io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / fs / super.c
blob2c6cdea2ab2d9ed76bb07501d8a53f7dd827d56d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
43 static int thaw_super_locked(struct super_block *sb);
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
55 * One thing we have to be careful of with a per-sb shrinker is that we don't
56 * drop the last active reference to the superblock from within the shrinker.
57 * If that happens we could trigger unregistering the shrinker from within the
58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59 * take a passive reference to the superblock to avoid this from occurring.
61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 struct shrink_control *sc)
64 struct super_block *sb;
65 long fs_objects = 0;
66 long total_objects;
67 long freed = 0;
68 long dentries;
69 long inodes;
71 sb = container_of(shrink, struct super_block, s_shrink);
74 * Deadlock avoidance. We may hold various FS locks, and we don't want
75 * to recurse into the FS that called us in clear_inode() and friends..
77 if (!(sc->gfp_mask & __GFP_FS))
78 return SHRINK_STOP;
80 if (!trylock_super(sb))
81 return SHRINK_STOP;
83 if (sb->s_op->nr_cached_objects)
84 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 total_objects = dentries + inodes + fs_objects + 1;
89 if (!total_objects)
90 total_objects = 1;
92 /* proportion the scan between the caches */
93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
98 * prune the dcache first as the icache is pinned by it, then
99 * prune the icache, followed by the filesystem specific caches
101 * Ensure that we always scan at least one object - memcg kmem
102 * accounting uses this to fully empty the caches.
104 sc->nr_to_scan = dentries + 1;
105 freed = prune_dcache_sb(sb, sc);
106 sc->nr_to_scan = inodes + 1;
107 freed += prune_icache_sb(sb, sc);
109 if (fs_objects) {
110 sc->nr_to_scan = fs_objects + 1;
111 freed += sb->s_op->free_cached_objects(sb, sc);
114 up_read(&sb->s_umount);
115 return freed;
118 static unsigned long super_cache_count(struct shrinker *shrink,
119 struct shrink_control *sc)
121 struct super_block *sb;
122 long total_objects = 0;
124 sb = container_of(shrink, struct super_block, s_shrink);
127 * We don't call trylock_super() here as it is a scalability bottleneck,
128 * so we're exposed to partial setup state. The shrinker rwsem does not
129 * protect filesystem operations backing list_lru_shrink_count() or
130 * s_op->nr_cached_objects(). Counts can change between
131 * super_cache_count and super_cache_scan, so we really don't need locks
132 * here.
134 * However, if we are currently mounting the superblock, the underlying
135 * filesystem might be in a state of partial construction and hence it
136 * is dangerous to access it. trylock_super() uses a SB_BORN check to
137 * avoid this situation, so do the same here. The memory barrier is
138 * matched with the one in mount_fs() as we don't hold locks here.
140 if (!(sb->s_flags & SB_BORN))
141 return 0;
142 smp_rmb();
144 if (sb->s_op && sb->s_op->nr_cached_objects)
145 total_objects = sb->s_op->nr_cached_objects(sb, sc);
147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
150 if (!total_objects)
151 return SHRINK_EMPTY;
153 total_objects = vfs_pressure_ratio(total_objects);
154 return total_objects;
157 static void destroy_super_work(struct work_struct *work)
159 struct super_block *s = container_of(work, struct super_block,
160 destroy_work);
161 int i;
163 for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 kfree(s);
168 static void destroy_super_rcu(struct rcu_head *head)
170 struct super_block *s = container_of(head, struct super_block, rcu);
171 INIT_WORK(&s->destroy_work, destroy_super_work);
172 schedule_work(&s->destroy_work);
175 /* Free a superblock that has never been seen by anyone */
176 static void destroy_unused_super(struct super_block *s)
178 if (!s)
179 return;
180 up_write(&s->s_umount);
181 list_lru_destroy(&s->s_dentry_lru);
182 list_lru_destroy(&s->s_inode_lru);
183 security_sb_free(s);
184 put_user_ns(s->s_user_ns);
185 kfree(s->s_subtype);
186 free_prealloced_shrinker(&s->s_shrink);
187 /* no delays needed */
188 destroy_super_work(&s->destroy_work);
192 * alloc_super - create new superblock
193 * @type: filesystem type superblock should belong to
194 * @flags: the mount flags
195 * @user_ns: User namespace for the super_block
197 * Allocates and initializes a new &struct super_block. alloc_super()
198 * returns a pointer new superblock or %NULL if allocation had failed.
200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 struct user_namespace *user_ns)
203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
204 static const struct super_operations default_op;
205 int i;
207 if (!s)
208 return NULL;
210 INIT_LIST_HEAD(&s->s_mounts);
211 s->s_user_ns = get_user_ns(user_ns);
212 init_rwsem(&s->s_umount);
213 lockdep_set_class(&s->s_umount, &type->s_umount_key);
215 * sget() can have s_umount recursion.
217 * When it cannot find a suitable sb, it allocates a new
218 * one (this one), and tries again to find a suitable old
219 * one.
221 * In case that succeeds, it will acquire the s_umount
222 * lock of the old one. Since these are clearly distrinct
223 * locks, and this object isn't exposed yet, there's no
224 * risk of deadlocks.
226 * Annotate this by putting this lock in a different
227 * subclass.
229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
231 if (security_sb_alloc(s))
232 goto fail;
234 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 sb_writers_name[i],
237 &type->s_writers_key[i]))
238 goto fail;
240 init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 s->s_bdi = &noop_backing_dev_info;
242 s->s_flags = flags;
243 if (s->s_user_ns != &init_user_ns)
244 s->s_iflags |= SB_I_NODEV;
245 INIT_HLIST_NODE(&s->s_instances);
246 INIT_HLIST_BL_HEAD(&s->s_roots);
247 mutex_init(&s->s_sync_lock);
248 INIT_LIST_HEAD(&s->s_inodes);
249 spin_lock_init(&s->s_inode_list_lock);
250 INIT_LIST_HEAD(&s->s_inodes_wb);
251 spin_lock_init(&s->s_inode_wblist_lock);
253 s->s_count = 1;
254 atomic_set(&s->s_active, 1);
255 mutex_init(&s->s_vfs_rename_mutex);
256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 init_rwsem(&s->s_dquot.dqio_sem);
258 s->s_maxbytes = MAX_NON_LFS;
259 s->s_op = &default_op;
260 s->s_time_gran = 1000000000;
261 s->s_time_min = TIME64_MIN;
262 s->s_time_max = TIME64_MAX;
263 s->cleancache_poolid = CLEANCACHE_NO_POOL;
265 s->s_shrink.seeks = DEFAULT_SEEKS;
266 s->s_shrink.scan_objects = super_cache_scan;
267 s->s_shrink.count_objects = super_cache_count;
268 s->s_shrink.batch = 1024;
269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 if (prealloc_shrinker(&s->s_shrink))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 goto fail;
274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 goto fail;
276 return s;
278 fail:
279 destroy_unused_super(s);
280 return NULL;
283 /* Superblock refcounting */
286 * Drop a superblock's refcount. The caller must hold sb_lock.
288 static void __put_super(struct super_block *s)
290 if (!--s->s_count) {
291 list_del_init(&s->s_list);
292 WARN_ON(s->s_dentry_lru.node);
293 WARN_ON(s->s_inode_lru.node);
294 WARN_ON(!list_empty(&s->s_mounts));
295 security_sb_free(s);
296 fscrypt_sb_free(s);
297 put_user_ns(s->s_user_ns);
298 kfree(s->s_subtype);
299 call_rcu(&s->rcu, destroy_super_rcu);
304 * put_super - drop a temporary reference to superblock
305 * @sb: superblock in question
307 * Drops a temporary reference, frees superblock if there's no
308 * references left.
310 void put_super(struct super_block *sb)
312 spin_lock(&sb_lock);
313 __put_super(sb);
314 spin_unlock(&sb_lock);
319 * deactivate_locked_super - drop an active reference to superblock
320 * @s: superblock to deactivate
322 * Drops an active reference to superblock, converting it into a temporary
323 * one if there is no other active references left. In that case we
324 * tell fs driver to shut it down and drop the temporary reference we
325 * had just acquired.
327 * Caller holds exclusive lock on superblock; that lock is released.
329 void deactivate_locked_super(struct super_block *s)
331 struct file_system_type *fs = s->s_type;
332 if (atomic_dec_and_test(&s->s_active)) {
333 cleancache_invalidate_fs(s);
334 unregister_shrinker(&s->s_shrink);
335 fs->kill_sb(s);
338 * Since list_lru_destroy() may sleep, we cannot call it from
339 * put_super(), where we hold the sb_lock. Therefore we destroy
340 * the lru lists right now.
342 list_lru_destroy(&s->s_dentry_lru);
343 list_lru_destroy(&s->s_inode_lru);
345 put_filesystem(fs);
346 put_super(s);
347 } else {
348 up_write(&s->s_umount);
352 EXPORT_SYMBOL(deactivate_locked_super);
355 * deactivate_super - drop an active reference to superblock
356 * @s: superblock to deactivate
358 * Variant of deactivate_locked_super(), except that superblock is *not*
359 * locked by caller. If we are going to drop the final active reference,
360 * lock will be acquired prior to that.
362 void deactivate_super(struct super_block *s)
364 if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 down_write(&s->s_umount);
366 deactivate_locked_super(s);
370 EXPORT_SYMBOL(deactivate_super);
373 * grab_super - acquire an active reference
374 * @s: reference we are trying to make active
376 * Tries to acquire an active reference. grab_super() is used when we
377 * had just found a superblock in super_blocks or fs_type->fs_supers
378 * and want to turn it into a full-blown active reference. grab_super()
379 * is called with sb_lock held and drops it. Returns 1 in case of
380 * success, 0 if we had failed (superblock contents was already dead or
381 * dying when grab_super() had been called). Note that this is only
382 * called for superblocks not in rundown mode (== ones still on ->fs_supers
383 * of their type), so increment of ->s_count is OK here.
385 static int grab_super(struct super_block *s) __releases(sb_lock)
387 s->s_count++;
388 spin_unlock(&sb_lock);
389 down_write(&s->s_umount);
390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 put_super(s);
392 return 1;
394 up_write(&s->s_umount);
395 put_super(s);
396 return 0;
400 * trylock_super - try to grab ->s_umount shared
401 * @sb: reference we are trying to grab
403 * Try to prevent fs shutdown. This is used in places where we
404 * cannot take an active reference but we need to ensure that the
405 * filesystem is not shut down while we are working on it. It returns
406 * false if we cannot acquire s_umount or if we lose the race and
407 * filesystem already got into shutdown, and returns true with the s_umount
408 * lock held in read mode in case of success. On successful return,
409 * the caller must drop the s_umount lock when done.
411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412 * The reason why it's safe is that we are OK with doing trylock instead
413 * of down_read(). There's a couple of places that are OK with that, but
414 * it's very much not a general-purpose interface.
416 bool trylock_super(struct super_block *sb)
418 if (down_read_trylock(&sb->s_umount)) {
419 if (!hlist_unhashed(&sb->s_instances) &&
420 sb->s_root && (sb->s_flags & SB_BORN))
421 return true;
422 up_read(&sb->s_umount);
425 return false;
429 * generic_shutdown_super - common helper for ->kill_sb()
430 * @sb: superblock to kill
432 * generic_shutdown_super() does all fs-independent work on superblock
433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
434 * that need destruction out of superblock, call generic_shutdown_super()
435 * and release aforementioned objects. Note: dentries and inodes _are_
436 * taken care of and do not need specific handling.
438 * Upon calling this function, the filesystem may no longer alter or
439 * rearrange the set of dentries belonging to this super_block, nor may it
440 * change the attachments of dentries to inodes.
442 void generic_shutdown_super(struct super_block *sb)
444 const struct super_operations *sop = sb->s_op;
446 if (sb->s_root) {
447 shrink_dcache_for_umount(sb);
448 sync_filesystem(sb);
449 sb->s_flags &= ~SB_ACTIVE;
451 cgroup_writeback_umount();
453 /* evict all inodes with zero refcount */
454 evict_inodes(sb);
455 /* only nonzero refcount inodes can have marks */
456 fsnotify_sb_delete(sb);
458 if (sb->s_dio_done_wq) {
459 destroy_workqueue(sb->s_dio_done_wq);
460 sb->s_dio_done_wq = NULL;
463 if (sop->put_super)
464 sop->put_super(sb);
466 if (!list_empty(&sb->s_inodes)) {
467 printk("VFS: Busy inodes after unmount of %s. "
468 "Self-destruct in 5 seconds. Have a nice day...\n",
469 sb->s_id);
472 spin_lock(&sb_lock);
473 /* should be initialized for __put_super_and_need_restart() */
474 hlist_del_init(&sb->s_instances);
475 spin_unlock(&sb_lock);
476 up_write(&sb->s_umount);
477 if (sb->s_bdi != &noop_backing_dev_info) {
478 bdi_put(sb->s_bdi);
479 sb->s_bdi = &noop_backing_dev_info;
483 EXPORT_SYMBOL(generic_shutdown_super);
485 bool mount_capable(struct fs_context *fc)
487 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
488 return capable(CAP_SYS_ADMIN);
489 else
490 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
494 * sget_fc - Find or create a superblock
495 * @fc: Filesystem context.
496 * @test: Comparison callback
497 * @set: Setup callback
499 * Find or create a superblock using the parameters stored in the filesystem
500 * context and the two callback functions.
502 * If an extant superblock is matched, then that will be returned with an
503 * elevated reference count that the caller must transfer or discard.
505 * If no match is made, a new superblock will be allocated and basic
506 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
507 * the set() callback will be invoked), the superblock will be published and it
508 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
509 * as yet unset.
511 struct super_block *sget_fc(struct fs_context *fc,
512 int (*test)(struct super_block *, struct fs_context *),
513 int (*set)(struct super_block *, struct fs_context *))
515 struct super_block *s = NULL;
516 struct super_block *old;
517 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
518 int err;
520 retry:
521 spin_lock(&sb_lock);
522 if (test) {
523 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
524 if (test(old, fc))
525 goto share_extant_sb;
528 if (!s) {
529 spin_unlock(&sb_lock);
530 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
531 if (!s)
532 return ERR_PTR(-ENOMEM);
533 goto retry;
536 s->s_fs_info = fc->s_fs_info;
537 err = set(s, fc);
538 if (err) {
539 s->s_fs_info = NULL;
540 spin_unlock(&sb_lock);
541 destroy_unused_super(s);
542 return ERR_PTR(err);
544 fc->s_fs_info = NULL;
545 s->s_type = fc->fs_type;
546 s->s_iflags |= fc->s_iflags;
547 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
548 list_add_tail(&s->s_list, &super_blocks);
549 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
550 spin_unlock(&sb_lock);
551 get_filesystem(s->s_type);
552 register_shrinker_prepared(&s->s_shrink);
553 return s;
555 share_extant_sb:
556 if (user_ns != old->s_user_ns) {
557 spin_unlock(&sb_lock);
558 destroy_unused_super(s);
559 return ERR_PTR(-EBUSY);
561 if (!grab_super(old))
562 goto retry;
563 destroy_unused_super(s);
564 return old;
566 EXPORT_SYMBOL(sget_fc);
569 * sget - find or create a superblock
570 * @type: filesystem type superblock should belong to
571 * @test: comparison callback
572 * @set: setup callback
573 * @flags: mount flags
574 * @data: argument to each of them
576 struct super_block *sget(struct file_system_type *type,
577 int (*test)(struct super_block *,void *),
578 int (*set)(struct super_block *,void *),
579 int flags,
580 void *data)
582 struct user_namespace *user_ns = current_user_ns();
583 struct super_block *s = NULL;
584 struct super_block *old;
585 int err;
587 /* We don't yet pass the user namespace of the parent
588 * mount through to here so always use &init_user_ns
589 * until that changes.
591 if (flags & SB_SUBMOUNT)
592 user_ns = &init_user_ns;
594 retry:
595 spin_lock(&sb_lock);
596 if (test) {
597 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
598 if (!test(old, data))
599 continue;
600 if (user_ns != old->s_user_ns) {
601 spin_unlock(&sb_lock);
602 destroy_unused_super(s);
603 return ERR_PTR(-EBUSY);
605 if (!grab_super(old))
606 goto retry;
607 destroy_unused_super(s);
608 return old;
611 if (!s) {
612 spin_unlock(&sb_lock);
613 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
614 if (!s)
615 return ERR_PTR(-ENOMEM);
616 goto retry;
619 err = set(s, data);
620 if (err) {
621 spin_unlock(&sb_lock);
622 destroy_unused_super(s);
623 return ERR_PTR(err);
625 s->s_type = type;
626 strlcpy(s->s_id, type->name, sizeof(s->s_id));
627 list_add_tail(&s->s_list, &super_blocks);
628 hlist_add_head(&s->s_instances, &type->fs_supers);
629 spin_unlock(&sb_lock);
630 get_filesystem(type);
631 register_shrinker_prepared(&s->s_shrink);
632 return s;
634 EXPORT_SYMBOL(sget);
636 void drop_super(struct super_block *sb)
638 up_read(&sb->s_umount);
639 put_super(sb);
642 EXPORT_SYMBOL(drop_super);
644 void drop_super_exclusive(struct super_block *sb)
646 up_write(&sb->s_umount);
647 put_super(sb);
649 EXPORT_SYMBOL(drop_super_exclusive);
651 static void __iterate_supers(void (*f)(struct super_block *))
653 struct super_block *sb, *p = NULL;
655 spin_lock(&sb_lock);
656 list_for_each_entry(sb, &super_blocks, s_list) {
657 if (hlist_unhashed(&sb->s_instances))
658 continue;
659 sb->s_count++;
660 spin_unlock(&sb_lock);
662 f(sb);
664 spin_lock(&sb_lock);
665 if (p)
666 __put_super(p);
667 p = sb;
669 if (p)
670 __put_super(p);
671 spin_unlock(&sb_lock);
674 * iterate_supers - call function for all active superblocks
675 * @f: function to call
676 * @arg: argument to pass to it
678 * Scans the superblock list and calls given function, passing it
679 * locked superblock and given argument.
681 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
683 struct super_block *sb, *p = NULL;
685 spin_lock(&sb_lock);
686 list_for_each_entry(sb, &super_blocks, s_list) {
687 if (hlist_unhashed(&sb->s_instances))
688 continue;
689 sb->s_count++;
690 spin_unlock(&sb_lock);
692 down_read(&sb->s_umount);
693 if (sb->s_root && (sb->s_flags & SB_BORN))
694 f(sb, arg);
695 up_read(&sb->s_umount);
697 spin_lock(&sb_lock);
698 if (p)
699 __put_super(p);
700 p = sb;
702 if (p)
703 __put_super(p);
704 spin_unlock(&sb_lock);
708 * iterate_supers_type - call function for superblocks of given type
709 * @type: fs type
710 * @f: function to call
711 * @arg: argument to pass to it
713 * Scans the superblock list and calls given function, passing it
714 * locked superblock and given argument.
716 void iterate_supers_type(struct file_system_type *type,
717 void (*f)(struct super_block *, void *), void *arg)
719 struct super_block *sb, *p = NULL;
721 spin_lock(&sb_lock);
722 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
723 sb->s_count++;
724 spin_unlock(&sb_lock);
726 down_read(&sb->s_umount);
727 if (sb->s_root && (sb->s_flags & SB_BORN))
728 f(sb, arg);
729 up_read(&sb->s_umount);
731 spin_lock(&sb_lock);
732 if (p)
733 __put_super(p);
734 p = sb;
736 if (p)
737 __put_super(p);
738 spin_unlock(&sb_lock);
741 EXPORT_SYMBOL(iterate_supers_type);
744 * get_super - get the superblock of a device
745 * @bdev: device to get the superblock for
747 * Scans the superblock list and finds the superblock of the file system
748 * mounted on the device given. %NULL is returned if no match is found.
750 struct super_block *get_super(struct block_device *bdev)
752 struct super_block *sb;
754 if (!bdev)
755 return NULL;
757 spin_lock(&sb_lock);
758 rescan:
759 list_for_each_entry(sb, &super_blocks, s_list) {
760 if (hlist_unhashed(&sb->s_instances))
761 continue;
762 if (sb->s_bdev == bdev) {
763 sb->s_count++;
764 spin_unlock(&sb_lock);
765 down_read(&sb->s_umount);
766 /* still alive? */
767 if (sb->s_root && (sb->s_flags & SB_BORN))
768 return sb;
769 up_read(&sb->s_umount);
770 /* nope, got unmounted */
771 spin_lock(&sb_lock);
772 __put_super(sb);
773 goto rescan;
776 spin_unlock(&sb_lock);
777 return NULL;
781 * get_active_super - get an active reference to the superblock of a device
782 * @bdev: device to get the superblock for
784 * Scans the superblock list and finds the superblock of the file system
785 * mounted on the device given. Returns the superblock with an active
786 * reference or %NULL if none was found.
788 struct super_block *get_active_super(struct block_device *bdev)
790 struct super_block *sb;
792 if (!bdev)
793 return NULL;
795 restart:
796 spin_lock(&sb_lock);
797 list_for_each_entry(sb, &super_blocks, s_list) {
798 if (hlist_unhashed(&sb->s_instances))
799 continue;
800 if (sb->s_bdev == bdev) {
801 if (!grab_super(sb))
802 goto restart;
803 up_write(&sb->s_umount);
804 return sb;
807 spin_unlock(&sb_lock);
808 return NULL;
811 struct super_block *user_get_super(dev_t dev, bool excl)
813 struct super_block *sb;
815 spin_lock(&sb_lock);
816 rescan:
817 list_for_each_entry(sb, &super_blocks, s_list) {
818 if (hlist_unhashed(&sb->s_instances))
819 continue;
820 if (sb->s_dev == dev) {
821 sb->s_count++;
822 spin_unlock(&sb_lock);
823 if (excl)
824 down_write(&sb->s_umount);
825 else
826 down_read(&sb->s_umount);
827 /* still alive? */
828 if (sb->s_root && (sb->s_flags & SB_BORN))
829 return sb;
830 if (excl)
831 up_write(&sb->s_umount);
832 else
833 up_read(&sb->s_umount);
834 /* nope, got unmounted */
835 spin_lock(&sb_lock);
836 __put_super(sb);
837 goto rescan;
840 spin_unlock(&sb_lock);
841 return NULL;
845 * reconfigure_super - asks filesystem to change superblock parameters
846 * @fc: The superblock and configuration
848 * Alters the configuration parameters of a live superblock.
850 int reconfigure_super(struct fs_context *fc)
852 struct super_block *sb = fc->root->d_sb;
853 int retval;
854 bool remount_ro = false;
855 bool force = fc->sb_flags & SB_FORCE;
857 if (fc->sb_flags_mask & ~MS_RMT_MASK)
858 return -EINVAL;
859 if (sb->s_writers.frozen != SB_UNFROZEN)
860 return -EBUSY;
862 retval = security_sb_remount(sb, fc->security);
863 if (retval)
864 return retval;
866 if (fc->sb_flags_mask & SB_RDONLY) {
867 #ifdef CONFIG_BLOCK
868 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
869 return -EACCES;
870 #endif
872 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
875 if (remount_ro) {
876 if (!hlist_empty(&sb->s_pins)) {
877 up_write(&sb->s_umount);
878 group_pin_kill(&sb->s_pins);
879 down_write(&sb->s_umount);
880 if (!sb->s_root)
881 return 0;
882 if (sb->s_writers.frozen != SB_UNFROZEN)
883 return -EBUSY;
884 remount_ro = !sb_rdonly(sb);
887 shrink_dcache_sb(sb);
889 /* If we are reconfiguring to RDONLY and current sb is read/write,
890 * make sure there are no files open for writing.
892 if (remount_ro) {
893 if (force) {
894 sb->s_readonly_remount = 1;
895 smp_wmb();
896 } else {
897 retval = sb_prepare_remount_readonly(sb);
898 if (retval)
899 return retval;
903 if (fc->ops->reconfigure) {
904 retval = fc->ops->reconfigure(fc);
905 if (retval) {
906 if (!force)
907 goto cancel_readonly;
908 /* If forced remount, go ahead despite any errors */
909 WARN(1, "forced remount of a %s fs returned %i\n",
910 sb->s_type->name, retval);
914 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
915 (fc->sb_flags & fc->sb_flags_mask)));
916 /* Needs to be ordered wrt mnt_is_readonly() */
917 smp_wmb();
918 sb->s_readonly_remount = 0;
921 * Some filesystems modify their metadata via some other path than the
922 * bdev buffer cache (eg. use a private mapping, or directories in
923 * pagecache, etc). Also file data modifications go via their own
924 * mappings. So If we try to mount readonly then copy the filesystem
925 * from bdev, we could get stale data, so invalidate it to give a best
926 * effort at coherency.
928 if (remount_ro && sb->s_bdev)
929 invalidate_bdev(sb->s_bdev);
930 return 0;
932 cancel_readonly:
933 sb->s_readonly_remount = 0;
934 return retval;
937 static void do_emergency_remount_callback(struct super_block *sb)
939 down_write(&sb->s_umount);
940 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
941 !sb_rdonly(sb)) {
942 struct fs_context *fc;
944 fc = fs_context_for_reconfigure(sb->s_root,
945 SB_RDONLY | SB_FORCE, SB_RDONLY);
946 if (!IS_ERR(fc)) {
947 if (parse_monolithic_mount_data(fc, NULL) == 0)
948 (void)reconfigure_super(fc);
949 put_fs_context(fc);
952 up_write(&sb->s_umount);
955 static void do_emergency_remount(struct work_struct *work)
957 __iterate_supers(do_emergency_remount_callback);
958 kfree(work);
959 printk("Emergency Remount complete\n");
962 void emergency_remount(void)
964 struct work_struct *work;
966 work = kmalloc(sizeof(*work), GFP_ATOMIC);
967 if (work) {
968 INIT_WORK(work, do_emergency_remount);
969 schedule_work(work);
973 static void do_thaw_all_callback(struct super_block *sb)
975 down_write(&sb->s_umount);
976 if (sb->s_root && sb->s_flags & SB_BORN) {
977 emergency_thaw_bdev(sb);
978 thaw_super_locked(sb);
979 } else {
980 up_write(&sb->s_umount);
984 static void do_thaw_all(struct work_struct *work)
986 __iterate_supers(do_thaw_all_callback);
987 kfree(work);
988 printk(KERN_WARNING "Emergency Thaw complete\n");
992 * emergency_thaw_all -- forcibly thaw every frozen filesystem
994 * Used for emergency unfreeze of all filesystems via SysRq
996 void emergency_thaw_all(void)
998 struct work_struct *work;
1000 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1001 if (work) {
1002 INIT_WORK(work, do_thaw_all);
1003 schedule_work(work);
1007 static DEFINE_IDA(unnamed_dev_ida);
1010 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1011 * @p: Pointer to a dev_t.
1013 * Filesystems which don't use real block devices can call this function
1014 * to allocate a virtual block device.
1016 * Context: Any context. Frequently called while holding sb_lock.
1017 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1018 * or -ENOMEM if memory allocation failed.
1020 int get_anon_bdev(dev_t *p)
1022 int dev;
1025 * Many userspace utilities consider an FSID of 0 invalid.
1026 * Always return at least 1 from get_anon_bdev.
1028 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1029 GFP_ATOMIC);
1030 if (dev == -ENOSPC)
1031 dev = -EMFILE;
1032 if (dev < 0)
1033 return dev;
1035 *p = MKDEV(0, dev);
1036 return 0;
1038 EXPORT_SYMBOL(get_anon_bdev);
1040 void free_anon_bdev(dev_t dev)
1042 ida_free(&unnamed_dev_ida, MINOR(dev));
1044 EXPORT_SYMBOL(free_anon_bdev);
1046 int set_anon_super(struct super_block *s, void *data)
1048 return get_anon_bdev(&s->s_dev);
1050 EXPORT_SYMBOL(set_anon_super);
1052 void kill_anon_super(struct super_block *sb)
1054 dev_t dev = sb->s_dev;
1055 generic_shutdown_super(sb);
1056 free_anon_bdev(dev);
1058 EXPORT_SYMBOL(kill_anon_super);
1060 void kill_litter_super(struct super_block *sb)
1062 if (sb->s_root)
1063 d_genocide(sb->s_root);
1064 kill_anon_super(sb);
1066 EXPORT_SYMBOL(kill_litter_super);
1068 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1070 return set_anon_super(sb, NULL);
1072 EXPORT_SYMBOL(set_anon_super_fc);
1074 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1076 return sb->s_fs_info == fc->s_fs_info;
1079 static int test_single_super(struct super_block *s, struct fs_context *fc)
1081 return 1;
1085 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1086 * @fc: The filesystem context holding the parameters
1087 * @keying: How to distinguish superblocks
1088 * @fill_super: Helper to initialise a new superblock
1090 * Search for a superblock and create a new one if not found. The search
1091 * criterion is controlled by @keying. If the search fails, a new superblock
1092 * is created and @fill_super() is called to initialise it.
1094 * @keying can take one of a number of values:
1096 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1097 * system. This is typically used for special system filesystems.
1099 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1100 * distinct keys (where the key is in s_fs_info). Searching for the same
1101 * key again will turn up the superblock for that key.
1103 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1104 * unkeyed. Each call will get a new superblock.
1106 * A permissions check is made by sget_fc() unless we're getting a superblock
1107 * for a kernel-internal mount or a submount.
1109 int vfs_get_super(struct fs_context *fc,
1110 enum vfs_get_super_keying keying,
1111 int (*fill_super)(struct super_block *sb,
1112 struct fs_context *fc))
1114 int (*test)(struct super_block *, struct fs_context *);
1115 struct super_block *sb;
1116 int err;
1118 switch (keying) {
1119 case vfs_get_single_super:
1120 case vfs_get_single_reconf_super:
1121 test = test_single_super;
1122 break;
1123 case vfs_get_keyed_super:
1124 test = test_keyed_super;
1125 break;
1126 case vfs_get_independent_super:
1127 test = NULL;
1128 break;
1129 default:
1130 BUG();
1133 sb = sget_fc(fc, test, set_anon_super_fc);
1134 if (IS_ERR(sb))
1135 return PTR_ERR(sb);
1137 if (!sb->s_root) {
1138 err = fill_super(sb, fc);
1139 if (err)
1140 goto error;
1142 sb->s_flags |= SB_ACTIVE;
1143 fc->root = dget(sb->s_root);
1144 } else {
1145 fc->root = dget(sb->s_root);
1146 if (keying == vfs_get_single_reconf_super) {
1147 err = reconfigure_super(fc);
1148 if (err < 0) {
1149 dput(fc->root);
1150 fc->root = NULL;
1151 goto error;
1156 return 0;
1158 error:
1159 deactivate_locked_super(sb);
1160 return err;
1162 EXPORT_SYMBOL(vfs_get_super);
1164 int get_tree_nodev(struct fs_context *fc,
1165 int (*fill_super)(struct super_block *sb,
1166 struct fs_context *fc))
1168 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1170 EXPORT_SYMBOL(get_tree_nodev);
1172 int get_tree_single(struct fs_context *fc,
1173 int (*fill_super)(struct super_block *sb,
1174 struct fs_context *fc))
1176 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1178 EXPORT_SYMBOL(get_tree_single);
1180 int get_tree_single_reconf(struct fs_context *fc,
1181 int (*fill_super)(struct super_block *sb,
1182 struct fs_context *fc))
1184 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1186 EXPORT_SYMBOL(get_tree_single_reconf);
1188 int get_tree_keyed(struct fs_context *fc,
1189 int (*fill_super)(struct super_block *sb,
1190 struct fs_context *fc),
1191 void *key)
1193 fc->s_fs_info = key;
1194 return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1196 EXPORT_SYMBOL(get_tree_keyed);
1198 #ifdef CONFIG_BLOCK
1200 static int set_bdev_super(struct super_block *s, void *data)
1202 s->s_bdev = data;
1203 s->s_dev = s->s_bdev->bd_dev;
1204 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1206 if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1207 s->s_iflags |= SB_I_STABLE_WRITES;
1208 return 0;
1211 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1213 return set_bdev_super(s, fc->sget_key);
1216 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1218 return s->s_bdev == fc->sget_key;
1222 * get_tree_bdev - Get a superblock based on a single block device
1223 * @fc: The filesystem context holding the parameters
1224 * @fill_super: Helper to initialise a new superblock
1226 int get_tree_bdev(struct fs_context *fc,
1227 int (*fill_super)(struct super_block *,
1228 struct fs_context *))
1230 struct block_device *bdev;
1231 struct super_block *s;
1232 fmode_t mode = FMODE_READ | FMODE_EXCL;
1233 int error = 0;
1235 if (!(fc->sb_flags & SB_RDONLY))
1236 mode |= FMODE_WRITE;
1238 if (!fc->source)
1239 return invalf(fc, "No source specified");
1241 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1242 if (IS_ERR(bdev)) {
1243 errorf(fc, "%s: Can't open blockdev", fc->source);
1244 return PTR_ERR(bdev);
1247 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1248 * will protect the lockfs code from trying to start a snapshot while
1249 * we are mounting
1251 mutex_lock(&bdev->bd_fsfreeze_mutex);
1252 if (bdev->bd_fsfreeze_count > 0) {
1253 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1254 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1255 blkdev_put(bdev, mode);
1256 return -EBUSY;
1259 fc->sb_flags |= SB_NOSEC;
1260 fc->sget_key = bdev;
1261 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1262 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1263 if (IS_ERR(s)) {
1264 blkdev_put(bdev, mode);
1265 return PTR_ERR(s);
1268 if (s->s_root) {
1269 /* Don't summarily change the RO/RW state. */
1270 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1271 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1272 deactivate_locked_super(s);
1273 blkdev_put(bdev, mode);
1274 return -EBUSY;
1278 * s_umount nests inside bd_mutex during
1279 * __invalidate_device(). blkdev_put() acquires
1280 * bd_mutex and can't be called under s_umount. Drop
1281 * s_umount temporarily. This is safe as we're
1282 * holding an active reference.
1284 up_write(&s->s_umount);
1285 blkdev_put(bdev, mode);
1286 down_write(&s->s_umount);
1287 } else {
1288 s->s_mode = mode;
1289 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1290 sb_set_blocksize(s, block_size(bdev));
1291 error = fill_super(s, fc);
1292 if (error) {
1293 deactivate_locked_super(s);
1294 return error;
1297 s->s_flags |= SB_ACTIVE;
1298 bdev->bd_super = s;
1301 BUG_ON(fc->root);
1302 fc->root = dget(s->s_root);
1303 return 0;
1305 EXPORT_SYMBOL(get_tree_bdev);
1307 static int test_bdev_super(struct super_block *s, void *data)
1309 return (void *)s->s_bdev == data;
1312 struct dentry *mount_bdev(struct file_system_type *fs_type,
1313 int flags, const char *dev_name, void *data,
1314 int (*fill_super)(struct super_block *, void *, int))
1316 struct block_device *bdev;
1317 struct super_block *s;
1318 fmode_t mode = FMODE_READ | FMODE_EXCL;
1319 int error = 0;
1321 if (!(flags & SB_RDONLY))
1322 mode |= FMODE_WRITE;
1324 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1325 if (IS_ERR(bdev))
1326 return ERR_CAST(bdev);
1329 * once the super is inserted into the list by sget, s_umount
1330 * will protect the lockfs code from trying to start a snapshot
1331 * while we are mounting
1333 mutex_lock(&bdev->bd_fsfreeze_mutex);
1334 if (bdev->bd_fsfreeze_count > 0) {
1335 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1336 error = -EBUSY;
1337 goto error_bdev;
1339 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1340 bdev);
1341 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1342 if (IS_ERR(s))
1343 goto error_s;
1345 if (s->s_root) {
1346 if ((flags ^ s->s_flags) & SB_RDONLY) {
1347 deactivate_locked_super(s);
1348 error = -EBUSY;
1349 goto error_bdev;
1353 * s_umount nests inside bd_mutex during
1354 * __invalidate_device(). blkdev_put() acquires
1355 * bd_mutex and can't be called under s_umount. Drop
1356 * s_umount temporarily. This is safe as we're
1357 * holding an active reference.
1359 up_write(&s->s_umount);
1360 blkdev_put(bdev, mode);
1361 down_write(&s->s_umount);
1362 } else {
1363 s->s_mode = mode;
1364 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1365 sb_set_blocksize(s, block_size(bdev));
1366 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1367 if (error) {
1368 deactivate_locked_super(s);
1369 goto error;
1372 s->s_flags |= SB_ACTIVE;
1373 bdev->bd_super = s;
1376 return dget(s->s_root);
1378 error_s:
1379 error = PTR_ERR(s);
1380 error_bdev:
1381 blkdev_put(bdev, mode);
1382 error:
1383 return ERR_PTR(error);
1385 EXPORT_SYMBOL(mount_bdev);
1387 void kill_block_super(struct super_block *sb)
1389 struct block_device *bdev = sb->s_bdev;
1390 fmode_t mode = sb->s_mode;
1392 bdev->bd_super = NULL;
1393 generic_shutdown_super(sb);
1394 sync_blockdev(bdev);
1395 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1396 blkdev_put(bdev, mode | FMODE_EXCL);
1399 EXPORT_SYMBOL(kill_block_super);
1400 #endif
1402 struct dentry *mount_nodev(struct file_system_type *fs_type,
1403 int flags, void *data,
1404 int (*fill_super)(struct super_block *, void *, int))
1406 int error;
1407 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1409 if (IS_ERR(s))
1410 return ERR_CAST(s);
1412 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1413 if (error) {
1414 deactivate_locked_super(s);
1415 return ERR_PTR(error);
1417 s->s_flags |= SB_ACTIVE;
1418 return dget(s->s_root);
1420 EXPORT_SYMBOL(mount_nodev);
1422 static int reconfigure_single(struct super_block *s,
1423 int flags, void *data)
1425 struct fs_context *fc;
1426 int ret;
1428 /* The caller really need to be passing fc down into mount_single(),
1429 * then a chunk of this can be removed. [Bollocks -- AV]
1430 * Better yet, reconfiguration shouldn't happen, but rather the second
1431 * mount should be rejected if the parameters are not compatible.
1433 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1434 if (IS_ERR(fc))
1435 return PTR_ERR(fc);
1437 ret = parse_monolithic_mount_data(fc, data);
1438 if (ret < 0)
1439 goto out;
1441 ret = reconfigure_super(fc);
1442 out:
1443 put_fs_context(fc);
1444 return ret;
1447 static int compare_single(struct super_block *s, void *p)
1449 return 1;
1452 struct dentry *mount_single(struct file_system_type *fs_type,
1453 int flags, void *data,
1454 int (*fill_super)(struct super_block *, void *, int))
1456 struct super_block *s;
1457 int error;
1459 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1460 if (IS_ERR(s))
1461 return ERR_CAST(s);
1462 if (!s->s_root) {
1463 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1464 if (!error)
1465 s->s_flags |= SB_ACTIVE;
1466 } else {
1467 error = reconfigure_single(s, flags, data);
1469 if (unlikely(error)) {
1470 deactivate_locked_super(s);
1471 return ERR_PTR(error);
1473 return dget(s->s_root);
1475 EXPORT_SYMBOL(mount_single);
1478 * vfs_get_tree - Get the mountable root
1479 * @fc: The superblock configuration context.
1481 * The filesystem is invoked to get or create a superblock which can then later
1482 * be used for mounting. The filesystem places a pointer to the root to be
1483 * used for mounting in @fc->root.
1485 int vfs_get_tree(struct fs_context *fc)
1487 struct super_block *sb;
1488 int error;
1490 if (fc->root)
1491 return -EBUSY;
1493 /* Get the mountable root in fc->root, with a ref on the root and a ref
1494 * on the superblock.
1496 error = fc->ops->get_tree(fc);
1497 if (error < 0)
1498 return error;
1500 if (!fc->root) {
1501 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1502 fc->fs_type->name);
1503 /* We don't know what the locking state of the superblock is -
1504 * if there is a superblock.
1506 BUG();
1509 sb = fc->root->d_sb;
1510 WARN_ON(!sb->s_bdi);
1513 * Write barrier is for super_cache_count(). We place it before setting
1514 * SB_BORN as the data dependency between the two functions is the
1515 * superblock structure contents that we just set up, not the SB_BORN
1516 * flag.
1518 smp_wmb();
1519 sb->s_flags |= SB_BORN;
1521 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1522 if (unlikely(error)) {
1523 fc_drop_locked(fc);
1524 return error;
1528 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1529 * but s_maxbytes was an unsigned long long for many releases. Throw
1530 * this warning for a little while to try and catch filesystems that
1531 * violate this rule.
1533 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1534 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1536 return 0;
1538 EXPORT_SYMBOL(vfs_get_tree);
1541 * Setup private BDI for given superblock. It gets automatically cleaned up
1542 * in generic_shutdown_super().
1544 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1546 struct backing_dev_info *bdi;
1547 int err;
1548 va_list args;
1550 bdi = bdi_alloc(NUMA_NO_NODE);
1551 if (!bdi)
1552 return -ENOMEM;
1554 va_start(args, fmt);
1555 err = bdi_register_va(bdi, fmt, args);
1556 va_end(args);
1557 if (err) {
1558 bdi_put(bdi);
1559 return err;
1561 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1562 sb->s_bdi = bdi;
1564 return 0;
1566 EXPORT_SYMBOL(super_setup_bdi_name);
1569 * Setup private BDI for given superblock. I gets automatically cleaned up
1570 * in generic_shutdown_super().
1572 int super_setup_bdi(struct super_block *sb)
1574 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1576 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1577 atomic_long_inc_return(&bdi_seq));
1579 EXPORT_SYMBOL(super_setup_bdi);
1582 * sb_wait_write - wait until all writers to given file system finish
1583 * @sb: the super for which we wait
1584 * @level: type of writers we wait for (normal vs page fault)
1586 * This function waits until there are no writers of given type to given file
1587 * system.
1589 static void sb_wait_write(struct super_block *sb, int level)
1591 percpu_down_write(sb->s_writers.rw_sem + level-1);
1595 * We are going to return to userspace and forget about these locks, the
1596 * ownership goes to the caller of thaw_super() which does unlock().
1598 static void lockdep_sb_freeze_release(struct super_block *sb)
1600 int level;
1602 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1603 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1607 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1609 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1611 int level;
1613 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1614 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1617 static void sb_freeze_unlock(struct super_block *sb)
1619 int level;
1621 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1622 percpu_up_write(sb->s_writers.rw_sem + level);
1626 * freeze_super - lock the filesystem and force it into a consistent state
1627 * @sb: the super to lock
1629 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1630 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1631 * -EBUSY.
1633 * During this function, sb->s_writers.frozen goes through these values:
1635 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1637 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1638 * writes should be blocked, though page faults are still allowed. We wait for
1639 * all writes to complete and then proceed to the next stage.
1641 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1642 * but internal fs threads can still modify the filesystem (although they
1643 * should not dirty new pages or inodes), writeback can run etc. After waiting
1644 * for all running page faults we sync the filesystem which will clean all
1645 * dirty pages and inodes (no new dirty pages or inodes can be created when
1646 * sync is running).
1648 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1649 * modification are blocked (e.g. XFS preallocation truncation on inode
1650 * reclaim). This is usually implemented by blocking new transactions for
1651 * filesystems that have them and need this additional guard. After all
1652 * internal writers are finished we call ->freeze_fs() to finish filesystem
1653 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1654 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1656 * sb->s_writers.frozen is protected by sb->s_umount.
1658 int freeze_super(struct super_block *sb)
1660 int ret;
1662 atomic_inc(&sb->s_active);
1663 down_write(&sb->s_umount);
1664 if (sb->s_writers.frozen != SB_UNFROZEN) {
1665 deactivate_locked_super(sb);
1666 return -EBUSY;
1669 if (!(sb->s_flags & SB_BORN)) {
1670 up_write(&sb->s_umount);
1671 return 0; /* sic - it's "nothing to do" */
1674 if (sb_rdonly(sb)) {
1675 /* Nothing to do really... */
1676 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1677 up_write(&sb->s_umount);
1678 return 0;
1681 sb->s_writers.frozen = SB_FREEZE_WRITE;
1682 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1683 up_write(&sb->s_umount);
1684 sb_wait_write(sb, SB_FREEZE_WRITE);
1685 down_write(&sb->s_umount);
1687 /* Now we go and block page faults... */
1688 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1689 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1691 /* All writers are done so after syncing there won't be dirty data */
1692 sync_filesystem(sb);
1694 /* Now wait for internal filesystem counter */
1695 sb->s_writers.frozen = SB_FREEZE_FS;
1696 sb_wait_write(sb, SB_FREEZE_FS);
1698 if (sb->s_op->freeze_fs) {
1699 ret = sb->s_op->freeze_fs(sb);
1700 if (ret) {
1701 printk(KERN_ERR
1702 "VFS:Filesystem freeze failed\n");
1703 sb->s_writers.frozen = SB_UNFROZEN;
1704 sb_freeze_unlock(sb);
1705 wake_up(&sb->s_writers.wait_unfrozen);
1706 deactivate_locked_super(sb);
1707 return ret;
1711 * For debugging purposes so that fs can warn if it sees write activity
1712 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1714 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1715 lockdep_sb_freeze_release(sb);
1716 up_write(&sb->s_umount);
1717 return 0;
1719 EXPORT_SYMBOL(freeze_super);
1722 * thaw_super -- unlock filesystem
1723 * @sb: the super to thaw
1725 * Unlocks the filesystem and marks it writeable again after freeze_super().
1727 static int thaw_super_locked(struct super_block *sb)
1729 int error;
1731 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1732 up_write(&sb->s_umount);
1733 return -EINVAL;
1736 if (sb_rdonly(sb)) {
1737 sb->s_writers.frozen = SB_UNFROZEN;
1738 goto out;
1741 lockdep_sb_freeze_acquire(sb);
1743 if (sb->s_op->unfreeze_fs) {
1744 error = sb->s_op->unfreeze_fs(sb);
1745 if (error) {
1746 printk(KERN_ERR
1747 "VFS:Filesystem thaw failed\n");
1748 lockdep_sb_freeze_release(sb);
1749 up_write(&sb->s_umount);
1750 return error;
1754 sb->s_writers.frozen = SB_UNFROZEN;
1755 sb_freeze_unlock(sb);
1756 out:
1757 wake_up(&sb->s_writers.wait_unfrozen);
1758 deactivate_locked_super(sb);
1759 return 0;
1762 int thaw_super(struct super_block *sb)
1764 down_write(&sb->s_umount);
1765 return thaw_super_locked(sb);
1767 EXPORT_SYMBOL(thaw_super);