1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_inode.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_quota.h"
20 #include "xfs_dquot_item.h"
21 #include "xfs_dquot.h"
22 #include "xfs_trace.h"
26 kmem_zone_t
*xfs_buf_item_zone
;
28 static inline struct xfs_buf_log_item
*BUF_ITEM(struct xfs_log_item
*lip
)
30 return container_of(lip
, struct xfs_buf_log_item
, bli_item
);
33 /* Is this log iovec plausibly large enough to contain the buffer log format? */
35 xfs_buf_log_check_iovec(
36 struct xfs_log_iovec
*iovec
)
38 struct xfs_buf_log_format
*blfp
= iovec
->i_addr
;
42 if (offsetof(struct xfs_buf_log_format
, blf_data_map
) > iovec
->i_len
)
45 item_end
= (char *)iovec
->i_addr
+ iovec
->i_len
;
46 bmp_end
= (char *)&blfp
->blf_data_map
[blfp
->blf_map_size
];
47 return bmp_end
<= item_end
;
51 xfs_buf_log_format_size(
52 struct xfs_buf_log_format
*blfp
)
54 return offsetof(struct xfs_buf_log_format
, blf_data_map
) +
55 (blfp
->blf_map_size
* sizeof(blfp
->blf_data_map
[0]));
59 * This returns the number of log iovecs needed to log the
62 * It calculates this as 1 iovec for the buf log format structure
63 * and 1 for each stretch of non-contiguous chunks to be logged.
64 * Contiguous chunks are logged in a single iovec.
66 * If the XFS_BLI_STALE flag has been set, then log nothing.
69 xfs_buf_item_size_segment(
70 struct xfs_buf_log_item
*bip
,
71 struct xfs_buf_log_format
*blfp
,
75 struct xfs_buf
*bp
= bip
->bli_buf
;
79 last_bit
= xfs_next_bit(blfp
->blf_data_map
, blfp
->blf_map_size
, 0);
84 * initial count for a dirty buffer is 2 vectors - the format structure
85 * and the first dirty region.
88 *nbytes
+= xfs_buf_log_format_size(blfp
) + XFS_BLF_CHUNK
;
90 while (last_bit
!= -1) {
92 * This takes the bit number to start looking from and
93 * returns the next set bit from there. It returns -1
94 * if there are no more bits set or the start bit is
95 * beyond the end of the bitmap.
97 next_bit
= xfs_next_bit(blfp
->blf_data_map
, blfp
->blf_map_size
,
100 * If we run out of bits, leave the loop,
101 * else if we find a new set of bits bump the number of vecs,
102 * else keep scanning the current set of bits.
104 if (next_bit
== -1) {
106 } else if (next_bit
!= last_bit
+ 1) {
109 } else if (xfs_buf_offset(bp
, next_bit
* XFS_BLF_CHUNK
) !=
110 (xfs_buf_offset(bp
, last_bit
* XFS_BLF_CHUNK
) +
117 *nbytes
+= XFS_BLF_CHUNK
;
122 * This returns the number of log iovecs needed to log the given buf log item.
124 * It calculates this as 1 iovec for the buf log format structure and 1 for each
125 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
128 * Discontiguous buffers need a format structure per region that is being
129 * logged. This makes the changes in the buffer appear to log recovery as though
130 * they came from separate buffers, just like would occur if multiple buffers
131 * were used instead of a single discontiguous buffer. This enables
132 * discontiguous buffers to be in-memory constructs, completely transparent to
133 * what ends up on disk.
135 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
140 struct xfs_log_item
*lip
,
144 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
147 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
148 if (bip
->bli_flags
& XFS_BLI_STALE
) {
150 * The buffer is stale, so all we need to log
151 * is the buf log format structure with the
154 trace_xfs_buf_item_size_stale(bip
);
155 ASSERT(bip
->__bli_format
.blf_flags
& XFS_BLF_CANCEL
);
156 *nvecs
+= bip
->bli_format_count
;
157 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
158 *nbytes
+= xfs_buf_log_format_size(&bip
->bli_formats
[i
]);
163 ASSERT(bip
->bli_flags
& XFS_BLI_LOGGED
);
165 if (bip
->bli_flags
& XFS_BLI_ORDERED
) {
167 * The buffer has been logged just to order it.
168 * It is not being included in the transaction
169 * commit, so no vectors are used at all.
171 trace_xfs_buf_item_size_ordered(bip
);
172 *nvecs
= XFS_LOG_VEC_ORDERED
;
177 * the vector count is based on the number of buffer vectors we have
178 * dirty bits in. This will only be greater than one when we have a
179 * compound buffer with more than one segment dirty. Hence for compound
180 * buffers we need to track which segment the dirty bits correspond to,
181 * and when we move from one segment to the next increment the vector
182 * count for the extra buf log format structure that will need to be
185 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
186 xfs_buf_item_size_segment(bip
, &bip
->bli_formats
[i
],
189 trace_xfs_buf_item_size(bip
);
193 xfs_buf_item_copy_iovec(
194 struct xfs_log_vec
*lv
,
195 struct xfs_log_iovec
**vecp
,
201 offset
+= first_bit
* XFS_BLF_CHUNK
;
202 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_BCHUNK
,
203 xfs_buf_offset(bp
, offset
),
204 nbits
* XFS_BLF_CHUNK
);
208 xfs_buf_item_straddle(
214 return xfs_buf_offset(bp
, offset
+ (next_bit
<< XFS_BLF_SHIFT
)) !=
215 (xfs_buf_offset(bp
, offset
+ (last_bit
<< XFS_BLF_SHIFT
)) +
220 xfs_buf_item_format_segment(
221 struct xfs_buf_log_item
*bip
,
222 struct xfs_log_vec
*lv
,
223 struct xfs_log_iovec
**vecp
,
225 struct xfs_buf_log_format
*blfp
)
227 struct xfs_buf
*bp
= bip
->bli_buf
;
234 /* copy the flags across from the base format item */
235 blfp
->blf_flags
= bip
->__bli_format
.blf_flags
;
238 * Base size is the actual size of the ondisk structure - it reflects
239 * the actual size of the dirty bitmap rather than the size of the in
242 base_size
= xfs_buf_log_format_size(blfp
);
244 first_bit
= xfs_next_bit(blfp
->blf_data_map
, blfp
->blf_map_size
, 0);
245 if (!(bip
->bli_flags
& XFS_BLI_STALE
) && first_bit
== -1) {
247 * If the map is not be dirty in the transaction, mark
248 * the size as zero and do not advance the vector pointer.
253 blfp
= xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_BFORMAT
, blfp
, base_size
);
256 if (bip
->bli_flags
& XFS_BLI_STALE
) {
258 * The buffer is stale, so all we need to log
259 * is the buf log format structure with the
262 trace_xfs_buf_item_format_stale(bip
);
263 ASSERT(blfp
->blf_flags
& XFS_BLF_CANCEL
);
269 * Fill in an iovec for each set of contiguous chunks.
271 last_bit
= first_bit
;
275 * This takes the bit number to start looking from and
276 * returns the next set bit from there. It returns -1
277 * if there are no more bits set or the start bit is
278 * beyond the end of the bitmap.
280 next_bit
= xfs_next_bit(blfp
->blf_data_map
, blfp
->blf_map_size
,
283 * If we run out of bits fill in the last iovec and get out of
284 * the loop. Else if we start a new set of bits then fill in
285 * the iovec for the series we were looking at and start
286 * counting the bits in the new one. Else we're still in the
287 * same set of bits so just keep counting and scanning.
289 if (next_bit
== -1) {
290 xfs_buf_item_copy_iovec(lv
, vecp
, bp
, offset
,
294 } else if (next_bit
!= last_bit
+ 1 ||
295 xfs_buf_item_straddle(bp
, offset
, next_bit
, last_bit
)) {
296 xfs_buf_item_copy_iovec(lv
, vecp
, bp
, offset
,
299 first_bit
= next_bit
;
310 * This is called to fill in the vector of log iovecs for the
311 * given log buf item. It fills the first entry with a buf log
312 * format structure, and the rest point to contiguous chunks
317 struct xfs_log_item
*lip
,
318 struct xfs_log_vec
*lv
)
320 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
321 struct xfs_buf
*bp
= bip
->bli_buf
;
322 struct xfs_log_iovec
*vecp
= NULL
;
326 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
327 ASSERT((bip
->bli_flags
& XFS_BLI_LOGGED
) ||
328 (bip
->bli_flags
& XFS_BLI_STALE
));
329 ASSERT((bip
->bli_flags
& XFS_BLI_STALE
) ||
330 (xfs_blft_from_flags(&bip
->__bli_format
) > XFS_BLFT_UNKNOWN_BUF
331 && xfs_blft_from_flags(&bip
->__bli_format
) < XFS_BLFT_MAX_BUF
));
332 ASSERT(!(bip
->bli_flags
& XFS_BLI_ORDERED
) ||
333 (bip
->bli_flags
& XFS_BLI_STALE
));
337 * If it is an inode buffer, transfer the in-memory state to the
338 * format flags and clear the in-memory state.
340 * For buffer based inode allocation, we do not transfer
341 * this state if the inode buffer allocation has not yet been committed
342 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
343 * correct replay of the inode allocation.
345 * For icreate item based inode allocation, the buffers aren't written
346 * to the journal during allocation, and hence we should always tag the
347 * buffer as an inode buffer so that the correct unlinked list replay
348 * occurs during recovery.
350 if (bip
->bli_flags
& XFS_BLI_INODE_BUF
) {
351 if (xfs_sb_version_has_v3inode(&lip
->li_mountp
->m_sb
) ||
352 !((bip
->bli_flags
& XFS_BLI_INODE_ALLOC_BUF
) &&
353 xfs_log_item_in_current_chkpt(lip
)))
354 bip
->__bli_format
.blf_flags
|= XFS_BLF_INODE_BUF
;
355 bip
->bli_flags
&= ~XFS_BLI_INODE_BUF
;
358 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
359 xfs_buf_item_format_segment(bip
, lv
, &vecp
, offset
,
360 &bip
->bli_formats
[i
]);
361 offset
+= BBTOB(bp
->b_maps
[i
].bm_len
);
365 * Check to make sure everything is consistent.
367 trace_xfs_buf_item_format(bip
);
371 * This is called to pin the buffer associated with the buf log item in memory
372 * so it cannot be written out.
374 * We also always take a reference to the buffer log item here so that the bli
375 * is held while the item is pinned in memory. This means that we can
376 * unconditionally drop the reference count a transaction holds when the
377 * transaction is completed.
381 struct xfs_log_item
*lip
)
383 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
385 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
386 ASSERT((bip
->bli_flags
& XFS_BLI_LOGGED
) ||
387 (bip
->bli_flags
& XFS_BLI_ORDERED
) ||
388 (bip
->bli_flags
& XFS_BLI_STALE
));
390 trace_xfs_buf_item_pin(bip
);
392 atomic_inc(&bip
->bli_refcount
);
393 atomic_inc(&bip
->bli_buf
->b_pin_count
);
397 * This is called to unpin the buffer associated with the buf log
398 * item which was previously pinned with a call to xfs_buf_item_pin().
400 * Also drop the reference to the buf item for the current transaction.
401 * If the XFS_BLI_STALE flag is set and we are the last reference,
402 * then free up the buf log item and unlock the buffer.
404 * If the remove flag is set we are called from uncommit in the
405 * forced-shutdown path. If that is true and the reference count on
406 * the log item is going to drop to zero we need to free the item's
407 * descriptor in the transaction.
411 struct xfs_log_item
*lip
,
414 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
415 struct xfs_buf
*bp
= bip
->bli_buf
;
416 int stale
= bip
->bli_flags
& XFS_BLI_STALE
;
419 ASSERT(bp
->b_log_item
== bip
);
420 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
422 trace_xfs_buf_item_unpin(bip
);
424 freed
= atomic_dec_and_test(&bip
->bli_refcount
);
426 if (atomic_dec_and_test(&bp
->b_pin_count
))
427 wake_up_all(&bp
->b_waiters
);
429 if (freed
&& stale
) {
430 ASSERT(bip
->bli_flags
& XFS_BLI_STALE
);
431 ASSERT(xfs_buf_islocked(bp
));
432 ASSERT(bp
->b_flags
& XBF_STALE
);
433 ASSERT(bip
->__bli_format
.blf_flags
& XFS_BLF_CANCEL
);
435 trace_xfs_buf_item_unpin_stale(bip
);
439 * If we are in a transaction context, we have to
440 * remove the log item from the transaction as we are
441 * about to release our reference to the buffer. If we
442 * don't, the unlock that occurs later in
443 * xfs_trans_uncommit() will try to reference the
444 * buffer which we no longer have a hold on.
446 if (!list_empty(&lip
->li_trans
))
447 xfs_trans_del_item(lip
);
450 * Since the transaction no longer refers to the buffer,
451 * the buffer should no longer refer to the transaction.
457 * If we get called here because of an IO error, we may or may
458 * not have the item on the AIL. xfs_trans_ail_delete() will
459 * take care of that situation. xfs_trans_ail_delete() drops
462 if (bip
->bli_flags
& XFS_BLI_STALE_INODE
) {
463 xfs_buf_item_done(bp
);
464 xfs_buf_inode_iodone(bp
);
465 ASSERT(list_empty(&bp
->b_li_list
));
467 xfs_trans_ail_delete(lip
, SHUTDOWN_LOG_IO_ERROR
);
468 xfs_buf_item_relse(bp
);
469 ASSERT(bp
->b_log_item
== NULL
);
472 } else if (freed
&& remove
) {
474 * The buffer must be locked and held by the caller to simulate
475 * an async I/O failure.
479 bp
->b_flags
|= XBF_ASYNC
;
480 xfs_buf_ioend_fail(bp
);
486 struct xfs_log_item
*lip
,
487 struct list_head
*buffer_list
)
489 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
490 struct xfs_buf
*bp
= bip
->bli_buf
;
491 uint rval
= XFS_ITEM_SUCCESS
;
493 if (xfs_buf_ispinned(bp
))
494 return XFS_ITEM_PINNED
;
495 if (!xfs_buf_trylock(bp
)) {
497 * If we have just raced with a buffer being pinned and it has
498 * been marked stale, we could end up stalling until someone else
499 * issues a log force to unpin the stale buffer. Check for the
500 * race condition here so xfsaild recognizes the buffer is pinned
501 * and queues a log force to move it along.
503 if (xfs_buf_ispinned(bp
))
504 return XFS_ITEM_PINNED
;
505 return XFS_ITEM_LOCKED
;
508 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
510 trace_xfs_buf_item_push(bip
);
512 /* has a previous flush failed due to IO errors? */
513 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
514 xfs_buf_alert_ratelimited(bp
, "XFS: Failing async write",
515 "Failing async write on buffer block 0x%llx. Retrying async write.",
516 (long long)bp
->b_bn
);
519 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
520 rval
= XFS_ITEM_FLUSHING
;
526 * Drop the buffer log item refcount and take appropriate action. This helper
527 * determines whether the bli must be freed or not, since a decrement to zero
528 * does not necessarily mean the bli is unused.
530 * Return true if the bli is freed, false otherwise.
534 struct xfs_buf_log_item
*bip
)
536 struct xfs_log_item
*lip
= &bip
->bli_item
;
540 /* drop the bli ref and return if it wasn't the last one */
541 if (!atomic_dec_and_test(&bip
->bli_refcount
))
545 * We dropped the last ref and must free the item if clean or aborted.
546 * If the bli is dirty and non-aborted, the buffer was clean in the
547 * transaction but still awaiting writeback from previous changes. In
548 * that case, the bli is freed on buffer writeback completion.
550 aborted
= test_bit(XFS_LI_ABORTED
, &lip
->li_flags
) ||
551 XFS_FORCED_SHUTDOWN(lip
->li_mountp
);
552 dirty
= bip
->bli_flags
& XFS_BLI_DIRTY
;
553 if (dirty
&& !aborted
)
557 * The bli is aborted or clean. An aborted item may be in the AIL
558 * regardless of dirty state. For example, consider an aborted
559 * transaction that invalidated a dirty bli and cleared the dirty
563 xfs_trans_ail_delete(lip
, 0);
564 xfs_buf_item_relse(bip
->bli_buf
);
569 * Release the buffer associated with the buf log item. If there is no dirty
570 * logged data associated with the buffer recorded in the buf log item, then
571 * free the buf log item and remove the reference to it in the buffer.
573 * This call ignores the recursion count. It is only called when the buffer
574 * should REALLY be unlocked, regardless of the recursion count.
576 * We unconditionally drop the transaction's reference to the log item. If the
577 * item was logged, then another reference was taken when it was pinned, so we
578 * can safely drop the transaction reference now. This also allows us to avoid
579 * potential races with the unpin code freeing the bli by not referencing the
580 * bli after we've dropped the reference count.
582 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
583 * if necessary but do not unlock the buffer. This is for support of
584 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
588 xfs_buf_item_release(
589 struct xfs_log_item
*lip
)
591 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
592 struct xfs_buf
*bp
= bip
->bli_buf
;
594 bool hold
= bip
->bli_flags
& XFS_BLI_HOLD
;
595 bool stale
= bip
->bli_flags
& XFS_BLI_STALE
;
596 #if defined(DEBUG) || defined(XFS_WARN)
597 bool ordered
= bip
->bli_flags
& XFS_BLI_ORDERED
;
598 bool dirty
= bip
->bli_flags
& XFS_BLI_DIRTY
;
599 bool aborted
= test_bit(XFS_LI_ABORTED
,
603 trace_xfs_buf_item_release(bip
);
606 * The bli dirty state should match whether the blf has logged segments
607 * except for ordered buffers, where only the bli should be dirty.
609 ASSERT((!ordered
&& dirty
== xfs_buf_item_dirty_format(bip
)) ||
610 (ordered
&& dirty
&& !xfs_buf_item_dirty_format(bip
)));
611 ASSERT(!stale
|| (bip
->__bli_format
.blf_flags
& XFS_BLF_CANCEL
));
614 * Clear the buffer's association with this transaction and
615 * per-transaction state from the bli, which has been copied above.
618 bip
->bli_flags
&= ~(XFS_BLI_LOGGED
| XFS_BLI_HOLD
| XFS_BLI_ORDERED
);
621 * Unref the item and unlock the buffer unless held or stale. Stale
622 * buffers remain locked until final unpin unless the bli is freed by
623 * the unref call. The latter implies shutdown because buffer
624 * invalidation dirties the bli and transaction.
626 released
= xfs_buf_item_put(bip
);
627 if (hold
|| (stale
&& !released
))
629 ASSERT(!stale
|| aborted
);
634 xfs_buf_item_committing(
635 struct xfs_log_item
*lip
,
636 xfs_lsn_t commit_lsn
)
638 return xfs_buf_item_release(lip
);
642 * This is called to find out where the oldest active copy of the
643 * buf log item in the on disk log resides now that the last log
644 * write of it completed at the given lsn.
645 * We always re-log all the dirty data in a buffer, so usually the
646 * latest copy in the on disk log is the only one that matters. For
647 * those cases we simply return the given lsn.
649 * The one exception to this is for buffers full of newly allocated
650 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
651 * flag set, indicating that only the di_next_unlinked fields from the
652 * inodes in the buffers will be replayed during recovery. If the
653 * original newly allocated inode images have not yet been flushed
654 * when the buffer is so relogged, then we need to make sure that we
655 * keep the old images in the 'active' portion of the log. We do this
656 * by returning the original lsn of that transaction here rather than
660 xfs_buf_item_committed(
661 struct xfs_log_item
*lip
,
664 struct xfs_buf_log_item
*bip
= BUF_ITEM(lip
);
666 trace_xfs_buf_item_committed(bip
);
668 if ((bip
->bli_flags
& XFS_BLI_INODE_ALLOC_BUF
) && lip
->li_lsn
!= 0)
673 static const struct xfs_item_ops xfs_buf_item_ops
= {
674 .iop_size
= xfs_buf_item_size
,
675 .iop_format
= xfs_buf_item_format
,
676 .iop_pin
= xfs_buf_item_pin
,
677 .iop_unpin
= xfs_buf_item_unpin
,
678 .iop_release
= xfs_buf_item_release
,
679 .iop_committing
= xfs_buf_item_committing
,
680 .iop_committed
= xfs_buf_item_committed
,
681 .iop_push
= xfs_buf_item_push
,
685 xfs_buf_item_get_format(
686 struct xfs_buf_log_item
*bip
,
689 ASSERT(bip
->bli_formats
== NULL
);
690 bip
->bli_format_count
= count
;
693 bip
->bli_formats
= &bip
->__bli_format
;
697 bip
->bli_formats
= kmem_zalloc(count
* sizeof(struct xfs_buf_log_format
),
702 xfs_buf_item_free_format(
703 struct xfs_buf_log_item
*bip
)
705 if (bip
->bli_formats
!= &bip
->__bli_format
) {
706 kmem_free(bip
->bli_formats
);
707 bip
->bli_formats
= NULL
;
712 * Allocate a new buf log item to go with the given buffer.
713 * Set the buffer's b_log_item field to point to the new
719 struct xfs_mount
*mp
)
721 struct xfs_buf_log_item
*bip
= bp
->b_log_item
;
727 * Check to see if there is already a buf log item for
728 * this buffer. If we do already have one, there is
729 * nothing to do here so return.
731 ASSERT(bp
->b_mount
== mp
);
733 ASSERT(bip
->bli_item
.li_type
== XFS_LI_BUF
);
734 ASSERT(!bp
->b_transp
);
735 ASSERT(bip
->bli_buf
== bp
);
739 bip
= kmem_cache_zalloc(xfs_buf_item_zone
, GFP_KERNEL
| __GFP_NOFAIL
);
740 xfs_log_item_init(mp
, &bip
->bli_item
, XFS_LI_BUF
, &xfs_buf_item_ops
);
744 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
745 * can be divided into. Make sure not to truncate any pieces.
746 * map_size is the size of the bitmap needed to describe the
747 * chunks of the buffer.
749 * Discontiguous buffer support follows the layout of the underlying
750 * buffer. This makes the implementation as simple as possible.
752 xfs_buf_item_get_format(bip
, bp
->b_map_count
);
754 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
755 chunks
= DIV_ROUND_UP(BBTOB(bp
->b_maps
[i
].bm_len
),
757 map_size
= DIV_ROUND_UP(chunks
, NBWORD
);
759 if (map_size
> XFS_BLF_DATAMAP_SIZE
) {
760 kmem_cache_free(xfs_buf_item_zone
, bip
);
762 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
764 BBTOB(bp
->b_maps
[i
].bm_len
));
765 return -EFSCORRUPTED
;
768 bip
->bli_formats
[i
].blf_type
= XFS_LI_BUF
;
769 bip
->bli_formats
[i
].blf_blkno
= bp
->b_maps
[i
].bm_bn
;
770 bip
->bli_formats
[i
].blf_len
= bp
->b_maps
[i
].bm_len
;
771 bip
->bli_formats
[i
].blf_map_size
= map_size
;
774 bp
->b_log_item
= bip
;
781 * Mark bytes first through last inclusive as dirty in the buf
785 xfs_buf_item_log_segment(
800 ASSERT(first
< XFS_BLF_DATAMAP_SIZE
* XFS_BLF_CHUNK
* NBWORD
);
801 ASSERT(last
< XFS_BLF_DATAMAP_SIZE
* XFS_BLF_CHUNK
* NBWORD
);
804 * Convert byte offsets to bit numbers.
806 first_bit
= first
>> XFS_BLF_SHIFT
;
807 last_bit
= last
>> XFS_BLF_SHIFT
;
810 * Calculate the total number of bits to be set.
812 bits_to_set
= last_bit
- first_bit
+ 1;
815 * Get a pointer to the first word in the bitmap
818 word_num
= first_bit
>> BIT_TO_WORD_SHIFT
;
819 wordp
= &map
[word_num
];
822 * Calculate the starting bit in the first word.
824 bit
= first_bit
& (uint
)(NBWORD
- 1);
827 * First set any bits in the first word of our range.
828 * If it starts at bit 0 of the word, it will be
829 * set below rather than here. That is what the variable
830 * bit tells us. The variable bits_set tracks the number
831 * of bits that have been set so far. End_bit is the number
832 * of the last bit to be set in this word plus one.
835 end_bit
= min(bit
+ bits_to_set
, (uint
)NBWORD
);
836 mask
= ((1U << (end_bit
- bit
)) - 1) << bit
;
839 bits_set
= end_bit
- bit
;
845 * Now set bits a whole word at a time that are between
846 * first_bit and last_bit.
848 while ((bits_to_set
- bits_set
) >= NBWORD
) {
855 * Finally, set any bits left to be set in one last partial word.
857 end_bit
= bits_to_set
- bits_set
;
859 mask
= (1U << end_bit
) - 1;
865 * Mark bytes first through last inclusive as dirty in the buf
870 struct xfs_buf_log_item
*bip
,
877 struct xfs_buf
*bp
= bip
->bli_buf
;
880 * walk each buffer segment and mark them dirty appropriately.
883 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
886 end
= start
+ BBTOB(bp
->b_maps
[i
].bm_len
) - 1;
888 /* skip to the map that includes the first byte to log */
890 start
+= BBTOB(bp
->b_maps
[i
].bm_len
);
895 * Trim the range to this segment and mark it in the bitmap.
896 * Note that we must convert buffer offsets to segment relative
897 * offsets (e.g., the first byte of each segment is byte 0 of
904 xfs_buf_item_log_segment(first
- start
, end
- start
,
905 &bip
->bli_formats
[i
].blf_data_map
[0]);
907 start
+= BBTOB(bp
->b_maps
[i
].bm_len
);
913 * Return true if the buffer has any ranges logged/dirtied by a transaction,
917 xfs_buf_item_dirty_format(
918 struct xfs_buf_log_item
*bip
)
922 for (i
= 0; i
< bip
->bli_format_count
; i
++) {
923 if (!xfs_bitmap_empty(bip
->bli_formats
[i
].blf_data_map
,
924 bip
->bli_formats
[i
].blf_map_size
))
933 struct xfs_buf_log_item
*bip
)
935 xfs_buf_item_free_format(bip
);
936 kmem_free(bip
->bli_item
.li_lv_shadow
);
937 kmem_cache_free(xfs_buf_item_zone
, bip
);
941 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
947 struct xfs_buf_log_item
*bip
= bp
->b_log_item
;
949 trace_xfs_buf_item_relse(bp
, _RET_IP_
);
950 ASSERT(!test_bit(XFS_LI_IN_AIL
, &bip
->bli_item
.li_flags
));
952 bp
->b_log_item
= NULL
;
954 xfs_buf_item_free(bip
);
962 * If we are forcibly shutting down, this may well be off the AIL
963 * already. That's because we simulate the log-committed callbacks to
964 * unpin these buffers. Or we may never have put this item on AIL
965 * because of the transaction was aborted forcibly.
966 * xfs_trans_ail_delete() takes care of these.
968 * Either way, AIL is useless if we're forcing a shutdown.
970 * Note that log recovery writes might have buffer items that are not on
971 * the AIL even when the file system is not shut down.
973 xfs_trans_ail_delete(&bp
->b_log_item
->bli_item
,
974 (bp
->b_flags
& _XBF_LOGRECOVERY
) ? 0 :
975 SHUTDOWN_CORRUPT_INCORE
);
976 xfs_buf_item_relse(bp
);