io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blobc7e16b0ed791fcbd864860d6216339542e286929
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 #define REXMIT_NONE 0 /* no loss recovery to do */
113 #define REXMIT_LOST 1 /* retransmit packets marked lost */
114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 void (*cad)(struct sock *sk, u32 ack_seq))
122 icsk->icsk_clean_acked = cad;
123 static_branch_deferred_inc(&clean_acked_data_enabled);
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 icsk->icsk_clean_acked = NULL;
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 void clean_acked_data_flush(void)
136 static_key_deferred_flush(&clean_acked_data_enabled);
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
141 #ifdef CONFIG_CGROUP_BPF
142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 struct bpf_sock_ops_kern sock_ops;
151 if (likely(!unknown_opt && !parse_all_opt))
152 return;
154 /* The skb will be handled in the
155 * bpf_skops_established() or
156 * bpf_skops_write_hdr_opt().
158 switch (sk->sk_state) {
159 case TCP_SYN_RECV:
160 case TCP_SYN_SENT:
161 case TCP_LISTEN:
162 return;
165 sock_owned_by_me(sk);
167 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 sock_ops.is_fullsock = 1;
170 sock_ops.sk = sk;
171 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 static void bpf_skops_established(struct sock *sk, int bpf_op,
177 struct sk_buff *skb)
179 struct bpf_sock_ops_kern sock_ops;
181 sock_owned_by_me(sk);
183 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 sock_ops.op = bpf_op;
185 sock_ops.is_fullsock = 1;
186 sock_ops.sk = sk;
187 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
188 if (skb)
189 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 #else
194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
198 static void bpf_skops_established(struct sock *sk, int bpf_op,
199 struct sk_buff *skb)
202 #endif
204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
205 unsigned int len)
207 static bool __once __read_mostly;
209 if (!__once) {
210 struct net_device *dev;
212 __once = true;
214 rcu_read_lock();
215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 if (!dev || len >= dev->mtu)
217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 dev ? dev->name : "Unknown driver");
219 rcu_read_unlock();
223 /* Adapt the MSS value used to make delayed ack decision to the
224 * real world.
226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 struct inet_connection_sock *icsk = inet_csk(sk);
229 const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 unsigned int len;
232 icsk->icsk_ack.last_seg_size = 0;
234 /* skb->len may jitter because of SACKs, even if peer
235 * sends good full-sized frames.
237 len = skb_shinfo(skb)->gso_size ? : skb->len;
238 if (len >= icsk->icsk_ack.rcv_mss) {
239 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
240 tcp_sk(sk)->advmss);
241 /* Account for possibly-removed options */
242 if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 MAX_TCP_OPTION_SPACE))
244 tcp_gro_dev_warn(sk, skb, len);
245 } else {
246 /* Otherwise, we make more careful check taking into account,
247 * that SACKs block is variable.
249 * "len" is invariant segment length, including TCP header.
251 len += skb->data - skb_transport_header(skb);
252 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 /* If PSH is not set, packet should be
254 * full sized, provided peer TCP is not badly broken.
255 * This observation (if it is correct 8)) allows
256 * to handle super-low mtu links fairly.
258 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 /* Subtract also invariant (if peer is RFC compliant),
261 * tcp header plus fixed timestamp option length.
262 * Resulting "len" is MSS free of SACK jitter.
264 len -= tcp_sk(sk)->tcp_header_len;
265 icsk->icsk_ack.last_seg_size = len;
266 if (len == lss) {
267 icsk->icsk_ack.rcv_mss = len;
268 return;
271 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 struct inet_connection_sock *icsk = inet_csk(sk);
280 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 if (quickacks == 0)
283 quickacks = 2;
284 quickacks = min(quickacks, max_quickacks);
285 if (quickacks > icsk->icsk_ack.quick)
286 icsk->icsk_ack.quick = quickacks;
289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 struct inet_connection_sock *icsk = inet_csk(sk);
293 tcp_incr_quickack(sk, max_quickacks);
294 inet_csk_exit_pingpong_mode(sk);
295 icsk->icsk_ack.ato = TCP_ATO_MIN;
297 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 /* Send ACKs quickly, if "quick" count is not exhausted
300 * and the session is not interactive.
303 static bool tcp_in_quickack_mode(struct sock *sk)
305 const struct inet_connection_sock *icsk = inet_csk(sk);
306 const struct dst_entry *dst = __sk_dst_get(sk);
308 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 if (tp->ecn_flags & TCP_ECN_OK)
315 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 if (tcp_hdr(skb)->cwr) {
321 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 /* If the sender is telling us it has entered CWR, then its
324 * cwnd may be very low (even just 1 packet), so we should ACK
325 * immediately.
327 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 struct tcp_sock *tp = tcp_sk(sk);
341 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 case INET_ECN_NOT_ECT:
343 /* Funny extension: if ECT is not set on a segment,
344 * and we already seen ECT on a previous segment,
345 * it is probably a retransmit.
347 if (tp->ecn_flags & TCP_ECN_SEEN)
348 tcp_enter_quickack_mode(sk, 2);
349 break;
350 case INET_ECN_CE:
351 if (tcp_ca_needs_ecn(sk))
352 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 /* Better not delay acks, sender can have a very low cwnd */
356 tcp_enter_quickack_mode(sk, 2);
357 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 tp->ecn_flags |= TCP_ECN_SEEN;
360 break;
361 default:
362 if (tcp_ca_needs_ecn(sk))
363 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 tp->ecn_flags |= TCP_ECN_SEEN;
365 break;
369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 __tcp_ecn_check_ce(sk, skb);
375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 tp->ecn_flags &= ~TCP_ECN_OK;
381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 tp->ecn_flags &= ~TCP_ECN_OK;
387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
390 return true;
391 return false;
394 /* Buffer size and advertised window tuning.
396 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
399 static void tcp_sndbuf_expand(struct sock *sk)
401 const struct tcp_sock *tp = tcp_sk(sk);
402 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
403 int sndmem, per_mss;
404 u32 nr_segs;
406 /* Worst case is non GSO/TSO : each frame consumes one skb
407 * and skb->head is kmalloced using power of two area of memory
409 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
410 MAX_TCP_HEADER +
411 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 per_mss = roundup_pow_of_two(per_mss) +
414 SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 /* Fast Recovery (RFC 5681 3.2) :
420 * Cubic needs 1.7 factor, rounded to 2 to include
421 * extra cushion (application might react slowly to EPOLLOUT)
423 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 sndmem *= nr_segs * per_mss;
426 if (sk->sk_sndbuf < sndmem)
427 WRITE_ONCE(sk->sk_sndbuf,
428 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433 * All tcp_full_space() is split to two parts: "network" buffer, allocated
434 * forward and advertised in receiver window (tp->rcv_wnd) and
435 * "application buffer", required to isolate scheduling/application
436 * latencies from network.
437 * window_clamp is maximal advertised window. It can be less than
438 * tcp_full_space(), in this case tcp_full_space() - window_clamp
439 * is reserved for "application" buffer. The less window_clamp is
440 * the smoother our behaviour from viewpoint of network, but the lower
441 * throughput and the higher sensitivity of the connection to losses. 8)
443 * rcv_ssthresh is more strict window_clamp used at "slow start"
444 * phase to predict further behaviour of this connection.
445 * It is used for two goals:
446 * - to enforce header prediction at sender, even when application
447 * requires some significant "application buffer". It is check #1.
448 * - to prevent pruning of receive queue because of misprediction
449 * of receiver window. Check #2.
451 * The scheme does not work when sender sends good segments opening
452 * window and then starts to feed us spaghetti. But it should work
453 * in common situations. Otherwise, we have to rely on queue collapsing.
456 /* Slow part of check#2. */
457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
459 struct tcp_sock *tp = tcp_sk(sk);
460 /* Optimize this! */
461 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
462 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
464 while (tp->rcv_ssthresh <= window) {
465 if (truesize <= skb->len)
466 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
468 truesize >>= 1;
469 window >>= 1;
471 return 0;
474 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
476 struct tcp_sock *tp = tcp_sk(sk);
477 int room;
479 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
481 /* Check #1 */
482 if (room > 0 && !tcp_under_memory_pressure(sk)) {
483 int incr;
485 /* Check #2. Increase window, if skb with such overhead
486 * will fit to rcvbuf in future.
488 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
489 incr = 2 * tp->advmss;
490 else
491 incr = __tcp_grow_window(sk, skb);
493 if (incr) {
494 incr = max_t(int, incr, 2 * skb->len);
495 tp->rcv_ssthresh += min(room, incr);
496 inet_csk(sk)->icsk_ack.quick |= 1;
501 /* 3. Try to fixup all. It is made immediately after connection enters
502 * established state.
504 static void tcp_init_buffer_space(struct sock *sk)
506 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
507 struct tcp_sock *tp = tcp_sk(sk);
508 int maxwin;
510 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
511 tcp_sndbuf_expand(sk);
513 tcp_mstamp_refresh(tp);
514 tp->rcvq_space.time = tp->tcp_mstamp;
515 tp->rcvq_space.seq = tp->copied_seq;
517 maxwin = tcp_full_space(sk);
519 if (tp->window_clamp >= maxwin) {
520 tp->window_clamp = maxwin;
522 if (tcp_app_win && maxwin > 4 * tp->advmss)
523 tp->window_clamp = max(maxwin -
524 (maxwin >> tcp_app_win),
525 4 * tp->advmss);
528 /* Force reservation of one segment. */
529 if (tcp_app_win &&
530 tp->window_clamp > 2 * tp->advmss &&
531 tp->window_clamp + tp->advmss > maxwin)
532 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
534 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
535 tp->snd_cwnd_stamp = tcp_jiffies32;
536 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
537 (u32)TCP_INIT_CWND * tp->advmss);
540 /* 4. Recalculate window clamp after socket hit its memory bounds. */
541 static void tcp_clamp_window(struct sock *sk)
543 struct tcp_sock *tp = tcp_sk(sk);
544 struct inet_connection_sock *icsk = inet_csk(sk);
545 struct net *net = sock_net(sk);
547 icsk->icsk_ack.quick = 0;
549 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
550 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
551 !tcp_under_memory_pressure(sk) &&
552 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
553 WRITE_ONCE(sk->sk_rcvbuf,
554 min(atomic_read(&sk->sk_rmem_alloc),
555 net->ipv4.sysctl_tcp_rmem[2]));
557 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
558 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
561 /* Initialize RCV_MSS value.
562 * RCV_MSS is an our guess about MSS used by the peer.
563 * We haven't any direct information about the MSS.
564 * It's better to underestimate the RCV_MSS rather than overestimate.
565 * Overestimations make us ACKing less frequently than needed.
566 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
568 void tcp_initialize_rcv_mss(struct sock *sk)
570 const struct tcp_sock *tp = tcp_sk(sk);
571 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
573 hint = min(hint, tp->rcv_wnd / 2);
574 hint = min(hint, TCP_MSS_DEFAULT);
575 hint = max(hint, TCP_MIN_MSS);
577 inet_csk(sk)->icsk_ack.rcv_mss = hint;
579 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
581 /* Receiver "autotuning" code.
583 * The algorithm for RTT estimation w/o timestamps is based on
584 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
585 * <https://public.lanl.gov/radiant/pubs.html#DRS>
587 * More detail on this code can be found at
588 * <http://staff.psc.edu/jheffner/>,
589 * though this reference is out of date. A new paper
590 * is pending.
592 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
594 u32 new_sample = tp->rcv_rtt_est.rtt_us;
595 long m = sample;
597 if (new_sample != 0) {
598 /* If we sample in larger samples in the non-timestamp
599 * case, we could grossly overestimate the RTT especially
600 * with chatty applications or bulk transfer apps which
601 * are stalled on filesystem I/O.
603 * Also, since we are only going for a minimum in the
604 * non-timestamp case, we do not smooth things out
605 * else with timestamps disabled convergence takes too
606 * long.
608 if (!win_dep) {
609 m -= (new_sample >> 3);
610 new_sample += m;
611 } else {
612 m <<= 3;
613 if (m < new_sample)
614 new_sample = m;
616 } else {
617 /* No previous measure. */
618 new_sample = m << 3;
621 tp->rcv_rtt_est.rtt_us = new_sample;
624 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
626 u32 delta_us;
628 if (tp->rcv_rtt_est.time == 0)
629 goto new_measure;
630 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
631 return;
632 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
633 if (!delta_us)
634 delta_us = 1;
635 tcp_rcv_rtt_update(tp, delta_us, 1);
637 new_measure:
638 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
639 tp->rcv_rtt_est.time = tp->tcp_mstamp;
642 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
643 const struct sk_buff *skb)
645 struct tcp_sock *tp = tcp_sk(sk);
647 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
648 return;
649 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
651 if (TCP_SKB_CB(skb)->end_seq -
652 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
653 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
654 u32 delta_us;
656 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
657 if (!delta)
658 delta = 1;
659 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
660 tcp_rcv_rtt_update(tp, delta_us, 0);
666 * This function should be called every time data is copied to user space.
667 * It calculates the appropriate TCP receive buffer space.
669 void tcp_rcv_space_adjust(struct sock *sk)
671 struct tcp_sock *tp = tcp_sk(sk);
672 u32 copied;
673 int time;
675 trace_tcp_rcv_space_adjust(sk);
677 tcp_mstamp_refresh(tp);
678 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
679 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
680 return;
682 /* Number of bytes copied to user in last RTT */
683 copied = tp->copied_seq - tp->rcvq_space.seq;
684 if (copied <= tp->rcvq_space.space)
685 goto new_measure;
687 /* A bit of theory :
688 * copied = bytes received in previous RTT, our base window
689 * To cope with packet losses, we need a 2x factor
690 * To cope with slow start, and sender growing its cwin by 100 %
691 * every RTT, we need a 4x factor, because the ACK we are sending
692 * now is for the next RTT, not the current one :
693 * <prev RTT . ><current RTT .. ><next RTT .... >
696 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
697 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
698 int rcvmem, rcvbuf;
699 u64 rcvwin, grow;
701 /* minimal window to cope with packet losses, assuming
702 * steady state. Add some cushion because of small variations.
704 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
706 /* Accommodate for sender rate increase (eg. slow start) */
707 grow = rcvwin * (copied - tp->rcvq_space.space);
708 do_div(grow, tp->rcvq_space.space);
709 rcvwin += (grow << 1);
711 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
712 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
713 rcvmem += 128;
715 do_div(rcvwin, tp->advmss);
716 rcvbuf = min_t(u64, rcvwin * rcvmem,
717 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
718 if (rcvbuf > sk->sk_rcvbuf) {
719 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
721 /* Make the window clamp follow along. */
722 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
725 tp->rcvq_space.space = copied;
727 new_measure:
728 tp->rcvq_space.seq = tp->copied_seq;
729 tp->rcvq_space.time = tp->tcp_mstamp;
732 /* There is something which you must keep in mind when you analyze the
733 * behavior of the tp->ato delayed ack timeout interval. When a
734 * connection starts up, we want to ack as quickly as possible. The
735 * problem is that "good" TCP's do slow start at the beginning of data
736 * transmission. The means that until we send the first few ACK's the
737 * sender will sit on his end and only queue most of his data, because
738 * he can only send snd_cwnd unacked packets at any given time. For
739 * each ACK we send, he increments snd_cwnd and transmits more of his
740 * queue. -DaveM
742 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
744 struct tcp_sock *tp = tcp_sk(sk);
745 struct inet_connection_sock *icsk = inet_csk(sk);
746 u32 now;
748 inet_csk_schedule_ack(sk);
750 tcp_measure_rcv_mss(sk, skb);
752 tcp_rcv_rtt_measure(tp);
754 now = tcp_jiffies32;
756 if (!icsk->icsk_ack.ato) {
757 /* The _first_ data packet received, initialize
758 * delayed ACK engine.
760 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
761 icsk->icsk_ack.ato = TCP_ATO_MIN;
762 } else {
763 int m = now - icsk->icsk_ack.lrcvtime;
765 if (m <= TCP_ATO_MIN / 2) {
766 /* The fastest case is the first. */
767 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
768 } else if (m < icsk->icsk_ack.ato) {
769 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
770 if (icsk->icsk_ack.ato > icsk->icsk_rto)
771 icsk->icsk_ack.ato = icsk->icsk_rto;
772 } else if (m > icsk->icsk_rto) {
773 /* Too long gap. Apparently sender failed to
774 * restart window, so that we send ACKs quickly.
776 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
777 sk_mem_reclaim(sk);
780 icsk->icsk_ack.lrcvtime = now;
782 tcp_ecn_check_ce(sk, skb);
784 if (skb->len >= 128)
785 tcp_grow_window(sk, skb);
788 /* Called to compute a smoothed rtt estimate. The data fed to this
789 * routine either comes from timestamps, or from segments that were
790 * known _not_ to have been retransmitted [see Karn/Partridge
791 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
792 * piece by Van Jacobson.
793 * NOTE: the next three routines used to be one big routine.
794 * To save cycles in the RFC 1323 implementation it was better to break
795 * it up into three procedures. -- erics
797 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
799 struct tcp_sock *tp = tcp_sk(sk);
800 long m = mrtt_us; /* RTT */
801 u32 srtt = tp->srtt_us;
803 /* The following amusing code comes from Jacobson's
804 * article in SIGCOMM '88. Note that rtt and mdev
805 * are scaled versions of rtt and mean deviation.
806 * This is designed to be as fast as possible
807 * m stands for "measurement".
809 * On a 1990 paper the rto value is changed to:
810 * RTO = rtt + 4 * mdev
812 * Funny. This algorithm seems to be very broken.
813 * These formulae increase RTO, when it should be decreased, increase
814 * too slowly, when it should be increased quickly, decrease too quickly
815 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
816 * does not matter how to _calculate_ it. Seems, it was trap
817 * that VJ failed to avoid. 8)
819 if (srtt != 0) {
820 m -= (srtt >> 3); /* m is now error in rtt est */
821 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
822 if (m < 0) {
823 m = -m; /* m is now abs(error) */
824 m -= (tp->mdev_us >> 2); /* similar update on mdev */
825 /* This is similar to one of Eifel findings.
826 * Eifel blocks mdev updates when rtt decreases.
827 * This solution is a bit different: we use finer gain
828 * for mdev in this case (alpha*beta).
829 * Like Eifel it also prevents growth of rto,
830 * but also it limits too fast rto decreases,
831 * happening in pure Eifel.
833 if (m > 0)
834 m >>= 3;
835 } else {
836 m -= (tp->mdev_us >> 2); /* similar update on mdev */
838 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
839 if (tp->mdev_us > tp->mdev_max_us) {
840 tp->mdev_max_us = tp->mdev_us;
841 if (tp->mdev_max_us > tp->rttvar_us)
842 tp->rttvar_us = tp->mdev_max_us;
844 if (after(tp->snd_una, tp->rtt_seq)) {
845 if (tp->mdev_max_us < tp->rttvar_us)
846 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
847 tp->rtt_seq = tp->snd_nxt;
848 tp->mdev_max_us = tcp_rto_min_us(sk);
850 tcp_bpf_rtt(sk);
852 } else {
853 /* no previous measure. */
854 srtt = m << 3; /* take the measured time to be rtt */
855 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
856 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
857 tp->mdev_max_us = tp->rttvar_us;
858 tp->rtt_seq = tp->snd_nxt;
860 tcp_bpf_rtt(sk);
862 tp->srtt_us = max(1U, srtt);
865 static void tcp_update_pacing_rate(struct sock *sk)
867 const struct tcp_sock *tp = tcp_sk(sk);
868 u64 rate;
870 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
871 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
873 /* current rate is (cwnd * mss) / srtt
874 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
875 * In Congestion Avoidance phase, set it to 120 % the current rate.
877 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
878 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
879 * end of slow start and should slow down.
881 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
882 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
883 else
884 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
886 rate *= max(tp->snd_cwnd, tp->packets_out);
888 if (likely(tp->srtt_us))
889 do_div(rate, tp->srtt_us);
891 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
892 * without any lock. We want to make sure compiler wont store
893 * intermediate values in this location.
895 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
896 sk->sk_max_pacing_rate));
899 /* Calculate rto without backoff. This is the second half of Van Jacobson's
900 * routine referred to above.
902 static void tcp_set_rto(struct sock *sk)
904 const struct tcp_sock *tp = tcp_sk(sk);
905 /* Old crap is replaced with new one. 8)
907 * More seriously:
908 * 1. If rtt variance happened to be less 50msec, it is hallucination.
909 * It cannot be less due to utterly erratic ACK generation made
910 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
911 * to do with delayed acks, because at cwnd>2 true delack timeout
912 * is invisible. Actually, Linux-2.4 also generates erratic
913 * ACKs in some circumstances.
915 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
917 /* 2. Fixups made earlier cannot be right.
918 * If we do not estimate RTO correctly without them,
919 * all the algo is pure shit and should be replaced
920 * with correct one. It is exactly, which we pretend to do.
923 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
924 * guarantees that rto is higher.
926 tcp_bound_rto(sk);
929 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
931 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
933 if (!cwnd)
934 cwnd = TCP_INIT_CWND;
935 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
938 struct tcp_sacktag_state {
939 /* Timestamps for earliest and latest never-retransmitted segment
940 * that was SACKed. RTO needs the earliest RTT to stay conservative,
941 * but congestion control should still get an accurate delay signal.
943 u64 first_sackt;
944 u64 last_sackt;
945 u32 reord;
946 u32 sack_delivered;
947 int flag;
948 unsigned int mss_now;
949 struct rate_sample *rate;
952 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
953 * and spurious retransmission information if this DSACK is unlikely caused by
954 * sender's action:
955 * - DSACKed sequence range is larger than maximum receiver's window.
956 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
958 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
959 u32 end_seq, struct tcp_sacktag_state *state)
961 u32 seq_len, dup_segs = 1;
963 if (!before(start_seq, end_seq))
964 return 0;
966 seq_len = end_seq - start_seq;
967 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
968 if (seq_len > tp->max_window)
969 return 0;
970 if (seq_len > tp->mss_cache)
971 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
973 tp->dsack_dups += dup_segs;
974 /* Skip the DSACK if dup segs weren't retransmitted by sender */
975 if (tp->dsack_dups > tp->total_retrans)
976 return 0;
978 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
979 tp->rack.dsack_seen = 1;
981 state->flag |= FLAG_DSACKING_ACK;
982 /* A spurious retransmission is delivered */
983 state->sack_delivered += dup_segs;
985 return dup_segs;
988 /* It's reordering when higher sequence was delivered (i.e. sacked) before
989 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
990 * distance is approximated in full-mss packet distance ("reordering").
992 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
993 const int ts)
995 struct tcp_sock *tp = tcp_sk(sk);
996 const u32 mss = tp->mss_cache;
997 u32 fack, metric;
999 fack = tcp_highest_sack_seq(tp);
1000 if (!before(low_seq, fack))
1001 return;
1003 metric = fack - low_seq;
1004 if ((metric > tp->reordering * mss) && mss) {
1005 #if FASTRETRANS_DEBUG > 1
1006 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1007 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1008 tp->reordering,
1010 tp->sacked_out,
1011 tp->undo_marker ? tp->undo_retrans : 0);
1012 #endif
1013 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1014 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1017 /* This exciting event is worth to be remembered. 8) */
1018 tp->reord_seen++;
1019 NET_INC_STATS(sock_net(sk),
1020 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1023 /* This must be called before lost_out or retrans_out are updated
1024 * on a new loss, because we want to know if all skbs previously
1025 * known to be lost have already been retransmitted, indicating
1026 * that this newly lost skb is our next skb to retransmit.
1028 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1030 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1031 (tp->retransmit_skb_hint &&
1032 before(TCP_SKB_CB(skb)->seq,
1033 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1034 tp->retransmit_skb_hint = skb;
1037 /* Sum the number of packets on the wire we have marked as lost, and
1038 * notify the congestion control module that the given skb was marked lost.
1040 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1042 tp->lost += tcp_skb_pcount(skb);
1045 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1047 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1048 struct tcp_sock *tp = tcp_sk(sk);
1050 if (sacked & TCPCB_SACKED_ACKED)
1051 return;
1053 tcp_verify_retransmit_hint(tp, skb);
1054 if (sacked & TCPCB_LOST) {
1055 if (sacked & TCPCB_SACKED_RETRANS) {
1056 /* Account for retransmits that are lost again */
1057 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1058 tp->retrans_out -= tcp_skb_pcount(skb);
1059 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1060 tcp_skb_pcount(skb));
1061 tcp_notify_skb_loss_event(tp, skb);
1063 } else {
1064 tp->lost_out += tcp_skb_pcount(skb);
1065 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1066 tcp_notify_skb_loss_event(tp, skb);
1070 /* Updates the delivered and delivered_ce counts */
1071 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1072 bool ece_ack)
1074 tp->delivered += delivered;
1075 if (ece_ack)
1076 tp->delivered_ce += delivered;
1079 /* This procedure tags the retransmission queue when SACKs arrive.
1081 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1082 * Packets in queue with these bits set are counted in variables
1083 * sacked_out, retrans_out and lost_out, correspondingly.
1085 * Valid combinations are:
1086 * Tag InFlight Description
1087 * 0 1 - orig segment is in flight.
1088 * S 0 - nothing flies, orig reached receiver.
1089 * L 0 - nothing flies, orig lost by net.
1090 * R 2 - both orig and retransmit are in flight.
1091 * L|R 1 - orig is lost, retransmit is in flight.
1092 * S|R 1 - orig reached receiver, retrans is still in flight.
1093 * (L|S|R is logically valid, it could occur when L|R is sacked,
1094 * but it is equivalent to plain S and code short-curcuits it to S.
1095 * L|S is logically invalid, it would mean -1 packet in flight 8))
1097 * These 6 states form finite state machine, controlled by the following events:
1098 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1099 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1100 * 3. Loss detection event of two flavors:
1101 * A. Scoreboard estimator decided the packet is lost.
1102 * A'. Reno "three dupacks" marks head of queue lost.
1103 * B. SACK arrives sacking SND.NXT at the moment, when the
1104 * segment was retransmitted.
1105 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1107 * It is pleasant to note, that state diagram turns out to be commutative,
1108 * so that we are allowed not to be bothered by order of our actions,
1109 * when multiple events arrive simultaneously. (see the function below).
1111 * Reordering detection.
1112 * --------------------
1113 * Reordering metric is maximal distance, which a packet can be displaced
1114 * in packet stream. With SACKs we can estimate it:
1116 * 1. SACK fills old hole and the corresponding segment was not
1117 * ever retransmitted -> reordering. Alas, we cannot use it
1118 * when segment was retransmitted.
1119 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1120 * for retransmitted and already SACKed segment -> reordering..
1121 * Both of these heuristics are not used in Loss state, when we cannot
1122 * account for retransmits accurately.
1124 * SACK block validation.
1125 * ----------------------
1127 * SACK block range validation checks that the received SACK block fits to
1128 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1129 * Note that SND.UNA is not included to the range though being valid because
1130 * it means that the receiver is rather inconsistent with itself reporting
1131 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1132 * perfectly valid, however, in light of RFC2018 which explicitly states
1133 * that "SACK block MUST reflect the newest segment. Even if the newest
1134 * segment is going to be discarded ...", not that it looks very clever
1135 * in case of head skb. Due to potentional receiver driven attacks, we
1136 * choose to avoid immediate execution of a walk in write queue due to
1137 * reneging and defer head skb's loss recovery to standard loss recovery
1138 * procedure that will eventually trigger (nothing forbids us doing this).
1140 * Implements also blockage to start_seq wrap-around. Problem lies in the
1141 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1142 * there's no guarantee that it will be before snd_nxt (n). The problem
1143 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1144 * wrap (s_w):
1146 * <- outs wnd -> <- wrapzone ->
1147 * u e n u_w e_w s n_w
1148 * | | | | | | |
1149 * |<------------+------+----- TCP seqno space --------------+---------->|
1150 * ...-- <2^31 ->| |<--------...
1151 * ...---- >2^31 ------>| |<--------...
1153 * Current code wouldn't be vulnerable but it's better still to discard such
1154 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1155 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1156 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1157 * equal to the ideal case (infinite seqno space without wrap caused issues).
1159 * With D-SACK the lower bound is extended to cover sequence space below
1160 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1161 * again, D-SACK block must not to go across snd_una (for the same reason as
1162 * for the normal SACK blocks, explained above). But there all simplicity
1163 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1164 * fully below undo_marker they do not affect behavior in anyway and can
1165 * therefore be safely ignored. In rare cases (which are more or less
1166 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1167 * fragmentation and packet reordering past skb's retransmission. To consider
1168 * them correctly, the acceptable range must be extended even more though
1169 * the exact amount is rather hard to quantify. However, tp->max_window can
1170 * be used as an exaggerated estimate.
1172 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1173 u32 start_seq, u32 end_seq)
1175 /* Too far in future, or reversed (interpretation is ambiguous) */
1176 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1177 return false;
1179 /* Nasty start_seq wrap-around check (see comments above) */
1180 if (!before(start_seq, tp->snd_nxt))
1181 return false;
1183 /* In outstanding window? ...This is valid exit for D-SACKs too.
1184 * start_seq == snd_una is non-sensical (see comments above)
1186 if (after(start_seq, tp->snd_una))
1187 return true;
1189 if (!is_dsack || !tp->undo_marker)
1190 return false;
1192 /* ...Then it's D-SACK, and must reside below snd_una completely */
1193 if (after(end_seq, tp->snd_una))
1194 return false;
1196 if (!before(start_seq, tp->undo_marker))
1197 return true;
1199 /* Too old */
1200 if (!after(end_seq, tp->undo_marker))
1201 return false;
1203 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1204 * start_seq < undo_marker and end_seq >= undo_marker.
1206 return !before(start_seq, end_seq - tp->max_window);
1209 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1210 struct tcp_sack_block_wire *sp, int num_sacks,
1211 u32 prior_snd_una, struct tcp_sacktag_state *state)
1213 struct tcp_sock *tp = tcp_sk(sk);
1214 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216 u32 dup_segs;
1218 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220 } else if (num_sacks > 1) {
1221 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1224 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1225 return false;
1226 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1227 } else {
1228 return false;
1231 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1232 if (!dup_segs) { /* Skip dubious DSACK */
1233 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1234 return false;
1237 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1239 /* D-SACK for already forgotten data... Do dumb counting. */
1240 if (tp->undo_marker && tp->undo_retrans > 0 &&
1241 !after(end_seq_0, prior_snd_una) &&
1242 after(end_seq_0, tp->undo_marker))
1243 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1245 return true;
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1252 * returns).
1254 * FIXME: this could be merged to shift decision code
1256 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257 u32 start_seq, u32 end_seq)
1259 int err;
1260 bool in_sack;
1261 unsigned int pkt_len;
1262 unsigned int mss;
1264 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1265 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1267 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1268 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1269 mss = tcp_skb_mss(skb);
1270 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1272 if (!in_sack) {
1273 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1274 if (pkt_len < mss)
1275 pkt_len = mss;
1276 } else {
1277 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1278 if (pkt_len < mss)
1279 return -EINVAL;
1282 /* Round if necessary so that SACKs cover only full MSSes
1283 * and/or the remaining small portion (if present)
1285 if (pkt_len > mss) {
1286 unsigned int new_len = (pkt_len / mss) * mss;
1287 if (!in_sack && new_len < pkt_len)
1288 new_len += mss;
1289 pkt_len = new_len;
1292 if (pkt_len >= skb->len && !in_sack)
1293 return 0;
1295 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1296 pkt_len, mss, GFP_ATOMIC);
1297 if (err < 0)
1298 return err;
1301 return in_sack;
1304 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1305 static u8 tcp_sacktag_one(struct sock *sk,
1306 struct tcp_sacktag_state *state, u8 sacked,
1307 u32 start_seq, u32 end_seq,
1308 int dup_sack, int pcount,
1309 u64 xmit_time)
1311 struct tcp_sock *tp = tcp_sk(sk);
1313 /* Account D-SACK for retransmitted packet. */
1314 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1315 if (tp->undo_marker && tp->undo_retrans > 0 &&
1316 after(end_seq, tp->undo_marker))
1317 tp->undo_retrans--;
1318 if ((sacked & TCPCB_SACKED_ACKED) &&
1319 before(start_seq, state->reord))
1320 state->reord = start_seq;
1323 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324 if (!after(end_seq, tp->snd_una))
1325 return sacked;
1327 if (!(sacked & TCPCB_SACKED_ACKED)) {
1328 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1330 if (sacked & TCPCB_SACKED_RETRANS) {
1331 /* If the segment is not tagged as lost,
1332 * we do not clear RETRANS, believing
1333 * that retransmission is still in flight.
1335 if (sacked & TCPCB_LOST) {
1336 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337 tp->lost_out -= pcount;
1338 tp->retrans_out -= pcount;
1340 } else {
1341 if (!(sacked & TCPCB_RETRANS)) {
1342 /* New sack for not retransmitted frame,
1343 * which was in hole. It is reordering.
1345 if (before(start_seq,
1346 tcp_highest_sack_seq(tp)) &&
1347 before(start_seq, state->reord))
1348 state->reord = start_seq;
1350 if (!after(end_seq, tp->high_seq))
1351 state->flag |= FLAG_ORIG_SACK_ACKED;
1352 if (state->first_sackt == 0)
1353 state->first_sackt = xmit_time;
1354 state->last_sackt = xmit_time;
1357 if (sacked & TCPCB_LOST) {
1358 sacked &= ~TCPCB_LOST;
1359 tp->lost_out -= pcount;
1363 sacked |= TCPCB_SACKED_ACKED;
1364 state->flag |= FLAG_DATA_SACKED;
1365 tp->sacked_out += pcount;
1366 /* Out-of-order packets delivered */
1367 state->sack_delivered += pcount;
1369 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370 if (tp->lost_skb_hint &&
1371 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1372 tp->lost_cnt_hint += pcount;
1375 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1376 * frames and clear it. undo_retrans is decreased above, L|R frames
1377 * are accounted above as well.
1379 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380 sacked &= ~TCPCB_SACKED_RETRANS;
1381 tp->retrans_out -= pcount;
1384 return sacked;
1387 /* Shift newly-SACKed bytes from this skb to the immediately previous
1388 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1390 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1391 struct sk_buff *skb,
1392 struct tcp_sacktag_state *state,
1393 unsigned int pcount, int shifted, int mss,
1394 bool dup_sack)
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1398 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1400 BUG_ON(!pcount);
1402 /* Adjust counters and hints for the newly sacked sequence
1403 * range but discard the return value since prev is already
1404 * marked. We must tag the range first because the seq
1405 * advancement below implicitly advances
1406 * tcp_highest_sack_seq() when skb is highest_sack.
1408 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1409 start_seq, end_seq, dup_sack, pcount,
1410 tcp_skb_timestamp_us(skb));
1411 tcp_rate_skb_delivered(sk, skb, state->rate);
1413 if (skb == tp->lost_skb_hint)
1414 tp->lost_cnt_hint += pcount;
1416 TCP_SKB_CB(prev)->end_seq += shifted;
1417 TCP_SKB_CB(skb)->seq += shifted;
1419 tcp_skb_pcount_add(prev, pcount);
1420 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1421 tcp_skb_pcount_add(skb, -pcount);
1423 /* When we're adding to gso_segs == 1, gso_size will be zero,
1424 * in theory this shouldn't be necessary but as long as DSACK
1425 * code can come after this skb later on it's better to keep
1426 * setting gso_size to something.
1428 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1429 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1431 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1432 if (tcp_skb_pcount(skb) <= 1)
1433 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1435 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1436 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1438 if (skb->len > 0) {
1439 BUG_ON(!tcp_skb_pcount(skb));
1440 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1441 return false;
1444 /* Whole SKB was eaten :-) */
1446 if (skb == tp->retransmit_skb_hint)
1447 tp->retransmit_skb_hint = prev;
1448 if (skb == tp->lost_skb_hint) {
1449 tp->lost_skb_hint = prev;
1450 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1453 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1454 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1455 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1456 TCP_SKB_CB(prev)->end_seq++;
1458 if (skb == tcp_highest_sack(sk))
1459 tcp_advance_highest_sack(sk, skb);
1461 tcp_skb_collapse_tstamp(prev, skb);
1462 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1463 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1465 tcp_rtx_queue_unlink_and_free(skb, sk);
1467 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1469 return true;
1472 /* I wish gso_size would have a bit more sane initialization than
1473 * something-or-zero which complicates things
1475 static int tcp_skb_seglen(const struct sk_buff *skb)
1477 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1480 /* Shifting pages past head area doesn't work */
1481 static int skb_can_shift(const struct sk_buff *skb)
1483 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1486 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1487 int pcount, int shiftlen)
1489 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1490 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1491 * to make sure not storing more than 65535 * 8 bytes per skb,
1492 * even if current MSS is bigger.
1494 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1495 return 0;
1496 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1497 return 0;
1498 return skb_shift(to, from, shiftlen);
1501 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1502 * skb.
1504 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1505 struct tcp_sacktag_state *state,
1506 u32 start_seq, u32 end_seq,
1507 bool dup_sack)
1509 struct tcp_sock *tp = tcp_sk(sk);
1510 struct sk_buff *prev;
1511 int mss;
1512 int pcount = 0;
1513 int len;
1514 int in_sack;
1516 /* Normally R but no L won't result in plain S */
1517 if (!dup_sack &&
1518 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519 goto fallback;
1520 if (!skb_can_shift(skb))
1521 goto fallback;
1522 /* This frame is about to be dropped (was ACKed). */
1523 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524 goto fallback;
1526 /* Can only happen with delayed DSACK + discard craziness */
1527 prev = skb_rb_prev(skb);
1528 if (!prev)
1529 goto fallback;
1531 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532 goto fallback;
1534 if (!tcp_skb_can_collapse(prev, skb))
1535 goto fallback;
1537 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1538 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1540 if (in_sack) {
1541 len = skb->len;
1542 pcount = tcp_skb_pcount(skb);
1543 mss = tcp_skb_seglen(skb);
1545 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1546 * drop this restriction as unnecessary
1548 if (mss != tcp_skb_seglen(prev))
1549 goto fallback;
1550 } else {
1551 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552 goto noop;
1553 /* CHECKME: This is non-MSS split case only?, this will
1554 * cause skipped skbs due to advancing loop btw, original
1555 * has that feature too
1557 if (tcp_skb_pcount(skb) <= 1)
1558 goto noop;
1560 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561 if (!in_sack) {
1562 /* TODO: head merge to next could be attempted here
1563 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564 * though it might not be worth of the additional hassle
1566 * ...we can probably just fallback to what was done
1567 * previously. We could try merging non-SACKed ones
1568 * as well but it probably isn't going to buy off
1569 * because later SACKs might again split them, and
1570 * it would make skb timestamp tracking considerably
1571 * harder problem.
1573 goto fallback;
1576 len = end_seq - TCP_SKB_CB(skb)->seq;
1577 BUG_ON(len < 0);
1578 BUG_ON(len > skb->len);
1580 /* MSS boundaries should be honoured or else pcount will
1581 * severely break even though it makes things bit trickier.
1582 * Optimize common case to avoid most of the divides
1584 mss = tcp_skb_mss(skb);
1586 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1587 * drop this restriction as unnecessary
1589 if (mss != tcp_skb_seglen(prev))
1590 goto fallback;
1592 if (len == mss) {
1593 pcount = 1;
1594 } else if (len < mss) {
1595 goto noop;
1596 } else {
1597 pcount = len / mss;
1598 len = pcount * mss;
1602 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1604 goto fallback;
1606 if (!tcp_skb_shift(prev, skb, pcount, len))
1607 goto fallback;
1608 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1609 goto out;
1611 /* Hole filled allows collapsing with the next as well, this is very
1612 * useful when hole on every nth skb pattern happens
1614 skb = skb_rb_next(prev);
1615 if (!skb)
1616 goto out;
1618 if (!skb_can_shift(skb) ||
1619 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 (mss != tcp_skb_seglen(skb)))
1621 goto out;
1623 len = skb->len;
1624 pcount = tcp_skb_pcount(skb);
1625 if (tcp_skb_shift(prev, skb, pcount, len))
1626 tcp_shifted_skb(sk, prev, skb, state, pcount,
1627 len, mss, 0);
1629 out:
1630 return prev;
1632 noop:
1633 return skb;
1635 fallback:
1636 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1637 return NULL;
1640 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1641 struct tcp_sack_block *next_dup,
1642 struct tcp_sacktag_state *state,
1643 u32 start_seq, u32 end_seq,
1644 bool dup_sack_in)
1646 struct tcp_sock *tp = tcp_sk(sk);
1647 struct sk_buff *tmp;
1649 skb_rbtree_walk_from(skb) {
1650 int in_sack = 0;
1651 bool dup_sack = dup_sack_in;
1653 /* queue is in-order => we can short-circuit the walk early */
1654 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1655 break;
1657 if (next_dup &&
1658 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1659 in_sack = tcp_match_skb_to_sack(sk, skb,
1660 next_dup->start_seq,
1661 next_dup->end_seq);
1662 if (in_sack > 0)
1663 dup_sack = true;
1666 /* skb reference here is a bit tricky to get right, since
1667 * shifting can eat and free both this skb and the next,
1668 * so not even _safe variant of the loop is enough.
1670 if (in_sack <= 0) {
1671 tmp = tcp_shift_skb_data(sk, skb, state,
1672 start_seq, end_seq, dup_sack);
1673 if (tmp) {
1674 if (tmp != skb) {
1675 skb = tmp;
1676 continue;
1679 in_sack = 0;
1680 } else {
1681 in_sack = tcp_match_skb_to_sack(sk, skb,
1682 start_seq,
1683 end_seq);
1687 if (unlikely(in_sack < 0))
1688 break;
1690 if (in_sack) {
1691 TCP_SKB_CB(skb)->sacked =
1692 tcp_sacktag_one(sk,
1693 state,
1694 TCP_SKB_CB(skb)->sacked,
1695 TCP_SKB_CB(skb)->seq,
1696 TCP_SKB_CB(skb)->end_seq,
1697 dup_sack,
1698 tcp_skb_pcount(skb),
1699 tcp_skb_timestamp_us(skb));
1700 tcp_rate_skb_delivered(sk, skb, state->rate);
1701 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1702 list_del_init(&skb->tcp_tsorted_anchor);
1704 if (!before(TCP_SKB_CB(skb)->seq,
1705 tcp_highest_sack_seq(tp)))
1706 tcp_advance_highest_sack(sk, skb);
1709 return skb;
1712 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1714 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1715 struct sk_buff *skb;
1717 while (*p) {
1718 parent = *p;
1719 skb = rb_to_skb(parent);
1720 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1721 p = &parent->rb_left;
1722 continue;
1724 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1725 p = &parent->rb_right;
1726 continue;
1728 return skb;
1730 return NULL;
1733 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1734 u32 skip_to_seq)
1736 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1737 return skb;
1739 return tcp_sacktag_bsearch(sk, skip_to_seq);
1742 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1743 struct sock *sk,
1744 struct tcp_sack_block *next_dup,
1745 struct tcp_sacktag_state *state,
1746 u32 skip_to_seq)
1748 if (!next_dup)
1749 return skb;
1751 if (before(next_dup->start_seq, skip_to_seq)) {
1752 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1753 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1754 next_dup->start_seq, next_dup->end_seq,
1758 return skb;
1761 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1763 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1766 static int
1767 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1768 u32 prior_snd_una, struct tcp_sacktag_state *state)
1770 struct tcp_sock *tp = tcp_sk(sk);
1771 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1772 TCP_SKB_CB(ack_skb)->sacked);
1773 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1774 struct tcp_sack_block sp[TCP_NUM_SACKS];
1775 struct tcp_sack_block *cache;
1776 struct sk_buff *skb;
1777 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1778 int used_sacks;
1779 bool found_dup_sack = false;
1780 int i, j;
1781 int first_sack_index;
1783 state->flag = 0;
1784 state->reord = tp->snd_nxt;
1786 if (!tp->sacked_out)
1787 tcp_highest_sack_reset(sk);
1789 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1790 num_sacks, prior_snd_una, state);
1792 /* Eliminate too old ACKs, but take into
1793 * account more or less fresh ones, they can
1794 * contain valid SACK info.
1796 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1797 return 0;
1799 if (!tp->packets_out)
1800 goto out;
1802 used_sacks = 0;
1803 first_sack_index = 0;
1804 for (i = 0; i < num_sacks; i++) {
1805 bool dup_sack = !i && found_dup_sack;
1807 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1808 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1810 if (!tcp_is_sackblock_valid(tp, dup_sack,
1811 sp[used_sacks].start_seq,
1812 sp[used_sacks].end_seq)) {
1813 int mib_idx;
1815 if (dup_sack) {
1816 if (!tp->undo_marker)
1817 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1818 else
1819 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1820 } else {
1821 /* Don't count olds caused by ACK reordering */
1822 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1823 !after(sp[used_sacks].end_seq, tp->snd_una))
1824 continue;
1825 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1828 NET_INC_STATS(sock_net(sk), mib_idx);
1829 if (i == 0)
1830 first_sack_index = -1;
1831 continue;
1834 /* Ignore very old stuff early */
1835 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1836 if (i == 0)
1837 first_sack_index = -1;
1838 continue;
1841 used_sacks++;
1844 /* order SACK blocks to allow in order walk of the retrans queue */
1845 for (i = used_sacks - 1; i > 0; i--) {
1846 for (j = 0; j < i; j++) {
1847 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1848 swap(sp[j], sp[j + 1]);
1850 /* Track where the first SACK block goes to */
1851 if (j == first_sack_index)
1852 first_sack_index = j + 1;
1857 state->mss_now = tcp_current_mss(sk);
1858 skb = NULL;
1859 i = 0;
1861 if (!tp->sacked_out) {
1862 /* It's already past, so skip checking against it */
1863 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1864 } else {
1865 cache = tp->recv_sack_cache;
1866 /* Skip empty blocks in at head of the cache */
1867 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1868 !cache->end_seq)
1869 cache++;
1872 while (i < used_sacks) {
1873 u32 start_seq = sp[i].start_seq;
1874 u32 end_seq = sp[i].end_seq;
1875 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1876 struct tcp_sack_block *next_dup = NULL;
1878 if (found_dup_sack && ((i + 1) == first_sack_index))
1879 next_dup = &sp[i + 1];
1881 /* Skip too early cached blocks */
1882 while (tcp_sack_cache_ok(tp, cache) &&
1883 !before(start_seq, cache->end_seq))
1884 cache++;
1886 /* Can skip some work by looking recv_sack_cache? */
1887 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1888 after(end_seq, cache->start_seq)) {
1890 /* Head todo? */
1891 if (before(start_seq, cache->start_seq)) {
1892 skb = tcp_sacktag_skip(skb, sk, start_seq);
1893 skb = tcp_sacktag_walk(skb, sk, next_dup,
1894 state,
1895 start_seq,
1896 cache->start_seq,
1897 dup_sack);
1900 /* Rest of the block already fully processed? */
1901 if (!after(end_seq, cache->end_seq))
1902 goto advance_sp;
1904 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1905 state,
1906 cache->end_seq);
1908 /* ...tail remains todo... */
1909 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1910 /* ...but better entrypoint exists! */
1911 skb = tcp_highest_sack(sk);
1912 if (!skb)
1913 break;
1914 cache++;
1915 goto walk;
1918 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1919 /* Check overlap against next cached too (past this one already) */
1920 cache++;
1921 continue;
1924 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1925 skb = tcp_highest_sack(sk);
1926 if (!skb)
1927 break;
1929 skb = tcp_sacktag_skip(skb, sk, start_seq);
1931 walk:
1932 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1933 start_seq, end_seq, dup_sack);
1935 advance_sp:
1936 i++;
1939 /* Clear the head of the cache sack blocks so we can skip it next time */
1940 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1941 tp->recv_sack_cache[i].start_seq = 0;
1942 tp->recv_sack_cache[i].end_seq = 0;
1944 for (j = 0; j < used_sacks; j++)
1945 tp->recv_sack_cache[i++] = sp[j];
1947 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1948 tcp_check_sack_reordering(sk, state->reord, 0);
1950 tcp_verify_left_out(tp);
1951 out:
1953 #if FASTRETRANS_DEBUG > 0
1954 WARN_ON((int)tp->sacked_out < 0);
1955 WARN_ON((int)tp->lost_out < 0);
1956 WARN_ON((int)tp->retrans_out < 0);
1957 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1958 #endif
1959 return state->flag;
1962 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1963 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1965 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1967 u32 holes;
1969 holes = max(tp->lost_out, 1U);
1970 holes = min(holes, tp->packets_out);
1972 if ((tp->sacked_out + holes) > tp->packets_out) {
1973 tp->sacked_out = tp->packets_out - holes;
1974 return true;
1976 return false;
1979 /* If we receive more dupacks than we expected counting segments
1980 * in assumption of absent reordering, interpret this as reordering.
1981 * The only another reason could be bug in receiver TCP.
1983 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1985 struct tcp_sock *tp = tcp_sk(sk);
1987 if (!tcp_limit_reno_sacked(tp))
1988 return;
1990 tp->reordering = min_t(u32, tp->packets_out + addend,
1991 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1992 tp->reord_seen++;
1993 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1996 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1998 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2000 if (num_dupack) {
2001 struct tcp_sock *tp = tcp_sk(sk);
2002 u32 prior_sacked = tp->sacked_out;
2003 s32 delivered;
2005 tp->sacked_out += num_dupack;
2006 tcp_check_reno_reordering(sk, 0);
2007 delivered = tp->sacked_out - prior_sacked;
2008 if (delivered > 0)
2009 tcp_count_delivered(tp, delivered, ece_ack);
2010 tcp_verify_left_out(tp);
2014 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2016 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2018 struct tcp_sock *tp = tcp_sk(sk);
2020 if (acked > 0) {
2021 /* One ACK acked hole. The rest eat duplicate ACKs. */
2022 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2023 ece_ack);
2024 if (acked - 1 >= tp->sacked_out)
2025 tp->sacked_out = 0;
2026 else
2027 tp->sacked_out -= acked - 1;
2029 tcp_check_reno_reordering(sk, acked);
2030 tcp_verify_left_out(tp);
2033 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2035 tp->sacked_out = 0;
2038 void tcp_clear_retrans(struct tcp_sock *tp)
2040 tp->retrans_out = 0;
2041 tp->lost_out = 0;
2042 tp->undo_marker = 0;
2043 tp->undo_retrans = -1;
2044 tp->sacked_out = 0;
2047 static inline void tcp_init_undo(struct tcp_sock *tp)
2049 tp->undo_marker = tp->snd_una;
2050 /* Retransmission still in flight may cause DSACKs later. */
2051 tp->undo_retrans = tp->retrans_out ? : -1;
2054 static bool tcp_is_rack(const struct sock *sk)
2056 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2059 /* If we detect SACK reneging, forget all SACK information
2060 * and reset tags completely, otherwise preserve SACKs. If receiver
2061 * dropped its ofo queue, we will know this due to reneging detection.
2063 static void tcp_timeout_mark_lost(struct sock *sk)
2065 struct tcp_sock *tp = tcp_sk(sk);
2066 struct sk_buff *skb, *head;
2067 bool is_reneg; /* is receiver reneging on SACKs? */
2069 head = tcp_rtx_queue_head(sk);
2070 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2071 if (is_reneg) {
2072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2073 tp->sacked_out = 0;
2074 /* Mark SACK reneging until we recover from this loss event. */
2075 tp->is_sack_reneg = 1;
2076 } else if (tcp_is_reno(tp)) {
2077 tcp_reset_reno_sack(tp);
2080 skb = head;
2081 skb_rbtree_walk_from(skb) {
2082 if (is_reneg)
2083 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2084 else if (tcp_is_rack(sk) && skb != head &&
2085 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2086 continue; /* Don't mark recently sent ones lost yet */
2087 tcp_mark_skb_lost(sk, skb);
2089 tcp_verify_left_out(tp);
2090 tcp_clear_all_retrans_hints(tp);
2093 /* Enter Loss state. */
2094 void tcp_enter_loss(struct sock *sk)
2096 const struct inet_connection_sock *icsk = inet_csk(sk);
2097 struct tcp_sock *tp = tcp_sk(sk);
2098 struct net *net = sock_net(sk);
2099 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2101 tcp_timeout_mark_lost(sk);
2103 /* Reduce ssthresh if it has not yet been made inside this window. */
2104 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2105 !after(tp->high_seq, tp->snd_una) ||
2106 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2107 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2108 tp->prior_cwnd = tp->snd_cwnd;
2109 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110 tcp_ca_event(sk, CA_EVENT_LOSS);
2111 tcp_init_undo(tp);
2113 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2114 tp->snd_cwnd_cnt = 0;
2115 tp->snd_cwnd_stamp = tcp_jiffies32;
2117 /* Timeout in disordered state after receiving substantial DUPACKs
2118 * suggests that the degree of reordering is over-estimated.
2120 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2121 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2122 tp->reordering = min_t(unsigned int, tp->reordering,
2123 net->ipv4.sysctl_tcp_reordering);
2124 tcp_set_ca_state(sk, TCP_CA_Loss);
2125 tp->high_seq = tp->snd_nxt;
2126 tcp_ecn_queue_cwr(tp);
2128 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2129 * loss recovery is underway except recurring timeout(s) on
2130 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2132 tp->frto = net->ipv4.sysctl_tcp_frto &&
2133 (new_recovery || icsk->icsk_retransmits) &&
2134 !inet_csk(sk)->icsk_mtup.probe_size;
2137 /* If ACK arrived pointing to a remembered SACK, it means that our
2138 * remembered SACKs do not reflect real state of receiver i.e.
2139 * receiver _host_ is heavily congested (or buggy).
2141 * To avoid big spurious retransmission bursts due to transient SACK
2142 * scoreboard oddities that look like reneging, we give the receiver a
2143 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2144 * restore sanity to the SACK scoreboard. If the apparent reneging
2145 * persists until this RTO then we'll clear the SACK scoreboard.
2147 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2149 if (flag & FLAG_SACK_RENEGING) {
2150 struct tcp_sock *tp = tcp_sk(sk);
2151 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2152 msecs_to_jiffies(10));
2154 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2155 delay, TCP_RTO_MAX);
2156 return true;
2158 return false;
2161 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2162 * counter when SACK is enabled (without SACK, sacked_out is used for
2163 * that purpose).
2165 * With reordering, holes may still be in flight, so RFC3517 recovery
2166 * uses pure sacked_out (total number of SACKed segments) even though
2167 * it violates the RFC that uses duplicate ACKs, often these are equal
2168 * but when e.g. out-of-window ACKs or packet duplication occurs,
2169 * they differ. Since neither occurs due to loss, TCP should really
2170 * ignore them.
2172 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2174 return tp->sacked_out + 1;
2177 /* Linux NewReno/SACK/ECN state machine.
2178 * --------------------------------------
2180 * "Open" Normal state, no dubious events, fast path.
2181 * "Disorder" In all the respects it is "Open",
2182 * but requires a bit more attention. It is entered when
2183 * we see some SACKs or dupacks. It is split of "Open"
2184 * mainly to move some processing from fast path to slow one.
2185 * "CWR" CWND was reduced due to some Congestion Notification event.
2186 * It can be ECN, ICMP source quench, local device congestion.
2187 * "Recovery" CWND was reduced, we are fast-retransmitting.
2188 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2190 * tcp_fastretrans_alert() is entered:
2191 * - each incoming ACK, if state is not "Open"
2192 * - when arrived ACK is unusual, namely:
2193 * * SACK
2194 * * Duplicate ACK.
2195 * * ECN ECE.
2197 * Counting packets in flight is pretty simple.
2199 * in_flight = packets_out - left_out + retrans_out
2201 * packets_out is SND.NXT-SND.UNA counted in packets.
2203 * retrans_out is number of retransmitted segments.
2205 * left_out is number of segments left network, but not ACKed yet.
2207 * left_out = sacked_out + lost_out
2209 * sacked_out: Packets, which arrived to receiver out of order
2210 * and hence not ACKed. With SACKs this number is simply
2211 * amount of SACKed data. Even without SACKs
2212 * it is easy to give pretty reliable estimate of this number,
2213 * counting duplicate ACKs.
2215 * lost_out: Packets lost by network. TCP has no explicit
2216 * "loss notification" feedback from network (for now).
2217 * It means that this number can be only _guessed_.
2218 * Actually, it is the heuristics to predict lossage that
2219 * distinguishes different algorithms.
2221 * F.e. after RTO, when all the queue is considered as lost,
2222 * lost_out = packets_out and in_flight = retrans_out.
2224 * Essentially, we have now a few algorithms detecting
2225 * lost packets.
2227 * If the receiver supports SACK:
2229 * RFC6675/3517: It is the conventional algorithm. A packet is
2230 * considered lost if the number of higher sequence packets
2231 * SACKed is greater than or equal the DUPACK thoreshold
2232 * (reordering). This is implemented in tcp_mark_head_lost and
2233 * tcp_update_scoreboard.
2235 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2236 * (2017-) that checks timing instead of counting DUPACKs.
2237 * Essentially a packet is considered lost if it's not S/ACKed
2238 * after RTT + reordering_window, where both metrics are
2239 * dynamically measured and adjusted. This is implemented in
2240 * tcp_rack_mark_lost.
2242 * If the receiver does not support SACK:
2244 * NewReno (RFC6582): in Recovery we assume that one segment
2245 * is lost (classic Reno). While we are in Recovery and
2246 * a partial ACK arrives, we assume that one more packet
2247 * is lost (NewReno). This heuristics are the same in NewReno
2248 * and SACK.
2250 * Really tricky (and requiring careful tuning) part of algorithm
2251 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2252 * The first determines the moment _when_ we should reduce CWND and,
2253 * hence, slow down forward transmission. In fact, it determines the moment
2254 * when we decide that hole is caused by loss, rather than by a reorder.
2256 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2257 * holes, caused by lost packets.
2259 * And the most logically complicated part of algorithm is undo
2260 * heuristics. We detect false retransmits due to both too early
2261 * fast retransmit (reordering) and underestimated RTO, analyzing
2262 * timestamps and D-SACKs. When we detect that some segments were
2263 * retransmitted by mistake and CWND reduction was wrong, we undo
2264 * window reduction and abort recovery phase. This logic is hidden
2265 * inside several functions named tcp_try_undo_<something>.
2268 /* This function decides, when we should leave Disordered state
2269 * and enter Recovery phase, reducing congestion window.
2271 * Main question: may we further continue forward transmission
2272 * with the same cwnd?
2274 static bool tcp_time_to_recover(struct sock *sk, int flag)
2276 struct tcp_sock *tp = tcp_sk(sk);
2278 /* Trick#1: The loss is proven. */
2279 if (tp->lost_out)
2280 return true;
2282 /* Not-A-Trick#2 : Classic rule... */
2283 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2284 return true;
2286 return false;
2289 /* Detect loss in event "A" above by marking head of queue up as lost.
2290 * For RFC3517 SACK, a segment is considered lost if it
2291 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2292 * the maximum SACKed segments to pass before reaching this limit.
2294 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2296 struct tcp_sock *tp = tcp_sk(sk);
2297 struct sk_buff *skb;
2298 int cnt;
2299 /* Use SACK to deduce losses of new sequences sent during recovery */
2300 const u32 loss_high = tp->snd_nxt;
2302 WARN_ON(packets > tp->packets_out);
2303 skb = tp->lost_skb_hint;
2304 if (skb) {
2305 /* Head already handled? */
2306 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2307 return;
2308 cnt = tp->lost_cnt_hint;
2309 } else {
2310 skb = tcp_rtx_queue_head(sk);
2311 cnt = 0;
2314 skb_rbtree_walk_from(skb) {
2315 /* TODO: do this better */
2316 /* this is not the most efficient way to do this... */
2317 tp->lost_skb_hint = skb;
2318 tp->lost_cnt_hint = cnt;
2320 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2321 break;
2323 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2324 cnt += tcp_skb_pcount(skb);
2326 if (cnt > packets)
2327 break;
2329 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2330 tcp_mark_skb_lost(sk, skb);
2332 if (mark_head)
2333 break;
2335 tcp_verify_left_out(tp);
2338 /* Account newly detected lost packet(s) */
2340 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2342 struct tcp_sock *tp = tcp_sk(sk);
2344 if (tcp_is_sack(tp)) {
2345 int sacked_upto = tp->sacked_out - tp->reordering;
2346 if (sacked_upto >= 0)
2347 tcp_mark_head_lost(sk, sacked_upto, 0);
2348 else if (fast_rexmit)
2349 tcp_mark_head_lost(sk, 1, 1);
2353 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2355 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2356 before(tp->rx_opt.rcv_tsecr, when);
2359 /* skb is spurious retransmitted if the returned timestamp echo
2360 * reply is prior to the skb transmission time
2362 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2363 const struct sk_buff *skb)
2365 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2366 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2369 /* Nothing was retransmitted or returned timestamp is less
2370 * than timestamp of the first retransmission.
2372 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2374 return tp->retrans_stamp &&
2375 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2378 /* Undo procedures. */
2380 /* We can clear retrans_stamp when there are no retransmissions in the
2381 * window. It would seem that it is trivially available for us in
2382 * tp->retrans_out, however, that kind of assumptions doesn't consider
2383 * what will happen if errors occur when sending retransmission for the
2384 * second time. ...It could the that such segment has only
2385 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2386 * the head skb is enough except for some reneging corner cases that
2387 * are not worth the effort.
2389 * Main reason for all this complexity is the fact that connection dying
2390 * time now depends on the validity of the retrans_stamp, in particular,
2391 * that successive retransmissions of a segment must not advance
2392 * retrans_stamp under any conditions.
2394 static bool tcp_any_retrans_done(const struct sock *sk)
2396 const struct tcp_sock *tp = tcp_sk(sk);
2397 struct sk_buff *skb;
2399 if (tp->retrans_out)
2400 return true;
2402 skb = tcp_rtx_queue_head(sk);
2403 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2404 return true;
2406 return false;
2409 static void DBGUNDO(struct sock *sk, const char *msg)
2411 #if FASTRETRANS_DEBUG > 1
2412 struct tcp_sock *tp = tcp_sk(sk);
2413 struct inet_sock *inet = inet_sk(sk);
2415 if (sk->sk_family == AF_INET) {
2416 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2417 msg,
2418 &inet->inet_daddr, ntohs(inet->inet_dport),
2419 tp->snd_cwnd, tcp_left_out(tp),
2420 tp->snd_ssthresh, tp->prior_ssthresh,
2421 tp->packets_out);
2423 #if IS_ENABLED(CONFIG_IPV6)
2424 else if (sk->sk_family == AF_INET6) {
2425 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2426 msg,
2427 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2428 tp->snd_cwnd, tcp_left_out(tp),
2429 tp->snd_ssthresh, tp->prior_ssthresh,
2430 tp->packets_out);
2432 #endif
2433 #endif
2436 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2438 struct tcp_sock *tp = tcp_sk(sk);
2440 if (unmark_loss) {
2441 struct sk_buff *skb;
2443 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2444 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2446 tp->lost_out = 0;
2447 tcp_clear_all_retrans_hints(tp);
2450 if (tp->prior_ssthresh) {
2451 const struct inet_connection_sock *icsk = inet_csk(sk);
2453 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2455 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2456 tp->snd_ssthresh = tp->prior_ssthresh;
2457 tcp_ecn_withdraw_cwr(tp);
2460 tp->snd_cwnd_stamp = tcp_jiffies32;
2461 tp->undo_marker = 0;
2462 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2465 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2467 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2470 /* People celebrate: "We love our President!" */
2471 static bool tcp_try_undo_recovery(struct sock *sk)
2473 struct tcp_sock *tp = tcp_sk(sk);
2475 if (tcp_may_undo(tp)) {
2476 int mib_idx;
2478 /* Happy end! We did not retransmit anything
2479 * or our original transmission succeeded.
2481 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2482 tcp_undo_cwnd_reduction(sk, false);
2483 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2484 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2485 else
2486 mib_idx = LINUX_MIB_TCPFULLUNDO;
2488 NET_INC_STATS(sock_net(sk), mib_idx);
2489 } else if (tp->rack.reo_wnd_persist) {
2490 tp->rack.reo_wnd_persist--;
2492 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2493 /* Hold old state until something *above* high_seq
2494 * is ACKed. For Reno it is MUST to prevent false
2495 * fast retransmits (RFC2582). SACK TCP is safe. */
2496 if (!tcp_any_retrans_done(sk))
2497 tp->retrans_stamp = 0;
2498 return true;
2500 tcp_set_ca_state(sk, TCP_CA_Open);
2501 tp->is_sack_reneg = 0;
2502 return false;
2505 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2506 static bool tcp_try_undo_dsack(struct sock *sk)
2508 struct tcp_sock *tp = tcp_sk(sk);
2510 if (tp->undo_marker && !tp->undo_retrans) {
2511 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2512 tp->rack.reo_wnd_persist + 1);
2513 DBGUNDO(sk, "D-SACK");
2514 tcp_undo_cwnd_reduction(sk, false);
2515 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2516 return true;
2518 return false;
2521 /* Undo during loss recovery after partial ACK or using F-RTO. */
2522 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2524 struct tcp_sock *tp = tcp_sk(sk);
2526 if (frto_undo || tcp_may_undo(tp)) {
2527 tcp_undo_cwnd_reduction(sk, true);
2529 DBGUNDO(sk, "partial loss");
2530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2531 if (frto_undo)
2532 NET_INC_STATS(sock_net(sk),
2533 LINUX_MIB_TCPSPURIOUSRTOS);
2534 inet_csk(sk)->icsk_retransmits = 0;
2535 if (frto_undo || tcp_is_sack(tp)) {
2536 tcp_set_ca_state(sk, TCP_CA_Open);
2537 tp->is_sack_reneg = 0;
2539 return true;
2541 return false;
2544 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2545 * It computes the number of packets to send (sndcnt) based on packets newly
2546 * delivered:
2547 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2548 * cwnd reductions across a full RTT.
2549 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2550 * But when SND_UNA is acked without further losses,
2551 * slow starts cwnd up to ssthresh to speed up the recovery.
2553 static void tcp_init_cwnd_reduction(struct sock *sk)
2555 struct tcp_sock *tp = tcp_sk(sk);
2557 tp->high_seq = tp->snd_nxt;
2558 tp->tlp_high_seq = 0;
2559 tp->snd_cwnd_cnt = 0;
2560 tp->prior_cwnd = tp->snd_cwnd;
2561 tp->prr_delivered = 0;
2562 tp->prr_out = 0;
2563 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2564 tcp_ecn_queue_cwr(tp);
2567 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2569 struct tcp_sock *tp = tcp_sk(sk);
2570 int sndcnt = 0;
2571 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2573 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2574 return;
2576 tp->prr_delivered += newly_acked_sacked;
2577 if (delta < 0) {
2578 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2579 tp->prior_cwnd - 1;
2580 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2581 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2582 sndcnt = min_t(int, delta,
2583 max_t(int, tp->prr_delivered - tp->prr_out,
2584 newly_acked_sacked) + 1);
2585 } else {
2586 sndcnt = min(delta, newly_acked_sacked);
2588 /* Force a fast retransmit upon entering fast recovery */
2589 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2590 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2593 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2595 struct tcp_sock *tp = tcp_sk(sk);
2597 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2598 return;
2600 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2601 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2602 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2603 tp->snd_cwnd = tp->snd_ssthresh;
2604 tp->snd_cwnd_stamp = tcp_jiffies32;
2606 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2609 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2610 void tcp_enter_cwr(struct sock *sk)
2612 struct tcp_sock *tp = tcp_sk(sk);
2614 tp->prior_ssthresh = 0;
2615 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616 tp->undo_marker = 0;
2617 tcp_init_cwnd_reduction(sk);
2618 tcp_set_ca_state(sk, TCP_CA_CWR);
2621 EXPORT_SYMBOL(tcp_enter_cwr);
2623 static void tcp_try_keep_open(struct sock *sk)
2625 struct tcp_sock *tp = tcp_sk(sk);
2626 int state = TCP_CA_Open;
2628 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2629 state = TCP_CA_Disorder;
2631 if (inet_csk(sk)->icsk_ca_state != state) {
2632 tcp_set_ca_state(sk, state);
2633 tp->high_seq = tp->snd_nxt;
2637 static void tcp_try_to_open(struct sock *sk, int flag)
2639 struct tcp_sock *tp = tcp_sk(sk);
2641 tcp_verify_left_out(tp);
2643 if (!tcp_any_retrans_done(sk))
2644 tp->retrans_stamp = 0;
2646 if (flag & FLAG_ECE)
2647 tcp_enter_cwr(sk);
2649 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2650 tcp_try_keep_open(sk);
2654 static void tcp_mtup_probe_failed(struct sock *sk)
2656 struct inet_connection_sock *icsk = inet_csk(sk);
2658 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2659 icsk->icsk_mtup.probe_size = 0;
2660 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2663 static void tcp_mtup_probe_success(struct sock *sk)
2665 struct tcp_sock *tp = tcp_sk(sk);
2666 struct inet_connection_sock *icsk = inet_csk(sk);
2668 /* FIXME: breaks with very large cwnd */
2669 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 tp->snd_cwnd = tp->snd_cwnd *
2671 tcp_mss_to_mtu(sk, tp->mss_cache) /
2672 icsk->icsk_mtup.probe_size;
2673 tp->snd_cwnd_cnt = 0;
2674 tp->snd_cwnd_stamp = tcp_jiffies32;
2675 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2677 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2678 icsk->icsk_mtup.probe_size = 0;
2679 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2680 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2683 /* Do a simple retransmit without using the backoff mechanisms in
2684 * tcp_timer. This is used for path mtu discovery.
2685 * The socket is already locked here.
2687 void tcp_simple_retransmit(struct sock *sk)
2689 const struct inet_connection_sock *icsk = inet_csk(sk);
2690 struct tcp_sock *tp = tcp_sk(sk);
2691 struct sk_buff *skb;
2692 int mss;
2694 /* A fastopen SYN request is stored as two separate packets within
2695 * the retransmit queue, this is done by tcp_send_syn_data().
2696 * As a result simply checking the MSS of the frames in the queue
2697 * will not work for the SYN packet.
2699 * Us being here is an indication of a path MTU issue so we can
2700 * assume that the fastopen SYN was lost and just mark all the
2701 * frames in the retransmit queue as lost. We will use an MSS of
2702 * -1 to mark all frames as lost, otherwise compute the current MSS.
2704 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2705 mss = -1;
2706 else
2707 mss = tcp_current_mss(sk);
2709 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2710 if (tcp_skb_seglen(skb) > mss)
2711 tcp_mark_skb_lost(sk, skb);
2714 tcp_clear_retrans_hints_partial(tp);
2716 if (!tp->lost_out)
2717 return;
2719 if (tcp_is_reno(tp))
2720 tcp_limit_reno_sacked(tp);
2722 tcp_verify_left_out(tp);
2724 /* Don't muck with the congestion window here.
2725 * Reason is that we do not increase amount of _data_
2726 * in network, but units changed and effective
2727 * cwnd/ssthresh really reduced now.
2729 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2730 tp->high_seq = tp->snd_nxt;
2731 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2732 tp->prior_ssthresh = 0;
2733 tp->undo_marker = 0;
2734 tcp_set_ca_state(sk, TCP_CA_Loss);
2736 tcp_xmit_retransmit_queue(sk);
2738 EXPORT_SYMBOL(tcp_simple_retransmit);
2740 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2742 struct tcp_sock *tp = tcp_sk(sk);
2743 int mib_idx;
2745 if (tcp_is_reno(tp))
2746 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2747 else
2748 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2750 NET_INC_STATS(sock_net(sk), mib_idx);
2752 tp->prior_ssthresh = 0;
2753 tcp_init_undo(tp);
2755 if (!tcp_in_cwnd_reduction(sk)) {
2756 if (!ece_ack)
2757 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2758 tcp_init_cwnd_reduction(sk);
2760 tcp_set_ca_state(sk, TCP_CA_Recovery);
2763 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2764 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2766 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2767 int *rexmit)
2769 struct tcp_sock *tp = tcp_sk(sk);
2770 bool recovered = !before(tp->snd_una, tp->high_seq);
2772 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2773 tcp_try_undo_loss(sk, false))
2774 return;
2776 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2777 /* Step 3.b. A timeout is spurious if not all data are
2778 * lost, i.e., never-retransmitted data are (s)acked.
2780 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2781 tcp_try_undo_loss(sk, true))
2782 return;
2784 if (after(tp->snd_nxt, tp->high_seq)) {
2785 if (flag & FLAG_DATA_SACKED || num_dupack)
2786 tp->frto = 0; /* Step 3.a. loss was real */
2787 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2788 tp->high_seq = tp->snd_nxt;
2789 /* Step 2.b. Try send new data (but deferred until cwnd
2790 * is updated in tcp_ack()). Otherwise fall back to
2791 * the conventional recovery.
2793 if (!tcp_write_queue_empty(sk) &&
2794 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2795 *rexmit = REXMIT_NEW;
2796 return;
2798 tp->frto = 0;
2802 if (recovered) {
2803 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2804 tcp_try_undo_recovery(sk);
2805 return;
2807 if (tcp_is_reno(tp)) {
2808 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2809 * delivered. Lower inflight to clock out (re)tranmissions.
2811 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2812 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2813 else if (flag & FLAG_SND_UNA_ADVANCED)
2814 tcp_reset_reno_sack(tp);
2816 *rexmit = REXMIT_LOST;
2819 /* Undo during fast recovery after partial ACK. */
2820 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2822 struct tcp_sock *tp = tcp_sk(sk);
2824 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2825 /* Plain luck! Hole if filled with delayed
2826 * packet, rather than with a retransmit. Check reordering.
2828 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2830 /* We are getting evidence that the reordering degree is higher
2831 * than we realized. If there are no retransmits out then we
2832 * can undo. Otherwise we clock out new packets but do not
2833 * mark more packets lost or retransmit more.
2835 if (tp->retrans_out)
2836 return true;
2838 if (!tcp_any_retrans_done(sk))
2839 tp->retrans_stamp = 0;
2841 DBGUNDO(sk, "partial recovery");
2842 tcp_undo_cwnd_reduction(sk, true);
2843 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2844 tcp_try_keep_open(sk);
2845 return true;
2847 return false;
2850 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2852 struct tcp_sock *tp = tcp_sk(sk);
2854 if (tcp_rtx_queue_empty(sk))
2855 return;
2857 if (unlikely(tcp_is_reno(tp))) {
2858 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2859 } else if (tcp_is_rack(sk)) {
2860 u32 prior_retrans = tp->retrans_out;
2862 tcp_rack_mark_lost(sk);
2863 if (prior_retrans > tp->retrans_out)
2864 *ack_flag |= FLAG_LOST_RETRANS;
2868 static bool tcp_force_fast_retransmit(struct sock *sk)
2870 struct tcp_sock *tp = tcp_sk(sk);
2872 return after(tcp_highest_sack_seq(tp),
2873 tp->snd_una + tp->reordering * tp->mss_cache);
2876 /* Process an event, which can update packets-in-flight not trivially.
2877 * Main goal of this function is to calculate new estimate for left_out,
2878 * taking into account both packets sitting in receiver's buffer and
2879 * packets lost by network.
2881 * Besides that it updates the congestion state when packet loss or ECN
2882 * is detected. But it does not reduce the cwnd, it is done by the
2883 * congestion control later.
2885 * It does _not_ decide what to send, it is made in function
2886 * tcp_xmit_retransmit_queue().
2888 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2889 int num_dupack, int *ack_flag, int *rexmit)
2891 struct inet_connection_sock *icsk = inet_csk(sk);
2892 struct tcp_sock *tp = tcp_sk(sk);
2893 int fast_rexmit = 0, flag = *ack_flag;
2894 bool ece_ack = flag & FLAG_ECE;
2895 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2896 tcp_force_fast_retransmit(sk));
2898 if (!tp->packets_out && tp->sacked_out)
2899 tp->sacked_out = 0;
2901 /* Now state machine starts.
2902 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2903 if (ece_ack)
2904 tp->prior_ssthresh = 0;
2906 /* B. In all the states check for reneging SACKs. */
2907 if (tcp_check_sack_reneging(sk, flag))
2908 return;
2910 /* C. Check consistency of the current state. */
2911 tcp_verify_left_out(tp);
2913 /* D. Check state exit conditions. State can be terminated
2914 * when high_seq is ACKed. */
2915 if (icsk->icsk_ca_state == TCP_CA_Open) {
2916 WARN_ON(tp->retrans_out != 0);
2917 tp->retrans_stamp = 0;
2918 } else if (!before(tp->snd_una, tp->high_seq)) {
2919 switch (icsk->icsk_ca_state) {
2920 case TCP_CA_CWR:
2921 /* CWR is to be held something *above* high_seq
2922 * is ACKed for CWR bit to reach receiver. */
2923 if (tp->snd_una != tp->high_seq) {
2924 tcp_end_cwnd_reduction(sk);
2925 tcp_set_ca_state(sk, TCP_CA_Open);
2927 break;
2929 case TCP_CA_Recovery:
2930 if (tcp_is_reno(tp))
2931 tcp_reset_reno_sack(tp);
2932 if (tcp_try_undo_recovery(sk))
2933 return;
2934 tcp_end_cwnd_reduction(sk);
2935 break;
2939 /* E. Process state. */
2940 switch (icsk->icsk_ca_state) {
2941 case TCP_CA_Recovery:
2942 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2943 if (tcp_is_reno(tp))
2944 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2945 } else {
2946 if (tcp_try_undo_partial(sk, prior_snd_una))
2947 return;
2948 /* Partial ACK arrived. Force fast retransmit. */
2949 do_lost = tcp_force_fast_retransmit(sk);
2951 if (tcp_try_undo_dsack(sk)) {
2952 tcp_try_keep_open(sk);
2953 return;
2955 tcp_identify_packet_loss(sk, ack_flag);
2956 break;
2957 case TCP_CA_Loss:
2958 tcp_process_loss(sk, flag, num_dupack, rexmit);
2959 tcp_identify_packet_loss(sk, ack_flag);
2960 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2961 (*ack_flag & FLAG_LOST_RETRANS)))
2962 return;
2963 /* Change state if cwnd is undone or retransmits are lost */
2964 fallthrough;
2965 default:
2966 if (tcp_is_reno(tp)) {
2967 if (flag & FLAG_SND_UNA_ADVANCED)
2968 tcp_reset_reno_sack(tp);
2969 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2972 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2973 tcp_try_undo_dsack(sk);
2975 tcp_identify_packet_loss(sk, ack_flag);
2976 if (!tcp_time_to_recover(sk, flag)) {
2977 tcp_try_to_open(sk, flag);
2978 return;
2981 /* MTU probe failure: don't reduce cwnd */
2982 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2983 icsk->icsk_mtup.probe_size &&
2984 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2985 tcp_mtup_probe_failed(sk);
2986 /* Restores the reduction we did in tcp_mtup_probe() */
2987 tp->snd_cwnd++;
2988 tcp_simple_retransmit(sk);
2989 return;
2992 /* Otherwise enter Recovery state */
2993 tcp_enter_recovery(sk, ece_ack);
2994 fast_rexmit = 1;
2997 if (!tcp_is_rack(sk) && do_lost)
2998 tcp_update_scoreboard(sk, fast_rexmit);
2999 *rexmit = REXMIT_LOST;
3002 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3004 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3005 struct tcp_sock *tp = tcp_sk(sk);
3007 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3008 /* If the remote keeps returning delayed ACKs, eventually
3009 * the min filter would pick it up and overestimate the
3010 * prop. delay when it expires. Skip suspected delayed ACKs.
3012 return;
3014 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3015 rtt_us ? : jiffies_to_usecs(1));
3018 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3019 long seq_rtt_us, long sack_rtt_us,
3020 long ca_rtt_us, struct rate_sample *rs)
3022 const struct tcp_sock *tp = tcp_sk(sk);
3024 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3025 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3026 * Karn's algorithm forbids taking RTT if some retransmitted data
3027 * is acked (RFC6298).
3029 if (seq_rtt_us < 0)
3030 seq_rtt_us = sack_rtt_us;
3032 /* RTTM Rule: A TSecr value received in a segment is used to
3033 * update the averaged RTT measurement only if the segment
3034 * acknowledges some new data, i.e., only if it advances the
3035 * left edge of the send window.
3036 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3038 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3039 flag & FLAG_ACKED) {
3040 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3042 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3043 if (!delta)
3044 delta = 1;
3045 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3046 ca_rtt_us = seq_rtt_us;
3049 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3050 if (seq_rtt_us < 0)
3051 return false;
3053 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3054 * always taken together with ACK, SACK, or TS-opts. Any negative
3055 * values will be skipped with the seq_rtt_us < 0 check above.
3057 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3058 tcp_rtt_estimator(sk, seq_rtt_us);
3059 tcp_set_rto(sk);
3061 /* RFC6298: only reset backoff on valid RTT measurement. */
3062 inet_csk(sk)->icsk_backoff = 0;
3063 return true;
3066 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3067 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3069 struct rate_sample rs;
3070 long rtt_us = -1L;
3072 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3073 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3075 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3079 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3081 const struct inet_connection_sock *icsk = inet_csk(sk);
3083 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3084 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3087 /* Restart timer after forward progress on connection.
3088 * RFC2988 recommends to restart timer to now+rto.
3090 void tcp_rearm_rto(struct sock *sk)
3092 const struct inet_connection_sock *icsk = inet_csk(sk);
3093 struct tcp_sock *tp = tcp_sk(sk);
3095 /* If the retrans timer is currently being used by Fast Open
3096 * for SYN-ACK retrans purpose, stay put.
3098 if (rcu_access_pointer(tp->fastopen_rsk))
3099 return;
3101 if (!tp->packets_out) {
3102 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3103 } else {
3104 u32 rto = inet_csk(sk)->icsk_rto;
3105 /* Offset the time elapsed after installing regular RTO */
3106 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3107 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3108 s64 delta_us = tcp_rto_delta_us(sk);
3109 /* delta_us may not be positive if the socket is locked
3110 * when the retrans timer fires and is rescheduled.
3112 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3114 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3115 TCP_RTO_MAX);
3119 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3120 static void tcp_set_xmit_timer(struct sock *sk)
3122 if (!tcp_schedule_loss_probe(sk, true))
3123 tcp_rearm_rto(sk);
3126 /* If we get here, the whole TSO packet has not been acked. */
3127 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3129 struct tcp_sock *tp = tcp_sk(sk);
3130 u32 packets_acked;
3132 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3134 packets_acked = tcp_skb_pcount(skb);
3135 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3136 return 0;
3137 packets_acked -= tcp_skb_pcount(skb);
3139 if (packets_acked) {
3140 BUG_ON(tcp_skb_pcount(skb) == 0);
3141 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3144 return packets_acked;
3147 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3148 u32 prior_snd_una)
3150 const struct skb_shared_info *shinfo;
3152 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3153 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3154 return;
3156 shinfo = skb_shinfo(skb);
3157 if (!before(shinfo->tskey, prior_snd_una) &&
3158 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3159 tcp_skb_tsorted_save(skb) {
3160 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3161 } tcp_skb_tsorted_restore(skb);
3165 /* Remove acknowledged frames from the retransmission queue. If our packet
3166 * is before the ack sequence we can discard it as it's confirmed to have
3167 * arrived at the other end.
3169 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3170 u32 prior_snd_una,
3171 struct tcp_sacktag_state *sack, bool ece_ack)
3173 const struct inet_connection_sock *icsk = inet_csk(sk);
3174 u64 first_ackt, last_ackt;
3175 struct tcp_sock *tp = tcp_sk(sk);
3176 u32 prior_sacked = tp->sacked_out;
3177 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3178 struct sk_buff *skb, *next;
3179 bool fully_acked = true;
3180 long sack_rtt_us = -1L;
3181 long seq_rtt_us = -1L;
3182 long ca_rtt_us = -1L;
3183 u32 pkts_acked = 0;
3184 u32 last_in_flight = 0;
3185 bool rtt_update;
3186 int flag = 0;
3188 first_ackt = 0;
3190 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3191 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3192 const u32 start_seq = scb->seq;
3193 u8 sacked = scb->sacked;
3194 u32 acked_pcount;
3196 /* Determine how many packets and what bytes were acked, tso and else */
3197 if (after(scb->end_seq, tp->snd_una)) {
3198 if (tcp_skb_pcount(skb) == 1 ||
3199 !after(tp->snd_una, scb->seq))
3200 break;
3202 acked_pcount = tcp_tso_acked(sk, skb);
3203 if (!acked_pcount)
3204 break;
3205 fully_acked = false;
3206 } else {
3207 acked_pcount = tcp_skb_pcount(skb);
3210 if (unlikely(sacked & TCPCB_RETRANS)) {
3211 if (sacked & TCPCB_SACKED_RETRANS)
3212 tp->retrans_out -= acked_pcount;
3213 flag |= FLAG_RETRANS_DATA_ACKED;
3214 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3215 last_ackt = tcp_skb_timestamp_us(skb);
3216 WARN_ON_ONCE(last_ackt == 0);
3217 if (!first_ackt)
3218 first_ackt = last_ackt;
3220 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3221 if (before(start_seq, reord))
3222 reord = start_seq;
3223 if (!after(scb->end_seq, tp->high_seq))
3224 flag |= FLAG_ORIG_SACK_ACKED;
3227 if (sacked & TCPCB_SACKED_ACKED) {
3228 tp->sacked_out -= acked_pcount;
3229 } else if (tcp_is_sack(tp)) {
3230 tcp_count_delivered(tp, acked_pcount, ece_ack);
3231 if (!tcp_skb_spurious_retrans(tp, skb))
3232 tcp_rack_advance(tp, sacked, scb->end_seq,
3233 tcp_skb_timestamp_us(skb));
3235 if (sacked & TCPCB_LOST)
3236 tp->lost_out -= acked_pcount;
3238 tp->packets_out -= acked_pcount;
3239 pkts_acked += acked_pcount;
3240 tcp_rate_skb_delivered(sk, skb, sack->rate);
3242 /* Initial outgoing SYN's get put onto the write_queue
3243 * just like anything else we transmit. It is not
3244 * true data, and if we misinform our callers that
3245 * this ACK acks real data, we will erroneously exit
3246 * connection startup slow start one packet too
3247 * quickly. This is severely frowned upon behavior.
3249 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3250 flag |= FLAG_DATA_ACKED;
3251 } else {
3252 flag |= FLAG_SYN_ACKED;
3253 tp->retrans_stamp = 0;
3256 if (!fully_acked)
3257 break;
3259 tcp_ack_tstamp(sk, skb, prior_snd_una);
3261 next = skb_rb_next(skb);
3262 if (unlikely(skb == tp->retransmit_skb_hint))
3263 tp->retransmit_skb_hint = NULL;
3264 if (unlikely(skb == tp->lost_skb_hint))
3265 tp->lost_skb_hint = NULL;
3266 tcp_highest_sack_replace(sk, skb, next);
3267 tcp_rtx_queue_unlink_and_free(skb, sk);
3270 if (!skb)
3271 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3273 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3274 tp->snd_up = tp->snd_una;
3276 if (skb) {
3277 tcp_ack_tstamp(sk, skb, prior_snd_una);
3278 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3279 flag |= FLAG_SACK_RENEGING;
3282 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3283 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3284 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3286 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3287 last_in_flight && !prior_sacked && fully_acked &&
3288 sack->rate->prior_delivered + 1 == tp->delivered &&
3289 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3290 /* Conservatively mark a delayed ACK. It's typically
3291 * from a lone runt packet over the round trip to
3292 * a receiver w/o out-of-order or CE events.
3294 flag |= FLAG_ACK_MAYBE_DELAYED;
3297 if (sack->first_sackt) {
3298 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3299 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3301 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3302 ca_rtt_us, sack->rate);
3304 if (flag & FLAG_ACKED) {
3305 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3306 if (unlikely(icsk->icsk_mtup.probe_size &&
3307 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3308 tcp_mtup_probe_success(sk);
3311 if (tcp_is_reno(tp)) {
3312 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3314 /* If any of the cumulatively ACKed segments was
3315 * retransmitted, non-SACK case cannot confirm that
3316 * progress was due to original transmission due to
3317 * lack of TCPCB_SACKED_ACKED bits even if some of
3318 * the packets may have been never retransmitted.
3320 if (flag & FLAG_RETRANS_DATA_ACKED)
3321 flag &= ~FLAG_ORIG_SACK_ACKED;
3322 } else {
3323 int delta;
3325 /* Non-retransmitted hole got filled? That's reordering */
3326 if (before(reord, prior_fack))
3327 tcp_check_sack_reordering(sk, reord, 0);
3329 delta = prior_sacked - tp->sacked_out;
3330 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3332 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3333 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3334 tcp_skb_timestamp_us(skb))) {
3335 /* Do not re-arm RTO if the sack RTT is measured from data sent
3336 * after when the head was last (re)transmitted. Otherwise the
3337 * timeout may continue to extend in loss recovery.
3339 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3342 if (icsk->icsk_ca_ops->pkts_acked) {
3343 struct ack_sample sample = { .pkts_acked = pkts_acked,
3344 .rtt_us = sack->rate->rtt_us,
3345 .in_flight = last_in_flight };
3347 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3350 #if FASTRETRANS_DEBUG > 0
3351 WARN_ON((int)tp->sacked_out < 0);
3352 WARN_ON((int)tp->lost_out < 0);
3353 WARN_ON((int)tp->retrans_out < 0);
3354 if (!tp->packets_out && tcp_is_sack(tp)) {
3355 icsk = inet_csk(sk);
3356 if (tp->lost_out) {
3357 pr_debug("Leak l=%u %d\n",
3358 tp->lost_out, icsk->icsk_ca_state);
3359 tp->lost_out = 0;
3361 if (tp->sacked_out) {
3362 pr_debug("Leak s=%u %d\n",
3363 tp->sacked_out, icsk->icsk_ca_state);
3364 tp->sacked_out = 0;
3366 if (tp->retrans_out) {
3367 pr_debug("Leak r=%u %d\n",
3368 tp->retrans_out, icsk->icsk_ca_state);
3369 tp->retrans_out = 0;
3372 #endif
3373 return flag;
3376 static void tcp_ack_probe(struct sock *sk)
3378 struct inet_connection_sock *icsk = inet_csk(sk);
3379 struct sk_buff *head = tcp_send_head(sk);
3380 const struct tcp_sock *tp = tcp_sk(sk);
3382 /* Was it a usable window open? */
3383 if (!head)
3384 return;
3385 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3386 icsk->icsk_backoff = 0;
3387 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3388 /* Socket must be waked up by subsequent tcp_data_snd_check().
3389 * This function is not for random using!
3391 } else {
3392 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3394 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3395 when, TCP_RTO_MAX);
3399 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3401 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3402 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3405 /* Decide wheather to run the increase function of congestion control. */
3406 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3408 /* If reordering is high then always grow cwnd whenever data is
3409 * delivered regardless of its ordering. Otherwise stay conservative
3410 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3411 * new SACK or ECE mark may first advance cwnd here and later reduce
3412 * cwnd in tcp_fastretrans_alert() based on more states.
3414 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3415 return flag & FLAG_FORWARD_PROGRESS;
3417 return flag & FLAG_DATA_ACKED;
3420 /* The "ultimate" congestion control function that aims to replace the rigid
3421 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3422 * It's called toward the end of processing an ACK with precise rate
3423 * information. All transmission or retransmission are delayed afterwards.
3425 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3426 int flag, const struct rate_sample *rs)
3428 const struct inet_connection_sock *icsk = inet_csk(sk);
3430 if (icsk->icsk_ca_ops->cong_control) {
3431 icsk->icsk_ca_ops->cong_control(sk, rs);
3432 return;
3435 if (tcp_in_cwnd_reduction(sk)) {
3436 /* Reduce cwnd if state mandates */
3437 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3438 } else if (tcp_may_raise_cwnd(sk, flag)) {
3439 /* Advance cwnd if state allows */
3440 tcp_cong_avoid(sk, ack, acked_sacked);
3442 tcp_update_pacing_rate(sk);
3445 /* Check that window update is acceptable.
3446 * The function assumes that snd_una<=ack<=snd_next.
3448 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3449 const u32 ack, const u32 ack_seq,
3450 const u32 nwin)
3452 return after(ack, tp->snd_una) ||
3453 after(ack_seq, tp->snd_wl1) ||
3454 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3457 /* If we update tp->snd_una, also update tp->bytes_acked */
3458 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3460 u32 delta = ack - tp->snd_una;
3462 sock_owned_by_me((struct sock *)tp);
3463 tp->bytes_acked += delta;
3464 tp->snd_una = ack;
3467 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3468 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3470 u32 delta = seq - tp->rcv_nxt;
3472 sock_owned_by_me((struct sock *)tp);
3473 tp->bytes_received += delta;
3474 WRITE_ONCE(tp->rcv_nxt, seq);
3477 /* Update our send window.
3479 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3480 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3482 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3483 u32 ack_seq)
3485 struct tcp_sock *tp = tcp_sk(sk);
3486 int flag = 0;
3487 u32 nwin = ntohs(tcp_hdr(skb)->window);
3489 if (likely(!tcp_hdr(skb)->syn))
3490 nwin <<= tp->rx_opt.snd_wscale;
3492 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3493 flag |= FLAG_WIN_UPDATE;
3494 tcp_update_wl(tp, ack_seq);
3496 if (tp->snd_wnd != nwin) {
3497 tp->snd_wnd = nwin;
3499 /* Note, it is the only place, where
3500 * fast path is recovered for sending TCP.
3502 tp->pred_flags = 0;
3503 tcp_fast_path_check(sk);
3505 if (!tcp_write_queue_empty(sk))
3506 tcp_slow_start_after_idle_check(sk);
3508 if (nwin > tp->max_window) {
3509 tp->max_window = nwin;
3510 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3515 tcp_snd_una_update(tp, ack);
3517 return flag;
3520 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3521 u32 *last_oow_ack_time)
3523 if (*last_oow_ack_time) {
3524 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3526 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3527 NET_INC_STATS(net, mib_idx);
3528 return true; /* rate-limited: don't send yet! */
3532 *last_oow_ack_time = tcp_jiffies32;
3534 return false; /* not rate-limited: go ahead, send dupack now! */
3537 /* Return true if we're currently rate-limiting out-of-window ACKs and
3538 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3539 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3540 * attacks that send repeated SYNs or ACKs for the same connection. To
3541 * do this, we do not send a duplicate SYNACK or ACK if the remote
3542 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3544 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3545 int mib_idx, u32 *last_oow_ack_time)
3547 /* Data packets without SYNs are not likely part of an ACK loop. */
3548 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3549 !tcp_hdr(skb)->syn)
3550 return false;
3552 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3555 /* RFC 5961 7 [ACK Throttling] */
3556 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3558 /* unprotected vars, we dont care of overwrites */
3559 static u32 challenge_timestamp;
3560 static unsigned int challenge_count;
3561 struct tcp_sock *tp = tcp_sk(sk);
3562 struct net *net = sock_net(sk);
3563 u32 count, now;
3565 /* First check our per-socket dupack rate limit. */
3566 if (__tcp_oow_rate_limited(net,
3567 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3568 &tp->last_oow_ack_time))
3569 return;
3571 /* Then check host-wide RFC 5961 rate limit. */
3572 now = jiffies / HZ;
3573 if (now != challenge_timestamp) {
3574 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3575 u32 half = (ack_limit + 1) >> 1;
3577 challenge_timestamp = now;
3578 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3580 count = READ_ONCE(challenge_count);
3581 if (count > 0) {
3582 WRITE_ONCE(challenge_count, count - 1);
3583 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3584 tcp_send_ack(sk);
3588 static void tcp_store_ts_recent(struct tcp_sock *tp)
3590 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3591 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3594 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3596 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3597 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3598 * extra check below makes sure this can only happen
3599 * for pure ACK frames. -DaveM
3601 * Not only, also it occurs for expired timestamps.
3604 if (tcp_paws_check(&tp->rx_opt, 0))
3605 tcp_store_ts_recent(tp);
3609 /* This routine deals with acks during a TLP episode and ends an episode by
3610 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3612 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3614 struct tcp_sock *tp = tcp_sk(sk);
3616 if (before(ack, tp->tlp_high_seq))
3617 return;
3619 if (!tp->tlp_retrans) {
3620 /* TLP of new data has been acknowledged */
3621 tp->tlp_high_seq = 0;
3622 } else if (flag & FLAG_DSACKING_ACK) {
3623 /* This DSACK means original and TLP probe arrived; no loss */
3624 tp->tlp_high_seq = 0;
3625 } else if (after(ack, tp->tlp_high_seq)) {
3626 /* ACK advances: there was a loss, so reduce cwnd. Reset
3627 * tlp_high_seq in tcp_init_cwnd_reduction()
3629 tcp_init_cwnd_reduction(sk);
3630 tcp_set_ca_state(sk, TCP_CA_CWR);
3631 tcp_end_cwnd_reduction(sk);
3632 tcp_try_keep_open(sk);
3633 NET_INC_STATS(sock_net(sk),
3634 LINUX_MIB_TCPLOSSPROBERECOVERY);
3635 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3636 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3637 /* Pure dupack: original and TLP probe arrived; no loss */
3638 tp->tlp_high_seq = 0;
3642 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3644 const struct inet_connection_sock *icsk = inet_csk(sk);
3646 if (icsk->icsk_ca_ops->in_ack_event)
3647 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3650 /* Congestion control has updated the cwnd already. So if we're in
3651 * loss recovery then now we do any new sends (for FRTO) or
3652 * retransmits (for CA_Loss or CA_recovery) that make sense.
3654 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3656 struct tcp_sock *tp = tcp_sk(sk);
3658 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3659 return;
3661 if (unlikely(rexmit == REXMIT_NEW)) {
3662 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3663 TCP_NAGLE_OFF);
3664 if (after(tp->snd_nxt, tp->high_seq))
3665 return;
3666 tp->frto = 0;
3668 tcp_xmit_retransmit_queue(sk);
3671 /* Returns the number of packets newly acked or sacked by the current ACK */
3672 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3674 const struct net *net = sock_net(sk);
3675 struct tcp_sock *tp = tcp_sk(sk);
3676 u32 delivered;
3678 delivered = tp->delivered - prior_delivered;
3679 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3680 if (flag & FLAG_ECE)
3681 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3683 return delivered;
3686 /* This routine deals with incoming acks, but not outgoing ones. */
3687 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3689 struct inet_connection_sock *icsk = inet_csk(sk);
3690 struct tcp_sock *tp = tcp_sk(sk);
3691 struct tcp_sacktag_state sack_state;
3692 struct rate_sample rs = { .prior_delivered = 0 };
3693 u32 prior_snd_una = tp->snd_una;
3694 bool is_sack_reneg = tp->is_sack_reneg;
3695 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3696 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3697 int num_dupack = 0;
3698 int prior_packets = tp->packets_out;
3699 u32 delivered = tp->delivered;
3700 u32 lost = tp->lost;
3701 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3702 u32 prior_fack;
3704 sack_state.first_sackt = 0;
3705 sack_state.rate = &rs;
3706 sack_state.sack_delivered = 0;
3708 /* We very likely will need to access rtx queue. */
3709 prefetch(sk->tcp_rtx_queue.rb_node);
3711 /* If the ack is older than previous acks
3712 * then we can probably ignore it.
3714 if (before(ack, prior_snd_una)) {
3715 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3716 if (before(ack, prior_snd_una - tp->max_window)) {
3717 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3718 tcp_send_challenge_ack(sk, skb);
3719 return -1;
3721 goto old_ack;
3724 /* If the ack includes data we haven't sent yet, discard
3725 * this segment (RFC793 Section 3.9).
3727 if (after(ack, tp->snd_nxt))
3728 return -1;
3730 if (after(ack, prior_snd_una)) {
3731 flag |= FLAG_SND_UNA_ADVANCED;
3732 icsk->icsk_retransmits = 0;
3734 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3735 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3736 if (icsk->icsk_clean_acked)
3737 icsk->icsk_clean_acked(sk, ack);
3738 #endif
3741 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3742 rs.prior_in_flight = tcp_packets_in_flight(tp);
3744 /* ts_recent update must be made after we are sure that the packet
3745 * is in window.
3747 if (flag & FLAG_UPDATE_TS_RECENT)
3748 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3750 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3751 FLAG_SND_UNA_ADVANCED) {
3752 /* Window is constant, pure forward advance.
3753 * No more checks are required.
3754 * Note, we use the fact that SND.UNA>=SND.WL2.
3756 tcp_update_wl(tp, ack_seq);
3757 tcp_snd_una_update(tp, ack);
3758 flag |= FLAG_WIN_UPDATE;
3760 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3762 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3763 } else {
3764 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3766 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3767 flag |= FLAG_DATA;
3768 else
3769 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3771 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3773 if (TCP_SKB_CB(skb)->sacked)
3774 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3775 &sack_state);
3777 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3778 flag |= FLAG_ECE;
3779 ack_ev_flags |= CA_ACK_ECE;
3782 if (sack_state.sack_delivered)
3783 tcp_count_delivered(tp, sack_state.sack_delivered,
3784 flag & FLAG_ECE);
3786 if (flag & FLAG_WIN_UPDATE)
3787 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3789 tcp_in_ack_event(sk, ack_ev_flags);
3792 /* This is a deviation from RFC3168 since it states that:
3793 * "When the TCP data sender is ready to set the CWR bit after reducing
3794 * the congestion window, it SHOULD set the CWR bit only on the first
3795 * new data packet that it transmits."
3796 * We accept CWR on pure ACKs to be more robust
3797 * with widely-deployed TCP implementations that do this.
3799 tcp_ecn_accept_cwr(sk, skb);
3801 /* We passed data and got it acked, remove any soft error
3802 * log. Something worked...
3804 sk->sk_err_soft = 0;
3805 icsk->icsk_probes_out = 0;
3806 tp->rcv_tstamp = tcp_jiffies32;
3807 if (!prior_packets)
3808 goto no_queue;
3810 /* See if we can take anything off of the retransmit queue. */
3811 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3812 flag & FLAG_ECE);
3814 tcp_rack_update_reo_wnd(sk, &rs);
3816 if (tp->tlp_high_seq)
3817 tcp_process_tlp_ack(sk, ack, flag);
3818 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3819 if (flag & FLAG_SET_XMIT_TIMER)
3820 tcp_set_xmit_timer(sk);
3822 if (tcp_ack_is_dubious(sk, flag)) {
3823 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3824 num_dupack = 1;
3825 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3826 if (!(flag & FLAG_DATA))
3827 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3829 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3830 &rexmit);
3833 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3834 sk_dst_confirm(sk);
3836 delivered = tcp_newly_delivered(sk, delivered, flag);
3837 lost = tp->lost - lost; /* freshly marked lost */
3838 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3839 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3840 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3841 tcp_xmit_recovery(sk, rexmit);
3842 return 1;
3844 no_queue:
3845 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3846 if (flag & FLAG_DSACKING_ACK) {
3847 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3848 &rexmit);
3849 tcp_newly_delivered(sk, delivered, flag);
3851 /* If this ack opens up a zero window, clear backoff. It was
3852 * being used to time the probes, and is probably far higher than
3853 * it needs to be for normal retransmission.
3855 tcp_ack_probe(sk);
3857 if (tp->tlp_high_seq)
3858 tcp_process_tlp_ack(sk, ack, flag);
3859 return 1;
3861 old_ack:
3862 /* If data was SACKed, tag it and see if we should send more data.
3863 * If data was DSACKed, see if we can undo a cwnd reduction.
3865 if (TCP_SKB_CB(skb)->sacked) {
3866 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3867 &sack_state);
3868 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3869 &rexmit);
3870 tcp_newly_delivered(sk, delivered, flag);
3871 tcp_xmit_recovery(sk, rexmit);
3874 return 0;
3877 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3878 bool syn, struct tcp_fastopen_cookie *foc,
3879 bool exp_opt)
3881 /* Valid only in SYN or SYN-ACK with an even length. */
3882 if (!foc || !syn || len < 0 || (len & 1))
3883 return;
3885 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3886 len <= TCP_FASTOPEN_COOKIE_MAX)
3887 memcpy(foc->val, cookie, len);
3888 else if (len != 0)
3889 len = -1;
3890 foc->len = len;
3891 foc->exp = exp_opt;
3894 static bool smc_parse_options(const struct tcphdr *th,
3895 struct tcp_options_received *opt_rx,
3896 const unsigned char *ptr,
3897 int opsize)
3899 #if IS_ENABLED(CONFIG_SMC)
3900 if (static_branch_unlikely(&tcp_have_smc)) {
3901 if (th->syn && !(opsize & 1) &&
3902 opsize >= TCPOLEN_EXP_SMC_BASE &&
3903 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3904 opt_rx->smc_ok = 1;
3905 return true;
3908 #endif
3909 return false;
3912 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3913 * value on success.
3915 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3917 const unsigned char *ptr = (const unsigned char *)(th + 1);
3918 int length = (th->doff * 4) - sizeof(struct tcphdr);
3919 u16 mss = 0;
3921 while (length > 0) {
3922 int opcode = *ptr++;
3923 int opsize;
3925 switch (opcode) {
3926 case TCPOPT_EOL:
3927 return mss;
3928 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3929 length--;
3930 continue;
3931 default:
3932 if (length < 2)
3933 return mss;
3934 opsize = *ptr++;
3935 if (opsize < 2) /* "silly options" */
3936 return mss;
3937 if (opsize > length)
3938 return mss; /* fail on partial options */
3939 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3940 u16 in_mss = get_unaligned_be16(ptr);
3942 if (in_mss) {
3943 if (user_mss && user_mss < in_mss)
3944 in_mss = user_mss;
3945 mss = in_mss;
3948 ptr += opsize - 2;
3949 length -= opsize;
3952 return mss;
3955 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3956 * But, this can also be called on packets in the established flow when
3957 * the fast version below fails.
3959 void tcp_parse_options(const struct net *net,
3960 const struct sk_buff *skb,
3961 struct tcp_options_received *opt_rx, int estab,
3962 struct tcp_fastopen_cookie *foc)
3964 const unsigned char *ptr;
3965 const struct tcphdr *th = tcp_hdr(skb);
3966 int length = (th->doff * 4) - sizeof(struct tcphdr);
3968 ptr = (const unsigned char *)(th + 1);
3969 opt_rx->saw_tstamp = 0;
3970 opt_rx->saw_unknown = 0;
3972 while (length > 0) {
3973 int opcode = *ptr++;
3974 int opsize;
3976 switch (opcode) {
3977 case TCPOPT_EOL:
3978 return;
3979 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3980 length--;
3981 continue;
3982 default:
3983 if (length < 2)
3984 return;
3985 opsize = *ptr++;
3986 if (opsize < 2) /* "silly options" */
3987 return;
3988 if (opsize > length)
3989 return; /* don't parse partial options */
3990 switch (opcode) {
3991 case TCPOPT_MSS:
3992 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3993 u16 in_mss = get_unaligned_be16(ptr);
3994 if (in_mss) {
3995 if (opt_rx->user_mss &&
3996 opt_rx->user_mss < in_mss)
3997 in_mss = opt_rx->user_mss;
3998 opt_rx->mss_clamp = in_mss;
4001 break;
4002 case TCPOPT_WINDOW:
4003 if (opsize == TCPOLEN_WINDOW && th->syn &&
4004 !estab && net->ipv4.sysctl_tcp_window_scaling) {
4005 __u8 snd_wscale = *(__u8 *)ptr;
4006 opt_rx->wscale_ok = 1;
4007 if (snd_wscale > TCP_MAX_WSCALE) {
4008 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4009 __func__,
4010 snd_wscale,
4011 TCP_MAX_WSCALE);
4012 snd_wscale = TCP_MAX_WSCALE;
4014 opt_rx->snd_wscale = snd_wscale;
4016 break;
4017 case TCPOPT_TIMESTAMP:
4018 if ((opsize == TCPOLEN_TIMESTAMP) &&
4019 ((estab && opt_rx->tstamp_ok) ||
4020 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4021 opt_rx->saw_tstamp = 1;
4022 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4023 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4025 break;
4026 case TCPOPT_SACK_PERM:
4027 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4028 !estab && net->ipv4.sysctl_tcp_sack) {
4029 opt_rx->sack_ok = TCP_SACK_SEEN;
4030 tcp_sack_reset(opt_rx);
4032 break;
4034 case TCPOPT_SACK:
4035 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4036 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4037 opt_rx->sack_ok) {
4038 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4040 break;
4041 #ifdef CONFIG_TCP_MD5SIG
4042 case TCPOPT_MD5SIG:
4044 * The MD5 Hash has already been
4045 * checked (see tcp_v{4,6}_do_rcv()).
4047 break;
4048 #endif
4049 case TCPOPT_FASTOPEN:
4050 tcp_parse_fastopen_option(
4051 opsize - TCPOLEN_FASTOPEN_BASE,
4052 ptr, th->syn, foc, false);
4053 break;
4055 case TCPOPT_EXP:
4056 /* Fast Open option shares code 254 using a
4057 * 16 bits magic number.
4059 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4060 get_unaligned_be16(ptr) ==
4061 TCPOPT_FASTOPEN_MAGIC) {
4062 tcp_parse_fastopen_option(opsize -
4063 TCPOLEN_EXP_FASTOPEN_BASE,
4064 ptr + 2, th->syn, foc, true);
4065 break;
4068 if (smc_parse_options(th, opt_rx, ptr, opsize))
4069 break;
4071 opt_rx->saw_unknown = 1;
4072 break;
4074 default:
4075 opt_rx->saw_unknown = 1;
4077 ptr += opsize-2;
4078 length -= opsize;
4082 EXPORT_SYMBOL(tcp_parse_options);
4084 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4086 const __be32 *ptr = (const __be32 *)(th + 1);
4088 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4089 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4090 tp->rx_opt.saw_tstamp = 1;
4091 ++ptr;
4092 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4093 ++ptr;
4094 if (*ptr)
4095 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4096 else
4097 tp->rx_opt.rcv_tsecr = 0;
4098 return true;
4100 return false;
4103 /* Fast parse options. This hopes to only see timestamps.
4104 * If it is wrong it falls back on tcp_parse_options().
4106 static bool tcp_fast_parse_options(const struct net *net,
4107 const struct sk_buff *skb,
4108 const struct tcphdr *th, struct tcp_sock *tp)
4110 /* In the spirit of fast parsing, compare doff directly to constant
4111 * values. Because equality is used, short doff can be ignored here.
4113 if (th->doff == (sizeof(*th) / 4)) {
4114 tp->rx_opt.saw_tstamp = 0;
4115 return false;
4116 } else if (tp->rx_opt.tstamp_ok &&
4117 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4118 if (tcp_parse_aligned_timestamp(tp, th))
4119 return true;
4122 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4123 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4124 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4126 return true;
4129 #ifdef CONFIG_TCP_MD5SIG
4131 * Parse MD5 Signature option
4133 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4135 int length = (th->doff << 2) - sizeof(*th);
4136 const u8 *ptr = (const u8 *)(th + 1);
4138 /* If not enough data remaining, we can short cut */
4139 while (length >= TCPOLEN_MD5SIG) {
4140 int opcode = *ptr++;
4141 int opsize;
4143 switch (opcode) {
4144 case TCPOPT_EOL:
4145 return NULL;
4146 case TCPOPT_NOP:
4147 length--;
4148 continue;
4149 default:
4150 opsize = *ptr++;
4151 if (opsize < 2 || opsize > length)
4152 return NULL;
4153 if (opcode == TCPOPT_MD5SIG)
4154 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4156 ptr += opsize - 2;
4157 length -= opsize;
4159 return NULL;
4161 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4162 #endif
4164 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4166 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4167 * it can pass through stack. So, the following predicate verifies that
4168 * this segment is not used for anything but congestion avoidance or
4169 * fast retransmit. Moreover, we even are able to eliminate most of such
4170 * second order effects, if we apply some small "replay" window (~RTO)
4171 * to timestamp space.
4173 * All these measures still do not guarantee that we reject wrapped ACKs
4174 * on networks with high bandwidth, when sequence space is recycled fastly,
4175 * but it guarantees that such events will be very rare and do not affect
4176 * connection seriously. This doesn't look nice, but alas, PAWS is really
4177 * buggy extension.
4179 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4180 * states that events when retransmit arrives after original data are rare.
4181 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4182 * the biggest problem on large power networks even with minor reordering.
4183 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4184 * up to bandwidth of 18Gigabit/sec. 8) ]
4187 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4189 const struct tcp_sock *tp = tcp_sk(sk);
4190 const struct tcphdr *th = tcp_hdr(skb);
4191 u32 seq = TCP_SKB_CB(skb)->seq;
4192 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4194 return (/* 1. Pure ACK with correct sequence number. */
4195 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4197 /* 2. ... and duplicate ACK. */
4198 ack == tp->snd_una &&
4200 /* 3. ... and does not update window. */
4201 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4203 /* 4. ... and sits in replay window. */
4204 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4207 static inline bool tcp_paws_discard(const struct sock *sk,
4208 const struct sk_buff *skb)
4210 const struct tcp_sock *tp = tcp_sk(sk);
4212 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4213 !tcp_disordered_ack(sk, skb);
4216 /* Check segment sequence number for validity.
4218 * Segment controls are considered valid, if the segment
4219 * fits to the window after truncation to the window. Acceptability
4220 * of data (and SYN, FIN, of course) is checked separately.
4221 * See tcp_data_queue(), for example.
4223 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4224 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4225 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4226 * (borrowed from freebsd)
4229 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4231 return !before(end_seq, tp->rcv_wup) &&
4232 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4235 /* When we get a reset we do this. */
4236 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4238 trace_tcp_receive_reset(sk);
4240 if (sk_is_mptcp(sk))
4241 mptcp_incoming_options(sk, skb);
4243 /* We want the right error as BSD sees it (and indeed as we do). */
4244 switch (sk->sk_state) {
4245 case TCP_SYN_SENT:
4246 sk->sk_err = ECONNREFUSED;
4247 break;
4248 case TCP_CLOSE_WAIT:
4249 sk->sk_err = EPIPE;
4250 break;
4251 case TCP_CLOSE:
4252 return;
4253 default:
4254 sk->sk_err = ECONNRESET;
4256 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4257 smp_wmb();
4259 tcp_write_queue_purge(sk);
4260 tcp_done(sk);
4262 if (!sock_flag(sk, SOCK_DEAD))
4263 sk->sk_error_report(sk);
4267 * Process the FIN bit. This now behaves as it is supposed to work
4268 * and the FIN takes effect when it is validly part of sequence
4269 * space. Not before when we get holes.
4271 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4272 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4273 * TIME-WAIT)
4275 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4276 * close and we go into CLOSING (and later onto TIME-WAIT)
4278 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4280 void tcp_fin(struct sock *sk)
4282 struct tcp_sock *tp = tcp_sk(sk);
4284 inet_csk_schedule_ack(sk);
4286 sk->sk_shutdown |= RCV_SHUTDOWN;
4287 sock_set_flag(sk, SOCK_DONE);
4289 switch (sk->sk_state) {
4290 case TCP_SYN_RECV:
4291 case TCP_ESTABLISHED:
4292 /* Move to CLOSE_WAIT */
4293 tcp_set_state(sk, TCP_CLOSE_WAIT);
4294 inet_csk_enter_pingpong_mode(sk);
4295 break;
4297 case TCP_CLOSE_WAIT:
4298 case TCP_CLOSING:
4299 /* Received a retransmission of the FIN, do
4300 * nothing.
4302 break;
4303 case TCP_LAST_ACK:
4304 /* RFC793: Remain in the LAST-ACK state. */
4305 break;
4307 case TCP_FIN_WAIT1:
4308 /* This case occurs when a simultaneous close
4309 * happens, we must ack the received FIN and
4310 * enter the CLOSING state.
4312 tcp_send_ack(sk);
4313 tcp_set_state(sk, TCP_CLOSING);
4314 break;
4315 case TCP_FIN_WAIT2:
4316 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4317 tcp_send_ack(sk);
4318 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4319 break;
4320 default:
4321 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4322 * cases we should never reach this piece of code.
4324 pr_err("%s: Impossible, sk->sk_state=%d\n",
4325 __func__, sk->sk_state);
4326 break;
4329 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4330 * Probably, we should reset in this case. For now drop them.
4332 skb_rbtree_purge(&tp->out_of_order_queue);
4333 if (tcp_is_sack(tp))
4334 tcp_sack_reset(&tp->rx_opt);
4335 sk_mem_reclaim(sk);
4337 if (!sock_flag(sk, SOCK_DEAD)) {
4338 sk->sk_state_change(sk);
4340 /* Do not send POLL_HUP for half duplex close. */
4341 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4342 sk->sk_state == TCP_CLOSE)
4343 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4344 else
4345 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4349 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4350 u32 end_seq)
4352 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4353 if (before(seq, sp->start_seq))
4354 sp->start_seq = seq;
4355 if (after(end_seq, sp->end_seq))
4356 sp->end_seq = end_seq;
4357 return true;
4359 return false;
4362 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4364 struct tcp_sock *tp = tcp_sk(sk);
4366 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4367 int mib_idx;
4369 if (before(seq, tp->rcv_nxt))
4370 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4371 else
4372 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4374 NET_INC_STATS(sock_net(sk), mib_idx);
4376 tp->rx_opt.dsack = 1;
4377 tp->duplicate_sack[0].start_seq = seq;
4378 tp->duplicate_sack[0].end_seq = end_seq;
4382 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4384 struct tcp_sock *tp = tcp_sk(sk);
4386 if (!tp->rx_opt.dsack)
4387 tcp_dsack_set(sk, seq, end_seq);
4388 else
4389 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4392 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4394 /* When the ACK path fails or drops most ACKs, the sender would
4395 * timeout and spuriously retransmit the same segment repeatedly.
4396 * The receiver remembers and reflects via DSACKs. Leverage the
4397 * DSACK state and change the txhash to re-route speculatively.
4399 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4400 sk_rethink_txhash(sk);
4401 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4405 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4407 struct tcp_sock *tp = tcp_sk(sk);
4409 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4410 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4411 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4412 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4414 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4415 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4417 tcp_rcv_spurious_retrans(sk, skb);
4418 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4419 end_seq = tp->rcv_nxt;
4420 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4424 tcp_send_ack(sk);
4427 /* These routines update the SACK block as out-of-order packets arrive or
4428 * in-order packets close up the sequence space.
4430 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4432 int this_sack;
4433 struct tcp_sack_block *sp = &tp->selective_acks[0];
4434 struct tcp_sack_block *swalk = sp + 1;
4436 /* See if the recent change to the first SACK eats into
4437 * or hits the sequence space of other SACK blocks, if so coalesce.
4439 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4440 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4441 int i;
4443 /* Zap SWALK, by moving every further SACK up by one slot.
4444 * Decrease num_sacks.
4446 tp->rx_opt.num_sacks--;
4447 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4448 sp[i] = sp[i + 1];
4449 continue;
4451 this_sack++;
4452 swalk++;
4456 static void tcp_sack_compress_send_ack(struct sock *sk)
4458 struct tcp_sock *tp = tcp_sk(sk);
4460 if (!tp->compressed_ack)
4461 return;
4463 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4464 __sock_put(sk);
4466 /* Since we have to send one ack finally,
4467 * substract one from tp->compressed_ack to keep
4468 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4470 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4471 tp->compressed_ack - 1);
4473 tp->compressed_ack = 0;
4474 tcp_send_ack(sk);
4477 /* Reasonable amount of sack blocks included in TCP SACK option
4478 * The max is 4, but this becomes 3 if TCP timestamps are there.
4479 * Given that SACK packets might be lost, be conservative and use 2.
4481 #define TCP_SACK_BLOCKS_EXPECTED 2
4483 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4485 struct tcp_sock *tp = tcp_sk(sk);
4486 struct tcp_sack_block *sp = &tp->selective_acks[0];
4487 int cur_sacks = tp->rx_opt.num_sacks;
4488 int this_sack;
4490 if (!cur_sacks)
4491 goto new_sack;
4493 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4494 if (tcp_sack_extend(sp, seq, end_seq)) {
4495 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4496 tcp_sack_compress_send_ack(sk);
4497 /* Rotate this_sack to the first one. */
4498 for (; this_sack > 0; this_sack--, sp--)
4499 swap(*sp, *(sp - 1));
4500 if (cur_sacks > 1)
4501 tcp_sack_maybe_coalesce(tp);
4502 return;
4506 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4507 tcp_sack_compress_send_ack(sk);
4509 /* Could not find an adjacent existing SACK, build a new one,
4510 * put it at the front, and shift everyone else down. We
4511 * always know there is at least one SACK present already here.
4513 * If the sack array is full, forget about the last one.
4515 if (this_sack >= TCP_NUM_SACKS) {
4516 this_sack--;
4517 tp->rx_opt.num_sacks--;
4518 sp--;
4520 for (; this_sack > 0; this_sack--, sp--)
4521 *sp = *(sp - 1);
4523 new_sack:
4524 /* Build the new head SACK, and we're done. */
4525 sp->start_seq = seq;
4526 sp->end_seq = end_seq;
4527 tp->rx_opt.num_sacks++;
4530 /* RCV.NXT advances, some SACKs should be eaten. */
4532 static void tcp_sack_remove(struct tcp_sock *tp)
4534 struct tcp_sack_block *sp = &tp->selective_acks[0];
4535 int num_sacks = tp->rx_opt.num_sacks;
4536 int this_sack;
4538 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4539 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4540 tp->rx_opt.num_sacks = 0;
4541 return;
4544 for (this_sack = 0; this_sack < num_sacks;) {
4545 /* Check if the start of the sack is covered by RCV.NXT. */
4546 if (!before(tp->rcv_nxt, sp->start_seq)) {
4547 int i;
4549 /* RCV.NXT must cover all the block! */
4550 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4552 /* Zap this SACK, by moving forward any other SACKS. */
4553 for (i = this_sack+1; i < num_sacks; i++)
4554 tp->selective_acks[i-1] = tp->selective_acks[i];
4555 num_sacks--;
4556 continue;
4558 this_sack++;
4559 sp++;
4561 tp->rx_opt.num_sacks = num_sacks;
4565 * tcp_try_coalesce - try to merge skb to prior one
4566 * @sk: socket
4567 * @to: prior buffer
4568 * @from: buffer to add in queue
4569 * @fragstolen: pointer to boolean
4571 * Before queueing skb @from after @to, try to merge them
4572 * to reduce overall memory use and queue lengths, if cost is small.
4573 * Packets in ofo or receive queues can stay a long time.
4574 * Better try to coalesce them right now to avoid future collapses.
4575 * Returns true if caller should free @from instead of queueing it
4577 static bool tcp_try_coalesce(struct sock *sk,
4578 struct sk_buff *to,
4579 struct sk_buff *from,
4580 bool *fragstolen)
4582 int delta;
4584 *fragstolen = false;
4586 /* Its possible this segment overlaps with prior segment in queue */
4587 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4588 return false;
4590 if (!mptcp_skb_can_collapse(to, from))
4591 return false;
4593 #ifdef CONFIG_TLS_DEVICE
4594 if (from->decrypted != to->decrypted)
4595 return false;
4596 #endif
4598 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4599 return false;
4601 atomic_add(delta, &sk->sk_rmem_alloc);
4602 sk_mem_charge(sk, delta);
4603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4604 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4605 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4606 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4608 if (TCP_SKB_CB(from)->has_rxtstamp) {
4609 TCP_SKB_CB(to)->has_rxtstamp = true;
4610 to->tstamp = from->tstamp;
4611 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4614 return true;
4617 static bool tcp_ooo_try_coalesce(struct sock *sk,
4618 struct sk_buff *to,
4619 struct sk_buff *from,
4620 bool *fragstolen)
4622 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4624 /* In case tcp_drop() is called later, update to->gso_segs */
4625 if (res) {
4626 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4627 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4629 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4631 return res;
4634 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4636 sk_drops_add(sk, skb);
4637 __kfree_skb(skb);
4640 /* This one checks to see if we can put data from the
4641 * out_of_order queue into the receive_queue.
4643 static void tcp_ofo_queue(struct sock *sk)
4645 struct tcp_sock *tp = tcp_sk(sk);
4646 __u32 dsack_high = tp->rcv_nxt;
4647 bool fin, fragstolen, eaten;
4648 struct sk_buff *skb, *tail;
4649 struct rb_node *p;
4651 p = rb_first(&tp->out_of_order_queue);
4652 while (p) {
4653 skb = rb_to_skb(p);
4654 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4655 break;
4657 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4658 __u32 dsack = dsack_high;
4659 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4660 dsack_high = TCP_SKB_CB(skb)->end_seq;
4661 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4663 p = rb_next(p);
4664 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4666 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4667 tcp_drop(sk, skb);
4668 continue;
4671 tail = skb_peek_tail(&sk->sk_receive_queue);
4672 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4673 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4674 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4675 if (!eaten)
4676 __skb_queue_tail(&sk->sk_receive_queue, skb);
4677 else
4678 kfree_skb_partial(skb, fragstolen);
4680 if (unlikely(fin)) {
4681 tcp_fin(sk);
4682 /* tcp_fin() purges tp->out_of_order_queue,
4683 * so we must end this loop right now.
4685 break;
4690 static bool tcp_prune_ofo_queue(struct sock *sk);
4691 static int tcp_prune_queue(struct sock *sk);
4693 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4694 unsigned int size)
4696 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4697 !sk_rmem_schedule(sk, skb, size)) {
4699 if (tcp_prune_queue(sk) < 0)
4700 return -1;
4702 while (!sk_rmem_schedule(sk, skb, size)) {
4703 if (!tcp_prune_ofo_queue(sk))
4704 return -1;
4707 return 0;
4710 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4712 struct tcp_sock *tp = tcp_sk(sk);
4713 struct rb_node **p, *parent;
4714 struct sk_buff *skb1;
4715 u32 seq, end_seq;
4716 bool fragstolen;
4718 tcp_ecn_check_ce(sk, skb);
4720 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4722 sk->sk_data_ready(sk);
4723 tcp_drop(sk, skb);
4724 return;
4727 /* Disable header prediction. */
4728 tp->pred_flags = 0;
4729 inet_csk_schedule_ack(sk);
4731 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4732 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4733 seq = TCP_SKB_CB(skb)->seq;
4734 end_seq = TCP_SKB_CB(skb)->end_seq;
4736 p = &tp->out_of_order_queue.rb_node;
4737 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4738 /* Initial out of order segment, build 1 SACK. */
4739 if (tcp_is_sack(tp)) {
4740 tp->rx_opt.num_sacks = 1;
4741 tp->selective_acks[0].start_seq = seq;
4742 tp->selective_acks[0].end_seq = end_seq;
4744 rb_link_node(&skb->rbnode, NULL, p);
4745 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4746 tp->ooo_last_skb = skb;
4747 goto end;
4750 /* In the typical case, we are adding an skb to the end of the list.
4751 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4753 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4754 skb, &fragstolen)) {
4755 coalesce_done:
4756 /* For non sack flows, do not grow window to force DUPACK
4757 * and trigger fast retransmit.
4759 if (tcp_is_sack(tp))
4760 tcp_grow_window(sk, skb);
4761 kfree_skb_partial(skb, fragstolen);
4762 skb = NULL;
4763 goto add_sack;
4765 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4766 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4767 parent = &tp->ooo_last_skb->rbnode;
4768 p = &parent->rb_right;
4769 goto insert;
4772 /* Find place to insert this segment. Handle overlaps on the way. */
4773 parent = NULL;
4774 while (*p) {
4775 parent = *p;
4776 skb1 = rb_to_skb(parent);
4777 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4778 p = &parent->rb_left;
4779 continue;
4781 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4782 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4783 /* All the bits are present. Drop. */
4784 NET_INC_STATS(sock_net(sk),
4785 LINUX_MIB_TCPOFOMERGE);
4786 tcp_drop(sk, skb);
4787 skb = NULL;
4788 tcp_dsack_set(sk, seq, end_seq);
4789 goto add_sack;
4791 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4792 /* Partial overlap. */
4793 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4794 } else {
4795 /* skb's seq == skb1's seq and skb covers skb1.
4796 * Replace skb1 with skb.
4798 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4799 &tp->out_of_order_queue);
4800 tcp_dsack_extend(sk,
4801 TCP_SKB_CB(skb1)->seq,
4802 TCP_SKB_CB(skb1)->end_seq);
4803 NET_INC_STATS(sock_net(sk),
4804 LINUX_MIB_TCPOFOMERGE);
4805 tcp_drop(sk, skb1);
4806 goto merge_right;
4808 } else if (tcp_ooo_try_coalesce(sk, skb1,
4809 skb, &fragstolen)) {
4810 goto coalesce_done;
4812 p = &parent->rb_right;
4814 insert:
4815 /* Insert segment into RB tree. */
4816 rb_link_node(&skb->rbnode, parent, p);
4817 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4819 merge_right:
4820 /* Remove other segments covered by skb. */
4821 while ((skb1 = skb_rb_next(skb)) != NULL) {
4822 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4823 break;
4824 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4825 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4826 end_seq);
4827 break;
4829 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4830 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4831 TCP_SKB_CB(skb1)->end_seq);
4832 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4833 tcp_drop(sk, skb1);
4835 /* If there is no skb after us, we are the last_skb ! */
4836 if (!skb1)
4837 tp->ooo_last_skb = skb;
4839 add_sack:
4840 if (tcp_is_sack(tp))
4841 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4842 end:
4843 if (skb) {
4844 /* For non sack flows, do not grow window to force DUPACK
4845 * and trigger fast retransmit.
4847 if (tcp_is_sack(tp))
4848 tcp_grow_window(sk, skb);
4849 skb_condense(skb);
4850 skb_set_owner_r(skb, sk);
4854 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4855 bool *fragstolen)
4857 int eaten;
4858 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4860 eaten = (tail &&
4861 tcp_try_coalesce(sk, tail,
4862 skb, fragstolen)) ? 1 : 0;
4863 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4864 if (!eaten) {
4865 __skb_queue_tail(&sk->sk_receive_queue, skb);
4866 skb_set_owner_r(skb, sk);
4868 return eaten;
4871 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4873 struct sk_buff *skb;
4874 int err = -ENOMEM;
4875 int data_len = 0;
4876 bool fragstolen;
4878 if (size == 0)
4879 return 0;
4881 if (size > PAGE_SIZE) {
4882 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4884 data_len = npages << PAGE_SHIFT;
4885 size = data_len + (size & ~PAGE_MASK);
4887 skb = alloc_skb_with_frags(size - data_len, data_len,
4888 PAGE_ALLOC_COSTLY_ORDER,
4889 &err, sk->sk_allocation);
4890 if (!skb)
4891 goto err;
4893 skb_put(skb, size - data_len);
4894 skb->data_len = data_len;
4895 skb->len = size;
4897 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4899 goto err_free;
4902 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4903 if (err)
4904 goto err_free;
4906 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4907 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4908 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4910 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4911 WARN_ON_ONCE(fragstolen); /* should not happen */
4912 __kfree_skb(skb);
4914 return size;
4916 err_free:
4917 kfree_skb(skb);
4918 err:
4919 return err;
4923 void tcp_data_ready(struct sock *sk)
4925 const struct tcp_sock *tp = tcp_sk(sk);
4926 int avail = tp->rcv_nxt - tp->copied_seq;
4928 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4929 !sock_flag(sk, SOCK_DONE) &&
4930 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4931 return;
4933 sk->sk_data_ready(sk);
4936 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4938 struct tcp_sock *tp = tcp_sk(sk);
4939 bool fragstolen;
4940 int eaten;
4942 if (sk_is_mptcp(sk))
4943 mptcp_incoming_options(sk, skb);
4945 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4946 __kfree_skb(skb);
4947 return;
4949 skb_dst_drop(skb);
4950 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4952 tp->rx_opt.dsack = 0;
4954 /* Queue data for delivery to the user.
4955 * Packets in sequence go to the receive queue.
4956 * Out of sequence packets to the out_of_order_queue.
4958 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4959 if (tcp_receive_window(tp) == 0) {
4960 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4961 goto out_of_window;
4964 /* Ok. In sequence. In window. */
4965 queue_and_out:
4966 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4967 sk_forced_mem_schedule(sk, skb->truesize);
4968 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4969 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4970 sk->sk_data_ready(sk);
4971 goto drop;
4974 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4975 if (skb->len)
4976 tcp_event_data_recv(sk, skb);
4977 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4978 tcp_fin(sk);
4980 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4981 tcp_ofo_queue(sk);
4983 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4984 * gap in queue is filled.
4986 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4987 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4990 if (tp->rx_opt.num_sacks)
4991 tcp_sack_remove(tp);
4993 tcp_fast_path_check(sk);
4995 if (eaten > 0)
4996 kfree_skb_partial(skb, fragstolen);
4997 if (!sock_flag(sk, SOCK_DEAD))
4998 tcp_data_ready(sk);
4999 return;
5002 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5003 tcp_rcv_spurious_retrans(sk, skb);
5004 /* A retransmit, 2nd most common case. Force an immediate ack. */
5005 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5006 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5008 out_of_window:
5009 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5010 inet_csk_schedule_ack(sk);
5011 drop:
5012 tcp_drop(sk, skb);
5013 return;
5016 /* Out of window. F.e. zero window probe. */
5017 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5018 goto out_of_window;
5020 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5021 /* Partial packet, seq < rcv_next < end_seq */
5022 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5024 /* If window is closed, drop tail of packet. But after
5025 * remembering D-SACK for its head made in previous line.
5027 if (!tcp_receive_window(tp)) {
5028 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5029 goto out_of_window;
5031 goto queue_and_out;
5034 tcp_data_queue_ofo(sk, skb);
5037 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5039 if (list)
5040 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5042 return skb_rb_next(skb);
5045 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5046 struct sk_buff_head *list,
5047 struct rb_root *root)
5049 struct sk_buff *next = tcp_skb_next(skb, list);
5051 if (list)
5052 __skb_unlink(skb, list);
5053 else
5054 rb_erase(&skb->rbnode, root);
5056 __kfree_skb(skb);
5057 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5059 return next;
5062 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5063 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5065 struct rb_node **p = &root->rb_node;
5066 struct rb_node *parent = NULL;
5067 struct sk_buff *skb1;
5069 while (*p) {
5070 parent = *p;
5071 skb1 = rb_to_skb(parent);
5072 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5073 p = &parent->rb_left;
5074 else
5075 p = &parent->rb_right;
5077 rb_link_node(&skb->rbnode, parent, p);
5078 rb_insert_color(&skb->rbnode, root);
5081 /* Collapse contiguous sequence of skbs head..tail with
5082 * sequence numbers start..end.
5084 * If tail is NULL, this means until the end of the queue.
5086 * Segments with FIN/SYN are not collapsed (only because this
5087 * simplifies code)
5089 static void
5090 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5091 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5093 struct sk_buff *skb = head, *n;
5094 struct sk_buff_head tmp;
5095 bool end_of_skbs;
5097 /* First, check that queue is collapsible and find
5098 * the point where collapsing can be useful.
5100 restart:
5101 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5102 n = tcp_skb_next(skb, list);
5104 /* No new bits? It is possible on ofo queue. */
5105 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5106 skb = tcp_collapse_one(sk, skb, list, root);
5107 if (!skb)
5108 break;
5109 goto restart;
5112 /* The first skb to collapse is:
5113 * - not SYN/FIN and
5114 * - bloated or contains data before "start" or
5115 * overlaps to the next one and mptcp allow collapsing.
5117 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5118 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5119 before(TCP_SKB_CB(skb)->seq, start))) {
5120 end_of_skbs = false;
5121 break;
5124 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5125 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5126 end_of_skbs = false;
5127 break;
5130 /* Decided to skip this, advance start seq. */
5131 start = TCP_SKB_CB(skb)->end_seq;
5133 if (end_of_skbs ||
5134 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5135 return;
5137 __skb_queue_head_init(&tmp);
5139 while (before(start, end)) {
5140 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5141 struct sk_buff *nskb;
5143 nskb = alloc_skb(copy, GFP_ATOMIC);
5144 if (!nskb)
5145 break;
5147 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5148 #ifdef CONFIG_TLS_DEVICE
5149 nskb->decrypted = skb->decrypted;
5150 #endif
5151 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5152 if (list)
5153 __skb_queue_before(list, skb, nskb);
5154 else
5155 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5156 skb_set_owner_r(nskb, sk);
5157 mptcp_skb_ext_move(nskb, skb);
5159 /* Copy data, releasing collapsed skbs. */
5160 while (copy > 0) {
5161 int offset = start - TCP_SKB_CB(skb)->seq;
5162 int size = TCP_SKB_CB(skb)->end_seq - start;
5164 BUG_ON(offset < 0);
5165 if (size > 0) {
5166 size = min(copy, size);
5167 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5168 BUG();
5169 TCP_SKB_CB(nskb)->end_seq += size;
5170 copy -= size;
5171 start += size;
5173 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5174 skb = tcp_collapse_one(sk, skb, list, root);
5175 if (!skb ||
5176 skb == tail ||
5177 !mptcp_skb_can_collapse(nskb, skb) ||
5178 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5179 goto end;
5180 #ifdef CONFIG_TLS_DEVICE
5181 if (skb->decrypted != nskb->decrypted)
5182 goto end;
5183 #endif
5187 end:
5188 skb_queue_walk_safe(&tmp, skb, n)
5189 tcp_rbtree_insert(root, skb);
5192 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5193 * and tcp_collapse() them until all the queue is collapsed.
5195 static void tcp_collapse_ofo_queue(struct sock *sk)
5197 struct tcp_sock *tp = tcp_sk(sk);
5198 u32 range_truesize, sum_tiny = 0;
5199 struct sk_buff *skb, *head;
5200 u32 start, end;
5202 skb = skb_rb_first(&tp->out_of_order_queue);
5203 new_range:
5204 if (!skb) {
5205 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5206 return;
5208 start = TCP_SKB_CB(skb)->seq;
5209 end = TCP_SKB_CB(skb)->end_seq;
5210 range_truesize = skb->truesize;
5212 for (head = skb;;) {
5213 skb = skb_rb_next(skb);
5215 /* Range is terminated when we see a gap or when
5216 * we are at the queue end.
5218 if (!skb ||
5219 after(TCP_SKB_CB(skb)->seq, end) ||
5220 before(TCP_SKB_CB(skb)->end_seq, start)) {
5221 /* Do not attempt collapsing tiny skbs */
5222 if (range_truesize != head->truesize ||
5223 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5224 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5225 head, skb, start, end);
5226 } else {
5227 sum_tiny += range_truesize;
5228 if (sum_tiny > sk->sk_rcvbuf >> 3)
5229 return;
5231 goto new_range;
5234 range_truesize += skb->truesize;
5235 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5236 start = TCP_SKB_CB(skb)->seq;
5237 if (after(TCP_SKB_CB(skb)->end_seq, end))
5238 end = TCP_SKB_CB(skb)->end_seq;
5243 * Clean the out-of-order queue to make room.
5244 * We drop high sequences packets to :
5245 * 1) Let a chance for holes to be filled.
5246 * 2) not add too big latencies if thousands of packets sit there.
5247 * (But if application shrinks SO_RCVBUF, we could still end up
5248 * freeing whole queue here)
5249 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5251 * Return true if queue has shrunk.
5253 static bool tcp_prune_ofo_queue(struct sock *sk)
5255 struct tcp_sock *tp = tcp_sk(sk);
5256 struct rb_node *node, *prev;
5257 int goal;
5259 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5260 return false;
5262 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5263 goal = sk->sk_rcvbuf >> 3;
5264 node = &tp->ooo_last_skb->rbnode;
5265 do {
5266 prev = rb_prev(node);
5267 rb_erase(node, &tp->out_of_order_queue);
5268 goal -= rb_to_skb(node)->truesize;
5269 tcp_drop(sk, rb_to_skb(node));
5270 if (!prev || goal <= 0) {
5271 sk_mem_reclaim(sk);
5272 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5273 !tcp_under_memory_pressure(sk))
5274 break;
5275 goal = sk->sk_rcvbuf >> 3;
5277 node = prev;
5278 } while (node);
5279 tp->ooo_last_skb = rb_to_skb(prev);
5281 /* Reset SACK state. A conforming SACK implementation will
5282 * do the same at a timeout based retransmit. When a connection
5283 * is in a sad state like this, we care only about integrity
5284 * of the connection not performance.
5286 if (tp->rx_opt.sack_ok)
5287 tcp_sack_reset(&tp->rx_opt);
5288 return true;
5291 /* Reduce allocated memory if we can, trying to get
5292 * the socket within its memory limits again.
5294 * Return less than zero if we should start dropping frames
5295 * until the socket owning process reads some of the data
5296 * to stabilize the situation.
5298 static int tcp_prune_queue(struct sock *sk)
5300 struct tcp_sock *tp = tcp_sk(sk);
5302 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5304 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5305 tcp_clamp_window(sk);
5306 else if (tcp_under_memory_pressure(sk))
5307 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5309 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5310 return 0;
5312 tcp_collapse_ofo_queue(sk);
5313 if (!skb_queue_empty(&sk->sk_receive_queue))
5314 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5315 skb_peek(&sk->sk_receive_queue),
5316 NULL,
5317 tp->copied_seq, tp->rcv_nxt);
5318 sk_mem_reclaim(sk);
5320 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5321 return 0;
5323 /* Collapsing did not help, destructive actions follow.
5324 * This must not ever occur. */
5326 tcp_prune_ofo_queue(sk);
5328 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5329 return 0;
5331 /* If we are really being abused, tell the caller to silently
5332 * drop receive data on the floor. It will get retransmitted
5333 * and hopefully then we'll have sufficient space.
5335 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5337 /* Massive buffer overcommit. */
5338 tp->pred_flags = 0;
5339 return -1;
5342 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5344 const struct tcp_sock *tp = tcp_sk(sk);
5346 /* If the user specified a specific send buffer setting, do
5347 * not modify it.
5349 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5350 return false;
5352 /* If we are under global TCP memory pressure, do not expand. */
5353 if (tcp_under_memory_pressure(sk))
5354 return false;
5356 /* If we are under soft global TCP memory pressure, do not expand. */
5357 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5358 return false;
5360 /* If we filled the congestion window, do not expand. */
5361 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5362 return false;
5364 return true;
5367 static void tcp_new_space(struct sock *sk)
5369 struct tcp_sock *tp = tcp_sk(sk);
5371 if (tcp_should_expand_sndbuf(sk)) {
5372 tcp_sndbuf_expand(sk);
5373 tp->snd_cwnd_stamp = tcp_jiffies32;
5376 sk->sk_write_space(sk);
5379 static void tcp_check_space(struct sock *sk)
5381 /* pairs with tcp_poll() */
5382 smp_mb();
5383 if (sk->sk_socket &&
5384 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5385 tcp_new_space(sk);
5386 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5387 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5391 static inline void tcp_data_snd_check(struct sock *sk)
5393 tcp_push_pending_frames(sk);
5394 tcp_check_space(sk);
5398 * Check if sending an ack is needed.
5400 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5402 struct tcp_sock *tp = tcp_sk(sk);
5403 unsigned long rtt, delay;
5405 /* More than one full frame received... */
5406 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5407 /* ... and right edge of window advances far enough.
5408 * (tcp_recvmsg() will send ACK otherwise).
5409 * If application uses SO_RCVLOWAT, we want send ack now if
5410 * we have not received enough bytes to satisfy the condition.
5412 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5413 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5414 /* We ACK each frame or... */
5415 tcp_in_quickack_mode(sk) ||
5416 /* Protocol state mandates a one-time immediate ACK */
5417 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5418 send_now:
5419 tcp_send_ack(sk);
5420 return;
5423 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5424 tcp_send_delayed_ack(sk);
5425 return;
5428 if (!tcp_is_sack(tp) ||
5429 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5430 goto send_now;
5432 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5433 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5434 tp->dup_ack_counter = 0;
5436 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5437 tp->dup_ack_counter++;
5438 goto send_now;
5440 tp->compressed_ack++;
5441 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5442 return;
5444 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5446 rtt = tp->rcv_rtt_est.rtt_us;
5447 if (tp->srtt_us && tp->srtt_us < rtt)
5448 rtt = tp->srtt_us;
5450 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5451 rtt * (NSEC_PER_USEC >> 3)/20);
5452 sock_hold(sk);
5453 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5454 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5455 HRTIMER_MODE_REL_PINNED_SOFT);
5458 static inline void tcp_ack_snd_check(struct sock *sk)
5460 if (!inet_csk_ack_scheduled(sk)) {
5461 /* We sent a data segment already. */
5462 return;
5464 __tcp_ack_snd_check(sk, 1);
5468 * This routine is only called when we have urgent data
5469 * signaled. Its the 'slow' part of tcp_urg. It could be
5470 * moved inline now as tcp_urg is only called from one
5471 * place. We handle URGent data wrong. We have to - as
5472 * BSD still doesn't use the correction from RFC961.
5473 * For 1003.1g we should support a new option TCP_STDURG to permit
5474 * either form (or just set the sysctl tcp_stdurg).
5477 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5479 struct tcp_sock *tp = tcp_sk(sk);
5480 u32 ptr = ntohs(th->urg_ptr);
5482 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5483 ptr--;
5484 ptr += ntohl(th->seq);
5486 /* Ignore urgent data that we've already seen and read. */
5487 if (after(tp->copied_seq, ptr))
5488 return;
5490 /* Do not replay urg ptr.
5492 * NOTE: interesting situation not covered by specs.
5493 * Misbehaving sender may send urg ptr, pointing to segment,
5494 * which we already have in ofo queue. We are not able to fetch
5495 * such data and will stay in TCP_URG_NOTYET until will be eaten
5496 * by recvmsg(). Seems, we are not obliged to handle such wicked
5497 * situations. But it is worth to think about possibility of some
5498 * DoSes using some hypothetical application level deadlock.
5500 if (before(ptr, tp->rcv_nxt))
5501 return;
5503 /* Do we already have a newer (or duplicate) urgent pointer? */
5504 if (tp->urg_data && !after(ptr, tp->urg_seq))
5505 return;
5507 /* Tell the world about our new urgent pointer. */
5508 sk_send_sigurg(sk);
5510 /* We may be adding urgent data when the last byte read was
5511 * urgent. To do this requires some care. We cannot just ignore
5512 * tp->copied_seq since we would read the last urgent byte again
5513 * as data, nor can we alter copied_seq until this data arrives
5514 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5516 * NOTE. Double Dutch. Rendering to plain English: author of comment
5517 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5518 * and expect that both A and B disappear from stream. This is _wrong_.
5519 * Though this happens in BSD with high probability, this is occasional.
5520 * Any application relying on this is buggy. Note also, that fix "works"
5521 * only in this artificial test. Insert some normal data between A and B and we will
5522 * decline of BSD again. Verdict: it is better to remove to trap
5523 * buggy users.
5525 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5526 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5527 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5528 tp->copied_seq++;
5529 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5530 __skb_unlink(skb, &sk->sk_receive_queue);
5531 __kfree_skb(skb);
5535 tp->urg_data = TCP_URG_NOTYET;
5536 WRITE_ONCE(tp->urg_seq, ptr);
5538 /* Disable header prediction. */
5539 tp->pred_flags = 0;
5542 /* This is the 'fast' part of urgent handling. */
5543 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5545 struct tcp_sock *tp = tcp_sk(sk);
5547 /* Check if we get a new urgent pointer - normally not. */
5548 if (th->urg)
5549 tcp_check_urg(sk, th);
5551 /* Do we wait for any urgent data? - normally not... */
5552 if (tp->urg_data == TCP_URG_NOTYET) {
5553 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5554 th->syn;
5556 /* Is the urgent pointer pointing into this packet? */
5557 if (ptr < skb->len) {
5558 u8 tmp;
5559 if (skb_copy_bits(skb, ptr, &tmp, 1))
5560 BUG();
5561 tp->urg_data = TCP_URG_VALID | tmp;
5562 if (!sock_flag(sk, SOCK_DEAD))
5563 sk->sk_data_ready(sk);
5568 /* Accept RST for rcv_nxt - 1 after a FIN.
5569 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5570 * FIN is sent followed by a RST packet. The RST is sent with the same
5571 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5572 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5573 * ACKs on the closed socket. In addition middleboxes can drop either the
5574 * challenge ACK or a subsequent RST.
5576 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5578 struct tcp_sock *tp = tcp_sk(sk);
5580 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5581 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5582 TCPF_CLOSING));
5585 /* Does PAWS and seqno based validation of an incoming segment, flags will
5586 * play significant role here.
5588 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5589 const struct tcphdr *th, int syn_inerr)
5591 struct tcp_sock *tp = tcp_sk(sk);
5592 bool rst_seq_match = false;
5594 /* RFC1323: H1. Apply PAWS check first. */
5595 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5596 tp->rx_opt.saw_tstamp &&
5597 tcp_paws_discard(sk, skb)) {
5598 if (!th->rst) {
5599 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5600 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5601 LINUX_MIB_TCPACKSKIPPEDPAWS,
5602 &tp->last_oow_ack_time))
5603 tcp_send_dupack(sk, skb);
5604 goto discard;
5606 /* Reset is accepted even if it did not pass PAWS. */
5609 /* Step 1: check sequence number */
5610 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5611 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5612 * (RST) segments are validated by checking their SEQ-fields."
5613 * And page 69: "If an incoming segment is not acceptable,
5614 * an acknowledgment should be sent in reply (unless the RST
5615 * bit is set, if so drop the segment and return)".
5617 if (!th->rst) {
5618 if (th->syn)
5619 goto syn_challenge;
5620 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5621 LINUX_MIB_TCPACKSKIPPEDSEQ,
5622 &tp->last_oow_ack_time))
5623 tcp_send_dupack(sk, skb);
5624 } else if (tcp_reset_check(sk, skb)) {
5625 tcp_reset(sk, skb);
5627 goto discard;
5630 /* Step 2: check RST bit */
5631 if (th->rst) {
5632 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5633 * FIN and SACK too if available):
5634 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5635 * the right-most SACK block,
5636 * then
5637 * RESET the connection
5638 * else
5639 * Send a challenge ACK
5641 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5642 tcp_reset_check(sk, skb)) {
5643 rst_seq_match = true;
5644 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5645 struct tcp_sack_block *sp = &tp->selective_acks[0];
5646 int max_sack = sp[0].end_seq;
5647 int this_sack;
5649 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5650 ++this_sack) {
5651 max_sack = after(sp[this_sack].end_seq,
5652 max_sack) ?
5653 sp[this_sack].end_seq : max_sack;
5656 if (TCP_SKB_CB(skb)->seq == max_sack)
5657 rst_seq_match = true;
5660 if (rst_seq_match)
5661 tcp_reset(sk, skb);
5662 else {
5663 /* Disable TFO if RST is out-of-order
5664 * and no data has been received
5665 * for current active TFO socket
5667 if (tp->syn_fastopen && !tp->data_segs_in &&
5668 sk->sk_state == TCP_ESTABLISHED)
5669 tcp_fastopen_active_disable(sk);
5670 tcp_send_challenge_ack(sk, skb);
5672 goto discard;
5675 /* step 3: check security and precedence [ignored] */
5677 /* step 4: Check for a SYN
5678 * RFC 5961 4.2 : Send a challenge ack
5680 if (th->syn) {
5681 syn_challenge:
5682 if (syn_inerr)
5683 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5684 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5685 tcp_send_challenge_ack(sk, skb);
5686 goto discard;
5689 bpf_skops_parse_hdr(sk, skb);
5691 return true;
5693 discard:
5694 tcp_drop(sk, skb);
5695 return false;
5699 * TCP receive function for the ESTABLISHED state.
5701 * It is split into a fast path and a slow path. The fast path is
5702 * disabled when:
5703 * - A zero window was announced from us - zero window probing
5704 * is only handled properly in the slow path.
5705 * - Out of order segments arrived.
5706 * - Urgent data is expected.
5707 * - There is no buffer space left
5708 * - Unexpected TCP flags/window values/header lengths are received
5709 * (detected by checking the TCP header against pred_flags)
5710 * - Data is sent in both directions. Fast path only supports pure senders
5711 * or pure receivers (this means either the sequence number or the ack
5712 * value must stay constant)
5713 * - Unexpected TCP option.
5715 * When these conditions are not satisfied it drops into a standard
5716 * receive procedure patterned after RFC793 to handle all cases.
5717 * The first three cases are guaranteed by proper pred_flags setting,
5718 * the rest is checked inline. Fast processing is turned on in
5719 * tcp_data_queue when everything is OK.
5721 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5723 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5724 struct tcp_sock *tp = tcp_sk(sk);
5725 unsigned int len = skb->len;
5727 /* TCP congestion window tracking */
5728 trace_tcp_probe(sk, skb);
5730 tcp_mstamp_refresh(tp);
5731 if (unlikely(!sk->sk_rx_dst))
5732 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5734 * Header prediction.
5735 * The code loosely follows the one in the famous
5736 * "30 instruction TCP receive" Van Jacobson mail.
5738 * Van's trick is to deposit buffers into socket queue
5739 * on a device interrupt, to call tcp_recv function
5740 * on the receive process context and checksum and copy
5741 * the buffer to user space. smart...
5743 * Our current scheme is not silly either but we take the
5744 * extra cost of the net_bh soft interrupt processing...
5745 * We do checksum and copy also but from device to kernel.
5748 tp->rx_opt.saw_tstamp = 0;
5750 /* pred_flags is 0xS?10 << 16 + snd_wnd
5751 * if header_prediction is to be made
5752 * 'S' will always be tp->tcp_header_len >> 2
5753 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5754 * turn it off (when there are holes in the receive
5755 * space for instance)
5756 * PSH flag is ignored.
5759 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5760 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5761 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5762 int tcp_header_len = tp->tcp_header_len;
5764 /* Timestamp header prediction: tcp_header_len
5765 * is automatically equal to th->doff*4 due to pred_flags
5766 * match.
5769 /* Check timestamp */
5770 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5771 /* No? Slow path! */
5772 if (!tcp_parse_aligned_timestamp(tp, th))
5773 goto slow_path;
5775 /* If PAWS failed, check it more carefully in slow path */
5776 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5777 goto slow_path;
5779 /* DO NOT update ts_recent here, if checksum fails
5780 * and timestamp was corrupted part, it will result
5781 * in a hung connection since we will drop all
5782 * future packets due to the PAWS test.
5786 if (len <= tcp_header_len) {
5787 /* Bulk data transfer: sender */
5788 if (len == tcp_header_len) {
5789 /* Predicted packet is in window by definition.
5790 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5791 * Hence, check seq<=rcv_wup reduces to:
5793 if (tcp_header_len ==
5794 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5795 tp->rcv_nxt == tp->rcv_wup)
5796 tcp_store_ts_recent(tp);
5798 /* We know that such packets are checksummed
5799 * on entry.
5801 tcp_ack(sk, skb, 0);
5802 __kfree_skb(skb);
5803 tcp_data_snd_check(sk);
5804 /* When receiving pure ack in fast path, update
5805 * last ts ecr directly instead of calling
5806 * tcp_rcv_rtt_measure_ts()
5808 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5809 return;
5810 } else { /* Header too small */
5811 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5812 goto discard;
5814 } else {
5815 int eaten = 0;
5816 bool fragstolen = false;
5818 if (tcp_checksum_complete(skb))
5819 goto csum_error;
5821 if ((int)skb->truesize > sk->sk_forward_alloc)
5822 goto step5;
5824 /* Predicted packet is in window by definition.
5825 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5826 * Hence, check seq<=rcv_wup reduces to:
5828 if (tcp_header_len ==
5829 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5830 tp->rcv_nxt == tp->rcv_wup)
5831 tcp_store_ts_recent(tp);
5833 tcp_rcv_rtt_measure_ts(sk, skb);
5835 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5837 /* Bulk data transfer: receiver */
5838 __skb_pull(skb, tcp_header_len);
5839 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5841 tcp_event_data_recv(sk, skb);
5843 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5844 /* Well, only one small jumplet in fast path... */
5845 tcp_ack(sk, skb, FLAG_DATA);
5846 tcp_data_snd_check(sk);
5847 if (!inet_csk_ack_scheduled(sk))
5848 goto no_ack;
5849 } else {
5850 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5853 __tcp_ack_snd_check(sk, 0);
5854 no_ack:
5855 if (eaten)
5856 kfree_skb_partial(skb, fragstolen);
5857 tcp_data_ready(sk);
5858 return;
5862 slow_path:
5863 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5864 goto csum_error;
5866 if (!th->ack && !th->rst && !th->syn)
5867 goto discard;
5870 * Standard slow path.
5873 if (!tcp_validate_incoming(sk, skb, th, 1))
5874 return;
5876 step5:
5877 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5878 goto discard;
5880 tcp_rcv_rtt_measure_ts(sk, skb);
5882 /* Process urgent data. */
5883 tcp_urg(sk, skb, th);
5885 /* step 7: process the segment text */
5886 tcp_data_queue(sk, skb);
5888 tcp_data_snd_check(sk);
5889 tcp_ack_snd_check(sk);
5890 return;
5892 csum_error:
5893 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5894 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5896 discard:
5897 tcp_drop(sk, skb);
5899 EXPORT_SYMBOL(tcp_rcv_established);
5901 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5903 struct inet_connection_sock *icsk = inet_csk(sk);
5904 struct tcp_sock *tp = tcp_sk(sk);
5906 tcp_mtup_init(sk);
5907 icsk->icsk_af_ops->rebuild_header(sk);
5908 tcp_init_metrics(sk);
5910 /* Initialize the congestion window to start the transfer.
5911 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5912 * retransmitted. In light of RFC6298 more aggressive 1sec
5913 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5914 * retransmission has occurred.
5916 if (tp->total_retrans > 1 && tp->undo_marker)
5917 tp->snd_cwnd = 1;
5918 else
5919 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5920 tp->snd_cwnd_stamp = tcp_jiffies32;
5922 icsk->icsk_ca_initialized = 0;
5923 bpf_skops_established(sk, bpf_op, skb);
5924 if (!icsk->icsk_ca_initialized)
5925 tcp_init_congestion_control(sk);
5926 tcp_init_buffer_space(sk);
5929 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5931 struct tcp_sock *tp = tcp_sk(sk);
5932 struct inet_connection_sock *icsk = inet_csk(sk);
5934 tcp_set_state(sk, TCP_ESTABLISHED);
5935 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5937 if (skb) {
5938 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5939 security_inet_conn_established(sk, skb);
5940 sk_mark_napi_id(sk, skb);
5943 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5945 /* Prevent spurious tcp_cwnd_restart() on first data
5946 * packet.
5948 tp->lsndtime = tcp_jiffies32;
5950 if (sock_flag(sk, SOCK_KEEPOPEN))
5951 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5953 if (!tp->rx_opt.snd_wscale)
5954 __tcp_fast_path_on(tp, tp->snd_wnd);
5955 else
5956 tp->pred_flags = 0;
5959 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5960 struct tcp_fastopen_cookie *cookie)
5962 struct tcp_sock *tp = tcp_sk(sk);
5963 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5964 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5965 bool syn_drop = false;
5967 if (mss == tp->rx_opt.user_mss) {
5968 struct tcp_options_received opt;
5970 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5971 tcp_clear_options(&opt);
5972 opt.user_mss = opt.mss_clamp = 0;
5973 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5974 mss = opt.mss_clamp;
5977 if (!tp->syn_fastopen) {
5978 /* Ignore an unsolicited cookie */
5979 cookie->len = -1;
5980 } else if (tp->total_retrans) {
5981 /* SYN timed out and the SYN-ACK neither has a cookie nor
5982 * acknowledges data. Presumably the remote received only
5983 * the retransmitted (regular) SYNs: either the original
5984 * SYN-data or the corresponding SYN-ACK was dropped.
5986 syn_drop = (cookie->len < 0 && data);
5987 } else if (cookie->len < 0 && !tp->syn_data) {
5988 /* We requested a cookie but didn't get it. If we did not use
5989 * the (old) exp opt format then try so next time (try_exp=1).
5990 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5992 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5995 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5997 if (data) { /* Retransmit unacked data in SYN */
5998 if (tp->total_retrans)
5999 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6000 else
6001 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6002 skb_rbtree_walk_from(data) {
6003 if (__tcp_retransmit_skb(sk, data, 1))
6004 break;
6006 tcp_rearm_rto(sk);
6007 NET_INC_STATS(sock_net(sk),
6008 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6009 return true;
6011 tp->syn_data_acked = tp->syn_data;
6012 if (tp->syn_data_acked) {
6013 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6014 /* SYN-data is counted as two separate packets in tcp_ack() */
6015 if (tp->delivered > 1)
6016 --tp->delivered;
6019 tcp_fastopen_add_skb(sk, synack);
6021 return false;
6024 static void smc_check_reset_syn(struct tcp_sock *tp)
6026 #if IS_ENABLED(CONFIG_SMC)
6027 if (static_branch_unlikely(&tcp_have_smc)) {
6028 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6029 tp->syn_smc = 0;
6031 #endif
6034 static void tcp_try_undo_spurious_syn(struct sock *sk)
6036 struct tcp_sock *tp = tcp_sk(sk);
6037 u32 syn_stamp;
6039 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6040 * spurious if the ACK's timestamp option echo value matches the
6041 * original SYN timestamp.
6043 syn_stamp = tp->retrans_stamp;
6044 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6045 syn_stamp == tp->rx_opt.rcv_tsecr)
6046 tp->undo_marker = 0;
6049 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6050 const struct tcphdr *th)
6052 struct inet_connection_sock *icsk = inet_csk(sk);
6053 struct tcp_sock *tp = tcp_sk(sk);
6054 struct tcp_fastopen_cookie foc = { .len = -1 };
6055 int saved_clamp = tp->rx_opt.mss_clamp;
6056 bool fastopen_fail;
6058 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6059 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6060 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6062 if (th->ack) {
6063 /* rfc793:
6064 * "If the state is SYN-SENT then
6065 * first check the ACK bit
6066 * If the ACK bit is set
6067 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6068 * a reset (unless the RST bit is set, if so drop
6069 * the segment and return)"
6071 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6072 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6073 /* Previous FIN/ACK or RST/ACK might be ignored. */
6074 if (icsk->icsk_retransmits == 0)
6075 inet_csk_reset_xmit_timer(sk,
6076 ICSK_TIME_RETRANS,
6077 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6078 goto reset_and_undo;
6081 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6082 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6083 tcp_time_stamp(tp))) {
6084 NET_INC_STATS(sock_net(sk),
6085 LINUX_MIB_PAWSACTIVEREJECTED);
6086 goto reset_and_undo;
6089 /* Now ACK is acceptable.
6091 * "If the RST bit is set
6092 * If the ACK was acceptable then signal the user "error:
6093 * connection reset", drop the segment, enter CLOSED state,
6094 * delete TCB, and return."
6097 if (th->rst) {
6098 tcp_reset(sk, skb);
6099 goto discard;
6102 /* rfc793:
6103 * "fifth, if neither of the SYN or RST bits is set then
6104 * drop the segment and return."
6106 * See note below!
6107 * --ANK(990513)
6109 if (!th->syn)
6110 goto discard_and_undo;
6112 /* rfc793:
6113 * "If the SYN bit is on ...
6114 * are acceptable then ...
6115 * (our SYN has been ACKed), change the connection
6116 * state to ESTABLISHED..."
6119 tcp_ecn_rcv_synack(tp, th);
6121 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6122 tcp_try_undo_spurious_syn(sk);
6123 tcp_ack(sk, skb, FLAG_SLOWPATH);
6125 /* Ok.. it's good. Set up sequence numbers and
6126 * move to established.
6128 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6129 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6131 /* RFC1323: The window in SYN & SYN/ACK segments is
6132 * never scaled.
6134 tp->snd_wnd = ntohs(th->window);
6136 if (!tp->rx_opt.wscale_ok) {
6137 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6138 tp->window_clamp = min(tp->window_clamp, 65535U);
6141 if (tp->rx_opt.saw_tstamp) {
6142 tp->rx_opt.tstamp_ok = 1;
6143 tp->tcp_header_len =
6144 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6145 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6146 tcp_store_ts_recent(tp);
6147 } else {
6148 tp->tcp_header_len = sizeof(struct tcphdr);
6151 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6152 tcp_initialize_rcv_mss(sk);
6154 /* Remember, tcp_poll() does not lock socket!
6155 * Change state from SYN-SENT only after copied_seq
6156 * is initialized. */
6157 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6159 smc_check_reset_syn(tp);
6161 smp_mb();
6163 tcp_finish_connect(sk, skb);
6165 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6166 tcp_rcv_fastopen_synack(sk, skb, &foc);
6168 if (!sock_flag(sk, SOCK_DEAD)) {
6169 sk->sk_state_change(sk);
6170 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6172 if (fastopen_fail)
6173 return -1;
6174 if (sk->sk_write_pending ||
6175 icsk->icsk_accept_queue.rskq_defer_accept ||
6176 inet_csk_in_pingpong_mode(sk)) {
6177 /* Save one ACK. Data will be ready after
6178 * several ticks, if write_pending is set.
6180 * It may be deleted, but with this feature tcpdumps
6181 * look so _wonderfully_ clever, that I was not able
6182 * to stand against the temptation 8) --ANK
6184 inet_csk_schedule_ack(sk);
6185 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6186 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6187 TCP_DELACK_MAX, TCP_RTO_MAX);
6189 discard:
6190 tcp_drop(sk, skb);
6191 return 0;
6192 } else {
6193 tcp_send_ack(sk);
6195 return -1;
6198 /* No ACK in the segment */
6200 if (th->rst) {
6201 /* rfc793:
6202 * "If the RST bit is set
6204 * Otherwise (no ACK) drop the segment and return."
6207 goto discard_and_undo;
6210 /* PAWS check. */
6211 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6212 tcp_paws_reject(&tp->rx_opt, 0))
6213 goto discard_and_undo;
6215 if (th->syn) {
6216 /* We see SYN without ACK. It is attempt of
6217 * simultaneous connect with crossed SYNs.
6218 * Particularly, it can be connect to self.
6220 tcp_set_state(sk, TCP_SYN_RECV);
6222 if (tp->rx_opt.saw_tstamp) {
6223 tp->rx_opt.tstamp_ok = 1;
6224 tcp_store_ts_recent(tp);
6225 tp->tcp_header_len =
6226 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6227 } else {
6228 tp->tcp_header_len = sizeof(struct tcphdr);
6231 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6232 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6233 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6235 /* RFC1323: The window in SYN & SYN/ACK segments is
6236 * never scaled.
6238 tp->snd_wnd = ntohs(th->window);
6239 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6240 tp->max_window = tp->snd_wnd;
6242 tcp_ecn_rcv_syn(tp, th);
6244 tcp_mtup_init(sk);
6245 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6246 tcp_initialize_rcv_mss(sk);
6248 tcp_send_synack(sk);
6249 #if 0
6250 /* Note, we could accept data and URG from this segment.
6251 * There are no obstacles to make this (except that we must
6252 * either change tcp_recvmsg() to prevent it from returning data
6253 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6255 * However, if we ignore data in ACKless segments sometimes,
6256 * we have no reasons to accept it sometimes.
6257 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6258 * is not flawless. So, discard packet for sanity.
6259 * Uncomment this return to process the data.
6261 return -1;
6262 #else
6263 goto discard;
6264 #endif
6266 /* "fifth, if neither of the SYN or RST bits is set then
6267 * drop the segment and return."
6270 discard_and_undo:
6271 tcp_clear_options(&tp->rx_opt);
6272 tp->rx_opt.mss_clamp = saved_clamp;
6273 goto discard;
6275 reset_and_undo:
6276 tcp_clear_options(&tp->rx_opt);
6277 tp->rx_opt.mss_clamp = saved_clamp;
6278 return 1;
6281 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6283 struct request_sock *req;
6285 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6286 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6288 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6289 tcp_try_undo_loss(sk, false);
6291 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6292 tcp_sk(sk)->retrans_stamp = 0;
6293 inet_csk(sk)->icsk_retransmits = 0;
6295 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6296 * we no longer need req so release it.
6298 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6299 lockdep_sock_is_held(sk));
6300 reqsk_fastopen_remove(sk, req, false);
6302 /* Re-arm the timer because data may have been sent out.
6303 * This is similar to the regular data transmission case
6304 * when new data has just been ack'ed.
6306 * (TFO) - we could try to be more aggressive and
6307 * retransmitting any data sooner based on when they
6308 * are sent out.
6310 tcp_rearm_rto(sk);
6314 * This function implements the receiving procedure of RFC 793 for
6315 * all states except ESTABLISHED and TIME_WAIT.
6316 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6317 * address independent.
6320 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6322 struct tcp_sock *tp = tcp_sk(sk);
6323 struct inet_connection_sock *icsk = inet_csk(sk);
6324 const struct tcphdr *th = tcp_hdr(skb);
6325 struct request_sock *req;
6326 int queued = 0;
6327 bool acceptable;
6329 switch (sk->sk_state) {
6330 case TCP_CLOSE:
6331 goto discard;
6333 case TCP_LISTEN:
6334 if (th->ack)
6335 return 1;
6337 if (th->rst)
6338 goto discard;
6340 if (th->syn) {
6341 if (th->fin)
6342 goto discard;
6343 /* It is possible that we process SYN packets from backlog,
6344 * so we need to make sure to disable BH and RCU right there.
6346 rcu_read_lock();
6347 local_bh_disable();
6348 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6349 local_bh_enable();
6350 rcu_read_unlock();
6352 if (!acceptable)
6353 return 1;
6354 consume_skb(skb);
6355 return 0;
6357 goto discard;
6359 case TCP_SYN_SENT:
6360 tp->rx_opt.saw_tstamp = 0;
6361 tcp_mstamp_refresh(tp);
6362 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6363 if (queued >= 0)
6364 return queued;
6366 /* Do step6 onward by hand. */
6367 tcp_urg(sk, skb, th);
6368 __kfree_skb(skb);
6369 tcp_data_snd_check(sk);
6370 return 0;
6373 tcp_mstamp_refresh(tp);
6374 tp->rx_opt.saw_tstamp = 0;
6375 req = rcu_dereference_protected(tp->fastopen_rsk,
6376 lockdep_sock_is_held(sk));
6377 if (req) {
6378 bool req_stolen;
6380 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6381 sk->sk_state != TCP_FIN_WAIT1);
6383 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6384 goto discard;
6387 if (!th->ack && !th->rst && !th->syn)
6388 goto discard;
6390 if (!tcp_validate_incoming(sk, skb, th, 0))
6391 return 0;
6393 /* step 5: check the ACK field */
6394 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6395 FLAG_UPDATE_TS_RECENT |
6396 FLAG_NO_CHALLENGE_ACK) > 0;
6398 if (!acceptable) {
6399 if (sk->sk_state == TCP_SYN_RECV)
6400 return 1; /* send one RST */
6401 tcp_send_challenge_ack(sk, skb);
6402 goto discard;
6404 switch (sk->sk_state) {
6405 case TCP_SYN_RECV:
6406 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6407 if (!tp->srtt_us)
6408 tcp_synack_rtt_meas(sk, req);
6410 if (req) {
6411 tcp_rcv_synrecv_state_fastopen(sk);
6412 } else {
6413 tcp_try_undo_spurious_syn(sk);
6414 tp->retrans_stamp = 0;
6415 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6416 skb);
6417 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6419 smp_mb();
6420 tcp_set_state(sk, TCP_ESTABLISHED);
6421 sk->sk_state_change(sk);
6423 /* Note, that this wakeup is only for marginal crossed SYN case.
6424 * Passively open sockets are not waked up, because
6425 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6427 if (sk->sk_socket)
6428 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6430 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6431 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6432 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6434 if (tp->rx_opt.tstamp_ok)
6435 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6437 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6438 tcp_update_pacing_rate(sk);
6440 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6441 tp->lsndtime = tcp_jiffies32;
6443 tcp_initialize_rcv_mss(sk);
6444 tcp_fast_path_on(tp);
6445 break;
6447 case TCP_FIN_WAIT1: {
6448 int tmo;
6450 if (req)
6451 tcp_rcv_synrecv_state_fastopen(sk);
6453 if (tp->snd_una != tp->write_seq)
6454 break;
6456 tcp_set_state(sk, TCP_FIN_WAIT2);
6457 sk->sk_shutdown |= SEND_SHUTDOWN;
6459 sk_dst_confirm(sk);
6461 if (!sock_flag(sk, SOCK_DEAD)) {
6462 /* Wake up lingering close() */
6463 sk->sk_state_change(sk);
6464 break;
6467 if (tp->linger2 < 0) {
6468 tcp_done(sk);
6469 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6470 return 1;
6472 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6473 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6474 /* Receive out of order FIN after close() */
6475 if (tp->syn_fastopen && th->fin)
6476 tcp_fastopen_active_disable(sk);
6477 tcp_done(sk);
6478 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6479 return 1;
6482 tmo = tcp_fin_time(sk);
6483 if (tmo > TCP_TIMEWAIT_LEN) {
6484 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6485 } else if (th->fin || sock_owned_by_user(sk)) {
6486 /* Bad case. We could lose such FIN otherwise.
6487 * It is not a big problem, but it looks confusing
6488 * and not so rare event. We still can lose it now,
6489 * if it spins in bh_lock_sock(), but it is really
6490 * marginal case.
6492 inet_csk_reset_keepalive_timer(sk, tmo);
6493 } else {
6494 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6495 goto discard;
6497 break;
6500 case TCP_CLOSING:
6501 if (tp->snd_una == tp->write_seq) {
6502 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6503 goto discard;
6505 break;
6507 case TCP_LAST_ACK:
6508 if (tp->snd_una == tp->write_seq) {
6509 tcp_update_metrics(sk);
6510 tcp_done(sk);
6511 goto discard;
6513 break;
6516 /* step 6: check the URG bit */
6517 tcp_urg(sk, skb, th);
6519 /* step 7: process the segment text */
6520 switch (sk->sk_state) {
6521 case TCP_CLOSE_WAIT:
6522 case TCP_CLOSING:
6523 case TCP_LAST_ACK:
6524 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6525 if (sk_is_mptcp(sk))
6526 mptcp_incoming_options(sk, skb);
6527 break;
6529 fallthrough;
6530 case TCP_FIN_WAIT1:
6531 case TCP_FIN_WAIT2:
6532 /* RFC 793 says to queue data in these states,
6533 * RFC 1122 says we MUST send a reset.
6534 * BSD 4.4 also does reset.
6536 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6537 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6538 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6539 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6540 tcp_reset(sk, skb);
6541 return 1;
6544 fallthrough;
6545 case TCP_ESTABLISHED:
6546 tcp_data_queue(sk, skb);
6547 queued = 1;
6548 break;
6551 /* tcp_data could move socket to TIME-WAIT */
6552 if (sk->sk_state != TCP_CLOSE) {
6553 tcp_data_snd_check(sk);
6554 tcp_ack_snd_check(sk);
6557 if (!queued) {
6558 discard:
6559 tcp_drop(sk, skb);
6561 return 0;
6563 EXPORT_SYMBOL(tcp_rcv_state_process);
6565 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6567 struct inet_request_sock *ireq = inet_rsk(req);
6569 if (family == AF_INET)
6570 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6571 &ireq->ir_rmt_addr, port);
6572 #if IS_ENABLED(CONFIG_IPV6)
6573 else if (family == AF_INET6)
6574 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6575 &ireq->ir_v6_rmt_addr, port);
6576 #endif
6579 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6581 * If we receive a SYN packet with these bits set, it means a
6582 * network is playing bad games with TOS bits. In order to
6583 * avoid possible false congestion notifications, we disable
6584 * TCP ECN negotiation.
6586 * Exception: tcp_ca wants ECN. This is required for DCTCP
6587 * congestion control: Linux DCTCP asserts ECT on all packets,
6588 * including SYN, which is most optimal solution; however,
6589 * others, such as FreeBSD do not.
6591 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6592 * set, indicating the use of a future TCP extension (such as AccECN). See
6593 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6594 * extensions.
6596 static void tcp_ecn_create_request(struct request_sock *req,
6597 const struct sk_buff *skb,
6598 const struct sock *listen_sk,
6599 const struct dst_entry *dst)
6601 const struct tcphdr *th = tcp_hdr(skb);
6602 const struct net *net = sock_net(listen_sk);
6603 bool th_ecn = th->ece && th->cwr;
6604 bool ect, ecn_ok;
6605 u32 ecn_ok_dst;
6607 if (!th_ecn)
6608 return;
6610 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6611 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6612 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6614 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6615 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6616 tcp_bpf_ca_needs_ecn((struct sock *)req))
6617 inet_rsk(req)->ecn_ok = 1;
6620 static void tcp_openreq_init(struct request_sock *req,
6621 const struct tcp_options_received *rx_opt,
6622 struct sk_buff *skb, const struct sock *sk)
6624 struct inet_request_sock *ireq = inet_rsk(req);
6626 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6627 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6628 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6629 tcp_rsk(req)->snt_synack = 0;
6630 tcp_rsk(req)->last_oow_ack_time = 0;
6631 req->mss = rx_opt->mss_clamp;
6632 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6633 ireq->tstamp_ok = rx_opt->tstamp_ok;
6634 ireq->sack_ok = rx_opt->sack_ok;
6635 ireq->snd_wscale = rx_opt->snd_wscale;
6636 ireq->wscale_ok = rx_opt->wscale_ok;
6637 ireq->acked = 0;
6638 ireq->ecn_ok = 0;
6639 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6640 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6641 ireq->ir_mark = inet_request_mark(sk, skb);
6642 #if IS_ENABLED(CONFIG_SMC)
6643 ireq->smc_ok = rx_opt->smc_ok;
6644 #endif
6647 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6648 struct sock *sk_listener,
6649 bool attach_listener)
6651 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6652 attach_listener);
6654 if (req) {
6655 struct inet_request_sock *ireq = inet_rsk(req);
6657 ireq->ireq_opt = NULL;
6658 #if IS_ENABLED(CONFIG_IPV6)
6659 ireq->pktopts = NULL;
6660 #endif
6661 atomic64_set(&ireq->ir_cookie, 0);
6662 ireq->ireq_state = TCP_NEW_SYN_RECV;
6663 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6664 ireq->ireq_family = sk_listener->sk_family;
6667 return req;
6669 EXPORT_SYMBOL(inet_reqsk_alloc);
6672 * Return true if a syncookie should be sent
6674 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6676 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6677 const char *msg = "Dropping request";
6678 bool want_cookie = false;
6679 struct net *net = sock_net(sk);
6681 #ifdef CONFIG_SYN_COOKIES
6682 if (net->ipv4.sysctl_tcp_syncookies) {
6683 msg = "Sending cookies";
6684 want_cookie = true;
6685 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6686 } else
6687 #endif
6688 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6690 if (!queue->synflood_warned &&
6691 net->ipv4.sysctl_tcp_syncookies != 2 &&
6692 xchg(&queue->synflood_warned, 1) == 0)
6693 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6694 proto, sk->sk_num, msg);
6696 return want_cookie;
6699 static void tcp_reqsk_record_syn(const struct sock *sk,
6700 struct request_sock *req,
6701 const struct sk_buff *skb)
6703 if (tcp_sk(sk)->save_syn) {
6704 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6705 struct saved_syn *saved_syn;
6706 u32 mac_hdrlen;
6707 void *base;
6709 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6710 base = skb_mac_header(skb);
6711 mac_hdrlen = skb_mac_header_len(skb);
6712 len += mac_hdrlen;
6713 } else {
6714 base = skb_network_header(skb);
6715 mac_hdrlen = 0;
6718 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6719 GFP_ATOMIC);
6720 if (saved_syn) {
6721 saved_syn->mac_hdrlen = mac_hdrlen;
6722 saved_syn->network_hdrlen = skb_network_header_len(skb);
6723 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6724 memcpy(saved_syn->data, base, len);
6725 req->saved_syn = saved_syn;
6730 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6731 * used for SYN cookie generation.
6733 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6734 const struct tcp_request_sock_ops *af_ops,
6735 struct sock *sk, struct tcphdr *th)
6737 struct tcp_sock *tp = tcp_sk(sk);
6738 u16 mss;
6740 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6741 !inet_csk_reqsk_queue_is_full(sk))
6742 return 0;
6744 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6745 return 0;
6747 if (sk_acceptq_is_full(sk)) {
6748 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6749 return 0;
6752 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6753 if (!mss)
6754 mss = af_ops->mss_clamp;
6756 return mss;
6758 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6760 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6761 const struct tcp_request_sock_ops *af_ops,
6762 struct sock *sk, struct sk_buff *skb)
6764 struct tcp_fastopen_cookie foc = { .len = -1 };
6765 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6766 struct tcp_options_received tmp_opt;
6767 struct tcp_sock *tp = tcp_sk(sk);
6768 struct net *net = sock_net(sk);
6769 struct sock *fastopen_sk = NULL;
6770 struct request_sock *req;
6771 bool want_cookie = false;
6772 struct dst_entry *dst;
6773 struct flowi fl;
6775 /* TW buckets are converted to open requests without
6776 * limitations, they conserve resources and peer is
6777 * evidently real one.
6779 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6780 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6781 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6782 if (!want_cookie)
6783 goto drop;
6786 if (sk_acceptq_is_full(sk)) {
6787 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6788 goto drop;
6791 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6792 if (!req)
6793 goto drop;
6795 req->syncookie = want_cookie;
6796 tcp_rsk(req)->af_specific = af_ops;
6797 tcp_rsk(req)->ts_off = 0;
6798 #if IS_ENABLED(CONFIG_MPTCP)
6799 tcp_rsk(req)->is_mptcp = 0;
6800 #endif
6802 tcp_clear_options(&tmp_opt);
6803 tmp_opt.mss_clamp = af_ops->mss_clamp;
6804 tmp_opt.user_mss = tp->rx_opt.user_mss;
6805 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6806 want_cookie ? NULL : &foc);
6808 if (want_cookie && !tmp_opt.saw_tstamp)
6809 tcp_clear_options(&tmp_opt);
6811 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6812 tmp_opt.smc_ok = 0;
6814 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6815 tcp_openreq_init(req, &tmp_opt, skb, sk);
6816 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6818 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6819 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6821 dst = af_ops->route_req(sk, skb, &fl, req);
6822 if (!dst)
6823 goto drop_and_free;
6825 if (tmp_opt.tstamp_ok)
6826 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6828 if (!want_cookie && !isn) {
6829 /* Kill the following clause, if you dislike this way. */
6830 if (!net->ipv4.sysctl_tcp_syncookies &&
6831 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6832 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6833 !tcp_peer_is_proven(req, dst)) {
6834 /* Without syncookies last quarter of
6835 * backlog is filled with destinations,
6836 * proven to be alive.
6837 * It means that we continue to communicate
6838 * to destinations, already remembered
6839 * to the moment of synflood.
6841 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6842 rsk_ops->family);
6843 goto drop_and_release;
6846 isn = af_ops->init_seq(skb);
6849 tcp_ecn_create_request(req, skb, sk, dst);
6851 if (want_cookie) {
6852 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6853 if (!tmp_opt.tstamp_ok)
6854 inet_rsk(req)->ecn_ok = 0;
6857 tcp_rsk(req)->snt_isn = isn;
6858 tcp_rsk(req)->txhash = net_tx_rndhash();
6859 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6860 tcp_openreq_init_rwin(req, sk, dst);
6861 sk_rx_queue_set(req_to_sk(req), skb);
6862 if (!want_cookie) {
6863 tcp_reqsk_record_syn(sk, req, skb);
6864 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6866 if (fastopen_sk) {
6867 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6868 &foc, TCP_SYNACK_FASTOPEN, skb);
6869 /* Add the child socket directly into the accept queue */
6870 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6871 reqsk_fastopen_remove(fastopen_sk, req, false);
6872 bh_unlock_sock(fastopen_sk);
6873 sock_put(fastopen_sk);
6874 goto drop_and_free;
6876 sk->sk_data_ready(sk);
6877 bh_unlock_sock(fastopen_sk);
6878 sock_put(fastopen_sk);
6879 } else {
6880 tcp_rsk(req)->tfo_listener = false;
6881 if (!want_cookie)
6882 inet_csk_reqsk_queue_hash_add(sk, req,
6883 tcp_timeout_init((struct sock *)req));
6884 af_ops->send_synack(sk, dst, &fl, req, &foc,
6885 !want_cookie ? TCP_SYNACK_NORMAL :
6886 TCP_SYNACK_COOKIE,
6887 skb);
6888 if (want_cookie) {
6889 reqsk_free(req);
6890 return 0;
6893 reqsk_put(req);
6894 return 0;
6896 drop_and_release:
6897 dst_release(dst);
6898 drop_and_free:
6899 __reqsk_free(req);
6900 drop:
6901 tcp_listendrop(sk);
6902 return 0;
6904 EXPORT_SYMBOL(tcp_conn_request);