1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
84 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 #define REXMIT_NONE 0 /* no loss recovery to do */
113 #define REXMIT_LOST 1 /* retransmit packets marked lost */
114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled
, HZ
);
119 void clean_acked_data_enable(struct inet_connection_sock
*icsk
,
120 void (*cad
)(struct sock
*sk
, u32 ack_seq
))
122 icsk
->icsk_clean_acked
= cad
;
123 static_branch_deferred_inc(&clean_acked_data_enabled
);
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable
);
127 void clean_acked_data_disable(struct inet_connection_sock
*icsk
)
129 static_branch_slow_dec_deferred(&clean_acked_data_enabled
);
130 icsk
->icsk_clean_acked
= NULL
;
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable
);
134 void clean_acked_data_flush(void)
136 static_key_deferred_flush(&clean_acked_data_enabled
);
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush
);
141 #ifdef CONFIG_CGROUP_BPF
142 static void bpf_skops_parse_hdr(struct sock
*sk
, struct sk_buff
*skb
)
144 bool unknown_opt
= tcp_sk(sk
)->rx_opt
.saw_unknown
&&
145 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
),
146 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG
);
147 bool parse_all_opt
= BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
),
148 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG
);
149 struct bpf_sock_ops_kern sock_ops
;
151 if (likely(!unknown_opt
&& !parse_all_opt
))
154 /* The skb will be handled in the
155 * bpf_skops_established() or
156 * bpf_skops_write_hdr_opt().
158 switch (sk
->sk_state
) {
165 sock_owned_by_me(sk
);
167 memset(&sock_ops
, 0, offsetof(struct bpf_sock_ops_kern
, temp
));
168 sock_ops
.op
= BPF_SOCK_OPS_PARSE_HDR_OPT_CB
;
169 sock_ops
.is_fullsock
= 1;
171 bpf_skops_init_skb(&sock_ops
, skb
, tcp_hdrlen(skb
));
173 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops
);
176 static void bpf_skops_established(struct sock
*sk
, int bpf_op
,
179 struct bpf_sock_ops_kern sock_ops
;
181 sock_owned_by_me(sk
);
183 memset(&sock_ops
, 0, offsetof(struct bpf_sock_ops_kern
, temp
));
184 sock_ops
.op
= bpf_op
;
185 sock_ops
.is_fullsock
= 1;
187 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 bpf_skops_init_skb(&sock_ops
, skb
, tcp_hdrlen(skb
));
191 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops
);
194 static void bpf_skops_parse_hdr(struct sock
*sk
, struct sk_buff
*skb
)
198 static void bpf_skops_established(struct sock
*sk
, int bpf_op
,
204 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
207 static bool __once __read_mostly
;
210 struct net_device
*dev
;
215 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
216 if (!dev
|| len
>= dev
->mtu
)
217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 dev
? dev
->name
: "Unknown driver");
223 /* Adapt the MSS value used to make delayed ack decision to the
226 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
228 struct inet_connection_sock
*icsk
= inet_csk(sk
);
229 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
232 icsk
->icsk_ack
.last_seg_size
= 0;
234 /* skb->len may jitter because of SACKs, even if peer
235 * sends good full-sized frames.
237 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
238 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
239 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
241 /* Account for possibly-removed options */
242 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
243 MAX_TCP_OPTION_SPACE
))
244 tcp_gro_dev_warn(sk
, skb
, len
);
246 /* Otherwise, we make more careful check taking into account,
247 * that SACKs block is variable.
249 * "len" is invariant segment length, including TCP header.
251 len
+= skb
->data
- skb_transport_header(skb
);
252 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
253 /* If PSH is not set, packet should be
254 * full sized, provided peer TCP is not badly broken.
255 * This observation (if it is correct 8)) allows
256 * to handle super-low mtu links fairly.
258 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
259 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
260 /* Subtract also invariant (if peer is RFC compliant),
261 * tcp header plus fixed timestamp option length.
262 * Resulting "len" is MSS free of SACK jitter.
264 len
-= tcp_sk(sk
)->tcp_header_len
;
265 icsk
->icsk_ack
.last_seg_size
= len
;
267 icsk
->icsk_ack
.rcv_mss
= len
;
271 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
272 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
273 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
277 static void tcp_incr_quickack(struct sock
*sk
, unsigned int max_quickacks
)
279 struct inet_connection_sock
*icsk
= inet_csk(sk
);
280 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
284 quickacks
= min(quickacks
, max_quickacks
);
285 if (quickacks
> icsk
->icsk_ack
.quick
)
286 icsk
->icsk_ack
.quick
= quickacks
;
289 void tcp_enter_quickack_mode(struct sock
*sk
, unsigned int max_quickacks
)
291 struct inet_connection_sock
*icsk
= inet_csk(sk
);
293 tcp_incr_quickack(sk
, max_quickacks
);
294 inet_csk_exit_pingpong_mode(sk
);
295 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
297 EXPORT_SYMBOL(tcp_enter_quickack_mode
);
299 /* Send ACKs quickly, if "quick" count is not exhausted
300 * and the session is not interactive.
303 static bool tcp_in_quickack_mode(struct sock
*sk
)
305 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
306 const struct dst_entry
*dst
= __sk_dst_get(sk
);
308 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
309 (icsk
->icsk_ack
.quick
&& !inet_csk_in_pingpong_mode(sk
));
312 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
314 if (tp
->ecn_flags
& TCP_ECN_OK
)
315 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
318 static void tcp_ecn_accept_cwr(struct sock
*sk
, const struct sk_buff
*skb
)
320 if (tcp_hdr(skb
)->cwr
) {
321 tcp_sk(sk
)->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
323 /* If the sender is telling us it has entered CWR, then its
324 * cwnd may be very low (even just 1 packet), so we should ACK
327 if (TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
)
328 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
332 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
334 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
337 static void __tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
339 struct tcp_sock
*tp
= tcp_sk(sk
);
341 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
342 case INET_ECN_NOT_ECT
:
343 /* Funny extension: if ECT is not set on a segment,
344 * and we already seen ECT on a previous segment,
345 * it is probably a retransmit.
347 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
348 tcp_enter_quickack_mode(sk
, 2);
351 if (tcp_ca_needs_ecn(sk
))
352 tcp_ca_event(sk
, CA_EVENT_ECN_IS_CE
);
354 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
355 /* Better not delay acks, sender can have a very low cwnd */
356 tcp_enter_quickack_mode(sk
, 2);
357 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
359 tp
->ecn_flags
|= TCP_ECN_SEEN
;
362 if (tcp_ca_needs_ecn(sk
))
363 tcp_ca_event(sk
, CA_EVENT_ECN_NO_CE
);
364 tp
->ecn_flags
|= TCP_ECN_SEEN
;
369 static void tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
371 if (tcp_sk(sk
)->ecn_flags
& TCP_ECN_OK
)
372 __tcp_ecn_check_ce(sk
, skb
);
375 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
377 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
378 tp
->ecn_flags
&= ~TCP_ECN_OK
;
381 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
383 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
384 tp
->ecn_flags
&= ~TCP_ECN_OK
;
387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
389 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
394 /* Buffer size and advertised window tuning.
396 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
399 static void tcp_sndbuf_expand(struct sock
*sk
)
401 const struct tcp_sock
*tp
= tcp_sk(sk
);
402 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
406 /* Worst case is non GSO/TSO : each frame consumes one skb
407 * and skb->head is kmalloced using power of two area of memory
409 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
411 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
413 per_mss
= roundup_pow_of_two(per_mss
) +
414 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
416 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
417 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
419 /* Fast Recovery (RFC 5681 3.2) :
420 * Cubic needs 1.7 factor, rounded to 2 to include
421 * extra cushion (application might react slowly to EPOLLOUT)
423 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
424 sndmem
*= nr_segs
* per_mss
;
426 if (sk
->sk_sndbuf
< sndmem
)
427 WRITE_ONCE(sk
->sk_sndbuf
,
428 min(sndmem
, sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[2]));
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433 * All tcp_full_space() is split to two parts: "network" buffer, allocated
434 * forward and advertised in receiver window (tp->rcv_wnd) and
435 * "application buffer", required to isolate scheduling/application
436 * latencies from network.
437 * window_clamp is maximal advertised window. It can be less than
438 * tcp_full_space(), in this case tcp_full_space() - window_clamp
439 * is reserved for "application" buffer. The less window_clamp is
440 * the smoother our behaviour from viewpoint of network, but the lower
441 * throughput and the higher sensitivity of the connection to losses. 8)
443 * rcv_ssthresh is more strict window_clamp used at "slow start"
444 * phase to predict further behaviour of this connection.
445 * It is used for two goals:
446 * - to enforce header prediction at sender, even when application
447 * requires some significant "application buffer". It is check #1.
448 * - to prevent pruning of receive queue because of misprediction
449 * of receiver window. Check #2.
451 * The scheme does not work when sender sends good segments opening
452 * window and then starts to feed us spaghetti. But it should work
453 * in common situations. Otherwise, we have to rely on queue collapsing.
456 /* Slow part of check#2. */
457 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
459 struct tcp_sock
*tp
= tcp_sk(sk
);
461 int truesize
= tcp_win_from_space(sk
, skb
->truesize
) >> 1;
462 int window
= tcp_win_from_space(sk
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]) >> 1;
464 while (tp
->rcv_ssthresh
<= window
) {
465 if (truesize
<= skb
->len
)
466 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
474 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
476 struct tcp_sock
*tp
= tcp_sk(sk
);
479 room
= min_t(int, tp
->window_clamp
, tcp_space(sk
)) - tp
->rcv_ssthresh
;
482 if (room
> 0 && !tcp_under_memory_pressure(sk
)) {
485 /* Check #2. Increase window, if skb with such overhead
486 * will fit to rcvbuf in future.
488 if (tcp_win_from_space(sk
, skb
->truesize
) <= skb
->len
)
489 incr
= 2 * tp
->advmss
;
491 incr
= __tcp_grow_window(sk
, skb
);
494 incr
= max_t(int, incr
, 2 * skb
->len
);
495 tp
->rcv_ssthresh
+= min(room
, incr
);
496 inet_csk(sk
)->icsk_ack
.quick
|= 1;
501 /* 3. Try to fixup all. It is made immediately after connection enters
504 static void tcp_init_buffer_space(struct sock
*sk
)
506 int tcp_app_win
= sock_net(sk
)->ipv4
.sysctl_tcp_app_win
;
507 struct tcp_sock
*tp
= tcp_sk(sk
);
510 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
511 tcp_sndbuf_expand(sk
);
513 tcp_mstamp_refresh(tp
);
514 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
515 tp
->rcvq_space
.seq
= tp
->copied_seq
;
517 maxwin
= tcp_full_space(sk
);
519 if (tp
->window_clamp
>= maxwin
) {
520 tp
->window_clamp
= maxwin
;
522 if (tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
523 tp
->window_clamp
= max(maxwin
-
524 (maxwin
>> tcp_app_win
),
528 /* Force reservation of one segment. */
530 tp
->window_clamp
> 2 * tp
->advmss
&&
531 tp
->window_clamp
+ tp
->advmss
> maxwin
)
532 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
534 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
535 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
536 tp
->rcvq_space
.space
= min3(tp
->rcv_ssthresh
, tp
->rcv_wnd
,
537 (u32
)TCP_INIT_CWND
* tp
->advmss
);
540 /* 4. Recalculate window clamp after socket hit its memory bounds. */
541 static void tcp_clamp_window(struct sock
*sk
)
543 struct tcp_sock
*tp
= tcp_sk(sk
);
544 struct inet_connection_sock
*icsk
= inet_csk(sk
);
545 struct net
*net
= sock_net(sk
);
547 icsk
->icsk_ack
.quick
= 0;
549 if (sk
->sk_rcvbuf
< net
->ipv4
.sysctl_tcp_rmem
[2] &&
550 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
551 !tcp_under_memory_pressure(sk
) &&
552 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
553 WRITE_ONCE(sk
->sk_rcvbuf
,
554 min(atomic_read(&sk
->sk_rmem_alloc
),
555 net
->ipv4
.sysctl_tcp_rmem
[2]));
557 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
558 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
561 /* Initialize RCV_MSS value.
562 * RCV_MSS is an our guess about MSS used by the peer.
563 * We haven't any direct information about the MSS.
564 * It's better to underestimate the RCV_MSS rather than overestimate.
565 * Overestimations make us ACKing less frequently than needed.
566 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
568 void tcp_initialize_rcv_mss(struct sock
*sk
)
570 const struct tcp_sock
*tp
= tcp_sk(sk
);
571 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
573 hint
= min(hint
, tp
->rcv_wnd
/ 2);
574 hint
= min(hint
, TCP_MSS_DEFAULT
);
575 hint
= max(hint
, TCP_MIN_MSS
);
577 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
579 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
581 /* Receiver "autotuning" code.
583 * The algorithm for RTT estimation w/o timestamps is based on
584 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
585 * <https://public.lanl.gov/radiant/pubs.html#DRS>
587 * More detail on this code can be found at
588 * <http://staff.psc.edu/jheffner/>,
589 * though this reference is out of date. A new paper
592 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
594 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
597 if (new_sample
!= 0) {
598 /* If we sample in larger samples in the non-timestamp
599 * case, we could grossly overestimate the RTT especially
600 * with chatty applications or bulk transfer apps which
601 * are stalled on filesystem I/O.
603 * Also, since we are only going for a minimum in the
604 * non-timestamp case, we do not smooth things out
605 * else with timestamps disabled convergence takes too
609 m
-= (new_sample
>> 3);
617 /* No previous measure. */
621 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
624 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
628 if (tp
->rcv_rtt_est
.time
== 0)
630 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
632 delta_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcv_rtt_est
.time
);
635 tcp_rcv_rtt_update(tp
, delta_us
, 1);
638 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
639 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
642 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
643 const struct sk_buff
*skb
)
645 struct tcp_sock
*tp
= tcp_sk(sk
);
647 if (tp
->rx_opt
.rcv_tsecr
== tp
->rcv_rtt_last_tsecr
)
649 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
651 if (TCP_SKB_CB(skb
)->end_seq
-
652 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
) {
653 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
656 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
659 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
660 tcp_rcv_rtt_update(tp
, delta_us
, 0);
666 * This function should be called every time data is copied to user space.
667 * It calculates the appropriate TCP receive buffer space.
669 void tcp_rcv_space_adjust(struct sock
*sk
)
671 struct tcp_sock
*tp
= tcp_sk(sk
);
675 trace_tcp_rcv_space_adjust(sk
);
677 tcp_mstamp_refresh(tp
);
678 time
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcvq_space
.time
);
679 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
682 /* Number of bytes copied to user in last RTT */
683 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
684 if (copied
<= tp
->rcvq_space
.space
)
688 * copied = bytes received in previous RTT, our base window
689 * To cope with packet losses, we need a 2x factor
690 * To cope with slow start, and sender growing its cwin by 100 %
691 * every RTT, we need a 4x factor, because the ACK we are sending
692 * now is for the next RTT, not the current one :
693 * <prev RTT . ><current RTT .. ><next RTT .... >
696 if (sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
&&
697 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
701 /* minimal window to cope with packet losses, assuming
702 * steady state. Add some cushion because of small variations.
704 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
706 /* Accommodate for sender rate increase (eg. slow start) */
707 grow
= rcvwin
* (copied
- tp
->rcvq_space
.space
);
708 do_div(grow
, tp
->rcvq_space
.space
);
709 rcvwin
+= (grow
<< 1);
711 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
712 while (tcp_win_from_space(sk
, rcvmem
) < tp
->advmss
)
715 do_div(rcvwin
, tp
->advmss
);
716 rcvbuf
= min_t(u64
, rcvwin
* rcvmem
,
717 sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
718 if (rcvbuf
> sk
->sk_rcvbuf
) {
719 WRITE_ONCE(sk
->sk_rcvbuf
, rcvbuf
);
721 /* Make the window clamp follow along. */
722 tp
->window_clamp
= tcp_win_from_space(sk
, rcvbuf
);
725 tp
->rcvq_space
.space
= copied
;
728 tp
->rcvq_space
.seq
= tp
->copied_seq
;
729 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
732 /* There is something which you must keep in mind when you analyze the
733 * behavior of the tp->ato delayed ack timeout interval. When a
734 * connection starts up, we want to ack as quickly as possible. The
735 * problem is that "good" TCP's do slow start at the beginning of data
736 * transmission. The means that until we send the first few ACK's the
737 * sender will sit on his end and only queue most of his data, because
738 * he can only send snd_cwnd unacked packets at any given time. For
739 * each ACK we send, he increments snd_cwnd and transmits more of his
742 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
744 struct tcp_sock
*tp
= tcp_sk(sk
);
745 struct inet_connection_sock
*icsk
= inet_csk(sk
);
748 inet_csk_schedule_ack(sk
);
750 tcp_measure_rcv_mss(sk
, skb
);
752 tcp_rcv_rtt_measure(tp
);
756 if (!icsk
->icsk_ack
.ato
) {
757 /* The _first_ data packet received, initialize
758 * delayed ACK engine.
760 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
761 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
763 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
765 if (m
<= TCP_ATO_MIN
/ 2) {
766 /* The fastest case is the first. */
767 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
768 } else if (m
< icsk
->icsk_ack
.ato
) {
769 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
770 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
771 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
772 } else if (m
> icsk
->icsk_rto
) {
773 /* Too long gap. Apparently sender failed to
774 * restart window, so that we send ACKs quickly.
776 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
780 icsk
->icsk_ack
.lrcvtime
= now
;
782 tcp_ecn_check_ce(sk
, skb
);
785 tcp_grow_window(sk
, skb
);
788 /* Called to compute a smoothed rtt estimate. The data fed to this
789 * routine either comes from timestamps, or from segments that were
790 * known _not_ to have been retransmitted [see Karn/Partridge
791 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
792 * piece by Van Jacobson.
793 * NOTE: the next three routines used to be one big routine.
794 * To save cycles in the RFC 1323 implementation it was better to break
795 * it up into three procedures. -- erics
797 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
799 struct tcp_sock
*tp
= tcp_sk(sk
);
800 long m
= mrtt_us
; /* RTT */
801 u32 srtt
= tp
->srtt_us
;
803 /* The following amusing code comes from Jacobson's
804 * article in SIGCOMM '88. Note that rtt and mdev
805 * are scaled versions of rtt and mean deviation.
806 * This is designed to be as fast as possible
807 * m stands for "measurement".
809 * On a 1990 paper the rto value is changed to:
810 * RTO = rtt + 4 * mdev
812 * Funny. This algorithm seems to be very broken.
813 * These formulae increase RTO, when it should be decreased, increase
814 * too slowly, when it should be increased quickly, decrease too quickly
815 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
816 * does not matter how to _calculate_ it. Seems, it was trap
817 * that VJ failed to avoid. 8)
820 m
-= (srtt
>> 3); /* m is now error in rtt est */
821 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
823 m
= -m
; /* m is now abs(error) */
824 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
825 /* This is similar to one of Eifel findings.
826 * Eifel blocks mdev updates when rtt decreases.
827 * This solution is a bit different: we use finer gain
828 * for mdev in this case (alpha*beta).
829 * Like Eifel it also prevents growth of rto,
830 * but also it limits too fast rto decreases,
831 * happening in pure Eifel.
836 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
838 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
839 if (tp
->mdev_us
> tp
->mdev_max_us
) {
840 tp
->mdev_max_us
= tp
->mdev_us
;
841 if (tp
->mdev_max_us
> tp
->rttvar_us
)
842 tp
->rttvar_us
= tp
->mdev_max_us
;
844 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
845 if (tp
->mdev_max_us
< tp
->rttvar_us
)
846 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
847 tp
->rtt_seq
= tp
->snd_nxt
;
848 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
853 /* no previous measure. */
854 srtt
= m
<< 3; /* take the measured time to be rtt */
855 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
856 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
857 tp
->mdev_max_us
= tp
->rttvar_us
;
858 tp
->rtt_seq
= tp
->snd_nxt
;
862 tp
->srtt_us
= max(1U, srtt
);
865 static void tcp_update_pacing_rate(struct sock
*sk
)
867 const struct tcp_sock
*tp
= tcp_sk(sk
);
870 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
871 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
873 /* current rate is (cwnd * mss) / srtt
874 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
875 * In Congestion Avoidance phase, set it to 120 % the current rate.
877 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
878 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
879 * end of slow start and should slow down.
881 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
882 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ss_ratio
;
884 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ca_ratio
;
886 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
888 if (likely(tp
->srtt_us
))
889 do_div(rate
, tp
->srtt_us
);
891 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
892 * without any lock. We want to make sure compiler wont store
893 * intermediate values in this location.
895 WRITE_ONCE(sk
->sk_pacing_rate
, min_t(u64
, rate
,
896 sk
->sk_max_pacing_rate
));
899 /* Calculate rto without backoff. This is the second half of Van Jacobson's
900 * routine referred to above.
902 static void tcp_set_rto(struct sock
*sk
)
904 const struct tcp_sock
*tp
= tcp_sk(sk
);
905 /* Old crap is replaced with new one. 8)
908 * 1. If rtt variance happened to be less 50msec, it is hallucination.
909 * It cannot be less due to utterly erratic ACK generation made
910 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
911 * to do with delayed acks, because at cwnd>2 true delack timeout
912 * is invisible. Actually, Linux-2.4 also generates erratic
913 * ACKs in some circumstances.
915 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
917 /* 2. Fixups made earlier cannot be right.
918 * If we do not estimate RTO correctly without them,
919 * all the algo is pure shit and should be replaced
920 * with correct one. It is exactly, which we pretend to do.
923 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
924 * guarantees that rto is higher.
929 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
931 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
934 cwnd
= TCP_INIT_CWND
;
935 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
938 struct tcp_sacktag_state
{
939 /* Timestamps for earliest and latest never-retransmitted segment
940 * that was SACKed. RTO needs the earliest RTT to stay conservative,
941 * but congestion control should still get an accurate delay signal.
948 unsigned int mss_now
;
949 struct rate_sample
*rate
;
952 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
953 * and spurious retransmission information if this DSACK is unlikely caused by
955 * - DSACKed sequence range is larger than maximum receiver's window.
956 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
958 static u32
tcp_dsack_seen(struct tcp_sock
*tp
, u32 start_seq
,
959 u32 end_seq
, struct tcp_sacktag_state
*state
)
961 u32 seq_len
, dup_segs
= 1;
963 if (!before(start_seq
, end_seq
))
966 seq_len
= end_seq
- start_seq
;
967 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
968 if (seq_len
> tp
->max_window
)
970 if (seq_len
> tp
->mss_cache
)
971 dup_segs
= DIV_ROUND_UP(seq_len
, tp
->mss_cache
);
973 tp
->dsack_dups
+= dup_segs
;
974 /* Skip the DSACK if dup segs weren't retransmitted by sender */
975 if (tp
->dsack_dups
> tp
->total_retrans
)
978 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
979 tp
->rack
.dsack_seen
= 1;
981 state
->flag
|= FLAG_DSACKING_ACK
;
982 /* A spurious retransmission is delivered */
983 state
->sack_delivered
+= dup_segs
;
988 /* It's reordering when higher sequence was delivered (i.e. sacked) before
989 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
990 * distance is approximated in full-mss packet distance ("reordering").
992 static void tcp_check_sack_reordering(struct sock
*sk
, const u32 low_seq
,
995 struct tcp_sock
*tp
= tcp_sk(sk
);
996 const u32 mss
= tp
->mss_cache
;
999 fack
= tcp_highest_sack_seq(tp
);
1000 if (!before(low_seq
, fack
))
1003 metric
= fack
- low_seq
;
1004 if ((metric
> tp
->reordering
* mss
) && mss
) {
1005 #if FASTRETRANS_DEBUG > 1
1006 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1007 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
1011 tp
->undo_marker
? tp
->undo_retrans
: 0);
1013 tp
->reordering
= min_t(u32
, (metric
+ mss
- 1) / mss
,
1014 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
1017 /* This exciting event is worth to be remembered. 8) */
1019 NET_INC_STATS(sock_net(sk
),
1020 ts
? LINUX_MIB_TCPTSREORDER
: LINUX_MIB_TCPSACKREORDER
);
1023 /* This must be called before lost_out or retrans_out are updated
1024 * on a new loss, because we want to know if all skbs previously
1025 * known to be lost have already been retransmitted, indicating
1026 * that this newly lost skb is our next skb to retransmit.
1028 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
1030 if ((!tp
->retransmit_skb_hint
&& tp
->retrans_out
>= tp
->lost_out
) ||
1031 (tp
->retransmit_skb_hint
&&
1032 before(TCP_SKB_CB(skb
)->seq
,
1033 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
)))
1034 tp
->retransmit_skb_hint
= skb
;
1037 /* Sum the number of packets on the wire we have marked as lost, and
1038 * notify the congestion control module that the given skb was marked lost.
1040 static void tcp_notify_skb_loss_event(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
1042 tp
->lost
+= tcp_skb_pcount(skb
);
1045 void tcp_mark_skb_lost(struct sock
*sk
, struct sk_buff
*skb
)
1047 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1048 struct tcp_sock
*tp
= tcp_sk(sk
);
1050 if (sacked
& TCPCB_SACKED_ACKED
)
1053 tcp_verify_retransmit_hint(tp
, skb
);
1054 if (sacked
& TCPCB_LOST
) {
1055 if (sacked
& TCPCB_SACKED_RETRANS
) {
1056 /* Account for retransmits that are lost again */
1057 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1058 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1059 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
,
1060 tcp_skb_pcount(skb
));
1061 tcp_notify_skb_loss_event(tp
, skb
);
1064 tp
->lost_out
+= tcp_skb_pcount(skb
);
1065 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1066 tcp_notify_skb_loss_event(tp
, skb
);
1070 /* Updates the delivered and delivered_ce counts */
1071 static void tcp_count_delivered(struct tcp_sock
*tp
, u32 delivered
,
1074 tp
->delivered
+= delivered
;
1076 tp
->delivered_ce
+= delivered
;
1079 /* This procedure tags the retransmission queue when SACKs arrive.
1081 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1082 * Packets in queue with these bits set are counted in variables
1083 * sacked_out, retrans_out and lost_out, correspondingly.
1085 * Valid combinations are:
1086 * Tag InFlight Description
1087 * 0 1 - orig segment is in flight.
1088 * S 0 - nothing flies, orig reached receiver.
1089 * L 0 - nothing flies, orig lost by net.
1090 * R 2 - both orig and retransmit are in flight.
1091 * L|R 1 - orig is lost, retransmit is in flight.
1092 * S|R 1 - orig reached receiver, retrans is still in flight.
1093 * (L|S|R is logically valid, it could occur when L|R is sacked,
1094 * but it is equivalent to plain S and code short-curcuits it to S.
1095 * L|S is logically invalid, it would mean -1 packet in flight 8))
1097 * These 6 states form finite state machine, controlled by the following events:
1098 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1099 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1100 * 3. Loss detection event of two flavors:
1101 * A. Scoreboard estimator decided the packet is lost.
1102 * A'. Reno "three dupacks" marks head of queue lost.
1103 * B. SACK arrives sacking SND.NXT at the moment, when the
1104 * segment was retransmitted.
1105 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1107 * It is pleasant to note, that state diagram turns out to be commutative,
1108 * so that we are allowed not to be bothered by order of our actions,
1109 * when multiple events arrive simultaneously. (see the function below).
1111 * Reordering detection.
1112 * --------------------
1113 * Reordering metric is maximal distance, which a packet can be displaced
1114 * in packet stream. With SACKs we can estimate it:
1116 * 1. SACK fills old hole and the corresponding segment was not
1117 * ever retransmitted -> reordering. Alas, we cannot use it
1118 * when segment was retransmitted.
1119 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1120 * for retransmitted and already SACKed segment -> reordering..
1121 * Both of these heuristics are not used in Loss state, when we cannot
1122 * account for retransmits accurately.
1124 * SACK block validation.
1125 * ----------------------
1127 * SACK block range validation checks that the received SACK block fits to
1128 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1129 * Note that SND.UNA is not included to the range though being valid because
1130 * it means that the receiver is rather inconsistent with itself reporting
1131 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1132 * perfectly valid, however, in light of RFC2018 which explicitly states
1133 * that "SACK block MUST reflect the newest segment. Even if the newest
1134 * segment is going to be discarded ...", not that it looks very clever
1135 * in case of head skb. Due to potentional receiver driven attacks, we
1136 * choose to avoid immediate execution of a walk in write queue due to
1137 * reneging and defer head skb's loss recovery to standard loss recovery
1138 * procedure that will eventually trigger (nothing forbids us doing this).
1140 * Implements also blockage to start_seq wrap-around. Problem lies in the
1141 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1142 * there's no guarantee that it will be before snd_nxt (n). The problem
1143 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1146 * <- outs wnd -> <- wrapzone ->
1147 * u e n u_w e_w s n_w
1149 * |<------------+------+----- TCP seqno space --------------+---------->|
1150 * ...-- <2^31 ->| |<--------...
1151 * ...---- >2^31 ------>| |<--------...
1153 * Current code wouldn't be vulnerable but it's better still to discard such
1154 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1155 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1156 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1157 * equal to the ideal case (infinite seqno space without wrap caused issues).
1159 * With D-SACK the lower bound is extended to cover sequence space below
1160 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1161 * again, D-SACK block must not to go across snd_una (for the same reason as
1162 * for the normal SACK blocks, explained above). But there all simplicity
1163 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1164 * fully below undo_marker they do not affect behavior in anyway and can
1165 * therefore be safely ignored. In rare cases (which are more or less
1166 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1167 * fragmentation and packet reordering past skb's retransmission. To consider
1168 * them correctly, the acceptable range must be extended even more though
1169 * the exact amount is rather hard to quantify. However, tp->max_window can
1170 * be used as an exaggerated estimate.
1172 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1173 u32 start_seq
, u32 end_seq
)
1175 /* Too far in future, or reversed (interpretation is ambiguous) */
1176 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1179 /* Nasty start_seq wrap-around check (see comments above) */
1180 if (!before(start_seq
, tp
->snd_nxt
))
1183 /* In outstanding window? ...This is valid exit for D-SACKs too.
1184 * start_seq == snd_una is non-sensical (see comments above)
1186 if (after(start_seq
, tp
->snd_una
))
1189 if (!is_dsack
|| !tp
->undo_marker
)
1192 /* ...Then it's D-SACK, and must reside below snd_una completely */
1193 if (after(end_seq
, tp
->snd_una
))
1196 if (!before(start_seq
, tp
->undo_marker
))
1200 if (!after(end_seq
, tp
->undo_marker
))
1203 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1204 * start_seq < undo_marker and end_seq >= undo_marker.
1206 return !before(start_seq
, end_seq
- tp
->max_window
);
1209 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1210 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1211 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1213 struct tcp_sock
*tp
= tcp_sk(sk
);
1214 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1215 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1218 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1219 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1220 } else if (num_sacks
> 1) {
1221 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1222 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1224 if (after(end_seq_0
, end_seq_1
) || before(start_seq_0
, start_seq_1
))
1226 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKOFORECV
);
1231 dup_segs
= tcp_dsack_seen(tp
, start_seq_0
, end_seq_0
, state
);
1232 if (!dup_segs
) { /* Skip dubious DSACK */
1233 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS
);
1237 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECVSEGS
, dup_segs
);
1239 /* D-SACK for already forgotten data... Do dumb counting. */
1240 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1241 !after(end_seq_0
, prior_snd_una
) &&
1242 after(end_seq_0
, tp
->undo_marker
))
1243 tp
->undo_retrans
= max_t(int, 0, tp
->undo_retrans
- dup_segs
);
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1254 * FIXME: this could be merged to shift decision code
1256 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1257 u32 start_seq
, u32 end_seq
)
1261 unsigned int pkt_len
;
1264 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1265 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1267 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1268 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1269 mss
= tcp_skb_mss(skb
);
1270 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1273 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1277 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1282 /* Round if necessary so that SACKs cover only full MSSes
1283 * and/or the remaining small portion (if present)
1285 if (pkt_len
> mss
) {
1286 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1287 if (!in_sack
&& new_len
< pkt_len
)
1292 if (pkt_len
>= skb
->len
&& !in_sack
)
1295 err
= tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
1296 pkt_len
, mss
, GFP_ATOMIC
);
1304 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1305 static u8
tcp_sacktag_one(struct sock
*sk
,
1306 struct tcp_sacktag_state
*state
, u8 sacked
,
1307 u32 start_seq
, u32 end_seq
,
1308 int dup_sack
, int pcount
,
1311 struct tcp_sock
*tp
= tcp_sk(sk
);
1313 /* Account D-SACK for retransmitted packet. */
1314 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1315 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1316 after(end_seq
, tp
->undo_marker
))
1318 if ((sacked
& TCPCB_SACKED_ACKED
) &&
1319 before(start_seq
, state
->reord
))
1320 state
->reord
= start_seq
;
1323 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324 if (!after(end_seq
, tp
->snd_una
))
1327 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1328 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1330 if (sacked
& TCPCB_SACKED_RETRANS
) {
1331 /* If the segment is not tagged as lost,
1332 * we do not clear RETRANS, believing
1333 * that retransmission is still in flight.
1335 if (sacked
& TCPCB_LOST
) {
1336 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1337 tp
->lost_out
-= pcount
;
1338 tp
->retrans_out
-= pcount
;
1341 if (!(sacked
& TCPCB_RETRANS
)) {
1342 /* New sack for not retransmitted frame,
1343 * which was in hole. It is reordering.
1345 if (before(start_seq
,
1346 tcp_highest_sack_seq(tp
)) &&
1347 before(start_seq
, state
->reord
))
1348 state
->reord
= start_seq
;
1350 if (!after(end_seq
, tp
->high_seq
))
1351 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1352 if (state
->first_sackt
== 0)
1353 state
->first_sackt
= xmit_time
;
1354 state
->last_sackt
= xmit_time
;
1357 if (sacked
& TCPCB_LOST
) {
1358 sacked
&= ~TCPCB_LOST
;
1359 tp
->lost_out
-= pcount
;
1363 sacked
|= TCPCB_SACKED_ACKED
;
1364 state
->flag
|= FLAG_DATA_SACKED
;
1365 tp
->sacked_out
+= pcount
;
1366 /* Out-of-order packets delivered */
1367 state
->sack_delivered
+= pcount
;
1369 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370 if (tp
->lost_skb_hint
&&
1371 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1372 tp
->lost_cnt_hint
+= pcount
;
1375 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1376 * frames and clear it. undo_retrans is decreased above, L|R frames
1377 * are accounted above as well.
1379 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1380 sacked
&= ~TCPCB_SACKED_RETRANS
;
1381 tp
->retrans_out
-= pcount
;
1387 /* Shift newly-SACKed bytes from this skb to the immediately previous
1388 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1390 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*prev
,
1391 struct sk_buff
*skb
,
1392 struct tcp_sacktag_state
*state
,
1393 unsigned int pcount
, int shifted
, int mss
,
1396 struct tcp_sock
*tp
= tcp_sk(sk
);
1397 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1398 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1402 /* Adjust counters and hints for the newly sacked sequence
1403 * range but discard the return value since prev is already
1404 * marked. We must tag the range first because the seq
1405 * advancement below implicitly advances
1406 * tcp_highest_sack_seq() when skb is highest_sack.
1408 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1409 start_seq
, end_seq
, dup_sack
, pcount
,
1410 tcp_skb_timestamp_us(skb
));
1411 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1413 if (skb
== tp
->lost_skb_hint
)
1414 tp
->lost_cnt_hint
+= pcount
;
1416 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1417 TCP_SKB_CB(skb
)->seq
+= shifted
;
1419 tcp_skb_pcount_add(prev
, pcount
);
1420 WARN_ON_ONCE(tcp_skb_pcount(skb
) < pcount
);
1421 tcp_skb_pcount_add(skb
, -pcount
);
1423 /* When we're adding to gso_segs == 1, gso_size will be zero,
1424 * in theory this shouldn't be necessary but as long as DSACK
1425 * code can come after this skb later on it's better to keep
1426 * setting gso_size to something.
1428 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1429 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1431 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1432 if (tcp_skb_pcount(skb
) <= 1)
1433 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1435 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1436 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1439 BUG_ON(!tcp_skb_pcount(skb
));
1440 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1444 /* Whole SKB was eaten :-) */
1446 if (skb
== tp
->retransmit_skb_hint
)
1447 tp
->retransmit_skb_hint
= prev
;
1448 if (skb
== tp
->lost_skb_hint
) {
1449 tp
->lost_skb_hint
= prev
;
1450 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1453 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1454 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1455 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1456 TCP_SKB_CB(prev
)->end_seq
++;
1458 if (skb
== tcp_highest_sack(sk
))
1459 tcp_advance_highest_sack(sk
, skb
);
1461 tcp_skb_collapse_tstamp(prev
, skb
);
1462 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
))
1463 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
= 0;
1465 tcp_rtx_queue_unlink_and_free(skb
, sk
);
1467 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1472 /* I wish gso_size would have a bit more sane initialization than
1473 * something-or-zero which complicates things
1475 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1477 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1480 /* Shifting pages past head area doesn't work */
1481 static int skb_can_shift(const struct sk_buff
*skb
)
1483 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1486 int tcp_skb_shift(struct sk_buff
*to
, struct sk_buff
*from
,
1487 int pcount
, int shiftlen
)
1489 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1490 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1491 * to make sure not storing more than 65535 * 8 bytes per skb,
1492 * even if current MSS is bigger.
1494 if (unlikely(to
->len
+ shiftlen
>= 65535 * TCP_MIN_GSO_SIZE
))
1496 if (unlikely(tcp_skb_pcount(to
) + pcount
> 65535))
1498 return skb_shift(to
, from
, shiftlen
);
1501 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1504 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1505 struct tcp_sacktag_state
*state
,
1506 u32 start_seq
, u32 end_seq
,
1509 struct tcp_sock
*tp
= tcp_sk(sk
);
1510 struct sk_buff
*prev
;
1516 /* Normally R but no L won't result in plain S */
1518 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1520 if (!skb_can_shift(skb
))
1522 /* This frame is about to be dropped (was ACKed). */
1523 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1526 /* Can only happen with delayed DSACK + discard craziness */
1527 prev
= skb_rb_prev(skb
);
1531 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1534 if (!tcp_skb_can_collapse(prev
, skb
))
1537 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1538 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1542 pcount
= tcp_skb_pcount(skb
);
1543 mss
= tcp_skb_seglen(skb
);
1545 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1546 * drop this restriction as unnecessary
1548 if (mss
!= tcp_skb_seglen(prev
))
1551 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1553 /* CHECKME: This is non-MSS split case only?, this will
1554 * cause skipped skbs due to advancing loop btw, original
1555 * has that feature too
1557 if (tcp_skb_pcount(skb
) <= 1)
1560 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1562 /* TODO: head merge to next could be attempted here
1563 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564 * though it might not be worth of the additional hassle
1566 * ...we can probably just fallback to what was done
1567 * previously. We could try merging non-SACKed ones
1568 * as well but it probably isn't going to buy off
1569 * because later SACKs might again split them, and
1570 * it would make skb timestamp tracking considerably
1576 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1578 BUG_ON(len
> skb
->len
);
1580 /* MSS boundaries should be honoured or else pcount will
1581 * severely break even though it makes things bit trickier.
1582 * Optimize common case to avoid most of the divides
1584 mss
= tcp_skb_mss(skb
);
1586 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1587 * drop this restriction as unnecessary
1589 if (mss
!= tcp_skb_seglen(prev
))
1594 } else if (len
< mss
) {
1602 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1606 if (!tcp_skb_shift(prev
, skb
, pcount
, len
))
1608 if (!tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1611 /* Hole filled allows collapsing with the next as well, this is very
1612 * useful when hole on every nth skb pattern happens
1614 skb
= skb_rb_next(prev
);
1618 if (!skb_can_shift(skb
) ||
1619 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1620 (mss
!= tcp_skb_seglen(skb
)))
1624 pcount
= tcp_skb_pcount(skb
);
1625 if (tcp_skb_shift(prev
, skb
, pcount
, len
))
1626 tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
,
1636 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1640 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1641 struct tcp_sack_block
*next_dup
,
1642 struct tcp_sacktag_state
*state
,
1643 u32 start_seq
, u32 end_seq
,
1646 struct tcp_sock
*tp
= tcp_sk(sk
);
1647 struct sk_buff
*tmp
;
1649 skb_rbtree_walk_from(skb
) {
1651 bool dup_sack
= dup_sack_in
;
1653 /* queue is in-order => we can short-circuit the walk early */
1654 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1658 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1659 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1660 next_dup
->start_seq
,
1666 /* skb reference here is a bit tricky to get right, since
1667 * shifting can eat and free both this skb and the next,
1668 * so not even _safe variant of the loop is enough.
1671 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1672 start_seq
, end_seq
, dup_sack
);
1681 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1687 if (unlikely(in_sack
< 0))
1691 TCP_SKB_CB(skb
)->sacked
=
1694 TCP_SKB_CB(skb
)->sacked
,
1695 TCP_SKB_CB(skb
)->seq
,
1696 TCP_SKB_CB(skb
)->end_seq
,
1698 tcp_skb_pcount(skb
),
1699 tcp_skb_timestamp_us(skb
));
1700 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1701 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1702 list_del_init(&skb
->tcp_tsorted_anchor
);
1704 if (!before(TCP_SKB_CB(skb
)->seq
,
1705 tcp_highest_sack_seq(tp
)))
1706 tcp_advance_highest_sack(sk
, skb
);
1712 static struct sk_buff
*tcp_sacktag_bsearch(struct sock
*sk
, u32 seq
)
1714 struct rb_node
*parent
, **p
= &sk
->tcp_rtx_queue
.rb_node
;
1715 struct sk_buff
*skb
;
1719 skb
= rb_to_skb(parent
);
1720 if (before(seq
, TCP_SKB_CB(skb
)->seq
)) {
1721 p
= &parent
->rb_left
;
1724 if (!before(seq
, TCP_SKB_CB(skb
)->end_seq
)) {
1725 p
= &parent
->rb_right
;
1733 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1736 if (skb
&& after(TCP_SKB_CB(skb
)->seq
, skip_to_seq
))
1739 return tcp_sacktag_bsearch(sk
, skip_to_seq
);
1742 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1744 struct tcp_sack_block
*next_dup
,
1745 struct tcp_sacktag_state
*state
,
1751 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1752 skb
= tcp_sacktag_skip(skb
, sk
, next_dup
->start_seq
);
1753 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1754 next_dup
->start_seq
, next_dup
->end_seq
,
1761 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1763 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1767 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1768 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1770 struct tcp_sock
*tp
= tcp_sk(sk
);
1771 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1772 TCP_SKB_CB(ack_skb
)->sacked
);
1773 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1774 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1775 struct tcp_sack_block
*cache
;
1776 struct sk_buff
*skb
;
1777 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1779 bool found_dup_sack
= false;
1781 int first_sack_index
;
1784 state
->reord
= tp
->snd_nxt
;
1786 if (!tp
->sacked_out
)
1787 tcp_highest_sack_reset(sk
);
1789 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1790 num_sacks
, prior_snd_una
, state
);
1792 /* Eliminate too old ACKs, but take into
1793 * account more or less fresh ones, they can
1794 * contain valid SACK info.
1796 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1799 if (!tp
->packets_out
)
1803 first_sack_index
= 0;
1804 for (i
= 0; i
< num_sacks
; i
++) {
1805 bool dup_sack
= !i
&& found_dup_sack
;
1807 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1808 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1810 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1811 sp
[used_sacks
].start_seq
,
1812 sp
[used_sacks
].end_seq
)) {
1816 if (!tp
->undo_marker
)
1817 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1819 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1821 /* Don't count olds caused by ACK reordering */
1822 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1823 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1825 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1828 NET_INC_STATS(sock_net(sk
), mib_idx
);
1830 first_sack_index
= -1;
1834 /* Ignore very old stuff early */
1835 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
)) {
1837 first_sack_index
= -1;
1844 /* order SACK blocks to allow in order walk of the retrans queue */
1845 for (i
= used_sacks
- 1; i
> 0; i
--) {
1846 for (j
= 0; j
< i
; j
++) {
1847 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1848 swap(sp
[j
], sp
[j
+ 1]);
1850 /* Track where the first SACK block goes to */
1851 if (j
== first_sack_index
)
1852 first_sack_index
= j
+ 1;
1857 state
->mss_now
= tcp_current_mss(sk
);
1861 if (!tp
->sacked_out
) {
1862 /* It's already past, so skip checking against it */
1863 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1865 cache
= tp
->recv_sack_cache
;
1866 /* Skip empty blocks in at head of the cache */
1867 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1872 while (i
< used_sacks
) {
1873 u32 start_seq
= sp
[i
].start_seq
;
1874 u32 end_seq
= sp
[i
].end_seq
;
1875 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1876 struct tcp_sack_block
*next_dup
= NULL
;
1878 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1879 next_dup
= &sp
[i
+ 1];
1881 /* Skip too early cached blocks */
1882 while (tcp_sack_cache_ok(tp
, cache
) &&
1883 !before(start_seq
, cache
->end_seq
))
1886 /* Can skip some work by looking recv_sack_cache? */
1887 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1888 after(end_seq
, cache
->start_seq
)) {
1891 if (before(start_seq
, cache
->start_seq
)) {
1892 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
);
1893 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1900 /* Rest of the block already fully processed? */
1901 if (!after(end_seq
, cache
->end_seq
))
1904 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1908 /* ...tail remains todo... */
1909 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1910 /* ...but better entrypoint exists! */
1911 skb
= tcp_highest_sack(sk
);
1918 skb
= tcp_sacktag_skip(skb
, sk
, cache
->end_seq
);
1919 /* Check overlap against next cached too (past this one already) */
1924 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1925 skb
= tcp_highest_sack(sk
);
1929 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
);
1932 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1933 start_seq
, end_seq
, dup_sack
);
1939 /* Clear the head of the cache sack blocks so we can skip it next time */
1940 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1941 tp
->recv_sack_cache
[i
].start_seq
= 0;
1942 tp
->recv_sack_cache
[i
].end_seq
= 0;
1944 for (j
= 0; j
< used_sacks
; j
++)
1945 tp
->recv_sack_cache
[i
++] = sp
[j
];
1947 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
|| tp
->undo_marker
)
1948 tcp_check_sack_reordering(sk
, state
->reord
, 0);
1950 tcp_verify_left_out(tp
);
1953 #if FASTRETRANS_DEBUG > 0
1954 WARN_ON((int)tp
->sacked_out
< 0);
1955 WARN_ON((int)tp
->lost_out
< 0);
1956 WARN_ON((int)tp
->retrans_out
< 0);
1957 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1962 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1963 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1965 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1969 holes
= max(tp
->lost_out
, 1U);
1970 holes
= min(holes
, tp
->packets_out
);
1972 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1973 tp
->sacked_out
= tp
->packets_out
- holes
;
1979 /* If we receive more dupacks than we expected counting segments
1980 * in assumption of absent reordering, interpret this as reordering.
1981 * The only another reason could be bug in receiver TCP.
1983 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1985 struct tcp_sock
*tp
= tcp_sk(sk
);
1987 if (!tcp_limit_reno_sacked(tp
))
1990 tp
->reordering
= min_t(u32
, tp
->packets_out
+ addend
,
1991 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
1993 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRENOREORDER
);
1996 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1998 static void tcp_add_reno_sack(struct sock
*sk
, int num_dupack
, bool ece_ack
)
2001 struct tcp_sock
*tp
= tcp_sk(sk
);
2002 u32 prior_sacked
= tp
->sacked_out
;
2005 tp
->sacked_out
+= num_dupack
;
2006 tcp_check_reno_reordering(sk
, 0);
2007 delivered
= tp
->sacked_out
- prior_sacked
;
2009 tcp_count_delivered(tp
, delivered
, ece_ack
);
2010 tcp_verify_left_out(tp
);
2014 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2016 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
, bool ece_ack
)
2018 struct tcp_sock
*tp
= tcp_sk(sk
);
2021 /* One ACK acked hole. The rest eat duplicate ACKs. */
2022 tcp_count_delivered(tp
, max_t(int, acked
- tp
->sacked_out
, 1),
2024 if (acked
- 1 >= tp
->sacked_out
)
2027 tp
->sacked_out
-= acked
- 1;
2029 tcp_check_reno_reordering(sk
, acked
);
2030 tcp_verify_left_out(tp
);
2033 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
2038 void tcp_clear_retrans(struct tcp_sock
*tp
)
2040 tp
->retrans_out
= 0;
2042 tp
->undo_marker
= 0;
2043 tp
->undo_retrans
= -1;
2047 static inline void tcp_init_undo(struct tcp_sock
*tp
)
2049 tp
->undo_marker
= tp
->snd_una
;
2050 /* Retransmission still in flight may cause DSACKs later. */
2051 tp
->undo_retrans
= tp
->retrans_out
? : -1;
2054 static bool tcp_is_rack(const struct sock
*sk
)
2056 return sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
;
2059 /* If we detect SACK reneging, forget all SACK information
2060 * and reset tags completely, otherwise preserve SACKs. If receiver
2061 * dropped its ofo queue, we will know this due to reneging detection.
2063 static void tcp_timeout_mark_lost(struct sock
*sk
)
2065 struct tcp_sock
*tp
= tcp_sk(sk
);
2066 struct sk_buff
*skb
, *head
;
2067 bool is_reneg
; /* is receiver reneging on SACKs? */
2069 head
= tcp_rtx_queue_head(sk
);
2070 is_reneg
= head
&& (TCP_SKB_CB(head
)->sacked
& TCPCB_SACKED_ACKED
);
2072 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2074 /* Mark SACK reneging until we recover from this loss event. */
2075 tp
->is_sack_reneg
= 1;
2076 } else if (tcp_is_reno(tp
)) {
2077 tcp_reset_reno_sack(tp
);
2081 skb_rbtree_walk_from(skb
) {
2083 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2084 else if (tcp_is_rack(sk
) && skb
!= head
&&
2085 tcp_rack_skb_timeout(tp
, skb
, 0) > 0)
2086 continue; /* Don't mark recently sent ones lost yet */
2087 tcp_mark_skb_lost(sk
, skb
);
2089 tcp_verify_left_out(tp
);
2090 tcp_clear_all_retrans_hints(tp
);
2093 /* Enter Loss state. */
2094 void tcp_enter_loss(struct sock
*sk
)
2096 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2097 struct tcp_sock
*tp
= tcp_sk(sk
);
2098 struct net
*net
= sock_net(sk
);
2099 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
2101 tcp_timeout_mark_lost(sk
);
2103 /* Reduce ssthresh if it has not yet been made inside this window. */
2104 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
2105 !after(tp
->high_seq
, tp
->snd_una
) ||
2106 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2107 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2108 tp
->prior_cwnd
= tp
->snd_cwnd
;
2109 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2110 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2113 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 1;
2114 tp
->snd_cwnd_cnt
= 0;
2115 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2117 /* Timeout in disordered state after receiving substantial DUPACKs
2118 * suggests that the degree of reordering is over-estimated.
2120 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
2121 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
2122 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2123 net
->ipv4
.sysctl_tcp_reordering
);
2124 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2125 tp
->high_seq
= tp
->snd_nxt
;
2126 tcp_ecn_queue_cwr(tp
);
2128 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2129 * loss recovery is underway except recurring timeout(s) on
2130 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2132 tp
->frto
= net
->ipv4
.sysctl_tcp_frto
&&
2133 (new_recovery
|| icsk
->icsk_retransmits
) &&
2134 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2137 /* If ACK arrived pointing to a remembered SACK, it means that our
2138 * remembered SACKs do not reflect real state of receiver i.e.
2139 * receiver _host_ is heavily congested (or buggy).
2141 * To avoid big spurious retransmission bursts due to transient SACK
2142 * scoreboard oddities that look like reneging, we give the receiver a
2143 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2144 * restore sanity to the SACK scoreboard. If the apparent reneging
2145 * persists until this RTO then we'll clear the SACK scoreboard.
2147 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2149 if (flag
& FLAG_SACK_RENEGING
) {
2150 struct tcp_sock
*tp
= tcp_sk(sk
);
2151 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2152 msecs_to_jiffies(10));
2154 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2155 delay
, TCP_RTO_MAX
);
2161 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2162 * counter when SACK is enabled (without SACK, sacked_out is used for
2165 * With reordering, holes may still be in flight, so RFC3517 recovery
2166 * uses pure sacked_out (total number of SACKed segments) even though
2167 * it violates the RFC that uses duplicate ACKs, often these are equal
2168 * but when e.g. out-of-window ACKs or packet duplication occurs,
2169 * they differ. Since neither occurs due to loss, TCP should really
2172 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2174 return tp
->sacked_out
+ 1;
2177 /* Linux NewReno/SACK/ECN state machine.
2178 * --------------------------------------
2180 * "Open" Normal state, no dubious events, fast path.
2181 * "Disorder" In all the respects it is "Open",
2182 * but requires a bit more attention. It is entered when
2183 * we see some SACKs or dupacks. It is split of "Open"
2184 * mainly to move some processing from fast path to slow one.
2185 * "CWR" CWND was reduced due to some Congestion Notification event.
2186 * It can be ECN, ICMP source quench, local device congestion.
2187 * "Recovery" CWND was reduced, we are fast-retransmitting.
2188 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2190 * tcp_fastretrans_alert() is entered:
2191 * - each incoming ACK, if state is not "Open"
2192 * - when arrived ACK is unusual, namely:
2197 * Counting packets in flight is pretty simple.
2199 * in_flight = packets_out - left_out + retrans_out
2201 * packets_out is SND.NXT-SND.UNA counted in packets.
2203 * retrans_out is number of retransmitted segments.
2205 * left_out is number of segments left network, but not ACKed yet.
2207 * left_out = sacked_out + lost_out
2209 * sacked_out: Packets, which arrived to receiver out of order
2210 * and hence not ACKed. With SACKs this number is simply
2211 * amount of SACKed data. Even without SACKs
2212 * it is easy to give pretty reliable estimate of this number,
2213 * counting duplicate ACKs.
2215 * lost_out: Packets lost by network. TCP has no explicit
2216 * "loss notification" feedback from network (for now).
2217 * It means that this number can be only _guessed_.
2218 * Actually, it is the heuristics to predict lossage that
2219 * distinguishes different algorithms.
2221 * F.e. after RTO, when all the queue is considered as lost,
2222 * lost_out = packets_out and in_flight = retrans_out.
2224 * Essentially, we have now a few algorithms detecting
2227 * If the receiver supports SACK:
2229 * RFC6675/3517: It is the conventional algorithm. A packet is
2230 * considered lost if the number of higher sequence packets
2231 * SACKed is greater than or equal the DUPACK thoreshold
2232 * (reordering). This is implemented in tcp_mark_head_lost and
2233 * tcp_update_scoreboard.
2235 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2236 * (2017-) that checks timing instead of counting DUPACKs.
2237 * Essentially a packet is considered lost if it's not S/ACKed
2238 * after RTT + reordering_window, where both metrics are
2239 * dynamically measured and adjusted. This is implemented in
2240 * tcp_rack_mark_lost.
2242 * If the receiver does not support SACK:
2244 * NewReno (RFC6582): in Recovery we assume that one segment
2245 * is lost (classic Reno). While we are in Recovery and
2246 * a partial ACK arrives, we assume that one more packet
2247 * is lost (NewReno). This heuristics are the same in NewReno
2250 * Really tricky (and requiring careful tuning) part of algorithm
2251 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2252 * The first determines the moment _when_ we should reduce CWND and,
2253 * hence, slow down forward transmission. In fact, it determines the moment
2254 * when we decide that hole is caused by loss, rather than by a reorder.
2256 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2257 * holes, caused by lost packets.
2259 * And the most logically complicated part of algorithm is undo
2260 * heuristics. We detect false retransmits due to both too early
2261 * fast retransmit (reordering) and underestimated RTO, analyzing
2262 * timestamps and D-SACKs. When we detect that some segments were
2263 * retransmitted by mistake and CWND reduction was wrong, we undo
2264 * window reduction and abort recovery phase. This logic is hidden
2265 * inside several functions named tcp_try_undo_<something>.
2268 /* This function decides, when we should leave Disordered state
2269 * and enter Recovery phase, reducing congestion window.
2271 * Main question: may we further continue forward transmission
2272 * with the same cwnd?
2274 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2276 struct tcp_sock
*tp
= tcp_sk(sk
);
2278 /* Trick#1: The loss is proven. */
2282 /* Not-A-Trick#2 : Classic rule... */
2283 if (!tcp_is_rack(sk
) && tcp_dupack_heuristics(tp
) > tp
->reordering
)
2289 /* Detect loss in event "A" above by marking head of queue up as lost.
2290 * For RFC3517 SACK, a segment is considered lost if it
2291 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2292 * the maximum SACKed segments to pass before reaching this limit.
2294 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2296 struct tcp_sock
*tp
= tcp_sk(sk
);
2297 struct sk_buff
*skb
;
2299 /* Use SACK to deduce losses of new sequences sent during recovery */
2300 const u32 loss_high
= tp
->snd_nxt
;
2302 WARN_ON(packets
> tp
->packets_out
);
2303 skb
= tp
->lost_skb_hint
;
2305 /* Head already handled? */
2306 if (mark_head
&& after(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
))
2308 cnt
= tp
->lost_cnt_hint
;
2310 skb
= tcp_rtx_queue_head(sk
);
2314 skb_rbtree_walk_from(skb
) {
2315 /* TODO: do this better */
2316 /* this is not the most efficient way to do this... */
2317 tp
->lost_skb_hint
= skb
;
2318 tp
->lost_cnt_hint
= cnt
;
2320 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2323 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2324 cnt
+= tcp_skb_pcount(skb
);
2329 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
))
2330 tcp_mark_skb_lost(sk
, skb
);
2335 tcp_verify_left_out(tp
);
2338 /* Account newly detected lost packet(s) */
2340 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2342 struct tcp_sock
*tp
= tcp_sk(sk
);
2344 if (tcp_is_sack(tp
)) {
2345 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2346 if (sacked_upto
>= 0)
2347 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2348 else if (fast_rexmit
)
2349 tcp_mark_head_lost(sk
, 1, 1);
2353 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2355 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2356 before(tp
->rx_opt
.rcv_tsecr
, when
);
2359 /* skb is spurious retransmitted if the returned timestamp echo
2360 * reply is prior to the skb transmission time
2362 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2363 const struct sk_buff
*skb
)
2365 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2366 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2369 /* Nothing was retransmitted or returned timestamp is less
2370 * than timestamp of the first retransmission.
2372 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2374 return tp
->retrans_stamp
&&
2375 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2378 /* Undo procedures. */
2380 /* We can clear retrans_stamp when there are no retransmissions in the
2381 * window. It would seem that it is trivially available for us in
2382 * tp->retrans_out, however, that kind of assumptions doesn't consider
2383 * what will happen if errors occur when sending retransmission for the
2384 * second time. ...It could the that such segment has only
2385 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2386 * the head skb is enough except for some reneging corner cases that
2387 * are not worth the effort.
2389 * Main reason for all this complexity is the fact that connection dying
2390 * time now depends on the validity of the retrans_stamp, in particular,
2391 * that successive retransmissions of a segment must not advance
2392 * retrans_stamp under any conditions.
2394 static bool tcp_any_retrans_done(const struct sock
*sk
)
2396 const struct tcp_sock
*tp
= tcp_sk(sk
);
2397 struct sk_buff
*skb
;
2399 if (tp
->retrans_out
)
2402 skb
= tcp_rtx_queue_head(sk
);
2403 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2409 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2411 #if FASTRETRANS_DEBUG > 1
2412 struct tcp_sock
*tp
= tcp_sk(sk
);
2413 struct inet_sock
*inet
= inet_sk(sk
);
2415 if (sk
->sk_family
== AF_INET
) {
2416 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2418 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2419 tp
->snd_cwnd
, tcp_left_out(tp
),
2420 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2423 #if IS_ENABLED(CONFIG_IPV6)
2424 else if (sk
->sk_family
== AF_INET6
) {
2425 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2427 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2428 tp
->snd_cwnd
, tcp_left_out(tp
),
2429 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2436 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2438 struct tcp_sock
*tp
= tcp_sk(sk
);
2441 struct sk_buff
*skb
;
2443 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2444 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2447 tcp_clear_all_retrans_hints(tp
);
2450 if (tp
->prior_ssthresh
) {
2451 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2453 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2455 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2456 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2457 tcp_ecn_withdraw_cwr(tp
);
2460 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2461 tp
->undo_marker
= 0;
2462 tp
->rack
.advanced
= 1; /* Force RACK to re-exam losses */
2465 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2467 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2470 /* People celebrate: "We love our President!" */
2471 static bool tcp_try_undo_recovery(struct sock
*sk
)
2473 struct tcp_sock
*tp
= tcp_sk(sk
);
2475 if (tcp_may_undo(tp
)) {
2478 /* Happy end! We did not retransmit anything
2479 * or our original transmission succeeded.
2481 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2482 tcp_undo_cwnd_reduction(sk
, false);
2483 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2484 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2486 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2488 NET_INC_STATS(sock_net(sk
), mib_idx
);
2489 } else if (tp
->rack
.reo_wnd_persist
) {
2490 tp
->rack
.reo_wnd_persist
--;
2492 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2493 /* Hold old state until something *above* high_seq
2494 * is ACKed. For Reno it is MUST to prevent false
2495 * fast retransmits (RFC2582). SACK TCP is safe. */
2496 if (!tcp_any_retrans_done(sk
))
2497 tp
->retrans_stamp
= 0;
2500 tcp_set_ca_state(sk
, TCP_CA_Open
);
2501 tp
->is_sack_reneg
= 0;
2505 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2506 static bool tcp_try_undo_dsack(struct sock
*sk
)
2508 struct tcp_sock
*tp
= tcp_sk(sk
);
2510 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2511 tp
->rack
.reo_wnd_persist
= min(TCP_RACK_RECOVERY_THRESH
,
2512 tp
->rack
.reo_wnd_persist
+ 1);
2513 DBGUNDO(sk
, "D-SACK");
2514 tcp_undo_cwnd_reduction(sk
, false);
2515 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2521 /* Undo during loss recovery after partial ACK or using F-RTO. */
2522 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2524 struct tcp_sock
*tp
= tcp_sk(sk
);
2526 if (frto_undo
|| tcp_may_undo(tp
)) {
2527 tcp_undo_cwnd_reduction(sk
, true);
2529 DBGUNDO(sk
, "partial loss");
2530 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2532 NET_INC_STATS(sock_net(sk
),
2533 LINUX_MIB_TCPSPURIOUSRTOS
);
2534 inet_csk(sk
)->icsk_retransmits
= 0;
2535 if (frto_undo
|| tcp_is_sack(tp
)) {
2536 tcp_set_ca_state(sk
, TCP_CA_Open
);
2537 tp
->is_sack_reneg
= 0;
2544 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2545 * It computes the number of packets to send (sndcnt) based on packets newly
2547 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2548 * cwnd reductions across a full RTT.
2549 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2550 * But when SND_UNA is acked without further losses,
2551 * slow starts cwnd up to ssthresh to speed up the recovery.
2553 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2555 struct tcp_sock
*tp
= tcp_sk(sk
);
2557 tp
->high_seq
= tp
->snd_nxt
;
2558 tp
->tlp_high_seq
= 0;
2559 tp
->snd_cwnd_cnt
= 0;
2560 tp
->prior_cwnd
= tp
->snd_cwnd
;
2561 tp
->prr_delivered
= 0;
2563 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2564 tcp_ecn_queue_cwr(tp
);
2567 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int newly_lost
, int flag
)
2569 struct tcp_sock
*tp
= tcp_sk(sk
);
2571 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2573 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2576 tp
->prr_delivered
+= newly_acked_sacked
;
2578 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2580 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2581 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !newly_lost
) {
2582 sndcnt
= min_t(int, delta
,
2583 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2584 newly_acked_sacked
) + 1);
2586 sndcnt
= min(delta
, newly_acked_sacked
);
2588 /* Force a fast retransmit upon entering fast recovery */
2589 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2590 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2593 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2595 struct tcp_sock
*tp
= tcp_sk(sk
);
2597 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2600 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2601 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2602 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2603 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2604 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2606 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2609 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2610 void tcp_enter_cwr(struct sock
*sk
)
2612 struct tcp_sock
*tp
= tcp_sk(sk
);
2614 tp
->prior_ssthresh
= 0;
2615 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2616 tp
->undo_marker
= 0;
2617 tcp_init_cwnd_reduction(sk
);
2618 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2621 EXPORT_SYMBOL(tcp_enter_cwr
);
2623 static void tcp_try_keep_open(struct sock
*sk
)
2625 struct tcp_sock
*tp
= tcp_sk(sk
);
2626 int state
= TCP_CA_Open
;
2628 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2629 state
= TCP_CA_Disorder
;
2631 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2632 tcp_set_ca_state(sk
, state
);
2633 tp
->high_seq
= tp
->snd_nxt
;
2637 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2639 struct tcp_sock
*tp
= tcp_sk(sk
);
2641 tcp_verify_left_out(tp
);
2643 if (!tcp_any_retrans_done(sk
))
2644 tp
->retrans_stamp
= 0;
2646 if (flag
& FLAG_ECE
)
2649 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2650 tcp_try_keep_open(sk
);
2654 static void tcp_mtup_probe_failed(struct sock
*sk
)
2656 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2658 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2659 icsk
->icsk_mtup
.probe_size
= 0;
2660 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2663 static void tcp_mtup_probe_success(struct sock
*sk
)
2665 struct tcp_sock
*tp
= tcp_sk(sk
);
2666 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2668 /* FIXME: breaks with very large cwnd */
2669 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2670 tp
->snd_cwnd
= tp
->snd_cwnd
*
2671 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2672 icsk
->icsk_mtup
.probe_size
;
2673 tp
->snd_cwnd_cnt
= 0;
2674 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2675 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2677 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2678 icsk
->icsk_mtup
.probe_size
= 0;
2679 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2680 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2683 /* Do a simple retransmit without using the backoff mechanisms in
2684 * tcp_timer. This is used for path mtu discovery.
2685 * The socket is already locked here.
2687 void tcp_simple_retransmit(struct sock
*sk
)
2689 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2690 struct tcp_sock
*tp
= tcp_sk(sk
);
2691 struct sk_buff
*skb
;
2694 /* A fastopen SYN request is stored as two separate packets within
2695 * the retransmit queue, this is done by tcp_send_syn_data().
2696 * As a result simply checking the MSS of the frames in the queue
2697 * will not work for the SYN packet.
2699 * Us being here is an indication of a path MTU issue so we can
2700 * assume that the fastopen SYN was lost and just mark all the
2701 * frames in the retransmit queue as lost. We will use an MSS of
2702 * -1 to mark all frames as lost, otherwise compute the current MSS.
2704 if (tp
->syn_data
&& sk
->sk_state
== TCP_SYN_SENT
)
2707 mss
= tcp_current_mss(sk
);
2709 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2710 if (tcp_skb_seglen(skb
) > mss
)
2711 tcp_mark_skb_lost(sk
, skb
);
2714 tcp_clear_retrans_hints_partial(tp
);
2719 if (tcp_is_reno(tp
))
2720 tcp_limit_reno_sacked(tp
);
2722 tcp_verify_left_out(tp
);
2724 /* Don't muck with the congestion window here.
2725 * Reason is that we do not increase amount of _data_
2726 * in network, but units changed and effective
2727 * cwnd/ssthresh really reduced now.
2729 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2730 tp
->high_seq
= tp
->snd_nxt
;
2731 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2732 tp
->prior_ssthresh
= 0;
2733 tp
->undo_marker
= 0;
2734 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2736 tcp_xmit_retransmit_queue(sk
);
2738 EXPORT_SYMBOL(tcp_simple_retransmit
);
2740 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2742 struct tcp_sock
*tp
= tcp_sk(sk
);
2745 if (tcp_is_reno(tp
))
2746 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2748 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2750 NET_INC_STATS(sock_net(sk
), mib_idx
);
2752 tp
->prior_ssthresh
= 0;
2755 if (!tcp_in_cwnd_reduction(sk
)) {
2757 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2758 tcp_init_cwnd_reduction(sk
);
2760 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2763 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2764 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2766 static void tcp_process_loss(struct sock
*sk
, int flag
, int num_dupack
,
2769 struct tcp_sock
*tp
= tcp_sk(sk
);
2770 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2772 if ((flag
& FLAG_SND_UNA_ADVANCED
|| rcu_access_pointer(tp
->fastopen_rsk
)) &&
2773 tcp_try_undo_loss(sk
, false))
2776 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2777 /* Step 3.b. A timeout is spurious if not all data are
2778 * lost, i.e., never-retransmitted data are (s)acked.
2780 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2781 tcp_try_undo_loss(sk
, true))
2784 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2785 if (flag
& FLAG_DATA_SACKED
|| num_dupack
)
2786 tp
->frto
= 0; /* Step 3.a. loss was real */
2787 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2788 tp
->high_seq
= tp
->snd_nxt
;
2789 /* Step 2.b. Try send new data (but deferred until cwnd
2790 * is updated in tcp_ack()). Otherwise fall back to
2791 * the conventional recovery.
2793 if (!tcp_write_queue_empty(sk
) &&
2794 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2795 *rexmit
= REXMIT_NEW
;
2803 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2804 tcp_try_undo_recovery(sk
);
2807 if (tcp_is_reno(tp
)) {
2808 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2809 * delivered. Lower inflight to clock out (re)tranmissions.
2811 if (after(tp
->snd_nxt
, tp
->high_seq
) && num_dupack
)
2812 tcp_add_reno_sack(sk
, num_dupack
, flag
& FLAG_ECE
);
2813 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2814 tcp_reset_reno_sack(tp
);
2816 *rexmit
= REXMIT_LOST
;
2819 /* Undo during fast recovery after partial ACK. */
2820 static bool tcp_try_undo_partial(struct sock
*sk
, u32 prior_snd_una
)
2822 struct tcp_sock
*tp
= tcp_sk(sk
);
2824 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2825 /* Plain luck! Hole if filled with delayed
2826 * packet, rather than with a retransmit. Check reordering.
2828 tcp_check_sack_reordering(sk
, prior_snd_una
, 1);
2830 /* We are getting evidence that the reordering degree is higher
2831 * than we realized. If there are no retransmits out then we
2832 * can undo. Otherwise we clock out new packets but do not
2833 * mark more packets lost or retransmit more.
2835 if (tp
->retrans_out
)
2838 if (!tcp_any_retrans_done(sk
))
2839 tp
->retrans_stamp
= 0;
2841 DBGUNDO(sk
, "partial recovery");
2842 tcp_undo_cwnd_reduction(sk
, true);
2843 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2844 tcp_try_keep_open(sk
);
2850 static void tcp_identify_packet_loss(struct sock
*sk
, int *ack_flag
)
2852 struct tcp_sock
*tp
= tcp_sk(sk
);
2854 if (tcp_rtx_queue_empty(sk
))
2857 if (unlikely(tcp_is_reno(tp
))) {
2858 tcp_newreno_mark_lost(sk
, *ack_flag
& FLAG_SND_UNA_ADVANCED
);
2859 } else if (tcp_is_rack(sk
)) {
2860 u32 prior_retrans
= tp
->retrans_out
;
2862 tcp_rack_mark_lost(sk
);
2863 if (prior_retrans
> tp
->retrans_out
)
2864 *ack_flag
|= FLAG_LOST_RETRANS
;
2868 static bool tcp_force_fast_retransmit(struct sock
*sk
)
2870 struct tcp_sock
*tp
= tcp_sk(sk
);
2872 return after(tcp_highest_sack_seq(tp
),
2873 tp
->snd_una
+ tp
->reordering
* tp
->mss_cache
);
2876 /* Process an event, which can update packets-in-flight not trivially.
2877 * Main goal of this function is to calculate new estimate for left_out,
2878 * taking into account both packets sitting in receiver's buffer and
2879 * packets lost by network.
2881 * Besides that it updates the congestion state when packet loss or ECN
2882 * is detected. But it does not reduce the cwnd, it is done by the
2883 * congestion control later.
2885 * It does _not_ decide what to send, it is made in function
2886 * tcp_xmit_retransmit_queue().
2888 static void tcp_fastretrans_alert(struct sock
*sk
, const u32 prior_snd_una
,
2889 int num_dupack
, int *ack_flag
, int *rexmit
)
2891 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2892 struct tcp_sock
*tp
= tcp_sk(sk
);
2893 int fast_rexmit
= 0, flag
= *ack_flag
;
2894 bool ece_ack
= flag
& FLAG_ECE
;
2895 bool do_lost
= num_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2896 tcp_force_fast_retransmit(sk
));
2898 if (!tp
->packets_out
&& tp
->sacked_out
)
2901 /* Now state machine starts.
2902 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2904 tp
->prior_ssthresh
= 0;
2906 /* B. In all the states check for reneging SACKs. */
2907 if (tcp_check_sack_reneging(sk
, flag
))
2910 /* C. Check consistency of the current state. */
2911 tcp_verify_left_out(tp
);
2913 /* D. Check state exit conditions. State can be terminated
2914 * when high_seq is ACKed. */
2915 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2916 WARN_ON(tp
->retrans_out
!= 0);
2917 tp
->retrans_stamp
= 0;
2918 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2919 switch (icsk
->icsk_ca_state
) {
2921 /* CWR is to be held something *above* high_seq
2922 * is ACKed for CWR bit to reach receiver. */
2923 if (tp
->snd_una
!= tp
->high_seq
) {
2924 tcp_end_cwnd_reduction(sk
);
2925 tcp_set_ca_state(sk
, TCP_CA_Open
);
2929 case TCP_CA_Recovery
:
2930 if (tcp_is_reno(tp
))
2931 tcp_reset_reno_sack(tp
);
2932 if (tcp_try_undo_recovery(sk
))
2934 tcp_end_cwnd_reduction(sk
);
2939 /* E. Process state. */
2940 switch (icsk
->icsk_ca_state
) {
2941 case TCP_CA_Recovery
:
2942 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2943 if (tcp_is_reno(tp
))
2944 tcp_add_reno_sack(sk
, num_dupack
, ece_ack
);
2946 if (tcp_try_undo_partial(sk
, prior_snd_una
))
2948 /* Partial ACK arrived. Force fast retransmit. */
2949 do_lost
= tcp_force_fast_retransmit(sk
);
2951 if (tcp_try_undo_dsack(sk
)) {
2952 tcp_try_keep_open(sk
);
2955 tcp_identify_packet_loss(sk
, ack_flag
);
2958 tcp_process_loss(sk
, flag
, num_dupack
, rexmit
);
2959 tcp_identify_packet_loss(sk
, ack_flag
);
2960 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2961 (*ack_flag
& FLAG_LOST_RETRANS
)))
2963 /* Change state if cwnd is undone or retransmits are lost */
2966 if (tcp_is_reno(tp
)) {
2967 if (flag
& FLAG_SND_UNA_ADVANCED
)
2968 tcp_reset_reno_sack(tp
);
2969 tcp_add_reno_sack(sk
, num_dupack
, ece_ack
);
2972 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2973 tcp_try_undo_dsack(sk
);
2975 tcp_identify_packet_loss(sk
, ack_flag
);
2976 if (!tcp_time_to_recover(sk
, flag
)) {
2977 tcp_try_to_open(sk
, flag
);
2981 /* MTU probe failure: don't reduce cwnd */
2982 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2983 icsk
->icsk_mtup
.probe_size
&&
2984 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2985 tcp_mtup_probe_failed(sk
);
2986 /* Restores the reduction we did in tcp_mtup_probe() */
2988 tcp_simple_retransmit(sk
);
2992 /* Otherwise enter Recovery state */
2993 tcp_enter_recovery(sk
, ece_ack
);
2997 if (!tcp_is_rack(sk
) && do_lost
)
2998 tcp_update_scoreboard(sk
, fast_rexmit
);
2999 *rexmit
= REXMIT_LOST
;
3002 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
, const int flag
)
3004 u32 wlen
= sock_net(sk
)->ipv4
.sysctl_tcp_min_rtt_wlen
* HZ
;
3005 struct tcp_sock
*tp
= tcp_sk(sk
);
3007 if ((flag
& FLAG_ACK_MAYBE_DELAYED
) && rtt_us
> tcp_min_rtt(tp
)) {
3008 /* If the remote keeps returning delayed ACKs, eventually
3009 * the min filter would pick it up and overestimate the
3010 * prop. delay when it expires. Skip suspected delayed ACKs.
3014 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_jiffies32
,
3015 rtt_us
? : jiffies_to_usecs(1));
3018 static bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3019 long seq_rtt_us
, long sack_rtt_us
,
3020 long ca_rtt_us
, struct rate_sample
*rs
)
3022 const struct tcp_sock
*tp
= tcp_sk(sk
);
3024 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3025 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3026 * Karn's algorithm forbids taking RTT if some retransmitted data
3027 * is acked (RFC6298).
3030 seq_rtt_us
= sack_rtt_us
;
3032 /* RTTM Rule: A TSecr value received in a segment is used to
3033 * update the averaged RTT measurement only if the segment
3034 * acknowledges some new data, i.e., only if it advances the
3035 * left edge of the send window.
3036 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3038 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
3039 flag
& FLAG_ACKED
) {
3040 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
3042 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
3045 seq_rtt_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
3046 ca_rtt_us
= seq_rtt_us
;
3049 rs
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet (or -1) */
3053 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3054 * always taken together with ACK, SACK, or TS-opts. Any negative
3055 * values will be skipped with the seq_rtt_us < 0 check above.
3057 tcp_update_rtt_min(sk
, ca_rtt_us
, flag
);
3058 tcp_rtt_estimator(sk
, seq_rtt_us
);
3061 /* RFC6298: only reset backoff on valid RTT measurement. */
3062 inet_csk(sk
)->icsk_backoff
= 0;
3066 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3067 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
3069 struct rate_sample rs
;
3072 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
)
3073 rtt_us
= tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req
)->snt_synack
);
3075 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
, &rs
);
3079 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
3081 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3083 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
3084 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_jiffies32
;
3087 /* Restart timer after forward progress on connection.
3088 * RFC2988 recommends to restart timer to now+rto.
3090 void tcp_rearm_rto(struct sock
*sk
)
3092 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3093 struct tcp_sock
*tp
= tcp_sk(sk
);
3095 /* If the retrans timer is currently being used by Fast Open
3096 * for SYN-ACK retrans purpose, stay put.
3098 if (rcu_access_pointer(tp
->fastopen_rsk
))
3101 if (!tp
->packets_out
) {
3102 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3104 u32 rto
= inet_csk(sk
)->icsk_rto
;
3105 /* Offset the time elapsed after installing regular RTO */
3106 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
3107 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3108 s64 delta_us
= tcp_rto_delta_us(sk
);
3109 /* delta_us may not be positive if the socket is locked
3110 * when the retrans timer fires and is rescheduled.
3112 rto
= usecs_to_jiffies(max_t(int, delta_us
, 1));
3114 tcp_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3119 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3120 static void tcp_set_xmit_timer(struct sock
*sk
)
3122 if (!tcp_schedule_loss_probe(sk
, true))
3126 /* If we get here, the whole TSO packet has not been acked. */
3127 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3129 struct tcp_sock
*tp
= tcp_sk(sk
);
3132 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3134 packets_acked
= tcp_skb_pcount(skb
);
3135 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3137 packets_acked
-= tcp_skb_pcount(skb
);
3139 if (packets_acked
) {
3140 BUG_ON(tcp_skb_pcount(skb
) == 0);
3141 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3144 return packets_acked
;
3147 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3150 const struct skb_shared_info
*shinfo
;
3152 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3153 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3156 shinfo
= skb_shinfo(skb
);
3157 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3158 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
)) {
3159 tcp_skb_tsorted_save(skb
) {
3160 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3161 } tcp_skb_tsorted_restore(skb
);
3165 /* Remove acknowledged frames from the retransmission queue. If our packet
3166 * is before the ack sequence we can discard it as it's confirmed to have
3167 * arrived at the other end.
3169 static int tcp_clean_rtx_queue(struct sock
*sk
, u32 prior_fack
,
3171 struct tcp_sacktag_state
*sack
, bool ece_ack
)
3173 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3174 u64 first_ackt
, last_ackt
;
3175 struct tcp_sock
*tp
= tcp_sk(sk
);
3176 u32 prior_sacked
= tp
->sacked_out
;
3177 u32 reord
= tp
->snd_nxt
; /* lowest acked un-retx un-sacked seq */
3178 struct sk_buff
*skb
, *next
;
3179 bool fully_acked
= true;
3180 long sack_rtt_us
= -1L;
3181 long seq_rtt_us
= -1L;
3182 long ca_rtt_us
= -1L;
3184 u32 last_in_flight
= 0;
3190 for (skb
= skb_rb_first(&sk
->tcp_rtx_queue
); skb
; skb
= next
) {
3191 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3192 const u32 start_seq
= scb
->seq
;
3193 u8 sacked
= scb
->sacked
;
3196 /* Determine how many packets and what bytes were acked, tso and else */
3197 if (after(scb
->end_seq
, tp
->snd_una
)) {
3198 if (tcp_skb_pcount(skb
) == 1 ||
3199 !after(tp
->snd_una
, scb
->seq
))
3202 acked_pcount
= tcp_tso_acked(sk
, skb
);
3205 fully_acked
= false;
3207 acked_pcount
= tcp_skb_pcount(skb
);
3210 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3211 if (sacked
& TCPCB_SACKED_RETRANS
)
3212 tp
->retrans_out
-= acked_pcount
;
3213 flag
|= FLAG_RETRANS_DATA_ACKED
;
3214 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3215 last_ackt
= tcp_skb_timestamp_us(skb
);
3216 WARN_ON_ONCE(last_ackt
== 0);
3218 first_ackt
= last_ackt
;
3220 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3221 if (before(start_seq
, reord
))
3223 if (!after(scb
->end_seq
, tp
->high_seq
))
3224 flag
|= FLAG_ORIG_SACK_ACKED
;
3227 if (sacked
& TCPCB_SACKED_ACKED
) {
3228 tp
->sacked_out
-= acked_pcount
;
3229 } else if (tcp_is_sack(tp
)) {
3230 tcp_count_delivered(tp
, acked_pcount
, ece_ack
);
3231 if (!tcp_skb_spurious_retrans(tp
, skb
))
3232 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3233 tcp_skb_timestamp_us(skb
));
3235 if (sacked
& TCPCB_LOST
)
3236 tp
->lost_out
-= acked_pcount
;
3238 tp
->packets_out
-= acked_pcount
;
3239 pkts_acked
+= acked_pcount
;
3240 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3242 /* Initial outgoing SYN's get put onto the write_queue
3243 * just like anything else we transmit. It is not
3244 * true data, and if we misinform our callers that
3245 * this ACK acks real data, we will erroneously exit
3246 * connection startup slow start one packet too
3247 * quickly. This is severely frowned upon behavior.
3249 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3250 flag
|= FLAG_DATA_ACKED
;
3252 flag
|= FLAG_SYN_ACKED
;
3253 tp
->retrans_stamp
= 0;
3259 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3261 next
= skb_rb_next(skb
);
3262 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3263 tp
->retransmit_skb_hint
= NULL
;
3264 if (unlikely(skb
== tp
->lost_skb_hint
))
3265 tp
->lost_skb_hint
= NULL
;
3266 tcp_highest_sack_replace(sk
, skb
, next
);
3267 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3271 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3273 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3274 tp
->snd_up
= tp
->snd_una
;
3277 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3278 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
3279 flag
|= FLAG_SACK_RENEGING
;
3282 if (likely(first_ackt
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3283 seq_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, first_ackt
);
3284 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, last_ackt
);
3286 if (pkts_acked
== 1 && last_in_flight
< tp
->mss_cache
&&
3287 last_in_flight
&& !prior_sacked
&& fully_acked
&&
3288 sack
->rate
->prior_delivered
+ 1 == tp
->delivered
&&
3289 !(flag
& (FLAG_CA_ALERT
| FLAG_SYN_ACKED
))) {
3290 /* Conservatively mark a delayed ACK. It's typically
3291 * from a lone runt packet over the round trip to
3292 * a receiver w/o out-of-order or CE events.
3294 flag
|= FLAG_ACK_MAYBE_DELAYED
;
3297 if (sack
->first_sackt
) {
3298 sack_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->first_sackt
);
3299 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->last_sackt
);
3301 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3302 ca_rtt_us
, sack
->rate
);
3304 if (flag
& FLAG_ACKED
) {
3305 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3306 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3307 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3308 tcp_mtup_probe_success(sk
);
3311 if (tcp_is_reno(tp
)) {
3312 tcp_remove_reno_sacks(sk
, pkts_acked
, ece_ack
);
3314 /* If any of the cumulatively ACKed segments was
3315 * retransmitted, non-SACK case cannot confirm that
3316 * progress was due to original transmission due to
3317 * lack of TCPCB_SACKED_ACKED bits even if some of
3318 * the packets may have been never retransmitted.
3320 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3321 flag
&= ~FLAG_ORIG_SACK_ACKED
;
3325 /* Non-retransmitted hole got filled? That's reordering */
3326 if (before(reord
, prior_fack
))
3327 tcp_check_sack_reordering(sk
, reord
, 0);
3329 delta
= prior_sacked
- tp
->sacked_out
;
3330 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3332 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3333 sack_rtt_us
> tcp_stamp_us_delta(tp
->tcp_mstamp
,
3334 tcp_skb_timestamp_us(skb
))) {
3335 /* Do not re-arm RTO if the sack RTT is measured from data sent
3336 * after when the head was last (re)transmitted. Otherwise the
3337 * timeout may continue to extend in loss recovery.
3339 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3342 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3343 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3344 .rtt_us
= sack
->rate
->rtt_us
,
3345 .in_flight
= last_in_flight
};
3347 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3350 #if FASTRETRANS_DEBUG > 0
3351 WARN_ON((int)tp
->sacked_out
< 0);
3352 WARN_ON((int)tp
->lost_out
< 0);
3353 WARN_ON((int)tp
->retrans_out
< 0);
3354 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3355 icsk
= inet_csk(sk
);
3357 pr_debug("Leak l=%u %d\n",
3358 tp
->lost_out
, icsk
->icsk_ca_state
);
3361 if (tp
->sacked_out
) {
3362 pr_debug("Leak s=%u %d\n",
3363 tp
->sacked_out
, icsk
->icsk_ca_state
);
3366 if (tp
->retrans_out
) {
3367 pr_debug("Leak r=%u %d\n",
3368 tp
->retrans_out
, icsk
->icsk_ca_state
);
3369 tp
->retrans_out
= 0;
3376 static void tcp_ack_probe(struct sock
*sk
)
3378 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3379 struct sk_buff
*head
= tcp_send_head(sk
);
3380 const struct tcp_sock
*tp
= tcp_sk(sk
);
3382 /* Was it a usable window open? */
3385 if (!after(TCP_SKB_CB(head
)->end_seq
, tcp_wnd_end(tp
))) {
3386 icsk
->icsk_backoff
= 0;
3387 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3388 /* Socket must be waked up by subsequent tcp_data_snd_check().
3389 * This function is not for random using!
3392 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3394 tcp_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3399 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3401 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3402 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3405 /* Decide wheather to run the increase function of congestion control. */
3406 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3408 /* If reordering is high then always grow cwnd whenever data is
3409 * delivered regardless of its ordering. Otherwise stay conservative
3410 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3411 * new SACK or ECE mark may first advance cwnd here and later reduce
3412 * cwnd in tcp_fastretrans_alert() based on more states.
3414 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3415 return flag
& FLAG_FORWARD_PROGRESS
;
3417 return flag
& FLAG_DATA_ACKED
;
3420 /* The "ultimate" congestion control function that aims to replace the rigid
3421 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3422 * It's called toward the end of processing an ACK with precise rate
3423 * information. All transmission or retransmission are delayed afterwards.
3425 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3426 int flag
, const struct rate_sample
*rs
)
3428 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3430 if (icsk
->icsk_ca_ops
->cong_control
) {
3431 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3435 if (tcp_in_cwnd_reduction(sk
)) {
3436 /* Reduce cwnd if state mandates */
3437 tcp_cwnd_reduction(sk
, acked_sacked
, rs
->losses
, flag
);
3438 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3439 /* Advance cwnd if state allows */
3440 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3442 tcp_update_pacing_rate(sk
);
3445 /* Check that window update is acceptable.
3446 * The function assumes that snd_una<=ack<=snd_next.
3448 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3449 const u32 ack
, const u32 ack_seq
,
3452 return after(ack
, tp
->snd_una
) ||
3453 after(ack_seq
, tp
->snd_wl1
) ||
3454 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3457 /* If we update tp->snd_una, also update tp->bytes_acked */
3458 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3460 u32 delta
= ack
- tp
->snd_una
;
3462 sock_owned_by_me((struct sock
*)tp
);
3463 tp
->bytes_acked
+= delta
;
3467 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3468 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3470 u32 delta
= seq
- tp
->rcv_nxt
;
3472 sock_owned_by_me((struct sock
*)tp
);
3473 tp
->bytes_received
+= delta
;
3474 WRITE_ONCE(tp
->rcv_nxt
, seq
);
3477 /* Update our send window.
3479 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3480 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3482 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3485 struct tcp_sock
*tp
= tcp_sk(sk
);
3487 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3489 if (likely(!tcp_hdr(skb
)->syn
))
3490 nwin
<<= tp
->rx_opt
.snd_wscale
;
3492 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3493 flag
|= FLAG_WIN_UPDATE
;
3494 tcp_update_wl(tp
, ack_seq
);
3496 if (tp
->snd_wnd
!= nwin
) {
3499 /* Note, it is the only place, where
3500 * fast path is recovered for sending TCP.
3503 tcp_fast_path_check(sk
);
3505 if (!tcp_write_queue_empty(sk
))
3506 tcp_slow_start_after_idle_check(sk
);
3508 if (nwin
> tp
->max_window
) {
3509 tp
->max_window
= nwin
;
3510 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3515 tcp_snd_una_update(tp
, ack
);
3520 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3521 u32
*last_oow_ack_time
)
3523 if (*last_oow_ack_time
) {
3524 s32 elapsed
= (s32
)(tcp_jiffies32
- *last_oow_ack_time
);
3526 if (0 <= elapsed
&& elapsed
< net
->ipv4
.sysctl_tcp_invalid_ratelimit
) {
3527 NET_INC_STATS(net
, mib_idx
);
3528 return true; /* rate-limited: don't send yet! */
3532 *last_oow_ack_time
= tcp_jiffies32
;
3534 return false; /* not rate-limited: go ahead, send dupack now! */
3537 /* Return true if we're currently rate-limiting out-of-window ACKs and
3538 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3539 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3540 * attacks that send repeated SYNs or ACKs for the same connection. To
3541 * do this, we do not send a duplicate SYNACK or ACK if the remote
3542 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3544 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3545 int mib_idx
, u32
*last_oow_ack_time
)
3547 /* Data packets without SYNs are not likely part of an ACK loop. */
3548 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3552 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3555 /* RFC 5961 7 [ACK Throttling] */
3556 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3558 /* unprotected vars, we dont care of overwrites */
3559 static u32 challenge_timestamp
;
3560 static unsigned int challenge_count
;
3561 struct tcp_sock
*tp
= tcp_sk(sk
);
3562 struct net
*net
= sock_net(sk
);
3565 /* First check our per-socket dupack rate limit. */
3566 if (__tcp_oow_rate_limited(net
,
3567 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3568 &tp
->last_oow_ack_time
))
3571 /* Then check host-wide RFC 5961 rate limit. */
3573 if (now
!= challenge_timestamp
) {
3574 u32 ack_limit
= net
->ipv4
.sysctl_tcp_challenge_ack_limit
;
3575 u32 half
= (ack_limit
+ 1) >> 1;
3577 challenge_timestamp
= now
;
3578 WRITE_ONCE(challenge_count
, half
+ prandom_u32_max(ack_limit
));
3580 count
= READ_ONCE(challenge_count
);
3582 WRITE_ONCE(challenge_count
, count
- 1);
3583 NET_INC_STATS(net
, LINUX_MIB_TCPCHALLENGEACK
);
3588 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3590 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3591 tp
->rx_opt
.ts_recent_stamp
= ktime_get_seconds();
3594 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3596 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3597 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3598 * extra check below makes sure this can only happen
3599 * for pure ACK frames. -DaveM
3601 * Not only, also it occurs for expired timestamps.
3604 if (tcp_paws_check(&tp
->rx_opt
, 0))
3605 tcp_store_ts_recent(tp
);
3609 /* This routine deals with acks during a TLP episode and ends an episode by
3610 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3612 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3614 struct tcp_sock
*tp
= tcp_sk(sk
);
3616 if (before(ack
, tp
->tlp_high_seq
))
3619 if (!tp
->tlp_retrans
) {
3620 /* TLP of new data has been acknowledged */
3621 tp
->tlp_high_seq
= 0;
3622 } else if (flag
& FLAG_DSACKING_ACK
) {
3623 /* This DSACK means original and TLP probe arrived; no loss */
3624 tp
->tlp_high_seq
= 0;
3625 } else if (after(ack
, tp
->tlp_high_seq
)) {
3626 /* ACK advances: there was a loss, so reduce cwnd. Reset
3627 * tlp_high_seq in tcp_init_cwnd_reduction()
3629 tcp_init_cwnd_reduction(sk
);
3630 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3631 tcp_end_cwnd_reduction(sk
);
3632 tcp_try_keep_open(sk
);
3633 NET_INC_STATS(sock_net(sk
),
3634 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3635 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3636 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3637 /* Pure dupack: original and TLP probe arrived; no loss */
3638 tp
->tlp_high_seq
= 0;
3642 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3644 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3646 if (icsk
->icsk_ca_ops
->in_ack_event
)
3647 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3650 /* Congestion control has updated the cwnd already. So if we're in
3651 * loss recovery then now we do any new sends (for FRTO) or
3652 * retransmits (for CA_Loss or CA_recovery) that make sense.
3654 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3656 struct tcp_sock
*tp
= tcp_sk(sk
);
3658 if (rexmit
== REXMIT_NONE
|| sk
->sk_state
== TCP_SYN_SENT
)
3661 if (unlikely(rexmit
== REXMIT_NEW
)) {
3662 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3664 if (after(tp
->snd_nxt
, tp
->high_seq
))
3668 tcp_xmit_retransmit_queue(sk
);
3671 /* Returns the number of packets newly acked or sacked by the current ACK */
3672 static u32
tcp_newly_delivered(struct sock
*sk
, u32 prior_delivered
, int flag
)
3674 const struct net
*net
= sock_net(sk
);
3675 struct tcp_sock
*tp
= tcp_sk(sk
);
3678 delivered
= tp
->delivered
- prior_delivered
;
3679 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVERED
, delivered
);
3680 if (flag
& FLAG_ECE
)
3681 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVEREDCE
, delivered
);
3686 /* This routine deals with incoming acks, but not outgoing ones. */
3687 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3689 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3690 struct tcp_sock
*tp
= tcp_sk(sk
);
3691 struct tcp_sacktag_state sack_state
;
3692 struct rate_sample rs
= { .prior_delivered
= 0 };
3693 u32 prior_snd_una
= tp
->snd_una
;
3694 bool is_sack_reneg
= tp
->is_sack_reneg
;
3695 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3696 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3698 int prior_packets
= tp
->packets_out
;
3699 u32 delivered
= tp
->delivered
;
3700 u32 lost
= tp
->lost
;
3701 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3704 sack_state
.first_sackt
= 0;
3705 sack_state
.rate
= &rs
;
3706 sack_state
.sack_delivered
= 0;
3708 /* We very likely will need to access rtx queue. */
3709 prefetch(sk
->tcp_rtx_queue
.rb_node
);
3711 /* If the ack is older than previous acks
3712 * then we can probably ignore it.
3714 if (before(ack
, prior_snd_una
)) {
3715 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3716 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3717 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3718 tcp_send_challenge_ack(sk
, skb
);
3724 /* If the ack includes data we haven't sent yet, discard
3725 * this segment (RFC793 Section 3.9).
3727 if (after(ack
, tp
->snd_nxt
))
3730 if (after(ack
, prior_snd_una
)) {
3731 flag
|= FLAG_SND_UNA_ADVANCED
;
3732 icsk
->icsk_retransmits
= 0;
3734 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3735 if (static_branch_unlikely(&clean_acked_data_enabled
.key
))
3736 if (icsk
->icsk_clean_acked
)
3737 icsk
->icsk_clean_acked(sk
, ack
);
3741 prior_fack
= tcp_is_sack(tp
) ? tcp_highest_sack_seq(tp
) : tp
->snd_una
;
3742 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3744 /* ts_recent update must be made after we are sure that the packet
3747 if (flag
& FLAG_UPDATE_TS_RECENT
)
3748 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3750 if ((flag
& (FLAG_SLOWPATH
| FLAG_SND_UNA_ADVANCED
)) ==
3751 FLAG_SND_UNA_ADVANCED
) {
3752 /* Window is constant, pure forward advance.
3753 * No more checks are required.
3754 * Note, we use the fact that SND.UNA>=SND.WL2.
3756 tcp_update_wl(tp
, ack_seq
);
3757 tcp_snd_una_update(tp
, ack
);
3758 flag
|= FLAG_WIN_UPDATE
;
3760 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3762 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3764 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3766 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3769 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3771 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3773 if (TCP_SKB_CB(skb
)->sacked
)
3774 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3777 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3779 ack_ev_flags
|= CA_ACK_ECE
;
3782 if (sack_state
.sack_delivered
)
3783 tcp_count_delivered(tp
, sack_state
.sack_delivered
,
3786 if (flag
& FLAG_WIN_UPDATE
)
3787 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3789 tcp_in_ack_event(sk
, ack_ev_flags
);
3792 /* This is a deviation from RFC3168 since it states that:
3793 * "When the TCP data sender is ready to set the CWR bit after reducing
3794 * the congestion window, it SHOULD set the CWR bit only on the first
3795 * new data packet that it transmits."
3796 * We accept CWR on pure ACKs to be more robust
3797 * with widely-deployed TCP implementations that do this.
3799 tcp_ecn_accept_cwr(sk
, skb
);
3801 /* We passed data and got it acked, remove any soft error
3802 * log. Something worked...
3804 sk
->sk_err_soft
= 0;
3805 icsk
->icsk_probes_out
= 0;
3806 tp
->rcv_tstamp
= tcp_jiffies32
;
3810 /* See if we can take anything off of the retransmit queue. */
3811 flag
|= tcp_clean_rtx_queue(sk
, prior_fack
, prior_snd_una
, &sack_state
,
3814 tcp_rack_update_reo_wnd(sk
, &rs
);
3816 if (tp
->tlp_high_seq
)
3817 tcp_process_tlp_ack(sk
, ack
, flag
);
3818 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3819 if (flag
& FLAG_SET_XMIT_TIMER
)
3820 tcp_set_xmit_timer(sk
);
3822 if (tcp_ack_is_dubious(sk
, flag
)) {
3823 if (!(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
))) {
3825 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3826 if (!(flag
& FLAG_DATA
))
3827 num_dupack
= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
3829 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3833 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3836 delivered
= tcp_newly_delivered(sk
, delivered
, flag
);
3837 lost
= tp
->lost
- lost
; /* freshly marked lost */
3838 rs
.is_ack_delayed
= !!(flag
& FLAG_ACK_MAYBE_DELAYED
);
3839 tcp_rate_gen(sk
, delivered
, lost
, is_sack_reneg
, sack_state
.rate
);
3840 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3841 tcp_xmit_recovery(sk
, rexmit
);
3845 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3846 if (flag
& FLAG_DSACKING_ACK
) {
3847 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3849 tcp_newly_delivered(sk
, delivered
, flag
);
3851 /* If this ack opens up a zero window, clear backoff. It was
3852 * being used to time the probes, and is probably far higher than
3853 * it needs to be for normal retransmission.
3857 if (tp
->tlp_high_seq
)
3858 tcp_process_tlp_ack(sk
, ack
, flag
);
3862 /* If data was SACKed, tag it and see if we should send more data.
3863 * If data was DSACKed, see if we can undo a cwnd reduction.
3865 if (TCP_SKB_CB(skb
)->sacked
) {
3866 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3868 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
3870 tcp_newly_delivered(sk
, delivered
, flag
);
3871 tcp_xmit_recovery(sk
, rexmit
);
3877 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3878 bool syn
, struct tcp_fastopen_cookie
*foc
,
3881 /* Valid only in SYN or SYN-ACK with an even length. */
3882 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3885 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3886 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3887 memcpy(foc
->val
, cookie
, len
);
3894 static bool smc_parse_options(const struct tcphdr
*th
,
3895 struct tcp_options_received
*opt_rx
,
3896 const unsigned char *ptr
,
3899 #if IS_ENABLED(CONFIG_SMC)
3900 if (static_branch_unlikely(&tcp_have_smc
)) {
3901 if (th
->syn
&& !(opsize
& 1) &&
3902 opsize
>= TCPOLEN_EXP_SMC_BASE
&&
3903 get_unaligned_be32(ptr
) == TCPOPT_SMC_MAGIC
) {
3912 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3915 static u16
tcp_parse_mss_option(const struct tcphdr
*th
, u16 user_mss
)
3917 const unsigned char *ptr
= (const unsigned char *)(th
+ 1);
3918 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3921 while (length
> 0) {
3922 int opcode
= *ptr
++;
3928 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3935 if (opsize
< 2) /* "silly options" */
3937 if (opsize
> length
)
3938 return mss
; /* fail on partial options */
3939 if (opcode
== TCPOPT_MSS
&& opsize
== TCPOLEN_MSS
) {
3940 u16 in_mss
= get_unaligned_be16(ptr
);
3943 if (user_mss
&& user_mss
< in_mss
)
3955 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3956 * But, this can also be called on packets in the established flow when
3957 * the fast version below fails.
3959 void tcp_parse_options(const struct net
*net
,
3960 const struct sk_buff
*skb
,
3961 struct tcp_options_received
*opt_rx
, int estab
,
3962 struct tcp_fastopen_cookie
*foc
)
3964 const unsigned char *ptr
;
3965 const struct tcphdr
*th
= tcp_hdr(skb
);
3966 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3968 ptr
= (const unsigned char *)(th
+ 1);
3969 opt_rx
->saw_tstamp
= 0;
3970 opt_rx
->saw_unknown
= 0;
3972 while (length
> 0) {
3973 int opcode
= *ptr
++;
3979 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3986 if (opsize
< 2) /* "silly options" */
3988 if (opsize
> length
)
3989 return; /* don't parse partial options */
3992 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3993 u16 in_mss
= get_unaligned_be16(ptr
);
3995 if (opt_rx
->user_mss
&&
3996 opt_rx
->user_mss
< in_mss
)
3997 in_mss
= opt_rx
->user_mss
;
3998 opt_rx
->mss_clamp
= in_mss
;
4003 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
4004 !estab
&& net
->ipv4
.sysctl_tcp_window_scaling
) {
4005 __u8 snd_wscale
= *(__u8
*)ptr
;
4006 opt_rx
->wscale_ok
= 1;
4007 if (snd_wscale
> TCP_MAX_WSCALE
) {
4008 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4012 snd_wscale
= TCP_MAX_WSCALE
;
4014 opt_rx
->snd_wscale
= snd_wscale
;
4017 case TCPOPT_TIMESTAMP
:
4018 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
4019 ((estab
&& opt_rx
->tstamp_ok
) ||
4020 (!estab
&& net
->ipv4
.sysctl_tcp_timestamps
))) {
4021 opt_rx
->saw_tstamp
= 1;
4022 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
4023 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
4026 case TCPOPT_SACK_PERM
:
4027 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
4028 !estab
&& net
->ipv4
.sysctl_tcp_sack
) {
4029 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
4030 tcp_sack_reset(opt_rx
);
4035 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
4036 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
4038 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
4041 #ifdef CONFIG_TCP_MD5SIG
4044 * The MD5 Hash has already been
4045 * checked (see tcp_v{4,6}_do_rcv()).
4049 case TCPOPT_FASTOPEN
:
4050 tcp_parse_fastopen_option(
4051 opsize
- TCPOLEN_FASTOPEN_BASE
,
4052 ptr
, th
->syn
, foc
, false);
4056 /* Fast Open option shares code 254 using a
4057 * 16 bits magic number.
4059 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
4060 get_unaligned_be16(ptr
) ==
4061 TCPOPT_FASTOPEN_MAGIC
) {
4062 tcp_parse_fastopen_option(opsize
-
4063 TCPOLEN_EXP_FASTOPEN_BASE
,
4064 ptr
+ 2, th
->syn
, foc
, true);
4068 if (smc_parse_options(th
, opt_rx
, ptr
, opsize
))
4071 opt_rx
->saw_unknown
= 1;
4075 opt_rx
->saw_unknown
= 1;
4082 EXPORT_SYMBOL(tcp_parse_options
);
4084 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
4086 const __be32
*ptr
= (const __be32
*)(th
+ 1);
4088 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
4089 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
4090 tp
->rx_opt
.saw_tstamp
= 1;
4092 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
4095 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
4097 tp
->rx_opt
.rcv_tsecr
= 0;
4103 /* Fast parse options. This hopes to only see timestamps.
4104 * If it is wrong it falls back on tcp_parse_options().
4106 static bool tcp_fast_parse_options(const struct net
*net
,
4107 const struct sk_buff
*skb
,
4108 const struct tcphdr
*th
, struct tcp_sock
*tp
)
4110 /* In the spirit of fast parsing, compare doff directly to constant
4111 * values. Because equality is used, short doff can be ignored here.
4113 if (th
->doff
== (sizeof(*th
) / 4)) {
4114 tp
->rx_opt
.saw_tstamp
= 0;
4116 } else if (tp
->rx_opt
.tstamp_ok
&&
4117 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
4118 if (tcp_parse_aligned_timestamp(tp
, th
))
4122 tcp_parse_options(net
, skb
, &tp
->rx_opt
, 1, NULL
);
4123 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
4124 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
4129 #ifdef CONFIG_TCP_MD5SIG
4131 * Parse MD5 Signature option
4133 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
4135 int length
= (th
->doff
<< 2) - sizeof(*th
);
4136 const u8
*ptr
= (const u8
*)(th
+ 1);
4138 /* If not enough data remaining, we can short cut */
4139 while (length
>= TCPOLEN_MD5SIG
) {
4140 int opcode
= *ptr
++;
4151 if (opsize
< 2 || opsize
> length
)
4153 if (opcode
== TCPOPT_MD5SIG
)
4154 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
4161 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
4164 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4166 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4167 * it can pass through stack. So, the following predicate verifies that
4168 * this segment is not used for anything but congestion avoidance or
4169 * fast retransmit. Moreover, we even are able to eliminate most of such
4170 * second order effects, if we apply some small "replay" window (~RTO)
4171 * to timestamp space.
4173 * All these measures still do not guarantee that we reject wrapped ACKs
4174 * on networks with high bandwidth, when sequence space is recycled fastly,
4175 * but it guarantees that such events will be very rare and do not affect
4176 * connection seriously. This doesn't look nice, but alas, PAWS is really
4179 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4180 * states that events when retransmit arrives after original data are rare.
4181 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4182 * the biggest problem on large power networks even with minor reordering.
4183 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4184 * up to bandwidth of 18Gigabit/sec. 8) ]
4187 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4189 const struct tcp_sock
*tp
= tcp_sk(sk
);
4190 const struct tcphdr
*th
= tcp_hdr(skb
);
4191 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4192 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4194 return (/* 1. Pure ACK with correct sequence number. */
4195 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4197 /* 2. ... and duplicate ACK. */
4198 ack
== tp
->snd_una
&&
4200 /* 3. ... and does not update window. */
4201 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4203 /* 4. ... and sits in replay window. */
4204 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4207 static inline bool tcp_paws_discard(const struct sock
*sk
,
4208 const struct sk_buff
*skb
)
4210 const struct tcp_sock
*tp
= tcp_sk(sk
);
4212 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4213 !tcp_disordered_ack(sk
, skb
);
4216 /* Check segment sequence number for validity.
4218 * Segment controls are considered valid, if the segment
4219 * fits to the window after truncation to the window. Acceptability
4220 * of data (and SYN, FIN, of course) is checked separately.
4221 * See tcp_data_queue(), for example.
4223 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4224 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4225 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4226 * (borrowed from freebsd)
4229 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4231 return !before(end_seq
, tp
->rcv_wup
) &&
4232 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4235 /* When we get a reset we do this. */
4236 void tcp_reset(struct sock
*sk
, struct sk_buff
*skb
)
4238 trace_tcp_receive_reset(sk
);
4240 if (sk_is_mptcp(sk
))
4241 mptcp_incoming_options(sk
, skb
);
4243 /* We want the right error as BSD sees it (and indeed as we do). */
4244 switch (sk
->sk_state
) {
4246 sk
->sk_err
= ECONNREFUSED
;
4248 case TCP_CLOSE_WAIT
:
4254 sk
->sk_err
= ECONNRESET
;
4256 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4259 tcp_write_queue_purge(sk
);
4262 if (!sock_flag(sk
, SOCK_DEAD
))
4263 sk
->sk_error_report(sk
);
4267 * Process the FIN bit. This now behaves as it is supposed to work
4268 * and the FIN takes effect when it is validly part of sequence
4269 * space. Not before when we get holes.
4271 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4272 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4275 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4276 * close and we go into CLOSING (and later onto TIME-WAIT)
4278 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4280 void tcp_fin(struct sock
*sk
)
4282 struct tcp_sock
*tp
= tcp_sk(sk
);
4284 inet_csk_schedule_ack(sk
);
4286 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4287 sock_set_flag(sk
, SOCK_DONE
);
4289 switch (sk
->sk_state
) {
4291 case TCP_ESTABLISHED
:
4292 /* Move to CLOSE_WAIT */
4293 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4294 inet_csk_enter_pingpong_mode(sk
);
4297 case TCP_CLOSE_WAIT
:
4299 /* Received a retransmission of the FIN, do
4304 /* RFC793: Remain in the LAST-ACK state. */
4308 /* This case occurs when a simultaneous close
4309 * happens, we must ack the received FIN and
4310 * enter the CLOSING state.
4313 tcp_set_state(sk
, TCP_CLOSING
);
4316 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4318 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4321 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4322 * cases we should never reach this piece of code.
4324 pr_err("%s: Impossible, sk->sk_state=%d\n",
4325 __func__
, sk
->sk_state
);
4329 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4330 * Probably, we should reset in this case. For now drop them.
4332 skb_rbtree_purge(&tp
->out_of_order_queue
);
4333 if (tcp_is_sack(tp
))
4334 tcp_sack_reset(&tp
->rx_opt
);
4337 if (!sock_flag(sk
, SOCK_DEAD
)) {
4338 sk
->sk_state_change(sk
);
4340 /* Do not send POLL_HUP for half duplex close. */
4341 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4342 sk
->sk_state
== TCP_CLOSE
)
4343 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4345 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4349 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4352 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4353 if (before(seq
, sp
->start_seq
))
4354 sp
->start_seq
= seq
;
4355 if (after(end_seq
, sp
->end_seq
))
4356 sp
->end_seq
= end_seq
;
4362 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4364 struct tcp_sock
*tp
= tcp_sk(sk
);
4366 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4369 if (before(seq
, tp
->rcv_nxt
))
4370 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4372 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4374 NET_INC_STATS(sock_net(sk
), mib_idx
);
4376 tp
->rx_opt
.dsack
= 1;
4377 tp
->duplicate_sack
[0].start_seq
= seq
;
4378 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4382 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4384 struct tcp_sock
*tp
= tcp_sk(sk
);
4386 if (!tp
->rx_opt
.dsack
)
4387 tcp_dsack_set(sk
, seq
, end_seq
);
4389 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4392 static void tcp_rcv_spurious_retrans(struct sock
*sk
, const struct sk_buff
*skb
)
4394 /* When the ACK path fails or drops most ACKs, the sender would
4395 * timeout and spuriously retransmit the same segment repeatedly.
4396 * The receiver remembers and reflects via DSACKs. Leverage the
4397 * DSACK state and change the txhash to re-route speculatively.
4399 if (TCP_SKB_CB(skb
)->seq
== tcp_sk(sk
)->duplicate_sack
[0].start_seq
) {
4400 sk_rethink_txhash(sk
);
4401 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDUPLICATEDATAREHASH
);
4405 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4407 struct tcp_sock
*tp
= tcp_sk(sk
);
4409 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4410 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4411 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4412 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4414 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4415 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4417 tcp_rcv_spurious_retrans(sk
, skb
);
4418 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4419 end_seq
= tp
->rcv_nxt
;
4420 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4427 /* These routines update the SACK block as out-of-order packets arrive or
4428 * in-order packets close up the sequence space.
4430 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4433 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4434 struct tcp_sack_block
*swalk
= sp
+ 1;
4436 /* See if the recent change to the first SACK eats into
4437 * or hits the sequence space of other SACK blocks, if so coalesce.
4439 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4440 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4443 /* Zap SWALK, by moving every further SACK up by one slot.
4444 * Decrease num_sacks.
4446 tp
->rx_opt
.num_sacks
--;
4447 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4456 static void tcp_sack_compress_send_ack(struct sock
*sk
)
4458 struct tcp_sock
*tp
= tcp_sk(sk
);
4460 if (!tp
->compressed_ack
)
4463 if (hrtimer_try_to_cancel(&tp
->compressed_ack_timer
) == 1)
4466 /* Since we have to send one ack finally,
4467 * substract one from tp->compressed_ack to keep
4468 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4470 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPACKCOMPRESSED
,
4471 tp
->compressed_ack
- 1);
4473 tp
->compressed_ack
= 0;
4477 /* Reasonable amount of sack blocks included in TCP SACK option
4478 * The max is 4, but this becomes 3 if TCP timestamps are there.
4479 * Given that SACK packets might be lost, be conservative and use 2.
4481 #define TCP_SACK_BLOCKS_EXPECTED 2
4483 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4485 struct tcp_sock
*tp
= tcp_sk(sk
);
4486 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4487 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4493 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4494 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4495 if (this_sack
>= TCP_SACK_BLOCKS_EXPECTED
)
4496 tcp_sack_compress_send_ack(sk
);
4497 /* Rotate this_sack to the first one. */
4498 for (; this_sack
> 0; this_sack
--, sp
--)
4499 swap(*sp
, *(sp
- 1));
4501 tcp_sack_maybe_coalesce(tp
);
4506 if (this_sack
>= TCP_SACK_BLOCKS_EXPECTED
)
4507 tcp_sack_compress_send_ack(sk
);
4509 /* Could not find an adjacent existing SACK, build a new one,
4510 * put it at the front, and shift everyone else down. We
4511 * always know there is at least one SACK present already here.
4513 * If the sack array is full, forget about the last one.
4515 if (this_sack
>= TCP_NUM_SACKS
) {
4517 tp
->rx_opt
.num_sacks
--;
4520 for (; this_sack
> 0; this_sack
--, sp
--)
4524 /* Build the new head SACK, and we're done. */
4525 sp
->start_seq
= seq
;
4526 sp
->end_seq
= end_seq
;
4527 tp
->rx_opt
.num_sacks
++;
4530 /* RCV.NXT advances, some SACKs should be eaten. */
4532 static void tcp_sack_remove(struct tcp_sock
*tp
)
4534 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4535 int num_sacks
= tp
->rx_opt
.num_sacks
;
4538 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4539 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4540 tp
->rx_opt
.num_sacks
= 0;
4544 for (this_sack
= 0; this_sack
< num_sacks
;) {
4545 /* Check if the start of the sack is covered by RCV.NXT. */
4546 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4549 /* RCV.NXT must cover all the block! */
4550 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4552 /* Zap this SACK, by moving forward any other SACKS. */
4553 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4554 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4561 tp
->rx_opt
.num_sacks
= num_sacks
;
4565 * tcp_try_coalesce - try to merge skb to prior one
4568 * @from: buffer to add in queue
4569 * @fragstolen: pointer to boolean
4571 * Before queueing skb @from after @to, try to merge them
4572 * to reduce overall memory use and queue lengths, if cost is small.
4573 * Packets in ofo or receive queues can stay a long time.
4574 * Better try to coalesce them right now to avoid future collapses.
4575 * Returns true if caller should free @from instead of queueing it
4577 static bool tcp_try_coalesce(struct sock
*sk
,
4579 struct sk_buff
*from
,
4584 *fragstolen
= false;
4586 /* Its possible this segment overlaps with prior segment in queue */
4587 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4590 if (!mptcp_skb_can_collapse(to
, from
))
4593 #ifdef CONFIG_TLS_DEVICE
4594 if (from
->decrypted
!= to
->decrypted
)
4598 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4601 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4602 sk_mem_charge(sk
, delta
);
4603 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4604 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4605 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4606 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4608 if (TCP_SKB_CB(from
)->has_rxtstamp
) {
4609 TCP_SKB_CB(to
)->has_rxtstamp
= true;
4610 to
->tstamp
= from
->tstamp
;
4611 skb_hwtstamps(to
)->hwtstamp
= skb_hwtstamps(from
)->hwtstamp
;
4617 static bool tcp_ooo_try_coalesce(struct sock
*sk
,
4619 struct sk_buff
*from
,
4622 bool res
= tcp_try_coalesce(sk
, to
, from
, fragstolen
);
4624 /* In case tcp_drop() is called later, update to->gso_segs */
4626 u32 gso_segs
= max_t(u16
, 1, skb_shinfo(to
)->gso_segs
) +
4627 max_t(u16
, 1, skb_shinfo(from
)->gso_segs
);
4629 skb_shinfo(to
)->gso_segs
= min_t(u32
, gso_segs
, 0xFFFF);
4634 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4636 sk_drops_add(sk
, skb
);
4640 /* This one checks to see if we can put data from the
4641 * out_of_order queue into the receive_queue.
4643 static void tcp_ofo_queue(struct sock
*sk
)
4645 struct tcp_sock
*tp
= tcp_sk(sk
);
4646 __u32 dsack_high
= tp
->rcv_nxt
;
4647 bool fin
, fragstolen
, eaten
;
4648 struct sk_buff
*skb
, *tail
;
4651 p
= rb_first(&tp
->out_of_order_queue
);
4654 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4657 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4658 __u32 dsack
= dsack_high
;
4659 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4660 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4661 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4664 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4666 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4671 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4672 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4673 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4674 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4676 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4678 kfree_skb_partial(skb
, fragstolen
);
4680 if (unlikely(fin
)) {
4682 /* tcp_fin() purges tp->out_of_order_queue,
4683 * so we must end this loop right now.
4690 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4691 static int tcp_prune_queue(struct sock
*sk
);
4693 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4696 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4697 !sk_rmem_schedule(sk
, skb
, size
)) {
4699 if (tcp_prune_queue(sk
) < 0)
4702 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4703 if (!tcp_prune_ofo_queue(sk
))
4710 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4712 struct tcp_sock
*tp
= tcp_sk(sk
);
4713 struct rb_node
**p
, *parent
;
4714 struct sk_buff
*skb1
;
4718 tcp_ecn_check_ce(sk
, skb
);
4720 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4721 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4722 sk
->sk_data_ready(sk
);
4727 /* Disable header prediction. */
4729 inet_csk_schedule_ack(sk
);
4731 tp
->rcv_ooopack
+= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
4732 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4733 seq
= TCP_SKB_CB(skb
)->seq
;
4734 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4736 p
= &tp
->out_of_order_queue
.rb_node
;
4737 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4738 /* Initial out of order segment, build 1 SACK. */
4739 if (tcp_is_sack(tp
)) {
4740 tp
->rx_opt
.num_sacks
= 1;
4741 tp
->selective_acks
[0].start_seq
= seq
;
4742 tp
->selective_acks
[0].end_seq
= end_seq
;
4744 rb_link_node(&skb
->rbnode
, NULL
, p
);
4745 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4746 tp
->ooo_last_skb
= skb
;
4750 /* In the typical case, we are adding an skb to the end of the list.
4751 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4753 if (tcp_ooo_try_coalesce(sk
, tp
->ooo_last_skb
,
4754 skb
, &fragstolen
)) {
4756 /* For non sack flows, do not grow window to force DUPACK
4757 * and trigger fast retransmit.
4759 if (tcp_is_sack(tp
))
4760 tcp_grow_window(sk
, skb
);
4761 kfree_skb_partial(skb
, fragstolen
);
4765 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4766 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4767 parent
= &tp
->ooo_last_skb
->rbnode
;
4768 p
= &parent
->rb_right
;
4772 /* Find place to insert this segment. Handle overlaps on the way. */
4776 skb1
= rb_to_skb(parent
);
4777 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4778 p
= &parent
->rb_left
;
4781 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4782 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4783 /* All the bits are present. Drop. */
4784 NET_INC_STATS(sock_net(sk
),
4785 LINUX_MIB_TCPOFOMERGE
);
4788 tcp_dsack_set(sk
, seq
, end_seq
);
4791 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4792 /* Partial overlap. */
4793 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4795 /* skb's seq == skb1's seq and skb covers skb1.
4796 * Replace skb1 with skb.
4798 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4799 &tp
->out_of_order_queue
);
4800 tcp_dsack_extend(sk
,
4801 TCP_SKB_CB(skb1
)->seq
,
4802 TCP_SKB_CB(skb1
)->end_seq
);
4803 NET_INC_STATS(sock_net(sk
),
4804 LINUX_MIB_TCPOFOMERGE
);
4808 } else if (tcp_ooo_try_coalesce(sk
, skb1
,
4809 skb
, &fragstolen
)) {
4812 p
= &parent
->rb_right
;
4815 /* Insert segment into RB tree. */
4816 rb_link_node(&skb
->rbnode
, parent
, p
);
4817 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4820 /* Remove other segments covered by skb. */
4821 while ((skb1
= skb_rb_next(skb
)) != NULL
) {
4822 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4824 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4825 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4829 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4830 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4831 TCP_SKB_CB(skb1
)->end_seq
);
4832 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4835 /* If there is no skb after us, we are the last_skb ! */
4837 tp
->ooo_last_skb
= skb
;
4840 if (tcp_is_sack(tp
))
4841 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4844 /* For non sack flows, do not grow window to force DUPACK
4845 * and trigger fast retransmit.
4847 if (tcp_is_sack(tp
))
4848 tcp_grow_window(sk
, skb
);
4850 skb_set_owner_r(skb
, sk
);
4854 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
,
4858 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4861 tcp_try_coalesce(sk
, tail
,
4862 skb
, fragstolen
)) ? 1 : 0;
4863 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4865 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4866 skb_set_owner_r(skb
, sk
);
4871 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4873 struct sk_buff
*skb
;
4881 if (size
> PAGE_SIZE
) {
4882 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4884 data_len
= npages
<< PAGE_SHIFT
;
4885 size
= data_len
+ (size
& ~PAGE_MASK
);
4887 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4888 PAGE_ALLOC_COSTLY_ORDER
,
4889 &err
, sk
->sk_allocation
);
4893 skb_put(skb
, size
- data_len
);
4894 skb
->data_len
= data_len
;
4897 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
4898 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
4902 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4906 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4907 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4908 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4910 if (tcp_queue_rcv(sk
, skb
, &fragstolen
)) {
4911 WARN_ON_ONCE(fragstolen
); /* should not happen */
4923 void tcp_data_ready(struct sock
*sk
)
4925 const struct tcp_sock
*tp
= tcp_sk(sk
);
4926 int avail
= tp
->rcv_nxt
- tp
->copied_seq
;
4928 if (avail
< sk
->sk_rcvlowat
&& !tcp_rmem_pressure(sk
) &&
4929 !sock_flag(sk
, SOCK_DONE
) &&
4930 tcp_receive_window(tp
) > inet_csk(sk
)->icsk_ack
.rcv_mss
)
4933 sk
->sk_data_ready(sk
);
4936 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4938 struct tcp_sock
*tp
= tcp_sk(sk
);
4942 if (sk_is_mptcp(sk
))
4943 mptcp_incoming_options(sk
, skb
);
4945 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4950 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4952 tp
->rx_opt
.dsack
= 0;
4954 /* Queue data for delivery to the user.
4955 * Packets in sequence go to the receive queue.
4956 * Out of sequence packets to the out_of_order_queue.
4958 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4959 if (tcp_receive_window(tp
) == 0) {
4960 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
4964 /* Ok. In sequence. In window. */
4966 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4967 sk_forced_mem_schedule(sk
, skb
->truesize
);
4968 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
4969 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
4970 sk
->sk_data_ready(sk
);
4974 eaten
= tcp_queue_rcv(sk
, skb
, &fragstolen
);
4976 tcp_event_data_recv(sk
, skb
);
4977 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4980 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4983 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4984 * gap in queue is filled.
4986 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4987 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
4990 if (tp
->rx_opt
.num_sacks
)
4991 tcp_sack_remove(tp
);
4993 tcp_fast_path_check(sk
);
4996 kfree_skb_partial(skb
, fragstolen
);
4997 if (!sock_flag(sk
, SOCK_DEAD
))
5002 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
5003 tcp_rcv_spurious_retrans(sk
, skb
);
5004 /* A retransmit, 2nd most common case. Force an immediate ack. */
5005 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
5006 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
5009 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
5010 inet_csk_schedule_ack(sk
);
5016 /* Out of window. F.e. zero window probe. */
5017 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
5020 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5021 /* Partial packet, seq < rcv_next < end_seq */
5022 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
5024 /* If window is closed, drop tail of packet. But after
5025 * remembering D-SACK for its head made in previous line.
5027 if (!tcp_receive_window(tp
)) {
5028 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
5034 tcp_data_queue_ofo(sk
, skb
);
5037 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
5040 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
5042 return skb_rb_next(skb
);
5045 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
5046 struct sk_buff_head
*list
,
5047 struct rb_root
*root
)
5049 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
5052 __skb_unlink(skb
, list
);
5054 rb_erase(&skb
->rbnode
, root
);
5057 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
5062 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5063 void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
5065 struct rb_node
**p
= &root
->rb_node
;
5066 struct rb_node
*parent
= NULL
;
5067 struct sk_buff
*skb1
;
5071 skb1
= rb_to_skb(parent
);
5072 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
5073 p
= &parent
->rb_left
;
5075 p
= &parent
->rb_right
;
5077 rb_link_node(&skb
->rbnode
, parent
, p
);
5078 rb_insert_color(&skb
->rbnode
, root
);
5081 /* Collapse contiguous sequence of skbs head..tail with
5082 * sequence numbers start..end.
5084 * If tail is NULL, this means until the end of the queue.
5086 * Segments with FIN/SYN are not collapsed (only because this
5090 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
5091 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
5093 struct sk_buff
*skb
= head
, *n
;
5094 struct sk_buff_head tmp
;
5097 /* First, check that queue is collapsible and find
5098 * the point where collapsing can be useful.
5101 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
5102 n
= tcp_skb_next(skb
, list
);
5104 /* No new bits? It is possible on ofo queue. */
5105 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
5106 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
5112 /* The first skb to collapse is:
5114 * - bloated or contains data before "start" or
5115 * overlaps to the next one and mptcp allow collapsing.
5117 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
5118 (tcp_win_from_space(sk
, skb
->truesize
) > skb
->len
||
5119 before(TCP_SKB_CB(skb
)->seq
, start
))) {
5120 end_of_skbs
= false;
5124 if (n
&& n
!= tail
&& mptcp_skb_can_collapse(skb
, n
) &&
5125 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
5126 end_of_skbs
= false;
5130 /* Decided to skip this, advance start seq. */
5131 start
= TCP_SKB_CB(skb
)->end_seq
;
5134 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
5137 __skb_queue_head_init(&tmp
);
5139 while (before(start
, end
)) {
5140 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
5141 struct sk_buff
*nskb
;
5143 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
5147 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
5148 #ifdef CONFIG_TLS_DEVICE
5149 nskb
->decrypted
= skb
->decrypted
;
5151 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
5153 __skb_queue_before(list
, skb
, nskb
);
5155 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
5156 skb_set_owner_r(nskb
, sk
);
5157 mptcp_skb_ext_move(nskb
, skb
);
5159 /* Copy data, releasing collapsed skbs. */
5161 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
5162 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
5166 size
= min(copy
, size
);
5167 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
5169 TCP_SKB_CB(nskb
)->end_seq
+= size
;
5173 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
5174 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
5177 !mptcp_skb_can_collapse(nskb
, skb
) ||
5178 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
5180 #ifdef CONFIG_TLS_DEVICE
5181 if (skb
->decrypted
!= nskb
->decrypted
)
5188 skb_queue_walk_safe(&tmp
, skb
, n
)
5189 tcp_rbtree_insert(root
, skb
);
5192 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5193 * and tcp_collapse() them until all the queue is collapsed.
5195 static void tcp_collapse_ofo_queue(struct sock
*sk
)
5197 struct tcp_sock
*tp
= tcp_sk(sk
);
5198 u32 range_truesize
, sum_tiny
= 0;
5199 struct sk_buff
*skb
, *head
;
5202 skb
= skb_rb_first(&tp
->out_of_order_queue
);
5205 tp
->ooo_last_skb
= skb_rb_last(&tp
->out_of_order_queue
);
5208 start
= TCP_SKB_CB(skb
)->seq
;
5209 end
= TCP_SKB_CB(skb
)->end_seq
;
5210 range_truesize
= skb
->truesize
;
5212 for (head
= skb
;;) {
5213 skb
= skb_rb_next(skb
);
5215 /* Range is terminated when we see a gap or when
5216 * we are at the queue end.
5219 after(TCP_SKB_CB(skb
)->seq
, end
) ||
5220 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
5221 /* Do not attempt collapsing tiny skbs */
5222 if (range_truesize
!= head
->truesize
||
5223 end
- start
>= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM
)) {
5224 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
5225 head
, skb
, start
, end
);
5227 sum_tiny
+= range_truesize
;
5228 if (sum_tiny
> sk
->sk_rcvbuf
>> 3)
5234 range_truesize
+= skb
->truesize
;
5235 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
5236 start
= TCP_SKB_CB(skb
)->seq
;
5237 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
5238 end
= TCP_SKB_CB(skb
)->end_seq
;
5243 * Clean the out-of-order queue to make room.
5244 * We drop high sequences packets to :
5245 * 1) Let a chance for holes to be filled.
5246 * 2) not add too big latencies if thousands of packets sit there.
5247 * (But if application shrinks SO_RCVBUF, we could still end up
5248 * freeing whole queue here)
5249 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5251 * Return true if queue has shrunk.
5253 static bool tcp_prune_ofo_queue(struct sock
*sk
)
5255 struct tcp_sock
*tp
= tcp_sk(sk
);
5256 struct rb_node
*node
, *prev
;
5259 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
5262 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
5263 goal
= sk
->sk_rcvbuf
>> 3;
5264 node
= &tp
->ooo_last_skb
->rbnode
;
5266 prev
= rb_prev(node
);
5267 rb_erase(node
, &tp
->out_of_order_queue
);
5268 goal
-= rb_to_skb(node
)->truesize
;
5269 tcp_drop(sk
, rb_to_skb(node
));
5270 if (!prev
|| goal
<= 0) {
5272 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
5273 !tcp_under_memory_pressure(sk
))
5275 goal
= sk
->sk_rcvbuf
>> 3;
5279 tp
->ooo_last_skb
= rb_to_skb(prev
);
5281 /* Reset SACK state. A conforming SACK implementation will
5282 * do the same at a timeout based retransmit. When a connection
5283 * is in a sad state like this, we care only about integrity
5284 * of the connection not performance.
5286 if (tp
->rx_opt
.sack_ok
)
5287 tcp_sack_reset(&tp
->rx_opt
);
5291 /* Reduce allocated memory if we can, trying to get
5292 * the socket within its memory limits again.
5294 * Return less than zero if we should start dropping frames
5295 * until the socket owning process reads some of the data
5296 * to stabilize the situation.
5298 static int tcp_prune_queue(struct sock
*sk
)
5300 struct tcp_sock
*tp
= tcp_sk(sk
);
5302 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
5304 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
5305 tcp_clamp_window(sk
);
5306 else if (tcp_under_memory_pressure(sk
))
5307 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
5309 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5312 tcp_collapse_ofo_queue(sk
);
5313 if (!skb_queue_empty(&sk
->sk_receive_queue
))
5314 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
5315 skb_peek(&sk
->sk_receive_queue
),
5317 tp
->copied_seq
, tp
->rcv_nxt
);
5320 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5323 /* Collapsing did not help, destructive actions follow.
5324 * This must not ever occur. */
5326 tcp_prune_ofo_queue(sk
);
5328 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5331 /* If we are really being abused, tell the caller to silently
5332 * drop receive data on the floor. It will get retransmitted
5333 * and hopefully then we'll have sufficient space.
5335 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
5337 /* Massive buffer overcommit. */
5342 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
5344 const struct tcp_sock
*tp
= tcp_sk(sk
);
5346 /* If the user specified a specific send buffer setting, do
5349 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5352 /* If we are under global TCP memory pressure, do not expand. */
5353 if (tcp_under_memory_pressure(sk
))
5356 /* If we are under soft global TCP memory pressure, do not expand. */
5357 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5360 /* If we filled the congestion window, do not expand. */
5361 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5367 static void tcp_new_space(struct sock
*sk
)
5369 struct tcp_sock
*tp
= tcp_sk(sk
);
5371 if (tcp_should_expand_sndbuf(sk
)) {
5372 tcp_sndbuf_expand(sk
);
5373 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5376 sk
->sk_write_space(sk
);
5379 static void tcp_check_space(struct sock
*sk
)
5381 /* pairs with tcp_poll() */
5383 if (sk
->sk_socket
&&
5384 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5386 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5387 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5391 static inline void tcp_data_snd_check(struct sock
*sk
)
5393 tcp_push_pending_frames(sk
);
5394 tcp_check_space(sk
);
5398 * Check if sending an ack is needed.
5400 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5402 struct tcp_sock
*tp
= tcp_sk(sk
);
5403 unsigned long rtt
, delay
;
5405 /* More than one full frame received... */
5406 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5407 /* ... and right edge of window advances far enough.
5408 * (tcp_recvmsg() will send ACK otherwise).
5409 * If application uses SO_RCVLOWAT, we want send ack now if
5410 * we have not received enough bytes to satisfy the condition.
5412 (tp
->rcv_nxt
- tp
->copied_seq
< sk
->sk_rcvlowat
||
5413 __tcp_select_window(sk
) >= tp
->rcv_wnd
)) ||
5414 /* We ACK each frame or... */
5415 tcp_in_quickack_mode(sk
) ||
5416 /* Protocol state mandates a one-time immediate ACK */
5417 inet_csk(sk
)->icsk_ack
.pending
& ICSK_ACK_NOW
) {
5423 if (!ofo_possible
|| RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
5424 tcp_send_delayed_ack(sk
);
5428 if (!tcp_is_sack(tp
) ||
5429 tp
->compressed_ack
>= sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_nr
)
5432 if (tp
->compressed_ack_rcv_nxt
!= tp
->rcv_nxt
) {
5433 tp
->compressed_ack_rcv_nxt
= tp
->rcv_nxt
;
5434 tp
->dup_ack_counter
= 0;
5436 if (tp
->dup_ack_counter
< TCP_FASTRETRANS_THRESH
) {
5437 tp
->dup_ack_counter
++;
5440 tp
->compressed_ack
++;
5441 if (hrtimer_is_queued(&tp
->compressed_ack_timer
))
5444 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5446 rtt
= tp
->rcv_rtt_est
.rtt_us
;
5447 if (tp
->srtt_us
&& tp
->srtt_us
< rtt
)
5450 delay
= min_t(unsigned long, sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_delay_ns
,
5451 rtt
* (NSEC_PER_USEC
>> 3)/20);
5453 hrtimer_start_range_ns(&tp
->compressed_ack_timer
, ns_to_ktime(delay
),
5454 sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_slack_ns
,
5455 HRTIMER_MODE_REL_PINNED_SOFT
);
5458 static inline void tcp_ack_snd_check(struct sock
*sk
)
5460 if (!inet_csk_ack_scheduled(sk
)) {
5461 /* We sent a data segment already. */
5464 __tcp_ack_snd_check(sk
, 1);
5468 * This routine is only called when we have urgent data
5469 * signaled. Its the 'slow' part of tcp_urg. It could be
5470 * moved inline now as tcp_urg is only called from one
5471 * place. We handle URGent data wrong. We have to - as
5472 * BSD still doesn't use the correction from RFC961.
5473 * For 1003.1g we should support a new option TCP_STDURG to permit
5474 * either form (or just set the sysctl tcp_stdurg).
5477 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5479 struct tcp_sock
*tp
= tcp_sk(sk
);
5480 u32 ptr
= ntohs(th
->urg_ptr
);
5482 if (ptr
&& !sock_net(sk
)->ipv4
.sysctl_tcp_stdurg
)
5484 ptr
+= ntohl(th
->seq
);
5486 /* Ignore urgent data that we've already seen and read. */
5487 if (after(tp
->copied_seq
, ptr
))
5490 /* Do not replay urg ptr.
5492 * NOTE: interesting situation not covered by specs.
5493 * Misbehaving sender may send urg ptr, pointing to segment,
5494 * which we already have in ofo queue. We are not able to fetch
5495 * such data and will stay in TCP_URG_NOTYET until will be eaten
5496 * by recvmsg(). Seems, we are not obliged to handle such wicked
5497 * situations. But it is worth to think about possibility of some
5498 * DoSes using some hypothetical application level deadlock.
5500 if (before(ptr
, tp
->rcv_nxt
))
5503 /* Do we already have a newer (or duplicate) urgent pointer? */
5504 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5507 /* Tell the world about our new urgent pointer. */
5510 /* We may be adding urgent data when the last byte read was
5511 * urgent. To do this requires some care. We cannot just ignore
5512 * tp->copied_seq since we would read the last urgent byte again
5513 * as data, nor can we alter copied_seq until this data arrives
5514 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5516 * NOTE. Double Dutch. Rendering to plain English: author of comment
5517 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5518 * and expect that both A and B disappear from stream. This is _wrong_.
5519 * Though this happens in BSD with high probability, this is occasional.
5520 * Any application relying on this is buggy. Note also, that fix "works"
5521 * only in this artificial test. Insert some normal data between A and B and we will
5522 * decline of BSD again. Verdict: it is better to remove to trap
5525 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5526 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5527 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5529 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5530 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5535 tp
->urg_data
= TCP_URG_NOTYET
;
5536 WRITE_ONCE(tp
->urg_seq
, ptr
);
5538 /* Disable header prediction. */
5542 /* This is the 'fast' part of urgent handling. */
5543 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5545 struct tcp_sock
*tp
= tcp_sk(sk
);
5547 /* Check if we get a new urgent pointer - normally not. */
5549 tcp_check_urg(sk
, th
);
5551 /* Do we wait for any urgent data? - normally not... */
5552 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5553 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5556 /* Is the urgent pointer pointing into this packet? */
5557 if (ptr
< skb
->len
) {
5559 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5561 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5562 if (!sock_flag(sk
, SOCK_DEAD
))
5563 sk
->sk_data_ready(sk
);
5568 /* Accept RST for rcv_nxt - 1 after a FIN.
5569 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5570 * FIN is sent followed by a RST packet. The RST is sent with the same
5571 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5572 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5573 * ACKs on the closed socket. In addition middleboxes can drop either the
5574 * challenge ACK or a subsequent RST.
5576 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5578 struct tcp_sock
*tp
= tcp_sk(sk
);
5580 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5581 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5585 /* Does PAWS and seqno based validation of an incoming segment, flags will
5586 * play significant role here.
5588 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5589 const struct tcphdr
*th
, int syn_inerr
)
5591 struct tcp_sock
*tp
= tcp_sk(sk
);
5592 bool rst_seq_match
= false;
5594 /* RFC1323: H1. Apply PAWS check first. */
5595 if (tcp_fast_parse_options(sock_net(sk
), skb
, th
, tp
) &&
5596 tp
->rx_opt
.saw_tstamp
&&
5597 tcp_paws_discard(sk
, skb
)) {
5599 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5600 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5601 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5602 &tp
->last_oow_ack_time
))
5603 tcp_send_dupack(sk
, skb
);
5606 /* Reset is accepted even if it did not pass PAWS. */
5609 /* Step 1: check sequence number */
5610 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5611 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5612 * (RST) segments are validated by checking their SEQ-fields."
5613 * And page 69: "If an incoming segment is not acceptable,
5614 * an acknowledgment should be sent in reply (unless the RST
5615 * bit is set, if so drop the segment and return)".
5620 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5621 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5622 &tp
->last_oow_ack_time
))
5623 tcp_send_dupack(sk
, skb
);
5624 } else if (tcp_reset_check(sk
, skb
)) {
5630 /* Step 2: check RST bit */
5632 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5633 * FIN and SACK too if available):
5634 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5635 * the right-most SACK block,
5637 * RESET the connection
5639 * Send a challenge ACK
5641 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5642 tcp_reset_check(sk
, skb
)) {
5643 rst_seq_match
= true;
5644 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5645 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5646 int max_sack
= sp
[0].end_seq
;
5649 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5651 max_sack
= after(sp
[this_sack
].end_seq
,
5653 sp
[this_sack
].end_seq
: max_sack
;
5656 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5657 rst_seq_match
= true;
5663 /* Disable TFO if RST is out-of-order
5664 * and no data has been received
5665 * for current active TFO socket
5667 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
5668 sk
->sk_state
== TCP_ESTABLISHED
)
5669 tcp_fastopen_active_disable(sk
);
5670 tcp_send_challenge_ack(sk
, skb
);
5675 /* step 3: check security and precedence [ignored] */
5677 /* step 4: Check for a SYN
5678 * RFC 5961 4.2 : Send a challenge ack
5683 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5684 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5685 tcp_send_challenge_ack(sk
, skb
);
5689 bpf_skops_parse_hdr(sk
, skb
);
5699 * TCP receive function for the ESTABLISHED state.
5701 * It is split into a fast path and a slow path. The fast path is
5703 * - A zero window was announced from us - zero window probing
5704 * is only handled properly in the slow path.
5705 * - Out of order segments arrived.
5706 * - Urgent data is expected.
5707 * - There is no buffer space left
5708 * - Unexpected TCP flags/window values/header lengths are received
5709 * (detected by checking the TCP header against pred_flags)
5710 * - Data is sent in both directions. Fast path only supports pure senders
5711 * or pure receivers (this means either the sequence number or the ack
5712 * value must stay constant)
5713 * - Unexpected TCP option.
5715 * When these conditions are not satisfied it drops into a standard
5716 * receive procedure patterned after RFC793 to handle all cases.
5717 * The first three cases are guaranteed by proper pred_flags setting,
5718 * the rest is checked inline. Fast processing is turned on in
5719 * tcp_data_queue when everything is OK.
5721 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
)
5723 const struct tcphdr
*th
= (const struct tcphdr
*)skb
->data
;
5724 struct tcp_sock
*tp
= tcp_sk(sk
);
5725 unsigned int len
= skb
->len
;
5727 /* TCP congestion window tracking */
5728 trace_tcp_probe(sk
, skb
);
5730 tcp_mstamp_refresh(tp
);
5731 if (unlikely(!sk
->sk_rx_dst
))
5732 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5734 * Header prediction.
5735 * The code loosely follows the one in the famous
5736 * "30 instruction TCP receive" Van Jacobson mail.
5738 * Van's trick is to deposit buffers into socket queue
5739 * on a device interrupt, to call tcp_recv function
5740 * on the receive process context and checksum and copy
5741 * the buffer to user space. smart...
5743 * Our current scheme is not silly either but we take the
5744 * extra cost of the net_bh soft interrupt processing...
5745 * We do checksum and copy also but from device to kernel.
5748 tp
->rx_opt
.saw_tstamp
= 0;
5750 /* pred_flags is 0xS?10 << 16 + snd_wnd
5751 * if header_prediction is to be made
5752 * 'S' will always be tp->tcp_header_len >> 2
5753 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5754 * turn it off (when there are holes in the receive
5755 * space for instance)
5756 * PSH flag is ignored.
5759 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5760 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5761 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5762 int tcp_header_len
= tp
->tcp_header_len
;
5764 /* Timestamp header prediction: tcp_header_len
5765 * is automatically equal to th->doff*4 due to pred_flags
5769 /* Check timestamp */
5770 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5771 /* No? Slow path! */
5772 if (!tcp_parse_aligned_timestamp(tp
, th
))
5775 /* If PAWS failed, check it more carefully in slow path */
5776 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5779 /* DO NOT update ts_recent here, if checksum fails
5780 * and timestamp was corrupted part, it will result
5781 * in a hung connection since we will drop all
5782 * future packets due to the PAWS test.
5786 if (len
<= tcp_header_len
) {
5787 /* Bulk data transfer: sender */
5788 if (len
== tcp_header_len
) {
5789 /* Predicted packet is in window by definition.
5790 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5791 * Hence, check seq<=rcv_wup reduces to:
5793 if (tcp_header_len
==
5794 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5795 tp
->rcv_nxt
== tp
->rcv_wup
)
5796 tcp_store_ts_recent(tp
);
5798 /* We know that such packets are checksummed
5801 tcp_ack(sk
, skb
, 0);
5803 tcp_data_snd_check(sk
);
5804 /* When receiving pure ack in fast path, update
5805 * last ts ecr directly instead of calling
5806 * tcp_rcv_rtt_measure_ts()
5808 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
5810 } else { /* Header too small */
5811 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5816 bool fragstolen
= false;
5818 if (tcp_checksum_complete(skb
))
5821 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5824 /* Predicted packet is in window by definition.
5825 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5826 * Hence, check seq<=rcv_wup reduces to:
5828 if (tcp_header_len
==
5829 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5830 tp
->rcv_nxt
== tp
->rcv_wup
)
5831 tcp_store_ts_recent(tp
);
5833 tcp_rcv_rtt_measure_ts(sk
, skb
);
5835 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5837 /* Bulk data transfer: receiver */
5838 __skb_pull(skb
, tcp_header_len
);
5839 eaten
= tcp_queue_rcv(sk
, skb
, &fragstolen
);
5841 tcp_event_data_recv(sk
, skb
);
5843 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5844 /* Well, only one small jumplet in fast path... */
5845 tcp_ack(sk
, skb
, FLAG_DATA
);
5846 tcp_data_snd_check(sk
);
5847 if (!inet_csk_ack_scheduled(sk
))
5850 tcp_update_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5853 __tcp_ack_snd_check(sk
, 0);
5856 kfree_skb_partial(skb
, fragstolen
);
5863 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5866 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5870 * Standard slow path.
5873 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5877 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5880 tcp_rcv_rtt_measure_ts(sk
, skb
);
5882 /* Process urgent data. */
5883 tcp_urg(sk
, skb
, th
);
5885 /* step 7: process the segment text */
5886 tcp_data_queue(sk
, skb
);
5888 tcp_data_snd_check(sk
);
5889 tcp_ack_snd_check(sk
);
5893 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5894 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5899 EXPORT_SYMBOL(tcp_rcv_established
);
5901 void tcp_init_transfer(struct sock
*sk
, int bpf_op
, struct sk_buff
*skb
)
5903 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5904 struct tcp_sock
*tp
= tcp_sk(sk
);
5907 icsk
->icsk_af_ops
->rebuild_header(sk
);
5908 tcp_init_metrics(sk
);
5910 /* Initialize the congestion window to start the transfer.
5911 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5912 * retransmitted. In light of RFC6298 more aggressive 1sec
5913 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5914 * retransmission has occurred.
5916 if (tp
->total_retrans
> 1 && tp
->undo_marker
)
5919 tp
->snd_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
5920 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5922 icsk
->icsk_ca_initialized
= 0;
5923 bpf_skops_established(sk
, bpf_op
, skb
);
5924 if (!icsk
->icsk_ca_initialized
)
5925 tcp_init_congestion_control(sk
);
5926 tcp_init_buffer_space(sk
);
5929 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5931 struct tcp_sock
*tp
= tcp_sk(sk
);
5932 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5934 tcp_set_state(sk
, TCP_ESTABLISHED
);
5935 icsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
5938 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5939 security_inet_conn_established(sk
, skb
);
5940 sk_mark_napi_id(sk
, skb
);
5943 tcp_init_transfer(sk
, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
, skb
);
5945 /* Prevent spurious tcp_cwnd_restart() on first data
5948 tp
->lsndtime
= tcp_jiffies32
;
5950 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5951 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5953 if (!tp
->rx_opt
.snd_wscale
)
5954 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5959 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5960 struct tcp_fastopen_cookie
*cookie
)
5962 struct tcp_sock
*tp
= tcp_sk(sk
);
5963 struct sk_buff
*data
= tp
->syn_data
? tcp_rtx_queue_head(sk
) : NULL
;
5964 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5965 bool syn_drop
= false;
5967 if (mss
== tp
->rx_opt
.user_mss
) {
5968 struct tcp_options_received opt
;
5970 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5971 tcp_clear_options(&opt
);
5972 opt
.user_mss
= opt
.mss_clamp
= 0;
5973 tcp_parse_options(sock_net(sk
), synack
, &opt
, 0, NULL
);
5974 mss
= opt
.mss_clamp
;
5977 if (!tp
->syn_fastopen
) {
5978 /* Ignore an unsolicited cookie */
5980 } else if (tp
->total_retrans
) {
5981 /* SYN timed out and the SYN-ACK neither has a cookie nor
5982 * acknowledges data. Presumably the remote received only
5983 * the retransmitted (regular) SYNs: either the original
5984 * SYN-data or the corresponding SYN-ACK was dropped.
5986 syn_drop
= (cookie
->len
< 0 && data
);
5987 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5988 /* We requested a cookie but didn't get it. If we did not use
5989 * the (old) exp opt format then try so next time (try_exp=1).
5990 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5992 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5995 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5997 if (data
) { /* Retransmit unacked data in SYN */
5998 if (tp
->total_retrans
)
5999 tp
->fastopen_client_fail
= TFO_SYN_RETRANSMITTED
;
6001 tp
->fastopen_client_fail
= TFO_DATA_NOT_ACKED
;
6002 skb_rbtree_walk_from(data
) {
6003 if (__tcp_retransmit_skb(sk
, data
, 1))
6007 NET_INC_STATS(sock_net(sk
),
6008 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
6011 tp
->syn_data_acked
= tp
->syn_data
;
6012 if (tp
->syn_data_acked
) {
6013 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
6014 /* SYN-data is counted as two separate packets in tcp_ack() */
6015 if (tp
->delivered
> 1)
6019 tcp_fastopen_add_skb(sk
, synack
);
6024 static void smc_check_reset_syn(struct tcp_sock
*tp
)
6026 #if IS_ENABLED(CONFIG_SMC)
6027 if (static_branch_unlikely(&tcp_have_smc
)) {
6028 if (tp
->syn_smc
&& !tp
->rx_opt
.smc_ok
)
6034 static void tcp_try_undo_spurious_syn(struct sock
*sk
)
6036 struct tcp_sock
*tp
= tcp_sk(sk
);
6039 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6040 * spurious if the ACK's timestamp option echo value matches the
6041 * original SYN timestamp.
6043 syn_stamp
= tp
->retrans_stamp
;
6044 if (tp
->undo_marker
&& syn_stamp
&& tp
->rx_opt
.saw_tstamp
&&
6045 syn_stamp
== tp
->rx_opt
.rcv_tsecr
)
6046 tp
->undo_marker
= 0;
6049 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
6050 const struct tcphdr
*th
)
6052 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6053 struct tcp_sock
*tp
= tcp_sk(sk
);
6054 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6055 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
6058 tcp_parse_options(sock_net(sk
), skb
, &tp
->rx_opt
, 0, &foc
);
6059 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
6060 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
6064 * "If the state is SYN-SENT then
6065 * first check the ACK bit
6066 * If the ACK bit is set
6067 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6068 * a reset (unless the RST bit is set, if so drop
6069 * the segment and return)"
6071 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
6072 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
6073 /* Previous FIN/ACK or RST/ACK might be ignored. */
6074 if (icsk
->icsk_retransmits
== 0)
6075 inet_csk_reset_xmit_timer(sk
,
6077 TCP_TIMEOUT_MIN
, TCP_RTO_MAX
);
6078 goto reset_and_undo
;
6081 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
6082 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
6083 tcp_time_stamp(tp
))) {
6084 NET_INC_STATS(sock_net(sk
),
6085 LINUX_MIB_PAWSACTIVEREJECTED
);
6086 goto reset_and_undo
;
6089 /* Now ACK is acceptable.
6091 * "If the RST bit is set
6092 * If the ACK was acceptable then signal the user "error:
6093 * connection reset", drop the segment, enter CLOSED state,
6094 * delete TCB, and return."
6103 * "fifth, if neither of the SYN or RST bits is set then
6104 * drop the segment and return."
6110 goto discard_and_undo
;
6113 * "If the SYN bit is on ...
6114 * are acceptable then ...
6115 * (our SYN has been ACKed), change the connection
6116 * state to ESTABLISHED..."
6119 tcp_ecn_rcv_synack(tp
, th
);
6121 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6122 tcp_try_undo_spurious_syn(sk
);
6123 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
6125 /* Ok.. it's good. Set up sequence numbers and
6126 * move to established.
6128 WRITE_ONCE(tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
+ 1);
6129 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
6131 /* RFC1323: The window in SYN & SYN/ACK segments is
6134 tp
->snd_wnd
= ntohs(th
->window
);
6136 if (!tp
->rx_opt
.wscale_ok
) {
6137 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
6138 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
6141 if (tp
->rx_opt
.saw_tstamp
) {
6142 tp
->rx_opt
.tstamp_ok
= 1;
6143 tp
->tcp_header_len
=
6144 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
6145 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6146 tcp_store_ts_recent(tp
);
6148 tp
->tcp_header_len
= sizeof(struct tcphdr
);
6151 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
6152 tcp_initialize_rcv_mss(sk
);
6154 /* Remember, tcp_poll() does not lock socket!
6155 * Change state from SYN-SENT only after copied_seq
6156 * is initialized. */
6157 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
6159 smc_check_reset_syn(tp
);
6163 tcp_finish_connect(sk
, skb
);
6165 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
6166 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
6168 if (!sock_flag(sk
, SOCK_DEAD
)) {
6169 sk
->sk_state_change(sk
);
6170 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6174 if (sk
->sk_write_pending
||
6175 icsk
->icsk_accept_queue
.rskq_defer_accept
||
6176 inet_csk_in_pingpong_mode(sk
)) {
6177 /* Save one ACK. Data will be ready after
6178 * several ticks, if write_pending is set.
6180 * It may be deleted, but with this feature tcpdumps
6181 * look so _wonderfully_ clever, that I was not able
6182 * to stand against the temptation 8) --ANK
6184 inet_csk_schedule_ack(sk
);
6185 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
6186 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
6187 TCP_DELACK_MAX
, TCP_RTO_MAX
);
6198 /* No ACK in the segment */
6202 * "If the RST bit is set
6204 * Otherwise (no ACK) drop the segment and return."
6207 goto discard_and_undo
;
6211 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
6212 tcp_paws_reject(&tp
->rx_opt
, 0))
6213 goto discard_and_undo
;
6216 /* We see SYN without ACK. It is attempt of
6217 * simultaneous connect with crossed SYNs.
6218 * Particularly, it can be connect to self.
6220 tcp_set_state(sk
, TCP_SYN_RECV
);
6222 if (tp
->rx_opt
.saw_tstamp
) {
6223 tp
->rx_opt
.tstamp_ok
= 1;
6224 tcp_store_ts_recent(tp
);
6225 tp
->tcp_header_len
=
6226 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
6228 tp
->tcp_header_len
= sizeof(struct tcphdr
);
6231 WRITE_ONCE(tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
+ 1);
6232 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
6233 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
6235 /* RFC1323: The window in SYN & SYN/ACK segments is
6238 tp
->snd_wnd
= ntohs(th
->window
);
6239 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
6240 tp
->max_window
= tp
->snd_wnd
;
6242 tcp_ecn_rcv_syn(tp
, th
);
6245 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
6246 tcp_initialize_rcv_mss(sk
);
6248 tcp_send_synack(sk
);
6250 /* Note, we could accept data and URG from this segment.
6251 * There are no obstacles to make this (except that we must
6252 * either change tcp_recvmsg() to prevent it from returning data
6253 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6255 * However, if we ignore data in ACKless segments sometimes,
6256 * we have no reasons to accept it sometimes.
6257 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6258 * is not flawless. So, discard packet for sanity.
6259 * Uncomment this return to process the data.
6266 /* "fifth, if neither of the SYN or RST bits is set then
6267 * drop the segment and return."
6271 tcp_clear_options(&tp
->rx_opt
);
6272 tp
->rx_opt
.mss_clamp
= saved_clamp
;
6276 tcp_clear_options(&tp
->rx_opt
);
6277 tp
->rx_opt
.mss_clamp
= saved_clamp
;
6281 static void tcp_rcv_synrecv_state_fastopen(struct sock
*sk
)
6283 struct request_sock
*req
;
6285 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6286 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6288 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
6289 tcp_try_undo_loss(sk
, false);
6291 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6292 tcp_sk(sk
)->retrans_stamp
= 0;
6293 inet_csk(sk
)->icsk_retransmits
= 0;
6295 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6296 * we no longer need req so release it.
6298 req
= rcu_dereference_protected(tcp_sk(sk
)->fastopen_rsk
,
6299 lockdep_sock_is_held(sk
));
6300 reqsk_fastopen_remove(sk
, req
, false);
6302 /* Re-arm the timer because data may have been sent out.
6303 * This is similar to the regular data transmission case
6304 * when new data has just been ack'ed.
6306 * (TFO) - we could try to be more aggressive and
6307 * retransmitting any data sooner based on when they
6314 * This function implements the receiving procedure of RFC 793 for
6315 * all states except ESTABLISHED and TIME_WAIT.
6316 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6317 * address independent.
6320 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
6322 struct tcp_sock
*tp
= tcp_sk(sk
);
6323 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6324 const struct tcphdr
*th
= tcp_hdr(skb
);
6325 struct request_sock
*req
;
6329 switch (sk
->sk_state
) {
6343 /* It is possible that we process SYN packets from backlog,
6344 * so we need to make sure to disable BH and RCU right there.
6348 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
6360 tp
->rx_opt
.saw_tstamp
= 0;
6361 tcp_mstamp_refresh(tp
);
6362 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
6366 /* Do step6 onward by hand. */
6367 tcp_urg(sk
, skb
, th
);
6369 tcp_data_snd_check(sk
);
6373 tcp_mstamp_refresh(tp
);
6374 tp
->rx_opt
.saw_tstamp
= 0;
6375 req
= rcu_dereference_protected(tp
->fastopen_rsk
,
6376 lockdep_sock_is_held(sk
));
6380 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
6381 sk
->sk_state
!= TCP_FIN_WAIT1
);
6383 if (!tcp_check_req(sk
, skb
, req
, true, &req_stolen
))
6387 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
6390 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
6393 /* step 5: check the ACK field */
6394 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
6395 FLAG_UPDATE_TS_RECENT
|
6396 FLAG_NO_CHALLENGE_ACK
) > 0;
6399 if (sk
->sk_state
== TCP_SYN_RECV
)
6400 return 1; /* send one RST */
6401 tcp_send_challenge_ack(sk
, skb
);
6404 switch (sk
->sk_state
) {
6406 tp
->delivered
++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6408 tcp_synack_rtt_meas(sk
, req
);
6411 tcp_rcv_synrecv_state_fastopen(sk
);
6413 tcp_try_undo_spurious_syn(sk
);
6414 tp
->retrans_stamp
= 0;
6415 tcp_init_transfer(sk
, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
,
6417 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
6420 tcp_set_state(sk
, TCP_ESTABLISHED
);
6421 sk
->sk_state_change(sk
);
6423 /* Note, that this wakeup is only for marginal crossed SYN case.
6424 * Passively open sockets are not waked up, because
6425 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6428 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6430 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6431 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
6432 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6434 if (tp
->rx_opt
.tstamp_ok
)
6435 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6437 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6438 tcp_update_pacing_rate(sk
);
6440 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6441 tp
->lsndtime
= tcp_jiffies32
;
6443 tcp_initialize_rcv_mss(sk
);
6444 tcp_fast_path_on(tp
);
6447 case TCP_FIN_WAIT1
: {
6451 tcp_rcv_synrecv_state_fastopen(sk
);
6453 if (tp
->snd_una
!= tp
->write_seq
)
6456 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6457 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6461 if (!sock_flag(sk
, SOCK_DEAD
)) {
6462 /* Wake up lingering close() */
6463 sk
->sk_state_change(sk
);
6467 if (tp
->linger2
< 0) {
6469 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6472 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6473 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6474 /* Receive out of order FIN after close() */
6475 if (tp
->syn_fastopen
&& th
->fin
)
6476 tcp_fastopen_active_disable(sk
);
6478 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6482 tmo
= tcp_fin_time(sk
);
6483 if (tmo
> TCP_TIMEWAIT_LEN
) {
6484 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6485 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6486 /* Bad case. We could lose such FIN otherwise.
6487 * It is not a big problem, but it looks confusing
6488 * and not so rare event. We still can lose it now,
6489 * if it spins in bh_lock_sock(), but it is really
6492 inet_csk_reset_keepalive_timer(sk
, tmo
);
6494 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6501 if (tp
->snd_una
== tp
->write_seq
) {
6502 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6508 if (tp
->snd_una
== tp
->write_seq
) {
6509 tcp_update_metrics(sk
);
6516 /* step 6: check the URG bit */
6517 tcp_urg(sk
, skb
, th
);
6519 /* step 7: process the segment text */
6520 switch (sk
->sk_state
) {
6521 case TCP_CLOSE_WAIT
:
6524 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
6525 if (sk_is_mptcp(sk
))
6526 mptcp_incoming_options(sk
, skb
);
6532 /* RFC 793 says to queue data in these states,
6533 * RFC 1122 says we MUST send a reset.
6534 * BSD 4.4 also does reset.
6536 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6537 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6538 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6539 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6545 case TCP_ESTABLISHED
:
6546 tcp_data_queue(sk
, skb
);
6551 /* tcp_data could move socket to TIME-WAIT */
6552 if (sk
->sk_state
!= TCP_CLOSE
) {
6553 tcp_data_snd_check(sk
);
6554 tcp_ack_snd_check(sk
);
6563 EXPORT_SYMBOL(tcp_rcv_state_process
);
6565 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6567 struct inet_request_sock
*ireq
= inet_rsk(req
);
6569 if (family
== AF_INET
)
6570 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6571 &ireq
->ir_rmt_addr
, port
);
6572 #if IS_ENABLED(CONFIG_IPV6)
6573 else if (family
== AF_INET6
)
6574 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6575 &ireq
->ir_v6_rmt_addr
, port
);
6579 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6581 * If we receive a SYN packet with these bits set, it means a
6582 * network is playing bad games with TOS bits. In order to
6583 * avoid possible false congestion notifications, we disable
6584 * TCP ECN negotiation.
6586 * Exception: tcp_ca wants ECN. This is required for DCTCP
6587 * congestion control: Linux DCTCP asserts ECT on all packets,
6588 * including SYN, which is most optimal solution; however,
6589 * others, such as FreeBSD do not.
6591 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6592 * set, indicating the use of a future TCP extension (such as AccECN). See
6593 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6596 static void tcp_ecn_create_request(struct request_sock
*req
,
6597 const struct sk_buff
*skb
,
6598 const struct sock
*listen_sk
,
6599 const struct dst_entry
*dst
)
6601 const struct tcphdr
*th
= tcp_hdr(skb
);
6602 const struct net
*net
= sock_net(listen_sk
);
6603 bool th_ecn
= th
->ece
&& th
->cwr
;
6610 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6611 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6612 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6614 if (((!ect
|| th
->res1
) && ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6615 (ecn_ok_dst
& DST_FEATURE_ECN_CA
) ||
6616 tcp_bpf_ca_needs_ecn((struct sock
*)req
))
6617 inet_rsk(req
)->ecn_ok
= 1;
6620 static void tcp_openreq_init(struct request_sock
*req
,
6621 const struct tcp_options_received
*rx_opt
,
6622 struct sk_buff
*skb
, const struct sock
*sk
)
6624 struct inet_request_sock
*ireq
= inet_rsk(req
);
6626 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6627 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6628 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6629 tcp_rsk(req
)->snt_synack
= 0;
6630 tcp_rsk(req
)->last_oow_ack_time
= 0;
6631 req
->mss
= rx_opt
->mss_clamp
;
6632 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6633 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6634 ireq
->sack_ok
= rx_opt
->sack_ok
;
6635 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6636 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6639 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6640 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6641 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6642 #if IS_ENABLED(CONFIG_SMC)
6643 ireq
->smc_ok
= rx_opt
->smc_ok
;
6647 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6648 struct sock
*sk_listener
,
6649 bool attach_listener
)
6651 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6655 struct inet_request_sock
*ireq
= inet_rsk(req
);
6657 ireq
->ireq_opt
= NULL
;
6658 #if IS_ENABLED(CONFIG_IPV6)
6659 ireq
->pktopts
= NULL
;
6661 atomic64_set(&ireq
->ir_cookie
, 0);
6662 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6663 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6664 ireq
->ireq_family
= sk_listener
->sk_family
;
6669 EXPORT_SYMBOL(inet_reqsk_alloc
);
6672 * Return true if a syncookie should be sent
6674 static bool tcp_syn_flood_action(const struct sock
*sk
, const char *proto
)
6676 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6677 const char *msg
= "Dropping request";
6678 bool want_cookie
= false;
6679 struct net
*net
= sock_net(sk
);
6681 #ifdef CONFIG_SYN_COOKIES
6682 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6683 msg
= "Sending cookies";
6685 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6688 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6690 if (!queue
->synflood_warned
&&
6691 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6692 xchg(&queue
->synflood_warned
, 1) == 0)
6693 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6694 proto
, sk
->sk_num
, msg
);
6699 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6700 struct request_sock
*req
,
6701 const struct sk_buff
*skb
)
6703 if (tcp_sk(sk
)->save_syn
) {
6704 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6705 struct saved_syn
*saved_syn
;
6709 if (tcp_sk(sk
)->save_syn
== 2) { /* Save full header. */
6710 base
= skb_mac_header(skb
);
6711 mac_hdrlen
= skb_mac_header_len(skb
);
6714 base
= skb_network_header(skb
);
6718 saved_syn
= kmalloc(struct_size(saved_syn
, data
, len
),
6721 saved_syn
->mac_hdrlen
= mac_hdrlen
;
6722 saved_syn
->network_hdrlen
= skb_network_header_len(skb
);
6723 saved_syn
->tcp_hdrlen
= tcp_hdrlen(skb
);
6724 memcpy(saved_syn
->data
, base
, len
);
6725 req
->saved_syn
= saved_syn
;
6730 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6731 * used for SYN cookie generation.
6733 u16
tcp_get_syncookie_mss(struct request_sock_ops
*rsk_ops
,
6734 const struct tcp_request_sock_ops
*af_ops
,
6735 struct sock
*sk
, struct tcphdr
*th
)
6737 struct tcp_sock
*tp
= tcp_sk(sk
);
6740 if (sock_net(sk
)->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6741 !inet_csk_reqsk_queue_is_full(sk
))
6744 if (!tcp_syn_flood_action(sk
, rsk_ops
->slab_name
))
6747 if (sk_acceptq_is_full(sk
)) {
6748 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6752 mss
= tcp_parse_mss_option(th
, tp
->rx_opt
.user_mss
);
6754 mss
= af_ops
->mss_clamp
;
6758 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss
);
6760 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6761 const struct tcp_request_sock_ops
*af_ops
,
6762 struct sock
*sk
, struct sk_buff
*skb
)
6764 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6765 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6766 struct tcp_options_received tmp_opt
;
6767 struct tcp_sock
*tp
= tcp_sk(sk
);
6768 struct net
*net
= sock_net(sk
);
6769 struct sock
*fastopen_sk
= NULL
;
6770 struct request_sock
*req
;
6771 bool want_cookie
= false;
6772 struct dst_entry
*dst
;
6775 /* TW buckets are converted to open requests without
6776 * limitations, they conserve resources and peer is
6777 * evidently real one.
6779 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6780 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6781 want_cookie
= tcp_syn_flood_action(sk
, rsk_ops
->slab_name
);
6786 if (sk_acceptq_is_full(sk
)) {
6787 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6791 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6795 req
->syncookie
= want_cookie
;
6796 tcp_rsk(req
)->af_specific
= af_ops
;
6797 tcp_rsk(req
)->ts_off
= 0;
6798 #if IS_ENABLED(CONFIG_MPTCP)
6799 tcp_rsk(req
)->is_mptcp
= 0;
6802 tcp_clear_options(&tmp_opt
);
6803 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6804 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6805 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0,
6806 want_cookie
? NULL
: &foc
);
6808 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6809 tcp_clear_options(&tmp_opt
);
6811 if (IS_ENABLED(CONFIG_SMC
) && want_cookie
)
6814 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6815 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6816 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6818 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6819 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6821 dst
= af_ops
->route_req(sk
, skb
, &fl
, req
);
6825 if (tmp_opt
.tstamp_ok
)
6826 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(net
, skb
);
6828 if (!want_cookie
&& !isn
) {
6829 /* Kill the following clause, if you dislike this way. */
6830 if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6831 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6832 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6833 !tcp_peer_is_proven(req
, dst
)) {
6834 /* Without syncookies last quarter of
6835 * backlog is filled with destinations,
6836 * proven to be alive.
6837 * It means that we continue to communicate
6838 * to destinations, already remembered
6839 * to the moment of synflood.
6841 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6843 goto drop_and_release
;
6846 isn
= af_ops
->init_seq(skb
);
6849 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6852 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6853 if (!tmp_opt
.tstamp_ok
)
6854 inet_rsk(req
)->ecn_ok
= 0;
6857 tcp_rsk(req
)->snt_isn
= isn
;
6858 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6859 tcp_rsk(req
)->syn_tos
= TCP_SKB_CB(skb
)->ip_dsfield
;
6860 tcp_openreq_init_rwin(req
, sk
, dst
);
6861 sk_rx_queue_set(req_to_sk(req
), skb
);
6863 tcp_reqsk_record_syn(sk
, req
, skb
);
6864 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6867 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6868 &foc
, TCP_SYNACK_FASTOPEN
, skb
);
6869 /* Add the child socket directly into the accept queue */
6870 if (!inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
)) {
6871 reqsk_fastopen_remove(fastopen_sk
, req
, false);
6872 bh_unlock_sock(fastopen_sk
);
6873 sock_put(fastopen_sk
);
6876 sk
->sk_data_ready(sk
);
6877 bh_unlock_sock(fastopen_sk
);
6878 sock_put(fastopen_sk
);
6880 tcp_rsk(req
)->tfo_listener
= false;
6882 inet_csk_reqsk_queue_hash_add(sk
, req
,
6883 tcp_timeout_init((struct sock
*)req
));
6884 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6885 !want_cookie
? TCP_SYNACK_NORMAL
:
6904 EXPORT_SYMBOL(tcp_conn_request
);