {
573 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
574 crypt_stat
->cipher
, "cbc");
577 crypt_stat
->tfm
= crypto_alloc_skcipher(full_alg_name
, 0, 0);
578 if (IS_ERR(crypt_stat
->tfm
)) {
579 rc
= PTR_ERR(crypt_stat
->tfm
);
580 crypt_stat
->tfm
= NULL
;
581 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
582 "Error initializing cipher [%s]\n",
586 crypto_skcipher_set_flags(crypt_stat
->tfm
,
587 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS
);
590 kfree(full_alg_name
);
592 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
596 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
600 crypt_stat
->extent_mask
= 0xFFFFFFFF;
601 crypt_stat
->extent_shift
= 0;
602 if (crypt_stat
->extent_size
== 0)
604 extent_size_tmp
= crypt_stat
->extent_size
;
605 while ((extent_size_tmp
& 0x01) == 0) {
606 extent_size_tmp
>>= 1;
607 crypt_stat
->extent_mask
<<= 1;
608 crypt_stat
->extent_shift
++;
612 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
614 /* Default values; may be overwritten as we are parsing the
616 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
617 set_extent_mask_and_shift(crypt_stat
);
618 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
619 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
620 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
622 if (PAGE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
623 crypt_stat
->metadata_size
=
624 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
626 crypt_stat
->metadata_size
= PAGE_SIZE
;
631 * ecryptfs_compute_root_iv
634 * On error, sets the root IV to all 0's.
636 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
639 char dst
[MD5_DIGEST_SIZE
];
641 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
642 BUG_ON(crypt_stat
->iv_bytes
<= 0);
643 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
645 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
646 "cannot generate root IV\n");
649 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
650 crypt_stat
->key_size
);
652 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
653 "MD5 while generating root IV\n");
656 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
659 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
660 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
665 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
667 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
668 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
669 ecryptfs_compute_root_iv(crypt_stat
);
670 if (unlikely(ecryptfs_verbosity
> 0)) {
671 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
672 ecryptfs_dump_hex(crypt_stat
->key
,
673 crypt_stat
->key_size
);
678 * ecryptfs_copy_mount_wide_flags_to_inode_flags
679 * @crypt_stat: The inode's cryptographic context
680 * @mount_crypt_stat: The mount point's cryptographic context
682 * This function propagates the mount-wide flags to individual inode
685 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
686 struct ecryptfs_crypt_stat
*crypt_stat
,
687 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
689 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
690 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
691 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
692 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
693 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
694 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
695 if (mount_crypt_stat
->flags
696 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
697 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
698 else if (mount_crypt_stat
->flags
699 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
700 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
704 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
705 struct ecryptfs_crypt_stat
*crypt_stat
,
706 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
708 struct ecryptfs_global_auth_tok
*global_auth_tok
;
711 mutex_lock(&crypt_stat
->keysig_list_mutex
);
712 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
714 list_for_each_entry(global_auth_tok
,
715 &mount_crypt_stat
->global_auth_tok_list
,
716 mount_crypt_stat_list
) {
717 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
719 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
721 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
727 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
728 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
733 * ecryptfs_set_default_crypt_stat_vals
734 * @crypt_stat: The inode's cryptographic context
735 * @mount_crypt_stat: The mount point's cryptographic context
737 * Default values in the event that policy does not override them.
739 static void ecryptfs_set_default_crypt_stat_vals(
740 struct ecryptfs_crypt_stat
*crypt_stat
,
741 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
743 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
745 ecryptfs_set_default_sizes(crypt_stat
);
746 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
747 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
748 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
749 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
750 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
754 * ecryptfs_new_file_context
755 * @ecryptfs_inode: The eCryptfs inode
757 * If the crypto context for the file has not yet been established,
758 * this is where we do that. Establishing a new crypto context
759 * involves the following decisions:
760 * - What cipher to use?
761 * - What set of authentication tokens to use?
762 * Here we just worry about getting enough information into the
763 * authentication tokens so that we know that they are available.
764 * We associate the available authentication tokens with the new file
765 * via the set of signatures in the crypt_stat struct. Later, when
766 * the headers are actually written out, we may again defer to
767 * userspace to perform the encryption of the session key; for the
768 * foreseeable future, this will be the case with public key packets.
770 * Returns zero on success; non-zero otherwise
772 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
774 struct ecryptfs_crypt_stat
*crypt_stat
=
775 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
776 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
777 &ecryptfs_superblock_to_private(
778 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
782 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
783 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
784 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
786 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
789 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
790 "to the inode key sigs; rc = [%d]\n", rc
);
794 strlen(mount_crypt_stat
->global_default_cipher_name
);
795 memcpy(crypt_stat
->cipher
,
796 mount_crypt_stat
->global_default_cipher_name
,
798 crypt_stat
->cipher
[cipher_name_len
] = '\0';
799 crypt_stat
->key_size
=
800 mount_crypt_stat
->global_default_cipher_key_size
;
801 ecryptfs_generate_new_key(crypt_stat
);
802 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
804 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
805 "context for cipher [%s]: rc = [%d]\n",
806 crypt_stat
->cipher
, rc
);
812 * ecryptfs_validate_marker - check for the ecryptfs marker
813 * @data: The data block in which to check
815 * Returns zero if marker found; -EINVAL if not found
817 static int ecryptfs_validate_marker(char *data
)
821 m_1
= get_unaligned_be32(data
);
822 m_2
= get_unaligned_be32(data
+ 4);
823 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
825 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
826 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
827 MAGIC_ECRYPTFS_MARKER
);
828 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
829 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
833 struct ecryptfs_flag_map_elem
{
838 /* Add support for additional flags by adding elements here. */
839 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
840 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
841 {0x00000002, ECRYPTFS_ENCRYPTED
},
842 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
843 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
847 * ecryptfs_process_flags
848 * @crypt_stat: The cryptographic context
849 * @page_virt: Source data to be parsed
850 * @bytes_read: Updated with the number of bytes read
852 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
853 char *page_virt
, int *bytes_read
)
858 flags
= get_unaligned_be32(page_virt
);
859 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_flag_map
); i
++)
860 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
861 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
863 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
864 /* Version is in top 8 bits of the 32-bit flag vector */
865 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
870 * write_ecryptfs_marker
871 * @page_virt: The pointer to in a page to begin writing the marker
872 * @written: Number of bytes written
874 * Marker = 0x3c81b7f5
876 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
880 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
881 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
882 put_unaligned_be32(m_1
, page_virt
);
883 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
884 put_unaligned_be32(m_2
, page_virt
);
885 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
888 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
889 struct ecryptfs_crypt_stat
*crypt_stat
,
895 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_flag_map
); i
++)
896 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
897 flags
|= ecryptfs_flag_map
[i
].file_flag
;
898 /* Version is in top 8 bits of the 32-bit flag vector */
899 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
900 put_unaligned_be32(flags
, page_virt
);
904 struct ecryptfs_cipher_code_str_map_elem
{
909 /* Add support for additional ciphers by adding elements here. The
910 * cipher_code is whatever OpenPGP applications use to identify the
911 * ciphers. List in order of probability. */
912 static struct ecryptfs_cipher_code_str_map_elem
913 ecryptfs_cipher_code_str_map
[] = {
914 {"aes",RFC2440_CIPHER_AES_128
},
915 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
916 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
917 {"cast5", RFC2440_CIPHER_CAST_5
},
918 {"twofish", RFC2440_CIPHER_TWOFISH
},
919 {"cast6", RFC2440_CIPHER_CAST_6
},
920 {"aes", RFC2440_CIPHER_AES_192
},
921 {"aes", RFC2440_CIPHER_AES_256
}
925 * ecryptfs_code_for_cipher_string
926 * @cipher_name: The string alias for the cipher
927 * @key_bytes: Length of key in bytes; used for AES code selection
929 * Returns zero on no match, or the cipher code on match
931 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
935 struct ecryptfs_cipher_code_str_map_elem
*map
=
936 ecryptfs_cipher_code_str_map
;
938 if (strcmp(cipher_name
, "aes") == 0) {
941 code
= RFC2440_CIPHER_AES_128
;
944 code
= RFC2440_CIPHER_AES_192
;
947 code
= RFC2440_CIPHER_AES_256
;
950 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
951 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
952 code
= map
[i
].cipher_code
;
960 * ecryptfs_cipher_code_to_string
961 * @str: Destination to write out the cipher name
962 * @cipher_code: The code to convert to cipher name string
964 * Returns zero on success
966 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
972 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
973 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
974 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
975 if (str
[0] == '\0') {
976 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
977 "[%d]\n", cipher_code
);
983 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
985 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
986 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
989 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
993 else if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
995 rc
= ecryptfs_validate_marker(marker
);
997 ecryptfs_i_size_init(file_size
, inode
);
1002 ecryptfs_write_header_metadata(char *virt
,
1003 struct ecryptfs_crypt_stat
*crypt_stat
,
1006 u32 header_extent_size
;
1007 u16 num_header_extents_at_front
;
1009 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1010 num_header_extents_at_front
=
1011 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1012 put_unaligned_be32(header_extent_size
, virt
);
1014 put_unaligned_be16(num_header_extents_at_front
, virt
);
1018 struct kmem_cache
*ecryptfs_header_cache
;
1021 * ecryptfs_write_headers_virt
1022 * @page_virt: The virtual address to write the headers to
1023 * @max: The size of memory allocated at page_virt
1024 * @size: Set to the number of bytes written by this function
1025 * @crypt_stat: The cryptographic context
1026 * @ecryptfs_dentry: The eCryptfs dentry
1031 * Octets 0-7: Unencrypted file size (big-endian)
1032 * Octets 8-15: eCryptfs special marker
1033 * Octets 16-19: Flags
1034 * Octet 16: File format version number (between 0 and 255)
1035 * Octets 17-18: Reserved
1036 * Octet 19: Bit 1 (lsb): Reserved
1038 * Bits 3-8: Reserved
1039 * Octets 20-23: Header extent size (big-endian)
1040 * Octets 24-25: Number of header extents at front of file
1042 * Octet 26: Begin RFC 2440 authentication token packet set
1044 * Lower data (CBC encrypted)
1046 * Lower data (CBC encrypted)
1049 * Returns zero on success
1051 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1053 struct ecryptfs_crypt_stat
*crypt_stat
,
1054 struct dentry
*ecryptfs_dentry
)
1060 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1061 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1063 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1066 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1069 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1070 ecryptfs_dentry
, &written
,
1073 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1074 "set; rc = [%d]\n", rc
);
1083 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1084 char *virt
, size_t virt_len
)
1088 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1091 printk(KERN_ERR
"%s: Error attempting to write header "
1092 "information to lower file; rc = [%d]\n", __func__
, rc
);
1099 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1100 struct inode
*ecryptfs_inode
,
1101 char *page_virt
, size_t size
)
1104 struct dentry
*lower_dentry
= ecryptfs_dentry_to_lower(ecryptfs_dentry
);
1105 struct inode
*lower_inode
= d_inode(lower_dentry
);
1107 if (!(lower_inode
->i_opflags
& IOP_XATTR
)) {
1112 inode_lock(lower_inode
);
1113 rc
= __vfs_setxattr(lower_dentry
, lower_inode
, ECRYPTFS_XATTR_NAME
,
1114 page_virt
, size
, 0);
1115 if (!rc
&& ecryptfs_inode
)
1116 fsstack_copy_attr_all(ecryptfs_inode
, lower_inode
);
1117 inode_unlock(lower_inode
);
1122 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1127 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1129 return (unsigned long) page_address(page
);
1134 * ecryptfs_write_metadata
1135 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1136 * @ecryptfs_inode: The newly created eCryptfs inode
1138 * Write the file headers out. This will likely involve a userspace
1139 * callout, in which the session key is encrypted with one or more
1140 * public keys and/or the passphrase necessary to do the encryption is
1141 * retrieved via a prompt. Exactly what happens at this point should
1142 * be policy-dependent.
1144 * Returns zero on success; non-zero on error
1146 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1147 struct inode
*ecryptfs_inode
)
1149 struct ecryptfs_crypt_stat
*crypt_stat
=
1150 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1157 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1158 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1159 printk(KERN_ERR
"Key is invalid; bailing out\n");
1164 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1169 virt_len
= crypt_stat
->metadata_size
;
1170 order
= get_order(virt_len
);
1171 /* Released in this function */
1172 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1174 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1178 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1179 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1182 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1186 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1187 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, ecryptfs_inode
,
1190 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1193 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1194 "rc = [%d]\n", __func__
, rc
);
1198 free_pages((unsigned long)virt
, order
);
1203 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1204 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1205 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1206 char *virt
, int *bytes_read
,
1207 int validate_header_size
)
1210 u32 header_extent_size
;
1211 u16 num_header_extents_at_front
;
1213 header_extent_size
= get_unaligned_be32(virt
);
1214 virt
+= sizeof(__be32
);
1215 num_header_extents_at_front
= get_unaligned_be16(virt
);
1216 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1217 * (size_t)header_extent_size
));
1218 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1219 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1220 && (crypt_stat
->metadata_size
1221 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1223 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1224 crypt_stat
->metadata_size
);
1230 * set_default_header_data
1231 * @crypt_stat: The cryptographic context
1233 * For version 0 file format; this function is only for backwards
1234 * compatibility for files created with the prior versions of
1237 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1239 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1242 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1244 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1245 struct ecryptfs_crypt_stat
*crypt_stat
;
1248 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1250 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1251 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1252 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1253 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1254 file_size
+= crypt_stat
->metadata_size
;
1256 file_size
= get_unaligned_be64(page_virt
);
1257 i_size_write(inode
, (loff_t
)file_size
);
1258 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1262 * ecryptfs_read_headers_virt
1263 * @page_virt: The virtual address into which to read the headers
1264 * @crypt_stat: The cryptographic context
1265 * @ecryptfs_dentry: The eCryptfs dentry
1266 * @validate_header_size: Whether to validate the header size while reading
1268 * Read/parse the header data. The header format is detailed in the
1269 * comment block for the ecryptfs_write_headers_virt() function.
1271 * Returns zero on success
1273 static int ecryptfs_read_headers_virt(char *page_virt
,
1274 struct ecryptfs_crypt_stat
*crypt_stat
,
1275 struct dentry
*ecryptfs_dentry
,
1276 int validate_header_size
)
1282 ecryptfs_set_default_sizes(crypt_stat
);
1283 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1284 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1285 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1286 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1289 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1290 ecryptfs_i_size_init(page_virt
, d_inode(ecryptfs_dentry
));
1291 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1292 ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
), &bytes_read
);
1293 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1294 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1295 "file version [%d] is supported by this "
1296 "version of eCryptfs\n",
1297 crypt_stat
->file_version
,
1298 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1302 offset
+= bytes_read
;
1303 if (crypt_stat
->file_version
>= 1) {
1304 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1305 &bytes_read
, validate_header_size
);
1307 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1308 "metadata; rc = [%d]\n", rc
);
1310 offset
+= bytes_read
;
1312 set_default_header_data(crypt_stat
);
1313 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1320 * ecryptfs_read_xattr_region
1321 * @page_virt: The vitual address into which to read the xattr data
1322 * @ecryptfs_inode: The eCryptfs inode
1324 * Attempts to read the crypto metadata from the extended attribute
1325 * region of the lower file.
1327 * Returns zero on success; non-zero on error
1329 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1331 struct dentry
*lower_dentry
=
1332 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_path
.dentry
;
1336 size
= ecryptfs_getxattr_lower(lower_dentry
,
1337 ecryptfs_inode_to_lower(ecryptfs_inode
),
1338 ECRYPTFS_XATTR_NAME
,
1339 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1341 if (unlikely(ecryptfs_verbosity
> 0))
1342 printk(KERN_INFO
"Error attempting to read the [%s] "
1343 "xattr from the lower file; return value = "
1344 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1352 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1353 struct inode
*inode
)
1355 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1356 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1359 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1360 ecryptfs_inode_to_lower(inode
),
1361 ECRYPTFS_XATTR_NAME
, file_size
,
1362 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1365 else if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1367 rc
= ecryptfs_validate_marker(marker
);
1369 ecryptfs_i_size_init(file_size
, inode
);
1374 * ecryptfs_read_metadata
1376 * Common entry point for reading file metadata. From here, we could
1377 * retrieve the header information from the header region of the file,
1378 * the xattr region of the file, or some other repository that is
1379 * stored separately from the file itself. The current implementation
1380 * supports retrieving the metadata information from the file contents
1381 * and from the xattr region.
1383 * Returns zero if valid headers found and parsed; non-zero otherwise
1385 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1389 struct inode
*ecryptfs_inode
= d_inode(ecryptfs_dentry
);
1390 struct ecryptfs_crypt_stat
*crypt_stat
=
1391 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1392 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1393 &ecryptfs_superblock_to_private(
1394 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1396 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1398 /* Read the first page from the underlying file */
1399 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1404 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1407 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1409 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1411 /* metadata is not in the file header, so try xattrs */
1412 memset(page_virt
, 0, PAGE_SIZE
);
1413 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1415 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1416 "file header region or xattr region, inode %lu\n",
1417 ecryptfs_inode
->i_ino
);
1421 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1423 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1425 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1426 "file xattr region either, inode %lu\n",
1427 ecryptfs_inode
->i_ino
);
1430 if (crypt_stat
->mount_crypt_stat
->flags
1431 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1432 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1434 printk(KERN_WARNING
"Attempt to access file with "
1435 "crypto metadata only in the extended attribute "
1436 "region, but eCryptfs was mounted without "
1437 "xattr support enabled. eCryptfs will not treat "
1438 "this like an encrypted file, inode %lu\n",
1439 ecryptfs_inode
->i_ino
);
1445 memset(page_virt
, 0, PAGE_SIZE
);
1446 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1452 * ecryptfs_encrypt_filename - encrypt filename
1454 * CBC-encrypts the filename. We do not want to encrypt the same
1455 * filename with the same key and IV, which may happen with hard
1456 * links, so we prepend random bits to each filename.
1458 * Returns zero on success; non-zero otherwise
1461 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1462 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1466 filename
->encrypted_filename
= NULL
;
1467 filename
->encrypted_filename_size
= 0;
1468 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1469 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1471 size_t remaining_bytes
;
1473 rc
= ecryptfs_write_tag_70_packet(
1475 &filename
->encrypted_filename_size
,
1476 mount_crypt_stat
, NULL
,
1477 filename
->filename_size
);
1479 printk(KERN_ERR
"%s: Error attempting to get packet "
1480 "size for tag 72; rc = [%d]\n", __func__
,
1482 filename
->encrypted_filename_size
= 0;
1485 filename
->encrypted_filename
=
1486 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1487 if (!filename
->encrypted_filename
) {
1491 remaining_bytes
= filename
->encrypted_filename_size
;
1492 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1497 filename
->filename_size
);
1499 printk(KERN_ERR
"%s: Error attempting to generate "
1500 "tag 70 packet; rc = [%d]\n", __func__
,
1502 kfree(filename
->encrypted_filename
);
1503 filename
->encrypted_filename
= NULL
;
1504 filename
->encrypted_filename_size
= 0;
1507 filename
->encrypted_filename_size
= packet_size
;
1509 printk(KERN_ERR
"%s: No support for requested filename "
1510 "encryption method in this release\n", __func__
);
1518 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1519 const char *name
, size_t name_size
)
1523 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1524 if (!(*copied_name
)) {
1528 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1529 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1530 * in printing out the
1533 (*copied_name_size
) = name_size
;
1539 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1540 * @key_tfm: Crypto context for key material, set by this function
1541 * @cipher_name: Name of the cipher
1542 * @key_size: Size of the key in bytes
1544 * Returns zero on success. Any crypto_tfm structs allocated here
1545 * should be released by other functions, such as on a superblock put
1546 * event, regardless of whether this function succeeds for fails.
1549 ecryptfs_process_key_cipher(struct crypto_skcipher
**key_tfm
,
1550 char *cipher_name
, size_t *key_size
)
1552 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1553 char *full_alg_name
= NULL
;
1557 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1559 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1560 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1563 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1567 *key_tfm
= crypto_alloc_skcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1568 if (IS_ERR(*key_tfm
)) {
1569 rc
= PTR_ERR(*key_tfm
);
1570 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1571 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1574 crypto_skcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS
);
1576 *key_size
= crypto_skcipher_max_keysize(*key_tfm
);
1577 get_random_bytes(dummy_key
, *key_size
);
1578 rc
= crypto_skcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1580 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1581 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1587 kfree(full_alg_name
);
1591 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1592 static struct list_head key_tfm_list
;
1593 struct mutex key_tfm_list_mutex
;
1595 int __init
ecryptfs_init_crypto(void)
1597 mutex_init(&key_tfm_list_mutex
);
1598 INIT_LIST_HEAD(&key_tfm_list
);
1603 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1605 * Called only at module unload time
1607 int ecryptfs_destroy_crypto(void)
1609 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1611 mutex_lock(&key_tfm_list_mutex
);
1612 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1614 list_del(&key_tfm
->key_tfm_list
);
1615 crypto_free_skcipher(key_tfm
->key_tfm
);
1616 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1618 mutex_unlock(&key_tfm_list_mutex
);
1623 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1626 struct ecryptfs_key_tfm
*tmp_tfm
;
1629 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1631 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1633 (*key_tfm
) = tmp_tfm
;
1638 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1639 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1640 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1641 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1642 tmp_tfm
->key_size
= key_size
;
1643 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1644 tmp_tfm
->cipher_name
,
1645 &tmp_tfm
->key_size
);
1647 printk(KERN_ERR
"Error attempting to initialize key TFM "
1648 "cipher with name = [%s]; rc = [%d]\n",
1649 tmp_tfm
->cipher_name
, rc
);
1650 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1655 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1661 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1662 * @cipher_name: the name of the cipher to search for
1663 * @key_tfm: set to corresponding tfm if found
1665 * Searches for cached key_tfm matching @cipher_name
1666 * Must be called with &key_tfm_list_mutex held
1667 * Returns 1 if found, with @key_tfm set
1668 * Returns 0 if not found, with @key_tfm set to NULL
1670 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1672 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1674 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1676 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1677 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1679 (*key_tfm
) = tmp_key_tfm
;
1689 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1691 * @tfm: set to cached tfm found, or new tfm created
1692 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1693 * @cipher_name: the name of the cipher to search for and/or add
1695 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1696 * Searches for cached item first, and creates new if not found.
1697 * Returns 0 on success, non-zero if adding new cipher failed
1699 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher
**tfm
,
1700 struct mutex
**tfm_mutex
,
1703 struct ecryptfs_key_tfm
*key_tfm
;
1707 (*tfm_mutex
) = NULL
;
1709 mutex_lock(&key_tfm_list_mutex
);
1710 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1711 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1713 printk(KERN_ERR
"Error adding new key_tfm to list; "
1718 (*tfm
) = key_tfm
->key_tfm
;
1719 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1721 mutex_unlock(&key_tfm_list_mutex
);
1725 /* 64 characters forming a 6-bit target field */
1726 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1729 "klmnopqrstuvwxyz");
1731 /* We could either offset on every reverse map or just pad some 0x00's
1732 * at the front here */
1733 static const unsigned char filename_rev_map
[256] = {
1734 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1735 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1736 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1737 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1738 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1739 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1740 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1741 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1742 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1743 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1744 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1745 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1746 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1747 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1748 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1749 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1753 * ecryptfs_encode_for_filename
1754 * @dst: Destination location for encoded filename
1755 * @dst_size: Size of the encoded filename in bytes
1756 * @src: Source location for the filename to encode
1757 * @src_size: Size of the source in bytes
1759 static void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1760 unsigned char *src
, size_t src_size
)
1763 size_t block_num
= 0;
1764 size_t dst_offset
= 0;
1765 unsigned char last_block
[3];
1767 if (src_size
== 0) {
1771 num_blocks
= (src_size
/ 3);
1772 if ((src_size
% 3) == 0) {
1773 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1776 last_block
[2] = 0x00;
1777 switch (src_size
% 3) {
1779 last_block
[0] = src
[src_size
- 1];
1780 last_block
[1] = 0x00;
1783 last_block
[0] = src
[src_size
- 2];
1784 last_block
[1] = src
[src_size
- 1];
1787 (*dst_size
) = (num_blocks
* 4);
1790 while (block_num
< num_blocks
) {
1791 unsigned char *src_block
;
1792 unsigned char dst_block
[4];
1794 if (block_num
== (num_blocks
- 1))
1795 src_block
= last_block
;
1797 src_block
= &src
[block_num
* 3];
1798 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1799 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1800 | ((src_block
[1] >> 4) & 0x0F));
1801 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1802 | ((src_block
[2] >> 6) & 0x03));
1803 dst_block
[3] = (src_block
[2] & 0x3F);
1804 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1805 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1806 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1807 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1814 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1816 /* Not exact; conservatively long. Every block of 4
1817 * encoded characters decodes into a block of 3
1818 * decoded characters. This segment of code provides
1819 * the caller with the maximum amount of allocated
1820 * space that @dst will need to point to in a
1821 * subsequent call. */
1822 return ((encoded_size
+ 1) * 3) / 4;
1826 * ecryptfs_decode_from_filename
1827 * @dst: If NULL, this function only sets @dst_size and returns. If
1828 * non-NULL, this function decodes the encoded octets in @src
1829 * into the memory that @dst points to.
1830 * @dst_size: Set to the size of the decoded string.
1831 * @src: The encoded set of octets to decode.
1832 * @src_size: The size of the encoded set of octets to decode.
1835 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
1836 const unsigned char *src
, size_t src_size
)
1838 u8 current_bit_offset
= 0;
1839 size_t src_byte_offset
= 0;
1840 size_t dst_byte_offset
= 0;
1843 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
1846 while (src_byte_offset
< src_size
) {
1847 unsigned char src_byte
=
1848 filename_rev_map
[(int)src
[src_byte_offset
]];
1850 switch (current_bit_offset
) {
1852 dst
[dst_byte_offset
] = (src_byte
<< 2);
1853 current_bit_offset
= 6;
1856 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
1857 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
1859 current_bit_offset
= 4;
1862 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
1863 dst
[dst_byte_offset
] = (src_byte
<< 6);
1864 current_bit_offset
= 2;
1867 dst
[dst_byte_offset
++] |= (src_byte
);
1868 current_bit_offset
= 0;
1873 (*dst_size
) = dst_byte_offset
;
1879 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1880 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1881 * @name: The plaintext name
1882 * @length: The length of the plaintext
1883 * @encoded_name: The encypted name
1885 * Encrypts and encodes a filename into something that constitutes a
1886 * valid filename for a filesystem, with printable characters.
1888 * We assume that we have a properly initialized crypto context,
1889 * pointed to by crypt_stat->tfm.
1891 * Returns zero on success; non-zero on otherwise
1893 int ecryptfs_encrypt_and_encode_filename(
1894 char **encoded_name
,
1895 size_t *encoded_name_size
,
1896 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
1897 const char *name
, size_t name_size
)
1899 size_t encoded_name_no_prefix_size
;
1902 (*encoded_name
) = NULL
;
1903 (*encoded_name_size
) = 0;
1904 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1905 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
1906 struct ecryptfs_filename
*filename
;
1908 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
1913 filename
->filename
= (char *)name
;
1914 filename
->filename_size
= name_size
;
1915 rc
= ecryptfs_encrypt_filename(filename
, mount_crypt_stat
);
1917 printk(KERN_ERR
"%s: Error attempting to encrypt "
1918 "filename; rc = [%d]\n", __func__
, rc
);
1922 ecryptfs_encode_for_filename(
1923 NULL
, &encoded_name_no_prefix_size
,
1924 filename
->encrypted_filename
,
1925 filename
->encrypted_filename_size
);
1926 if (mount_crypt_stat
1927 && (mount_crypt_stat
->flags
1928 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))
1929 (*encoded_name_size
) =
1930 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1931 + encoded_name_no_prefix_size
);
1933 (*encoded_name_size
) =
1934 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1935 + encoded_name_no_prefix_size
);
1936 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
1937 if (!(*encoded_name
)) {
1939 kfree(filename
->encrypted_filename
);
1943 if (mount_crypt_stat
1944 && (mount_crypt_stat
->flags
1945 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1946 memcpy((*encoded_name
),
1947 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
1948 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
1949 ecryptfs_encode_for_filename(
1951 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
1952 &encoded_name_no_prefix_size
,
1953 filename
->encrypted_filename
,
1954 filename
->encrypted_filename_size
);
1955 (*encoded_name_size
) =
1956 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1957 + encoded_name_no_prefix_size
);
1958 (*encoded_name
)[(*encoded_name_size
)] = '\0';
1963 printk(KERN_ERR
"%s: Error attempting to encode "
1964 "encrypted filename; rc = [%d]\n", __func__
,
1966 kfree((*encoded_name
));
1967 (*encoded_name
) = NULL
;
1968 (*encoded_name_size
) = 0;
1970 kfree(filename
->encrypted_filename
);
1973 rc
= ecryptfs_copy_filename(encoded_name
,
1981 static bool is_dot_dotdot(const char *name
, size_t name_size
)
1983 if (name_size
== 1 && name
[0] == '.')
1985 else if (name_size
== 2 && name
[0] == '.' && name
[1] == '.')
1992 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1993 * @plaintext_name: The plaintext name
1994 * @plaintext_name_size: The plaintext name size
1995 * @ecryptfs_dir_dentry: eCryptfs directory dentry
1996 * @name: The filename in cipher text
1997 * @name_size: The cipher text name size
1999 * Decrypts and decodes the filename.
2001 * Returns zero on error; non-zero otherwise
2003 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2004 size_t *plaintext_name_size
,
2005 struct super_block
*sb
,
2006 const char *name
, size_t name_size
)
2008 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2009 &ecryptfs_superblock_to_private(sb
)->mount_crypt_stat
;
2011 size_t decoded_name_size
;
2015 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) &&
2016 !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)) {
2017 if (is_dot_dotdot(name
, name_size
)) {
2018 rc
= ecryptfs_copy_filename(plaintext_name
,
2019 plaintext_name_size
,
2024 if (name_size
<= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
||
2025 strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2026 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)) {
2031 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2032 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2033 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2035 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2036 if (!decoded_name
) {
2040 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2042 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2043 plaintext_name_size
,
2049 ecryptfs_printk(KERN_DEBUG
,
2050 "%s: Could not parse tag 70 packet from filename\n",
2055 rc
= ecryptfs_copy_filename(plaintext_name
,
2056 plaintext_name_size
,
2061 kfree(decoded_name
);
2066 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2068 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2069 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2071 struct crypto_skcipher
*tfm
;
2072 struct mutex
*tfm_mutex
;
2073 size_t cipher_blocksize
;
2076 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2077 (*namelen
) = lower_namelen
;
2081 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm
, &tfm_mutex
,
2082 mount_crypt_stat
->global_default_fn_cipher_name
);
2088 mutex_lock(tfm_mutex
);
2089 cipher_blocksize
= crypto_skcipher_blocksize(tfm
);
2090 mutex_unlock(tfm_mutex
);
2092 /* Return an exact amount for the common cases */
2093 if (lower_namelen
== NAME_MAX
2094 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2095 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2099 /* Return a safe estimate for the uncommon cases */
2100 (*namelen
) = lower_namelen
;
2101 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2102 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2103 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2104 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2105 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2106 /* Worst case is that the filename is padded nearly a full block size */
2107 (*namelen
) -= cipher_blocksize
- 1;