1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
20 #include "xfs_error.h"
22 #include <linux/iversion.h>
24 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
26 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
28 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
32 xfs_inode_item_data_fork_size(
33 struct xfs_inode_log_item
*iip
,
37 struct xfs_inode
*ip
= iip
->ili_inode
;
39 switch (ip
->i_df
.if_format
) {
40 case XFS_DINODE_FMT_EXTENTS
:
41 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
42 ip
->i_df
.if_nextents
> 0 &&
43 ip
->i_df
.if_bytes
> 0) {
44 /* worst case, doesn't subtract delalloc extents */
45 *nbytes
+= XFS_IFORK_DSIZE(ip
);
49 case XFS_DINODE_FMT_BTREE
:
50 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
51 ip
->i_df
.if_broot_bytes
> 0) {
52 *nbytes
+= ip
->i_df
.if_broot_bytes
;
56 case XFS_DINODE_FMT_LOCAL
:
57 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
58 ip
->i_df
.if_bytes
> 0) {
59 *nbytes
+= roundup(ip
->i_df
.if_bytes
, 4);
64 case XFS_DINODE_FMT_DEV
:
73 xfs_inode_item_attr_fork_size(
74 struct xfs_inode_log_item
*iip
,
78 struct xfs_inode
*ip
= iip
->ili_inode
;
80 switch (ip
->i_afp
->if_format
) {
81 case XFS_DINODE_FMT_EXTENTS
:
82 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
83 ip
->i_afp
->if_nextents
> 0 &&
84 ip
->i_afp
->if_bytes
> 0) {
85 /* worst case, doesn't subtract unused space */
86 *nbytes
+= XFS_IFORK_ASIZE(ip
);
90 case XFS_DINODE_FMT_BTREE
:
91 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
92 ip
->i_afp
->if_broot_bytes
> 0) {
93 *nbytes
+= ip
->i_afp
->if_broot_bytes
;
97 case XFS_DINODE_FMT_LOCAL
:
98 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
99 ip
->i_afp
->if_bytes
> 0) {
100 *nbytes
+= roundup(ip
->i_afp
->if_bytes
, 4);
111 * This returns the number of iovecs needed to log the given inode item.
113 * We need one iovec for the inode log format structure, one for the
114 * inode core, and possibly one for the inode data/extents/b-tree root
115 * and one for the inode attribute data/extents/b-tree root.
119 struct xfs_log_item
*lip
,
123 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
124 struct xfs_inode
*ip
= iip
->ili_inode
;
127 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
128 xfs_log_dinode_size(ip
->i_mount
);
130 xfs_inode_item_data_fork_size(iip
, nvecs
, nbytes
);
132 xfs_inode_item_attr_fork_size(iip
, nvecs
, nbytes
);
136 xfs_inode_item_format_data_fork(
137 struct xfs_inode_log_item
*iip
,
138 struct xfs_inode_log_format
*ilf
,
139 struct xfs_log_vec
*lv
,
140 struct xfs_log_iovec
**vecp
)
142 struct xfs_inode
*ip
= iip
->ili_inode
;
145 switch (ip
->i_df
.if_format
) {
146 case XFS_DINODE_FMT_EXTENTS
:
148 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
| XFS_ILOG_DEV
);
150 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
151 ip
->i_df
.if_nextents
> 0 &&
152 ip
->i_df
.if_bytes
> 0) {
153 struct xfs_bmbt_rec
*p
;
155 ASSERT(xfs_iext_count(&ip
->i_df
) > 0);
157 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IEXT
);
158 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_DATA_FORK
);
159 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
161 ASSERT(data_bytes
<= ip
->i_df
.if_bytes
);
163 ilf
->ilf_dsize
= data_bytes
;
166 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
169 case XFS_DINODE_FMT_BTREE
:
171 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
173 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
174 ip
->i_df
.if_broot_bytes
> 0) {
175 ASSERT(ip
->i_df
.if_broot
!= NULL
);
176 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IBROOT
,
178 ip
->i_df
.if_broot_bytes
);
179 ilf
->ilf_dsize
= ip
->i_df
.if_broot_bytes
;
182 ASSERT(!(iip
->ili_fields
&
184 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
187 case XFS_DINODE_FMT_LOCAL
:
189 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
| XFS_ILOG_DEV
);
190 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
191 ip
->i_df
.if_bytes
> 0) {
193 * Round i_bytes up to a word boundary.
194 * The underlying memory is guaranteed
195 * to be there by xfs_idata_realloc().
197 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
198 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
199 ASSERT(ip
->i_d
.di_size
> 0);
200 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_ILOCAL
,
201 ip
->i_df
.if_u1
.if_data
, data_bytes
);
202 ilf
->ilf_dsize
= (unsigned)data_bytes
;
205 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
208 case XFS_DINODE_FMT_DEV
:
210 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
);
211 if (iip
->ili_fields
& XFS_ILOG_DEV
)
212 ilf
->ilf_u
.ilfu_rdev
= sysv_encode_dev(VFS_I(ip
)->i_rdev
);
221 xfs_inode_item_format_attr_fork(
222 struct xfs_inode_log_item
*iip
,
223 struct xfs_inode_log_format
*ilf
,
224 struct xfs_log_vec
*lv
,
225 struct xfs_log_iovec
**vecp
)
227 struct xfs_inode
*ip
= iip
->ili_inode
;
230 switch (ip
->i_afp
->if_format
) {
231 case XFS_DINODE_FMT_EXTENTS
:
233 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
235 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
236 ip
->i_afp
->if_nextents
> 0 &&
237 ip
->i_afp
->if_bytes
> 0) {
238 struct xfs_bmbt_rec
*p
;
240 ASSERT(xfs_iext_count(ip
->i_afp
) ==
241 ip
->i_afp
->if_nextents
);
243 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_EXT
);
244 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_ATTR_FORK
);
245 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
247 ilf
->ilf_asize
= data_bytes
;
250 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
253 case XFS_DINODE_FMT_BTREE
:
255 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
257 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
258 ip
->i_afp
->if_broot_bytes
> 0) {
259 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
261 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_BROOT
,
263 ip
->i_afp
->if_broot_bytes
);
264 ilf
->ilf_asize
= ip
->i_afp
->if_broot_bytes
;
267 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
270 case XFS_DINODE_FMT_LOCAL
:
272 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
274 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
275 ip
->i_afp
->if_bytes
> 0) {
277 * Round i_bytes up to a word boundary.
278 * The underlying memory is guaranteed
279 * to be there by xfs_idata_realloc().
281 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
282 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
283 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_LOCAL
,
284 ip
->i_afp
->if_u1
.if_data
,
286 ilf
->ilf_asize
= (unsigned)data_bytes
;
289 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
299 * Convert an incore timestamp to a log timestamp. Note that the log format
300 * specifies host endian format!
302 static inline xfs_ictimestamp_t
303 xfs_inode_to_log_dinode_ts(
304 struct xfs_inode
*ip
,
305 const struct timespec64 tv
)
307 struct xfs_legacy_ictimestamp
*lits
;
308 xfs_ictimestamp_t its
;
310 if (xfs_inode_has_bigtime(ip
))
311 return xfs_inode_encode_bigtime(tv
);
313 lits
= (struct xfs_legacy_ictimestamp
*)&its
;
314 lits
->t_sec
= tv
.tv_sec
;
315 lits
->t_nsec
= tv
.tv_nsec
;
321 xfs_inode_to_log_dinode(
322 struct xfs_inode
*ip
,
323 struct xfs_log_dinode
*to
,
326 struct xfs_icdinode
*from
= &ip
->i_d
;
327 struct inode
*inode
= VFS_I(ip
);
329 to
->di_magic
= XFS_DINODE_MAGIC
;
330 to
->di_format
= xfs_ifork_format(&ip
->i_df
);
331 to
->di_uid
= i_uid_read(inode
);
332 to
->di_gid
= i_gid_read(inode
);
333 to
->di_projid_lo
= from
->di_projid
& 0xffff;
334 to
->di_projid_hi
= from
->di_projid
>> 16;
336 memset(to
->di_pad
, 0, sizeof(to
->di_pad
));
337 memset(to
->di_pad3
, 0, sizeof(to
->di_pad3
));
338 to
->di_atime
= xfs_inode_to_log_dinode_ts(ip
, inode
->i_atime
);
339 to
->di_mtime
= xfs_inode_to_log_dinode_ts(ip
, inode
->i_mtime
);
340 to
->di_ctime
= xfs_inode_to_log_dinode_ts(ip
, inode
->i_ctime
);
341 to
->di_nlink
= inode
->i_nlink
;
342 to
->di_gen
= inode
->i_generation
;
343 to
->di_mode
= inode
->i_mode
;
345 to
->di_size
= from
->di_size
;
346 to
->di_nblocks
= from
->di_nblocks
;
347 to
->di_extsize
= from
->di_extsize
;
348 to
->di_nextents
= xfs_ifork_nextents(&ip
->i_df
);
349 to
->di_anextents
= xfs_ifork_nextents(ip
->i_afp
);
350 to
->di_forkoff
= from
->di_forkoff
;
351 to
->di_aformat
= xfs_ifork_format(ip
->i_afp
);
352 to
->di_dmevmask
= from
->di_dmevmask
;
353 to
->di_dmstate
= from
->di_dmstate
;
354 to
->di_flags
= from
->di_flags
;
356 /* log a dummy value to ensure log structure is fully initialised */
357 to
->di_next_unlinked
= NULLAGINO
;
359 if (xfs_sb_version_has_v3inode(&ip
->i_mount
->m_sb
)) {
361 to
->di_changecount
= inode_peek_iversion(inode
);
362 to
->di_crtime
= xfs_inode_to_log_dinode_ts(ip
, from
->di_crtime
);
363 to
->di_flags2
= from
->di_flags2
;
364 to
->di_cowextsize
= from
->di_cowextsize
;
365 to
->di_ino
= ip
->i_ino
;
367 memset(to
->di_pad2
, 0, sizeof(to
->di_pad2
));
368 uuid_copy(&to
->di_uuid
, &ip
->i_mount
->m_sb
.sb_meta_uuid
);
369 to
->di_flushiter
= 0;
372 to
->di_flushiter
= from
->di_flushiter
;
377 * Format the inode core. Current timestamp data is only in the VFS inode
378 * fields, so we need to grab them from there. Hence rather than just copying
379 * the XFS inode core structure, format the fields directly into the iovec.
382 xfs_inode_item_format_core(
383 struct xfs_inode
*ip
,
384 struct xfs_log_vec
*lv
,
385 struct xfs_log_iovec
**vecp
)
387 struct xfs_log_dinode
*dic
;
389 dic
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_ICORE
);
390 xfs_inode_to_log_dinode(ip
, dic
, ip
->i_itemp
->ili_item
.li_lsn
);
391 xlog_finish_iovec(lv
, *vecp
, xfs_log_dinode_size(ip
->i_mount
));
395 * This is called to fill in the vector of log iovecs for the given inode
396 * log item. It fills the first item with an inode log format structure,
397 * the second with the on-disk inode structure, and a possible third and/or
398 * fourth with the inode data/extents/b-tree root and inode attributes
399 * data/extents/b-tree root.
401 * Note: Always use the 64 bit inode log format structure so we don't
402 * leave an uninitialised hole in the format item on 64 bit systems. Log
403 * recovery on 32 bit systems handles this just fine, so there's no reason
404 * for not using an initialising the properly padded structure all the time.
407 xfs_inode_item_format(
408 struct xfs_log_item
*lip
,
409 struct xfs_log_vec
*lv
)
411 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
412 struct xfs_inode
*ip
= iip
->ili_inode
;
413 struct xfs_log_iovec
*vecp
= NULL
;
414 struct xfs_inode_log_format
*ilf
;
416 ilf
= xlog_prepare_iovec(lv
, &vecp
, XLOG_REG_TYPE_IFORMAT
);
417 ilf
->ilf_type
= XFS_LI_INODE
;
418 ilf
->ilf_ino
= ip
->i_ino
;
419 ilf
->ilf_blkno
= ip
->i_imap
.im_blkno
;
420 ilf
->ilf_len
= ip
->i_imap
.im_len
;
421 ilf
->ilf_boffset
= ip
->i_imap
.im_boffset
;
422 ilf
->ilf_fields
= XFS_ILOG_CORE
;
423 ilf
->ilf_size
= 2; /* format + core */
426 * make sure we don't leak uninitialised data into the log in the case
427 * when we don't log every field in the inode.
432 memset(&ilf
->ilf_u
, 0, sizeof(ilf
->ilf_u
));
434 xlog_finish_iovec(lv
, vecp
, sizeof(*ilf
));
436 xfs_inode_item_format_core(ip
, lv
, &vecp
);
437 xfs_inode_item_format_data_fork(iip
, ilf
, lv
, &vecp
);
438 if (XFS_IFORK_Q(ip
)) {
439 xfs_inode_item_format_attr_fork(iip
, ilf
, lv
, &vecp
);
442 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
445 /* update the format with the exact fields we actually logged */
446 ilf
->ilf_fields
|= (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
450 * This is called to pin the inode associated with the inode log
451 * item in memory so it cannot be written out.
455 struct xfs_log_item
*lip
)
457 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
459 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
462 trace_xfs_inode_pin(ip
, _RET_IP_
);
463 atomic_inc(&ip
->i_pincount
);
468 * This is called to unpin the inode associated with the inode log
469 * item which was previously pinned with a call to xfs_inode_item_pin().
471 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
473 * Note that unpin can race with inode cluster buffer freeing marking the buffer
474 * stale. In that case, flush completions are run from the buffer unpin call,
475 * which may happen before the inode is unpinned. If we lose the race, there
476 * will be no buffer attached to the log item, but the inode will be marked
480 xfs_inode_item_unpin(
481 struct xfs_log_item
*lip
,
484 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
486 trace_xfs_inode_unpin(ip
, _RET_IP_
);
487 ASSERT(lip
->li_buf
|| xfs_iflags_test(ip
, XFS_ISTALE
));
488 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
489 if (atomic_dec_and_test(&ip
->i_pincount
))
490 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
495 struct xfs_log_item
*lip
,
496 struct list_head
*buffer_list
)
497 __releases(&lip
->li_ailp
->ail_lock
)
498 __acquires(&lip
->li_ailp
->ail_lock
)
500 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
501 struct xfs_inode
*ip
= iip
->ili_inode
;
502 struct xfs_buf
*bp
= lip
->li_buf
;
503 uint rval
= XFS_ITEM_SUCCESS
;
506 ASSERT(iip
->ili_item
.li_buf
);
508 if (xfs_ipincount(ip
) > 0 || xfs_buf_ispinned(bp
) ||
509 (ip
->i_flags
& XFS_ISTALE
))
510 return XFS_ITEM_PINNED
;
512 if (xfs_iflags_test(ip
, XFS_IFLUSHING
))
513 return XFS_ITEM_FLUSHING
;
515 if (!xfs_buf_trylock(bp
))
516 return XFS_ITEM_LOCKED
;
518 spin_unlock(&lip
->li_ailp
->ail_lock
);
521 * We need to hold a reference for flushing the cluster buffer as it may
522 * fail the buffer without IO submission. In which case, we better get a
523 * reference for that completion because otherwise we don't get a
524 * reference for IO until we queue the buffer for delwri submission.
527 error
= xfs_iflush_cluster(bp
);
529 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
530 rval
= XFS_ITEM_FLUSHING
;
534 * Release the buffer if we were unable to flush anything. On
535 * any other error, the buffer has already been released.
537 if (error
== -EAGAIN
)
539 rval
= XFS_ITEM_LOCKED
;
542 spin_lock(&lip
->li_ailp
->ail_lock
);
547 * Unlock the inode associated with the inode log item.
550 xfs_inode_item_release(
551 struct xfs_log_item
*lip
)
553 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
554 struct xfs_inode
*ip
= iip
->ili_inode
;
555 unsigned short lock_flags
;
557 ASSERT(ip
->i_itemp
!= NULL
);
558 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
560 lock_flags
= iip
->ili_lock_flags
;
561 iip
->ili_lock_flags
= 0;
563 xfs_iunlock(ip
, lock_flags
);
567 * This is called to find out where the oldest active copy of the inode log
568 * item in the on disk log resides now that the last log write of it completed
569 * at the given lsn. Since we always re-log all dirty data in an inode, the
570 * latest copy in the on disk log is the only one that matters. Therefore,
571 * simply return the given lsn.
573 * If the inode has been marked stale because the cluster is being freed, we
574 * don't want to (re-)insert this inode into the AIL. There is a race condition
575 * where the cluster buffer may be unpinned before the inode is inserted into
576 * the AIL during transaction committed processing. If the buffer is unpinned
577 * before the inode item has been committed and inserted, then it is possible
578 * for the buffer to be written and IO completes before the inode is inserted
579 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
580 * AIL which will never get removed. It will, however, get reclaimed which
581 * triggers an assert in xfs_inode_free() complaining about freein an inode
584 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
585 * transaction committed code knows that it does not need to do any further
586 * processing on the item.
589 xfs_inode_item_committed(
590 struct xfs_log_item
*lip
,
593 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
594 struct xfs_inode
*ip
= iip
->ili_inode
;
596 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
597 xfs_inode_item_unpin(lip
, 0);
604 xfs_inode_item_committing(
605 struct xfs_log_item
*lip
,
606 xfs_lsn_t commit_lsn
)
608 INODE_ITEM(lip
)->ili_last_lsn
= commit_lsn
;
609 return xfs_inode_item_release(lip
);
612 static const struct xfs_item_ops xfs_inode_item_ops
= {
613 .iop_size
= xfs_inode_item_size
,
614 .iop_format
= xfs_inode_item_format
,
615 .iop_pin
= xfs_inode_item_pin
,
616 .iop_unpin
= xfs_inode_item_unpin
,
617 .iop_release
= xfs_inode_item_release
,
618 .iop_committed
= xfs_inode_item_committed
,
619 .iop_push
= xfs_inode_item_push
,
620 .iop_committing
= xfs_inode_item_committing
,
625 * Initialize the inode log item for a newly allocated (in-core) inode.
629 struct xfs_inode
*ip
,
630 struct xfs_mount
*mp
)
632 struct xfs_inode_log_item
*iip
;
634 ASSERT(ip
->i_itemp
== NULL
);
635 iip
= ip
->i_itemp
= kmem_cache_zalloc(xfs_ili_zone
,
636 GFP_KERNEL
| __GFP_NOFAIL
);
639 spin_lock_init(&iip
->ili_lock
);
640 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
641 &xfs_inode_item_ops
);
645 * Free the inode log item and any memory hanging off of it.
648 xfs_inode_item_destroy(
649 struct xfs_inode
*ip
)
651 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
653 ASSERT(iip
->ili_item
.li_buf
== NULL
);
656 kmem_free(iip
->ili_item
.li_lv_shadow
);
657 kmem_cache_free(xfs_ili_zone
, iip
);
662 * We only want to pull the item from the AIL if it is actually there
663 * and its location in the log has not changed since we started the
664 * flush. Thus, we only bother if the inode's lsn has not changed.
667 xfs_iflush_ail_updates(
668 struct xfs_ail
*ailp
,
669 struct list_head
*list
)
671 struct xfs_log_item
*lip
;
672 xfs_lsn_t tail_lsn
= 0;
674 /* this is an opencoded batch version of xfs_trans_ail_delete */
675 spin_lock(&ailp
->ail_lock
);
676 list_for_each_entry(lip
, list
, li_bio_list
) {
679 clear_bit(XFS_LI_FAILED
, &lip
->li_flags
);
680 if (INODE_ITEM(lip
)->ili_flush_lsn
!= lip
->li_lsn
)
683 lsn
= xfs_ail_delete_one(ailp
, lip
);
684 if (!tail_lsn
&& lsn
)
687 xfs_ail_update_finish(ailp
, tail_lsn
);
691 * Walk the list of inodes that have completed their IOs. If they are clean
692 * remove them from the list and dissociate them from the buffer. Buffers that
693 * are still dirty remain linked to the buffer and on the list. Caller must
694 * handle them appropriately.
699 struct list_head
*list
)
701 struct xfs_log_item
*lip
, *n
;
703 list_for_each_entry_safe(lip
, n
, list
, li_bio_list
) {
704 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
705 bool drop_buffer
= false;
707 spin_lock(&iip
->ili_lock
);
710 * Remove the reference to the cluster buffer if the inode is
711 * clean in memory and drop the buffer reference once we've
712 * dropped the locks we hold.
714 ASSERT(iip
->ili_item
.li_buf
== bp
);
715 if (!iip
->ili_fields
) {
716 iip
->ili_item
.li_buf
= NULL
;
717 list_del_init(&lip
->li_bio_list
);
720 iip
->ili_last_fields
= 0;
721 iip
->ili_flush_lsn
= 0;
722 spin_unlock(&iip
->ili_lock
);
723 xfs_iflags_clear(iip
->ili_inode
, XFS_IFLUSHING
);
730 * Inode buffer IO completion routine. It is responsible for removing inodes
731 * attached to the buffer from the AIL if they have not been re-logged and
732 * completing the inode flush.
735 xfs_buf_inode_iodone(
738 struct xfs_log_item
*lip
, *n
;
739 LIST_HEAD(flushed_inodes
);
740 LIST_HEAD(ail_updates
);
743 * Pull the attached inodes from the buffer one at a time and take the
744 * appropriate action on them.
746 list_for_each_entry_safe(lip
, n
, &bp
->b_li_list
, li_bio_list
) {
747 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
749 if (xfs_iflags_test(iip
->ili_inode
, XFS_ISTALE
)) {
750 xfs_iflush_abort(iip
->ili_inode
);
753 if (!iip
->ili_last_fields
)
756 /* Do an unlocked check for needing the AIL lock. */
757 if (iip
->ili_flush_lsn
== lip
->li_lsn
||
758 test_bit(XFS_LI_FAILED
, &lip
->li_flags
))
759 list_move_tail(&lip
->li_bio_list
, &ail_updates
);
761 list_move_tail(&lip
->li_bio_list
, &flushed_inodes
);
764 if (!list_empty(&ail_updates
)) {
765 xfs_iflush_ail_updates(bp
->b_mount
->m_ail
, &ail_updates
);
766 list_splice_tail(&ail_updates
, &flushed_inodes
);
769 xfs_iflush_finish(bp
, &flushed_inodes
);
770 if (!list_empty(&flushed_inodes
))
771 list_splice_tail(&flushed_inodes
, &bp
->b_li_list
);
775 xfs_buf_inode_io_fail(
778 struct xfs_log_item
*lip
;
780 list_for_each_entry(lip
, &bp
->b_li_list
, li_bio_list
)
781 set_bit(XFS_LI_FAILED
, &lip
->li_flags
);
785 * This is the inode flushing abort routine. It is called when
786 * the filesystem is shutting down to clean up the inode state. It is
787 * responsible for removing the inode item from the AIL if it has not been
788 * re-logged and clearing the inode's flush state.
792 struct xfs_inode
*ip
)
794 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
795 struct xfs_buf
*bp
= NULL
;
799 * Clear the failed bit before removing the item from the AIL so
800 * xfs_trans_ail_delete() doesn't try to clear and release the
801 * buffer attached to the log item before we are done with it.
803 clear_bit(XFS_LI_FAILED
, &iip
->ili_item
.li_flags
);
804 xfs_trans_ail_delete(&iip
->ili_item
, 0);
807 * Clear the inode logging fields so no more flushes are
810 spin_lock(&iip
->ili_lock
);
811 iip
->ili_last_fields
= 0;
813 iip
->ili_fsync_fields
= 0;
814 iip
->ili_flush_lsn
= 0;
815 bp
= iip
->ili_item
.li_buf
;
816 iip
->ili_item
.li_buf
= NULL
;
817 list_del_init(&iip
->ili_item
.li_bio_list
);
818 spin_unlock(&iip
->ili_lock
);
820 xfs_iflags_clear(ip
, XFS_IFLUSHING
);
826 * convert an xfs_inode_log_format struct from the old 32 bit version
827 * (which can have different field alignments) to the native 64 bit version
830 xfs_inode_item_format_convert(
831 struct xfs_log_iovec
*buf
,
832 struct xfs_inode_log_format
*in_f
)
834 struct xfs_inode_log_format_32
*in_f32
= buf
->i_addr
;
836 if (buf
->i_len
!= sizeof(*in_f32
)) {
837 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_LOW
, NULL
);
838 return -EFSCORRUPTED
;
841 in_f
->ilf_type
= in_f32
->ilf_type
;
842 in_f
->ilf_size
= in_f32
->ilf_size
;
843 in_f
->ilf_fields
= in_f32
->ilf_fields
;
844 in_f
->ilf_asize
= in_f32
->ilf_asize
;
845 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
846 in_f
->ilf_ino
= in_f32
->ilf_ino
;
847 memcpy(&in_f
->ilf_u
, &in_f32
->ilf_u
, sizeof(in_f
->ilf_u
));
848 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
849 in_f
->ilf_len
= in_f32
->ilf_len
;
850 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;