io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / net / ipv4 / udp.c
blob7103b0a89756e24203261684e88432615c344581
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The User Datagram Protocol (UDP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
75 #define pr_fmt(fmt) "UDP: " fmt
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 const struct udp_hslot *hslot,
134 unsigned long *bitmap,
135 struct sock *sk, unsigned int log)
137 struct sock *sk2;
138 kuid_t uid = sock_i_uid(sk);
140 sk_for_each(sk2, &hslot->head) {
141 if (net_eq(sock_net(sk2), net) &&
142 sk2 != sk &&
143 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 (!sk2->sk_reuse || !sk->sk_reuse) &&
145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 inet_rcv_saddr_equal(sk, sk2, true)) {
148 if (sk2->sk_reuseport && sk->sk_reuseport &&
149 !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 uid_eq(uid, sock_i_uid(sk2))) {
151 if (!bitmap)
152 return 0;
153 } else {
154 if (!bitmap)
155 return 1;
156 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 bitmap);
161 return 0;
165 * Note: we still hold spinlock of primary hash chain, so no other writer
166 * can insert/delete a socket with local_port == num
168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 struct udp_hslot *hslot2,
170 struct sock *sk)
172 struct sock *sk2;
173 kuid_t uid = sock_i_uid(sk);
174 int res = 0;
176 spin_lock(&hslot2->lock);
177 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 if (net_eq(sock_net(sk2), net) &&
179 sk2 != sk &&
180 (udp_sk(sk2)->udp_port_hash == num) &&
181 (!sk2->sk_reuse || !sk->sk_reuse) &&
182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 inet_rcv_saddr_equal(sk, sk2, true)) {
185 if (sk2->sk_reuseport && sk->sk_reuseport &&
186 !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 uid_eq(uid, sock_i_uid(sk2))) {
188 res = 0;
189 } else {
190 res = 1;
192 break;
195 spin_unlock(&hslot2->lock);
196 return res;
199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
201 struct net *net = sock_net(sk);
202 kuid_t uid = sock_i_uid(sk);
203 struct sock *sk2;
205 sk_for_each(sk2, &hslot->head) {
206 if (net_eq(sock_net(sk2), net) &&
207 sk2 != sk &&
208 sk2->sk_family == sk->sk_family &&
209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 inet_rcv_saddr_equal(sk, sk2, false)) {
214 return reuseport_add_sock(sk, sk2,
215 inet_rcv_saddr_any(sk));
219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
225 * @sk: socket struct in question
226 * @snum: port number to look up
227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228 * with NULL address
230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 unsigned int hash2_nulladdr)
233 struct udp_hslot *hslot, *hslot2;
234 struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 int error = 1;
236 struct net *net = sock_net(sk);
238 if (!snum) {
239 int low, high, remaining;
240 unsigned int rand;
241 unsigned short first, last;
242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
244 inet_get_local_port_range(net, &low, &high);
245 remaining = (high - low) + 1;
247 rand = prandom_u32();
248 first = reciprocal_scale(rand, remaining) + low;
250 * force rand to be an odd multiple of UDP_HTABLE_SIZE
252 rand = (rand | 1) * (udptable->mask + 1);
253 last = first + udptable->mask + 1;
254 do {
255 hslot = udp_hashslot(udptable, net, first);
256 bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 spin_lock_bh(&hslot->lock);
258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 udptable->log);
261 snum = first;
263 * Iterate on all possible values of snum for this hash.
264 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 * give us randomization and full range coverage.
267 do {
268 if (low <= snum && snum <= high &&
269 !test_bit(snum >> udptable->log, bitmap) &&
270 !inet_is_local_reserved_port(net, snum))
271 goto found;
272 snum += rand;
273 } while (snum != first);
274 spin_unlock_bh(&hslot->lock);
275 cond_resched();
276 } while (++first != last);
277 goto fail;
278 } else {
279 hslot = udp_hashslot(udptable, net, snum);
280 spin_lock_bh(&hslot->lock);
281 if (hslot->count > 10) {
282 int exist;
283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
285 slot2 &= udptable->mask;
286 hash2_nulladdr &= udptable->mask;
288 hslot2 = udp_hashslot2(udptable, slot2);
289 if (hslot->count < hslot2->count)
290 goto scan_primary_hash;
292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 if (!exist && (hash2_nulladdr != slot2)) {
294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 sk);
298 if (exist)
299 goto fail_unlock;
300 else
301 goto found;
303 scan_primary_hash:
304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 goto fail_unlock;
307 found:
308 inet_sk(sk)->inet_num = snum;
309 udp_sk(sk)->udp_port_hash = snum;
310 udp_sk(sk)->udp_portaddr_hash ^= snum;
311 if (sk_unhashed(sk)) {
312 if (sk->sk_reuseport &&
313 udp_reuseport_add_sock(sk, hslot)) {
314 inet_sk(sk)->inet_num = 0;
315 udp_sk(sk)->udp_port_hash = 0;
316 udp_sk(sk)->udp_portaddr_hash ^= snum;
317 goto fail_unlock;
320 sk_add_node_rcu(sk, &hslot->head);
321 hslot->count++;
322 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
324 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 spin_lock(&hslot2->lock);
326 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 sk->sk_family == AF_INET6)
328 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 &hslot2->head);
330 else
331 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 &hslot2->head);
333 hslot2->count++;
334 spin_unlock(&hslot2->lock);
336 sock_set_flag(sk, SOCK_RCU_FREE);
337 error = 0;
338 fail_unlock:
339 spin_unlock_bh(&hslot->lock);
340 fail:
341 return error;
343 EXPORT_SYMBOL(udp_lib_get_port);
345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
347 unsigned int hash2_nulladdr =
348 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 unsigned int hash2_partial =
350 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
352 /* precompute partial secondary hash */
353 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 return udp_lib_get_port(sk, snum, hash2_nulladdr);
357 static int compute_score(struct sock *sk, struct net *net,
358 __be32 saddr, __be16 sport,
359 __be32 daddr, unsigned short hnum,
360 int dif, int sdif)
362 int score;
363 struct inet_sock *inet;
364 bool dev_match;
366 if (!net_eq(sock_net(sk), net) ||
367 udp_sk(sk)->udp_port_hash != hnum ||
368 ipv6_only_sock(sk))
369 return -1;
371 if (sk->sk_rcv_saddr != daddr)
372 return -1;
374 score = (sk->sk_family == PF_INET) ? 2 : 1;
376 inet = inet_sk(sk);
377 if (inet->inet_daddr) {
378 if (inet->inet_daddr != saddr)
379 return -1;
380 score += 4;
383 if (inet->inet_dport) {
384 if (inet->inet_dport != sport)
385 return -1;
386 score += 4;
389 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 dif, sdif);
391 if (!dev_match)
392 return -1;
393 score += 4;
395 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
396 score++;
397 return score;
400 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
401 const __u16 lport, const __be32 faddr,
402 const __be16 fport)
404 static u32 udp_ehash_secret __read_mostly;
406 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
408 return __inet_ehashfn(laddr, lport, faddr, fport,
409 udp_ehash_secret + net_hash_mix(net));
412 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
413 struct sk_buff *skb,
414 __be32 saddr, __be16 sport,
415 __be32 daddr, unsigned short hnum)
417 struct sock *reuse_sk = NULL;
418 u32 hash;
420 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
421 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
422 reuse_sk = reuseport_select_sock(sk, hash, skb,
423 sizeof(struct udphdr));
425 return reuse_sk;
428 /* called with rcu_read_lock() */
429 static struct sock *udp4_lib_lookup2(struct net *net,
430 __be32 saddr, __be16 sport,
431 __be32 daddr, unsigned int hnum,
432 int dif, int sdif,
433 struct udp_hslot *hslot2,
434 struct sk_buff *skb)
436 struct sock *sk, *result;
437 int score, badness;
439 result = NULL;
440 badness = 0;
441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 score = compute_score(sk, net, saddr, sport,
443 daddr, hnum, dif, sdif);
444 if (score > badness) {
445 result = lookup_reuseport(net, sk, skb,
446 saddr, sport, daddr, hnum);
447 /* Fall back to scoring if group has connections */
448 if (result && !reuseport_has_conns(sk, false))
449 return result;
451 result = result ? : sk;
452 badness = score;
455 return result;
458 static struct sock *udp4_lookup_run_bpf(struct net *net,
459 struct udp_table *udptable,
460 struct sk_buff *skb,
461 __be32 saddr, __be16 sport,
462 __be32 daddr, u16 hnum)
464 struct sock *sk, *reuse_sk;
465 bool no_reuseport;
467 if (udptable != &udp_table)
468 return NULL; /* only UDP is supported */
470 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
471 saddr, sport, daddr, hnum, &sk);
472 if (no_reuseport || IS_ERR_OR_NULL(sk))
473 return sk;
475 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
476 if (reuse_sk)
477 sk = reuse_sk;
478 return sk;
481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
482 * harder than this. -DaveM
484 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
485 __be16 sport, __be32 daddr, __be16 dport, int dif,
486 int sdif, struct udp_table *udptable, struct sk_buff *skb)
488 unsigned short hnum = ntohs(dport);
489 unsigned int hash2, slot2;
490 struct udp_hslot *hslot2;
491 struct sock *result, *sk;
493 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
494 slot2 = hash2 & udptable->mask;
495 hslot2 = &udptable->hash2[slot2];
497 /* Lookup connected or non-wildcard socket */
498 result = udp4_lib_lookup2(net, saddr, sport,
499 daddr, hnum, dif, sdif,
500 hslot2, skb);
501 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
502 goto done;
504 /* Lookup redirect from BPF */
505 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
506 sk = udp4_lookup_run_bpf(net, udptable, skb,
507 saddr, sport, daddr, hnum);
508 if (sk) {
509 result = sk;
510 goto done;
514 /* Got non-wildcard socket or error on first lookup */
515 if (result)
516 goto done;
518 /* Lookup wildcard sockets */
519 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
520 slot2 = hash2 & udptable->mask;
521 hslot2 = &udptable->hash2[slot2];
523 result = udp4_lib_lookup2(net, saddr, sport,
524 htonl(INADDR_ANY), hnum, dif, sdif,
525 hslot2, skb);
526 done:
527 if (IS_ERR(result))
528 return NULL;
529 return result;
531 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
533 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
534 __be16 sport, __be16 dport,
535 struct udp_table *udptable)
537 const struct iphdr *iph = ip_hdr(skb);
539 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
540 iph->daddr, dport, inet_iif(skb),
541 inet_sdif(skb), udptable, skb);
544 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
545 __be16 sport, __be16 dport)
547 const struct iphdr *iph = ip_hdr(skb);
549 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
550 iph->daddr, dport, inet_iif(skb),
551 inet_sdif(skb), &udp_table, NULL);
554 /* Must be called under rcu_read_lock().
555 * Does increment socket refcount.
557 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
558 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
559 __be32 daddr, __be16 dport, int dif)
561 struct sock *sk;
563 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
564 dif, 0, &udp_table, NULL);
565 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
566 sk = NULL;
567 return sk;
569 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
570 #endif
572 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
573 __be16 loc_port, __be32 loc_addr,
574 __be16 rmt_port, __be32 rmt_addr,
575 int dif, int sdif, unsigned short hnum)
577 struct inet_sock *inet = inet_sk(sk);
579 if (!net_eq(sock_net(sk), net) ||
580 udp_sk(sk)->udp_port_hash != hnum ||
581 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
582 (inet->inet_dport != rmt_port && inet->inet_dport) ||
583 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
584 ipv6_only_sock(sk) ||
585 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
586 return false;
587 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
588 return false;
589 return true;
592 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
593 void udp_encap_enable(void)
595 static_branch_inc(&udp_encap_needed_key);
597 EXPORT_SYMBOL(udp_encap_enable);
599 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
600 * through error handlers in encapsulations looking for a match.
602 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
604 int i;
606 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
607 int (*handler)(struct sk_buff *skb, u32 info);
608 const struct ip_tunnel_encap_ops *encap;
610 encap = rcu_dereference(iptun_encaps[i]);
611 if (!encap)
612 continue;
613 handler = encap->err_handler;
614 if (handler && !handler(skb, info))
615 return 0;
618 return -ENOENT;
621 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
622 * reversing source and destination port: this will match tunnels that force the
623 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
624 * lwtunnels might actually break this assumption by being configured with
625 * different destination ports on endpoints, in this case we won't be able to
626 * trace ICMP messages back to them.
628 * If this doesn't match any socket, probe tunnels with arbitrary destination
629 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
630 * we've sent packets to won't necessarily match the local destination port.
632 * Then ask the tunnel implementation to match the error against a valid
633 * association.
635 * Return an error if we can't find a match, the socket if we need further
636 * processing, zero otherwise.
638 static struct sock *__udp4_lib_err_encap(struct net *net,
639 const struct iphdr *iph,
640 struct udphdr *uh,
641 struct udp_table *udptable,
642 struct sk_buff *skb, u32 info)
644 int network_offset, transport_offset;
645 struct sock *sk;
647 network_offset = skb_network_offset(skb);
648 transport_offset = skb_transport_offset(skb);
650 /* Network header needs to point to the outer IPv4 header inside ICMP */
651 skb_reset_network_header(skb);
653 /* Transport header needs to point to the UDP header */
654 skb_set_transport_header(skb, iph->ihl << 2);
656 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
657 iph->saddr, uh->dest, skb->dev->ifindex, 0,
658 udptable, NULL);
659 if (sk) {
660 int (*lookup)(struct sock *sk, struct sk_buff *skb);
661 struct udp_sock *up = udp_sk(sk);
663 lookup = READ_ONCE(up->encap_err_lookup);
664 if (!lookup || lookup(sk, skb))
665 sk = NULL;
668 if (!sk)
669 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
671 skb_set_transport_header(skb, transport_offset);
672 skb_set_network_header(skb, network_offset);
674 return sk;
678 * This routine is called by the ICMP module when it gets some
679 * sort of error condition. If err < 0 then the socket should
680 * be closed and the error returned to the user. If err > 0
681 * it's just the icmp type << 8 | icmp code.
682 * Header points to the ip header of the error packet. We move
683 * on past this. Then (as it used to claim before adjustment)
684 * header points to the first 8 bytes of the udp header. We need
685 * to find the appropriate port.
688 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
690 struct inet_sock *inet;
691 const struct iphdr *iph = (const struct iphdr *)skb->data;
692 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
693 const int type = icmp_hdr(skb)->type;
694 const int code = icmp_hdr(skb)->code;
695 bool tunnel = false;
696 struct sock *sk;
697 int harderr;
698 int err;
699 struct net *net = dev_net(skb->dev);
701 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
702 iph->saddr, uh->source, skb->dev->ifindex,
703 inet_sdif(skb), udptable, NULL);
704 if (!sk || udp_sk(sk)->encap_type) {
705 /* No socket for error: try tunnels before discarding */
706 sk = ERR_PTR(-ENOENT);
707 if (static_branch_unlikely(&udp_encap_needed_key)) {
708 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
709 info);
710 if (!sk)
711 return 0;
714 if (IS_ERR(sk)) {
715 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
716 return PTR_ERR(sk);
719 tunnel = true;
722 err = 0;
723 harderr = 0;
724 inet = inet_sk(sk);
726 switch (type) {
727 default:
728 case ICMP_TIME_EXCEEDED:
729 err = EHOSTUNREACH;
730 break;
731 case ICMP_SOURCE_QUENCH:
732 goto out;
733 case ICMP_PARAMETERPROB:
734 err = EPROTO;
735 harderr = 1;
736 break;
737 case ICMP_DEST_UNREACH:
738 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
739 ipv4_sk_update_pmtu(skb, sk, info);
740 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
741 err = EMSGSIZE;
742 harderr = 1;
743 break;
745 goto out;
747 err = EHOSTUNREACH;
748 if (code <= NR_ICMP_UNREACH) {
749 harderr = icmp_err_convert[code].fatal;
750 err = icmp_err_convert[code].errno;
752 break;
753 case ICMP_REDIRECT:
754 ipv4_sk_redirect(skb, sk);
755 goto out;
759 * RFC1122: OK. Passes ICMP errors back to application, as per
760 * 4.1.3.3.
762 if (tunnel) {
763 /* ...not for tunnels though: we don't have a sending socket */
764 goto out;
766 if (!inet->recverr) {
767 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
768 goto out;
769 } else
770 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
772 sk->sk_err = err;
773 sk->sk_error_report(sk);
774 out:
775 return 0;
778 int udp_err(struct sk_buff *skb, u32 info)
780 return __udp4_lib_err(skb, info, &udp_table);
784 * Throw away all pending data and cancel the corking. Socket is locked.
786 void udp_flush_pending_frames(struct sock *sk)
788 struct udp_sock *up = udp_sk(sk);
790 if (up->pending) {
791 up->len = 0;
792 up->pending = 0;
793 ip_flush_pending_frames(sk);
796 EXPORT_SYMBOL(udp_flush_pending_frames);
799 * udp4_hwcsum - handle outgoing HW checksumming
800 * @skb: sk_buff containing the filled-in UDP header
801 * (checksum field must be zeroed out)
802 * @src: source IP address
803 * @dst: destination IP address
805 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
807 struct udphdr *uh = udp_hdr(skb);
808 int offset = skb_transport_offset(skb);
809 int len = skb->len - offset;
810 int hlen = len;
811 __wsum csum = 0;
813 if (!skb_has_frag_list(skb)) {
815 * Only one fragment on the socket.
817 skb->csum_start = skb_transport_header(skb) - skb->head;
818 skb->csum_offset = offsetof(struct udphdr, check);
819 uh->check = ~csum_tcpudp_magic(src, dst, len,
820 IPPROTO_UDP, 0);
821 } else {
822 struct sk_buff *frags;
825 * HW-checksum won't work as there are two or more
826 * fragments on the socket so that all csums of sk_buffs
827 * should be together
829 skb_walk_frags(skb, frags) {
830 csum = csum_add(csum, frags->csum);
831 hlen -= frags->len;
834 csum = skb_checksum(skb, offset, hlen, csum);
835 skb->ip_summed = CHECKSUM_NONE;
837 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
838 if (uh->check == 0)
839 uh->check = CSUM_MANGLED_0;
842 EXPORT_SYMBOL_GPL(udp4_hwcsum);
844 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
845 * for the simple case like when setting the checksum for a UDP tunnel.
847 void udp_set_csum(bool nocheck, struct sk_buff *skb,
848 __be32 saddr, __be32 daddr, int len)
850 struct udphdr *uh = udp_hdr(skb);
852 if (nocheck) {
853 uh->check = 0;
854 } else if (skb_is_gso(skb)) {
855 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
856 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
857 uh->check = 0;
858 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
859 if (uh->check == 0)
860 uh->check = CSUM_MANGLED_0;
861 } else {
862 skb->ip_summed = CHECKSUM_PARTIAL;
863 skb->csum_start = skb_transport_header(skb) - skb->head;
864 skb->csum_offset = offsetof(struct udphdr, check);
865 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
868 EXPORT_SYMBOL(udp_set_csum);
870 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
871 struct inet_cork *cork)
873 struct sock *sk = skb->sk;
874 struct inet_sock *inet = inet_sk(sk);
875 struct udphdr *uh;
876 int err;
877 int is_udplite = IS_UDPLITE(sk);
878 int offset = skb_transport_offset(skb);
879 int len = skb->len - offset;
880 int datalen = len - sizeof(*uh);
881 __wsum csum = 0;
884 * Create a UDP header
886 uh = udp_hdr(skb);
887 uh->source = inet->inet_sport;
888 uh->dest = fl4->fl4_dport;
889 uh->len = htons(len);
890 uh->check = 0;
892 if (cork->gso_size) {
893 const int hlen = skb_network_header_len(skb) +
894 sizeof(struct udphdr);
896 if (hlen + cork->gso_size > cork->fragsize) {
897 kfree_skb(skb);
898 return -EINVAL;
900 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
901 kfree_skb(skb);
902 return -EINVAL;
904 if (sk->sk_no_check_tx) {
905 kfree_skb(skb);
906 return -EINVAL;
908 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
909 dst_xfrm(skb_dst(skb))) {
910 kfree_skb(skb);
911 return -EIO;
914 if (datalen > cork->gso_size) {
915 skb_shinfo(skb)->gso_size = cork->gso_size;
916 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
917 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
918 cork->gso_size);
920 goto csum_partial;
923 if (is_udplite) /* UDP-Lite */
924 csum = udplite_csum(skb);
926 else if (sk->sk_no_check_tx) { /* UDP csum off */
928 skb->ip_summed = CHECKSUM_NONE;
929 goto send;
931 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
932 csum_partial:
934 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
935 goto send;
937 } else
938 csum = udp_csum(skb);
940 /* add protocol-dependent pseudo-header */
941 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
942 sk->sk_protocol, csum);
943 if (uh->check == 0)
944 uh->check = CSUM_MANGLED_0;
946 send:
947 err = ip_send_skb(sock_net(sk), skb);
948 if (err) {
949 if (err == -ENOBUFS && !inet->recverr) {
950 UDP_INC_STATS(sock_net(sk),
951 UDP_MIB_SNDBUFERRORS, is_udplite);
952 err = 0;
954 } else
955 UDP_INC_STATS(sock_net(sk),
956 UDP_MIB_OUTDATAGRAMS, is_udplite);
957 return err;
961 * Push out all pending data as one UDP datagram. Socket is locked.
963 int udp_push_pending_frames(struct sock *sk)
965 struct udp_sock *up = udp_sk(sk);
966 struct inet_sock *inet = inet_sk(sk);
967 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
968 struct sk_buff *skb;
969 int err = 0;
971 skb = ip_finish_skb(sk, fl4);
972 if (!skb)
973 goto out;
975 err = udp_send_skb(skb, fl4, &inet->cork.base);
977 out:
978 up->len = 0;
979 up->pending = 0;
980 return err;
982 EXPORT_SYMBOL(udp_push_pending_frames);
984 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
986 switch (cmsg->cmsg_type) {
987 case UDP_SEGMENT:
988 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
989 return -EINVAL;
990 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
991 return 0;
992 default:
993 return -EINVAL;
997 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
999 struct cmsghdr *cmsg;
1000 bool need_ip = false;
1001 int err;
1003 for_each_cmsghdr(cmsg, msg) {
1004 if (!CMSG_OK(msg, cmsg))
1005 return -EINVAL;
1007 if (cmsg->cmsg_level != SOL_UDP) {
1008 need_ip = true;
1009 continue;
1012 err = __udp_cmsg_send(cmsg, gso_size);
1013 if (err)
1014 return err;
1017 return need_ip;
1019 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1021 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1023 struct inet_sock *inet = inet_sk(sk);
1024 struct udp_sock *up = udp_sk(sk);
1025 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1026 struct flowi4 fl4_stack;
1027 struct flowi4 *fl4;
1028 int ulen = len;
1029 struct ipcm_cookie ipc;
1030 struct rtable *rt = NULL;
1031 int free = 0;
1032 int connected = 0;
1033 __be32 daddr, faddr, saddr;
1034 __be16 dport;
1035 u8 tos;
1036 int err, is_udplite = IS_UDPLITE(sk);
1037 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
1038 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1039 struct sk_buff *skb;
1040 struct ip_options_data opt_copy;
1042 if (len > 0xFFFF)
1043 return -EMSGSIZE;
1046 * Check the flags.
1049 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1050 return -EOPNOTSUPP;
1052 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1054 fl4 = &inet->cork.fl.u.ip4;
1055 if (up->pending) {
1057 * There are pending frames.
1058 * The socket lock must be held while it's corked.
1060 lock_sock(sk);
1061 if (likely(up->pending)) {
1062 if (unlikely(up->pending != AF_INET)) {
1063 release_sock(sk);
1064 return -EINVAL;
1066 goto do_append_data;
1068 release_sock(sk);
1070 ulen += sizeof(struct udphdr);
1073 * Get and verify the address.
1075 if (usin) {
1076 if (msg->msg_namelen < sizeof(*usin))
1077 return -EINVAL;
1078 if (usin->sin_family != AF_INET) {
1079 if (usin->sin_family != AF_UNSPEC)
1080 return -EAFNOSUPPORT;
1083 daddr = usin->sin_addr.s_addr;
1084 dport = usin->sin_port;
1085 if (dport == 0)
1086 return -EINVAL;
1087 } else {
1088 if (sk->sk_state != TCP_ESTABLISHED)
1089 return -EDESTADDRREQ;
1090 daddr = inet->inet_daddr;
1091 dport = inet->inet_dport;
1092 /* Open fast path for connected socket.
1093 Route will not be used, if at least one option is set.
1095 connected = 1;
1098 ipcm_init_sk(&ipc, inet);
1099 ipc.gso_size = up->gso_size;
1101 if (msg->msg_controllen) {
1102 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1103 if (err > 0)
1104 err = ip_cmsg_send(sk, msg, &ipc,
1105 sk->sk_family == AF_INET6);
1106 if (unlikely(err < 0)) {
1107 kfree(ipc.opt);
1108 return err;
1110 if (ipc.opt)
1111 free = 1;
1112 connected = 0;
1114 if (!ipc.opt) {
1115 struct ip_options_rcu *inet_opt;
1117 rcu_read_lock();
1118 inet_opt = rcu_dereference(inet->inet_opt);
1119 if (inet_opt) {
1120 memcpy(&opt_copy, inet_opt,
1121 sizeof(*inet_opt) + inet_opt->opt.optlen);
1122 ipc.opt = &opt_copy.opt;
1124 rcu_read_unlock();
1127 if (cgroup_bpf_enabled && !connected) {
1128 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1129 (struct sockaddr *)usin, &ipc.addr);
1130 if (err)
1131 goto out_free;
1132 if (usin) {
1133 if (usin->sin_port == 0) {
1134 /* BPF program set invalid port. Reject it. */
1135 err = -EINVAL;
1136 goto out_free;
1138 daddr = usin->sin_addr.s_addr;
1139 dport = usin->sin_port;
1143 saddr = ipc.addr;
1144 ipc.addr = faddr = daddr;
1146 if (ipc.opt && ipc.opt->opt.srr) {
1147 if (!daddr) {
1148 err = -EINVAL;
1149 goto out_free;
1151 faddr = ipc.opt->opt.faddr;
1152 connected = 0;
1154 tos = get_rttos(&ipc, inet);
1155 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1156 (msg->msg_flags & MSG_DONTROUTE) ||
1157 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1158 tos |= RTO_ONLINK;
1159 connected = 0;
1162 if (ipv4_is_multicast(daddr)) {
1163 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1164 ipc.oif = inet->mc_index;
1165 if (!saddr)
1166 saddr = inet->mc_addr;
1167 connected = 0;
1168 } else if (!ipc.oif) {
1169 ipc.oif = inet->uc_index;
1170 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1171 /* oif is set, packet is to local broadcast and
1172 * uc_index is set. oif is most likely set
1173 * by sk_bound_dev_if. If uc_index != oif check if the
1174 * oif is an L3 master and uc_index is an L3 slave.
1175 * If so, we want to allow the send using the uc_index.
1177 if (ipc.oif != inet->uc_index &&
1178 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1179 inet->uc_index)) {
1180 ipc.oif = inet->uc_index;
1184 if (connected)
1185 rt = (struct rtable *)sk_dst_check(sk, 0);
1187 if (!rt) {
1188 struct net *net = sock_net(sk);
1189 __u8 flow_flags = inet_sk_flowi_flags(sk);
1191 fl4 = &fl4_stack;
1193 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1194 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1195 flow_flags,
1196 faddr, saddr, dport, inet->inet_sport,
1197 sk->sk_uid);
1199 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1200 rt = ip_route_output_flow(net, fl4, sk);
1201 if (IS_ERR(rt)) {
1202 err = PTR_ERR(rt);
1203 rt = NULL;
1204 if (err == -ENETUNREACH)
1205 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1206 goto out;
1209 err = -EACCES;
1210 if ((rt->rt_flags & RTCF_BROADCAST) &&
1211 !sock_flag(sk, SOCK_BROADCAST))
1212 goto out;
1213 if (connected)
1214 sk_dst_set(sk, dst_clone(&rt->dst));
1217 if (msg->msg_flags&MSG_CONFIRM)
1218 goto do_confirm;
1219 back_from_confirm:
1221 saddr = fl4->saddr;
1222 if (!ipc.addr)
1223 daddr = ipc.addr = fl4->daddr;
1225 /* Lockless fast path for the non-corking case. */
1226 if (!corkreq) {
1227 struct inet_cork cork;
1229 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1230 sizeof(struct udphdr), &ipc, &rt,
1231 &cork, msg->msg_flags);
1232 err = PTR_ERR(skb);
1233 if (!IS_ERR_OR_NULL(skb))
1234 err = udp_send_skb(skb, fl4, &cork);
1235 goto out;
1238 lock_sock(sk);
1239 if (unlikely(up->pending)) {
1240 /* The socket is already corked while preparing it. */
1241 /* ... which is an evident application bug. --ANK */
1242 release_sock(sk);
1244 net_dbg_ratelimited("socket already corked\n");
1245 err = -EINVAL;
1246 goto out;
1249 * Now cork the socket to pend data.
1251 fl4 = &inet->cork.fl.u.ip4;
1252 fl4->daddr = daddr;
1253 fl4->saddr = saddr;
1254 fl4->fl4_dport = dport;
1255 fl4->fl4_sport = inet->inet_sport;
1256 up->pending = AF_INET;
1258 do_append_data:
1259 up->len += ulen;
1260 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1261 sizeof(struct udphdr), &ipc, &rt,
1262 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1263 if (err)
1264 udp_flush_pending_frames(sk);
1265 else if (!corkreq)
1266 err = udp_push_pending_frames(sk);
1267 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1268 up->pending = 0;
1269 release_sock(sk);
1271 out:
1272 ip_rt_put(rt);
1273 out_free:
1274 if (free)
1275 kfree(ipc.opt);
1276 if (!err)
1277 return len;
1279 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1280 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1281 * we don't have a good statistic (IpOutDiscards but it can be too many
1282 * things). We could add another new stat but at least for now that
1283 * seems like overkill.
1285 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1286 UDP_INC_STATS(sock_net(sk),
1287 UDP_MIB_SNDBUFERRORS, is_udplite);
1289 return err;
1291 do_confirm:
1292 if (msg->msg_flags & MSG_PROBE)
1293 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1294 if (!(msg->msg_flags&MSG_PROBE) || len)
1295 goto back_from_confirm;
1296 err = 0;
1297 goto out;
1299 EXPORT_SYMBOL(udp_sendmsg);
1301 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1302 size_t size, int flags)
1304 struct inet_sock *inet = inet_sk(sk);
1305 struct udp_sock *up = udp_sk(sk);
1306 int ret;
1308 if (flags & MSG_SENDPAGE_NOTLAST)
1309 flags |= MSG_MORE;
1311 if (!up->pending) {
1312 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1314 /* Call udp_sendmsg to specify destination address which
1315 * sendpage interface can't pass.
1316 * This will succeed only when the socket is connected.
1318 ret = udp_sendmsg(sk, &msg, 0);
1319 if (ret < 0)
1320 return ret;
1323 lock_sock(sk);
1325 if (unlikely(!up->pending)) {
1326 release_sock(sk);
1328 net_dbg_ratelimited("cork failed\n");
1329 return -EINVAL;
1332 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1333 page, offset, size, flags);
1334 if (ret == -EOPNOTSUPP) {
1335 release_sock(sk);
1336 return sock_no_sendpage(sk->sk_socket, page, offset,
1337 size, flags);
1339 if (ret < 0) {
1340 udp_flush_pending_frames(sk);
1341 goto out;
1344 up->len += size;
1345 if (!(up->corkflag || (flags&MSG_MORE)))
1346 ret = udp_push_pending_frames(sk);
1347 if (!ret)
1348 ret = size;
1349 out:
1350 release_sock(sk);
1351 return ret;
1354 #define UDP_SKB_IS_STATELESS 0x80000000
1356 /* all head states (dst, sk, nf conntrack) except skb extensions are
1357 * cleared by udp_rcv().
1359 * We need to preserve secpath, if present, to eventually process
1360 * IP_CMSG_PASSSEC at recvmsg() time.
1362 * Other extensions can be cleared.
1364 static bool udp_try_make_stateless(struct sk_buff *skb)
1366 if (!skb_has_extensions(skb))
1367 return true;
1369 if (!secpath_exists(skb)) {
1370 skb_ext_reset(skb);
1371 return true;
1374 return false;
1377 static void udp_set_dev_scratch(struct sk_buff *skb)
1379 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1381 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1382 scratch->_tsize_state = skb->truesize;
1383 #if BITS_PER_LONG == 64
1384 scratch->len = skb->len;
1385 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1386 scratch->is_linear = !skb_is_nonlinear(skb);
1387 #endif
1388 if (udp_try_make_stateless(skb))
1389 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1392 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1394 /* We come here after udp_lib_checksum_complete() returned 0.
1395 * This means that __skb_checksum_complete() might have
1396 * set skb->csum_valid to 1.
1397 * On 64bit platforms, we can set csum_unnecessary
1398 * to true, but only if the skb is not shared.
1400 #if BITS_PER_LONG == 64
1401 if (!skb_shared(skb))
1402 udp_skb_scratch(skb)->csum_unnecessary = true;
1403 #endif
1406 static int udp_skb_truesize(struct sk_buff *skb)
1408 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1411 static bool udp_skb_has_head_state(struct sk_buff *skb)
1413 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1416 /* fully reclaim rmem/fwd memory allocated for skb */
1417 static void udp_rmem_release(struct sock *sk, int size, int partial,
1418 bool rx_queue_lock_held)
1420 struct udp_sock *up = udp_sk(sk);
1421 struct sk_buff_head *sk_queue;
1422 int amt;
1424 if (likely(partial)) {
1425 up->forward_deficit += size;
1426 size = up->forward_deficit;
1427 if (size < (sk->sk_rcvbuf >> 2) &&
1428 !skb_queue_empty(&up->reader_queue))
1429 return;
1430 } else {
1431 size += up->forward_deficit;
1433 up->forward_deficit = 0;
1435 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1436 * if the called don't held it already
1438 sk_queue = &sk->sk_receive_queue;
1439 if (!rx_queue_lock_held)
1440 spin_lock(&sk_queue->lock);
1443 sk->sk_forward_alloc += size;
1444 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1445 sk->sk_forward_alloc -= amt;
1447 if (amt)
1448 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1450 atomic_sub(size, &sk->sk_rmem_alloc);
1452 /* this can save us from acquiring the rx queue lock on next receive */
1453 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1455 if (!rx_queue_lock_held)
1456 spin_unlock(&sk_queue->lock);
1459 /* Note: called with reader_queue.lock held.
1460 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1461 * This avoids a cache line miss while receive_queue lock is held.
1462 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1464 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1466 prefetch(&skb->data);
1467 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1469 EXPORT_SYMBOL(udp_skb_destructor);
1471 /* as above, but the caller held the rx queue lock, too */
1472 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1474 prefetch(&skb->data);
1475 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1478 /* Idea of busylocks is to let producers grab an extra spinlock
1479 * to relieve pressure on the receive_queue spinlock shared by consumer.
1480 * Under flood, this means that only one producer can be in line
1481 * trying to acquire the receive_queue spinlock.
1482 * These busylock can be allocated on a per cpu manner, instead of a
1483 * per socket one (that would consume a cache line per socket)
1485 static int udp_busylocks_log __read_mostly;
1486 static spinlock_t *udp_busylocks __read_mostly;
1488 static spinlock_t *busylock_acquire(void *ptr)
1490 spinlock_t *busy;
1492 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1493 spin_lock(busy);
1494 return busy;
1497 static void busylock_release(spinlock_t *busy)
1499 if (busy)
1500 spin_unlock(busy);
1503 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1505 struct sk_buff_head *list = &sk->sk_receive_queue;
1506 int rmem, delta, amt, err = -ENOMEM;
1507 spinlock_t *busy = NULL;
1508 int size;
1510 /* try to avoid the costly atomic add/sub pair when the receive
1511 * queue is full; always allow at least a packet
1513 rmem = atomic_read(&sk->sk_rmem_alloc);
1514 if (rmem > sk->sk_rcvbuf)
1515 goto drop;
1517 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1518 * having linear skbs :
1519 * - Reduce memory overhead and thus increase receive queue capacity
1520 * - Less cache line misses at copyout() time
1521 * - Less work at consume_skb() (less alien page frag freeing)
1523 if (rmem > (sk->sk_rcvbuf >> 1)) {
1524 skb_condense(skb);
1526 busy = busylock_acquire(sk);
1528 size = skb->truesize;
1529 udp_set_dev_scratch(skb);
1531 /* we drop only if the receive buf is full and the receive
1532 * queue contains some other skb
1534 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1535 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1536 goto uncharge_drop;
1538 spin_lock(&list->lock);
1539 if (size >= sk->sk_forward_alloc) {
1540 amt = sk_mem_pages(size);
1541 delta = amt << SK_MEM_QUANTUM_SHIFT;
1542 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1543 err = -ENOBUFS;
1544 spin_unlock(&list->lock);
1545 goto uncharge_drop;
1548 sk->sk_forward_alloc += delta;
1551 sk->sk_forward_alloc -= size;
1553 /* no need to setup a destructor, we will explicitly release the
1554 * forward allocated memory on dequeue
1556 sock_skb_set_dropcount(sk, skb);
1558 __skb_queue_tail(list, skb);
1559 spin_unlock(&list->lock);
1561 if (!sock_flag(sk, SOCK_DEAD))
1562 sk->sk_data_ready(sk);
1564 busylock_release(busy);
1565 return 0;
1567 uncharge_drop:
1568 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1570 drop:
1571 atomic_inc(&sk->sk_drops);
1572 busylock_release(busy);
1573 return err;
1575 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1577 void udp_destruct_sock(struct sock *sk)
1579 /* reclaim completely the forward allocated memory */
1580 struct udp_sock *up = udp_sk(sk);
1581 unsigned int total = 0;
1582 struct sk_buff *skb;
1584 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1585 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1586 total += skb->truesize;
1587 kfree_skb(skb);
1589 udp_rmem_release(sk, total, 0, true);
1591 inet_sock_destruct(sk);
1593 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1595 int udp_init_sock(struct sock *sk)
1597 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1598 sk->sk_destruct = udp_destruct_sock;
1599 return 0;
1601 EXPORT_SYMBOL_GPL(udp_init_sock);
1603 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1605 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1606 bool slow = lock_sock_fast(sk);
1608 sk_peek_offset_bwd(sk, len);
1609 unlock_sock_fast(sk, slow);
1612 if (!skb_unref(skb))
1613 return;
1615 /* In the more common cases we cleared the head states previously,
1616 * see __udp_queue_rcv_skb().
1618 if (unlikely(udp_skb_has_head_state(skb)))
1619 skb_release_head_state(skb);
1620 __consume_stateless_skb(skb);
1622 EXPORT_SYMBOL_GPL(skb_consume_udp);
1624 static struct sk_buff *__first_packet_length(struct sock *sk,
1625 struct sk_buff_head *rcvq,
1626 int *total)
1628 struct sk_buff *skb;
1630 while ((skb = skb_peek(rcvq)) != NULL) {
1631 if (udp_lib_checksum_complete(skb)) {
1632 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1633 IS_UDPLITE(sk));
1634 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1635 IS_UDPLITE(sk));
1636 atomic_inc(&sk->sk_drops);
1637 __skb_unlink(skb, rcvq);
1638 *total += skb->truesize;
1639 kfree_skb(skb);
1640 } else {
1641 udp_skb_csum_unnecessary_set(skb);
1642 break;
1645 return skb;
1649 * first_packet_length - return length of first packet in receive queue
1650 * @sk: socket
1652 * Drops all bad checksum frames, until a valid one is found.
1653 * Returns the length of found skb, or -1 if none is found.
1655 static int first_packet_length(struct sock *sk)
1657 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1658 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1659 struct sk_buff *skb;
1660 int total = 0;
1661 int res;
1663 spin_lock_bh(&rcvq->lock);
1664 skb = __first_packet_length(sk, rcvq, &total);
1665 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1666 spin_lock(&sk_queue->lock);
1667 skb_queue_splice_tail_init(sk_queue, rcvq);
1668 spin_unlock(&sk_queue->lock);
1670 skb = __first_packet_length(sk, rcvq, &total);
1672 res = skb ? skb->len : -1;
1673 if (total)
1674 udp_rmem_release(sk, total, 1, false);
1675 spin_unlock_bh(&rcvq->lock);
1676 return res;
1680 * IOCTL requests applicable to the UDP protocol
1683 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1685 switch (cmd) {
1686 case SIOCOUTQ:
1688 int amount = sk_wmem_alloc_get(sk);
1690 return put_user(amount, (int __user *)arg);
1693 case SIOCINQ:
1695 int amount = max_t(int, 0, first_packet_length(sk));
1697 return put_user(amount, (int __user *)arg);
1700 default:
1701 return -ENOIOCTLCMD;
1704 return 0;
1706 EXPORT_SYMBOL(udp_ioctl);
1708 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1709 int noblock, int *off, int *err)
1711 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1712 struct sk_buff_head *queue;
1713 struct sk_buff *last;
1714 long timeo;
1715 int error;
1717 queue = &udp_sk(sk)->reader_queue;
1718 flags |= noblock ? MSG_DONTWAIT : 0;
1719 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1720 do {
1721 struct sk_buff *skb;
1723 error = sock_error(sk);
1724 if (error)
1725 break;
1727 error = -EAGAIN;
1728 do {
1729 spin_lock_bh(&queue->lock);
1730 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1731 err, &last);
1732 if (skb) {
1733 if (!(flags & MSG_PEEK))
1734 udp_skb_destructor(sk, skb);
1735 spin_unlock_bh(&queue->lock);
1736 return skb;
1739 if (skb_queue_empty_lockless(sk_queue)) {
1740 spin_unlock_bh(&queue->lock);
1741 goto busy_check;
1744 /* refill the reader queue and walk it again
1745 * keep both queues locked to avoid re-acquiring
1746 * the sk_receive_queue lock if fwd memory scheduling
1747 * is needed.
1749 spin_lock(&sk_queue->lock);
1750 skb_queue_splice_tail_init(sk_queue, queue);
1752 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1753 err, &last);
1754 if (skb && !(flags & MSG_PEEK))
1755 udp_skb_dtor_locked(sk, skb);
1756 spin_unlock(&sk_queue->lock);
1757 spin_unlock_bh(&queue->lock);
1758 if (skb)
1759 return skb;
1761 busy_check:
1762 if (!sk_can_busy_loop(sk))
1763 break;
1765 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1766 } while (!skb_queue_empty_lockless(sk_queue));
1768 /* sk_queue is empty, reader_queue may contain peeked packets */
1769 } while (timeo &&
1770 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1771 &error, &timeo,
1772 (struct sk_buff *)sk_queue));
1774 *err = error;
1775 return NULL;
1777 EXPORT_SYMBOL(__skb_recv_udp);
1780 * This should be easy, if there is something there we
1781 * return it, otherwise we block.
1784 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1785 int flags, int *addr_len)
1787 struct inet_sock *inet = inet_sk(sk);
1788 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1789 struct sk_buff *skb;
1790 unsigned int ulen, copied;
1791 int off, err, peeking = flags & MSG_PEEK;
1792 int is_udplite = IS_UDPLITE(sk);
1793 bool checksum_valid = false;
1795 if (flags & MSG_ERRQUEUE)
1796 return ip_recv_error(sk, msg, len, addr_len);
1798 try_again:
1799 off = sk_peek_offset(sk, flags);
1800 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1801 if (!skb)
1802 return err;
1804 ulen = udp_skb_len(skb);
1805 copied = len;
1806 if (copied > ulen - off)
1807 copied = ulen - off;
1808 else if (copied < ulen)
1809 msg->msg_flags |= MSG_TRUNC;
1812 * If checksum is needed at all, try to do it while copying the
1813 * data. If the data is truncated, or if we only want a partial
1814 * coverage checksum (UDP-Lite), do it before the copy.
1817 if (copied < ulen || peeking ||
1818 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1819 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1820 !__udp_lib_checksum_complete(skb);
1821 if (!checksum_valid)
1822 goto csum_copy_err;
1825 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1826 if (udp_skb_is_linear(skb))
1827 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1828 else
1829 err = skb_copy_datagram_msg(skb, off, msg, copied);
1830 } else {
1831 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1833 if (err == -EINVAL)
1834 goto csum_copy_err;
1837 if (unlikely(err)) {
1838 if (!peeking) {
1839 atomic_inc(&sk->sk_drops);
1840 UDP_INC_STATS(sock_net(sk),
1841 UDP_MIB_INERRORS, is_udplite);
1843 kfree_skb(skb);
1844 return err;
1847 if (!peeking)
1848 UDP_INC_STATS(sock_net(sk),
1849 UDP_MIB_INDATAGRAMS, is_udplite);
1851 sock_recv_ts_and_drops(msg, sk, skb);
1853 /* Copy the address. */
1854 if (sin) {
1855 sin->sin_family = AF_INET;
1856 sin->sin_port = udp_hdr(skb)->source;
1857 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1858 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1859 *addr_len = sizeof(*sin);
1861 if (cgroup_bpf_enabled)
1862 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1863 (struct sockaddr *)sin);
1866 if (udp_sk(sk)->gro_enabled)
1867 udp_cmsg_recv(msg, sk, skb);
1869 if (inet->cmsg_flags)
1870 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1872 err = copied;
1873 if (flags & MSG_TRUNC)
1874 err = ulen;
1876 skb_consume_udp(sk, skb, peeking ? -err : err);
1877 return err;
1879 csum_copy_err:
1880 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1881 udp_skb_destructor)) {
1882 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1883 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1885 kfree_skb(skb);
1887 /* starting over for a new packet, but check if we need to yield */
1888 cond_resched();
1889 msg->msg_flags &= ~MSG_TRUNC;
1890 goto try_again;
1893 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1895 /* This check is replicated from __ip4_datagram_connect() and
1896 * intended to prevent BPF program called below from accessing bytes
1897 * that are out of the bound specified by user in addr_len.
1899 if (addr_len < sizeof(struct sockaddr_in))
1900 return -EINVAL;
1902 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1904 EXPORT_SYMBOL(udp_pre_connect);
1906 int __udp_disconnect(struct sock *sk, int flags)
1908 struct inet_sock *inet = inet_sk(sk);
1910 * 1003.1g - break association.
1913 sk->sk_state = TCP_CLOSE;
1914 inet->inet_daddr = 0;
1915 inet->inet_dport = 0;
1916 sock_rps_reset_rxhash(sk);
1917 sk->sk_bound_dev_if = 0;
1918 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1919 inet_reset_saddr(sk);
1920 if (sk->sk_prot->rehash &&
1921 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1922 sk->sk_prot->rehash(sk);
1925 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1926 sk->sk_prot->unhash(sk);
1927 inet->inet_sport = 0;
1929 sk_dst_reset(sk);
1930 return 0;
1932 EXPORT_SYMBOL(__udp_disconnect);
1934 int udp_disconnect(struct sock *sk, int flags)
1936 lock_sock(sk);
1937 __udp_disconnect(sk, flags);
1938 release_sock(sk);
1939 return 0;
1941 EXPORT_SYMBOL(udp_disconnect);
1943 void udp_lib_unhash(struct sock *sk)
1945 if (sk_hashed(sk)) {
1946 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1947 struct udp_hslot *hslot, *hslot2;
1949 hslot = udp_hashslot(udptable, sock_net(sk),
1950 udp_sk(sk)->udp_port_hash);
1951 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1953 spin_lock_bh(&hslot->lock);
1954 if (rcu_access_pointer(sk->sk_reuseport_cb))
1955 reuseport_detach_sock(sk);
1956 if (sk_del_node_init_rcu(sk)) {
1957 hslot->count--;
1958 inet_sk(sk)->inet_num = 0;
1959 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1961 spin_lock(&hslot2->lock);
1962 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1963 hslot2->count--;
1964 spin_unlock(&hslot2->lock);
1966 spin_unlock_bh(&hslot->lock);
1969 EXPORT_SYMBOL(udp_lib_unhash);
1972 * inet_rcv_saddr was changed, we must rehash secondary hash
1974 void udp_lib_rehash(struct sock *sk, u16 newhash)
1976 if (sk_hashed(sk)) {
1977 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1978 struct udp_hslot *hslot, *hslot2, *nhslot2;
1980 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1981 nhslot2 = udp_hashslot2(udptable, newhash);
1982 udp_sk(sk)->udp_portaddr_hash = newhash;
1984 if (hslot2 != nhslot2 ||
1985 rcu_access_pointer(sk->sk_reuseport_cb)) {
1986 hslot = udp_hashslot(udptable, sock_net(sk),
1987 udp_sk(sk)->udp_port_hash);
1988 /* we must lock primary chain too */
1989 spin_lock_bh(&hslot->lock);
1990 if (rcu_access_pointer(sk->sk_reuseport_cb))
1991 reuseport_detach_sock(sk);
1993 if (hslot2 != nhslot2) {
1994 spin_lock(&hslot2->lock);
1995 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1996 hslot2->count--;
1997 spin_unlock(&hslot2->lock);
1999 spin_lock(&nhslot2->lock);
2000 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2001 &nhslot2->head);
2002 nhslot2->count++;
2003 spin_unlock(&nhslot2->lock);
2006 spin_unlock_bh(&hslot->lock);
2010 EXPORT_SYMBOL(udp_lib_rehash);
2012 void udp_v4_rehash(struct sock *sk)
2014 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2015 inet_sk(sk)->inet_rcv_saddr,
2016 inet_sk(sk)->inet_num);
2017 udp_lib_rehash(sk, new_hash);
2020 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2022 int rc;
2024 if (inet_sk(sk)->inet_daddr) {
2025 sock_rps_save_rxhash(sk, skb);
2026 sk_mark_napi_id(sk, skb);
2027 sk_incoming_cpu_update(sk);
2028 } else {
2029 sk_mark_napi_id_once(sk, skb);
2032 rc = __udp_enqueue_schedule_skb(sk, skb);
2033 if (rc < 0) {
2034 int is_udplite = IS_UDPLITE(sk);
2036 /* Note that an ENOMEM error is charged twice */
2037 if (rc == -ENOMEM)
2038 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2039 is_udplite);
2040 else
2041 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2042 is_udplite);
2043 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2044 kfree_skb(skb);
2045 trace_udp_fail_queue_rcv_skb(rc, sk);
2046 return -1;
2049 return 0;
2052 /* returns:
2053 * -1: error
2054 * 0: success
2055 * >0: "udp encap" protocol resubmission
2057 * Note that in the success and error cases, the skb is assumed to
2058 * have either been requeued or freed.
2060 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2062 struct udp_sock *up = udp_sk(sk);
2063 int is_udplite = IS_UDPLITE(sk);
2066 * Charge it to the socket, dropping if the queue is full.
2068 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2069 goto drop;
2070 nf_reset_ct(skb);
2072 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2073 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2076 * This is an encapsulation socket so pass the skb to
2077 * the socket's udp_encap_rcv() hook. Otherwise, just
2078 * fall through and pass this up the UDP socket.
2079 * up->encap_rcv() returns the following value:
2080 * =0 if skb was successfully passed to the encap
2081 * handler or was discarded by it.
2082 * >0 if skb should be passed on to UDP.
2083 * <0 if skb should be resubmitted as proto -N
2086 /* if we're overly short, let UDP handle it */
2087 encap_rcv = READ_ONCE(up->encap_rcv);
2088 if (encap_rcv) {
2089 int ret;
2091 /* Verify checksum before giving to encap */
2092 if (udp_lib_checksum_complete(skb))
2093 goto csum_error;
2095 ret = encap_rcv(sk, skb);
2096 if (ret <= 0) {
2097 __UDP_INC_STATS(sock_net(sk),
2098 UDP_MIB_INDATAGRAMS,
2099 is_udplite);
2100 return -ret;
2104 /* FALLTHROUGH -- it's a UDP Packet */
2108 * UDP-Lite specific tests, ignored on UDP sockets
2110 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2113 * MIB statistics other than incrementing the error count are
2114 * disabled for the following two types of errors: these depend
2115 * on the application settings, not on the functioning of the
2116 * protocol stack as such.
2118 * RFC 3828 here recommends (sec 3.3): "There should also be a
2119 * way ... to ... at least let the receiving application block
2120 * delivery of packets with coverage values less than a value
2121 * provided by the application."
2123 if (up->pcrlen == 0) { /* full coverage was set */
2124 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2125 UDP_SKB_CB(skb)->cscov, skb->len);
2126 goto drop;
2128 /* The next case involves violating the min. coverage requested
2129 * by the receiver. This is subtle: if receiver wants x and x is
2130 * greater than the buffersize/MTU then receiver will complain
2131 * that it wants x while sender emits packets of smaller size y.
2132 * Therefore the above ...()->partial_cov statement is essential.
2134 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2135 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2136 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2137 goto drop;
2141 prefetch(&sk->sk_rmem_alloc);
2142 if (rcu_access_pointer(sk->sk_filter) &&
2143 udp_lib_checksum_complete(skb))
2144 goto csum_error;
2146 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2147 goto drop;
2149 udp_csum_pull_header(skb);
2151 ipv4_pktinfo_prepare(sk, skb);
2152 return __udp_queue_rcv_skb(sk, skb);
2154 csum_error:
2155 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2156 drop:
2157 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2158 atomic_inc(&sk->sk_drops);
2159 kfree_skb(skb);
2160 return -1;
2163 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2165 struct sk_buff *next, *segs;
2166 int ret;
2168 if (likely(!udp_unexpected_gso(sk, skb)))
2169 return udp_queue_rcv_one_skb(sk, skb);
2171 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2172 __skb_push(skb, -skb_mac_offset(skb));
2173 segs = udp_rcv_segment(sk, skb, true);
2174 skb_list_walk_safe(segs, skb, next) {
2175 __skb_pull(skb, skb_transport_offset(skb));
2176 ret = udp_queue_rcv_one_skb(sk, skb);
2177 if (ret > 0)
2178 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2180 return 0;
2183 /* For TCP sockets, sk_rx_dst is protected by socket lock
2184 * For UDP, we use xchg() to guard against concurrent changes.
2186 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2188 struct dst_entry *old;
2190 if (dst_hold_safe(dst)) {
2191 old = xchg(&sk->sk_rx_dst, dst);
2192 dst_release(old);
2193 return old != dst;
2195 return false;
2197 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2200 * Multicasts and broadcasts go to each listener.
2202 * Note: called only from the BH handler context.
2204 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2205 struct udphdr *uh,
2206 __be32 saddr, __be32 daddr,
2207 struct udp_table *udptable,
2208 int proto)
2210 struct sock *sk, *first = NULL;
2211 unsigned short hnum = ntohs(uh->dest);
2212 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2213 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2214 unsigned int offset = offsetof(typeof(*sk), sk_node);
2215 int dif = skb->dev->ifindex;
2216 int sdif = inet_sdif(skb);
2217 struct hlist_node *node;
2218 struct sk_buff *nskb;
2220 if (use_hash2) {
2221 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2222 udptable->mask;
2223 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2224 start_lookup:
2225 hslot = &udptable->hash2[hash2];
2226 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2229 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2230 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2231 uh->source, saddr, dif, sdif, hnum))
2232 continue;
2234 if (!first) {
2235 first = sk;
2236 continue;
2238 nskb = skb_clone(skb, GFP_ATOMIC);
2240 if (unlikely(!nskb)) {
2241 atomic_inc(&sk->sk_drops);
2242 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2243 IS_UDPLITE(sk));
2244 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2245 IS_UDPLITE(sk));
2246 continue;
2248 if (udp_queue_rcv_skb(sk, nskb) > 0)
2249 consume_skb(nskb);
2252 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2253 if (use_hash2 && hash2 != hash2_any) {
2254 hash2 = hash2_any;
2255 goto start_lookup;
2258 if (first) {
2259 if (udp_queue_rcv_skb(first, skb) > 0)
2260 consume_skb(skb);
2261 } else {
2262 kfree_skb(skb);
2263 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2264 proto == IPPROTO_UDPLITE);
2266 return 0;
2269 /* Initialize UDP checksum. If exited with zero value (success),
2270 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2271 * Otherwise, csum completion requires checksumming packet body,
2272 * including udp header and folding it to skb->csum.
2274 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2275 int proto)
2277 int err;
2279 UDP_SKB_CB(skb)->partial_cov = 0;
2280 UDP_SKB_CB(skb)->cscov = skb->len;
2282 if (proto == IPPROTO_UDPLITE) {
2283 err = udplite_checksum_init(skb, uh);
2284 if (err)
2285 return err;
2287 if (UDP_SKB_CB(skb)->partial_cov) {
2288 skb->csum = inet_compute_pseudo(skb, proto);
2289 return 0;
2293 /* Note, we are only interested in != 0 or == 0, thus the
2294 * force to int.
2296 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2297 inet_compute_pseudo);
2298 if (err)
2299 return err;
2301 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2302 /* If SW calculated the value, we know it's bad */
2303 if (skb->csum_complete_sw)
2304 return 1;
2306 /* HW says the value is bad. Let's validate that.
2307 * skb->csum is no longer the full packet checksum,
2308 * so don't treat it as such.
2310 skb_checksum_complete_unset(skb);
2313 return 0;
2316 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2317 * return code conversion for ip layer consumption
2319 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2320 struct udphdr *uh)
2322 int ret;
2324 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2325 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2327 ret = udp_queue_rcv_skb(sk, skb);
2329 /* a return value > 0 means to resubmit the input, but
2330 * it wants the return to be -protocol, or 0
2332 if (ret > 0)
2333 return -ret;
2334 return 0;
2338 * All we need to do is get the socket, and then do a checksum.
2341 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2342 int proto)
2344 struct sock *sk;
2345 struct udphdr *uh;
2346 unsigned short ulen;
2347 struct rtable *rt = skb_rtable(skb);
2348 __be32 saddr, daddr;
2349 struct net *net = dev_net(skb->dev);
2350 bool refcounted;
2353 * Validate the packet.
2355 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2356 goto drop; /* No space for header. */
2358 uh = udp_hdr(skb);
2359 ulen = ntohs(uh->len);
2360 saddr = ip_hdr(skb)->saddr;
2361 daddr = ip_hdr(skb)->daddr;
2363 if (ulen > skb->len)
2364 goto short_packet;
2366 if (proto == IPPROTO_UDP) {
2367 /* UDP validates ulen. */
2368 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2369 goto short_packet;
2370 uh = udp_hdr(skb);
2373 if (udp4_csum_init(skb, uh, proto))
2374 goto csum_error;
2376 sk = skb_steal_sock(skb, &refcounted);
2377 if (sk) {
2378 struct dst_entry *dst = skb_dst(skb);
2379 int ret;
2381 if (unlikely(sk->sk_rx_dst != dst))
2382 udp_sk_rx_dst_set(sk, dst);
2384 ret = udp_unicast_rcv_skb(sk, skb, uh);
2385 if (refcounted)
2386 sock_put(sk);
2387 return ret;
2390 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2391 return __udp4_lib_mcast_deliver(net, skb, uh,
2392 saddr, daddr, udptable, proto);
2394 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2395 if (sk)
2396 return udp_unicast_rcv_skb(sk, skb, uh);
2398 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2399 goto drop;
2400 nf_reset_ct(skb);
2402 /* No socket. Drop packet silently, if checksum is wrong */
2403 if (udp_lib_checksum_complete(skb))
2404 goto csum_error;
2406 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2407 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2410 * Hmm. We got an UDP packet to a port to which we
2411 * don't wanna listen. Ignore it.
2413 kfree_skb(skb);
2414 return 0;
2416 short_packet:
2417 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2418 proto == IPPROTO_UDPLITE ? "Lite" : "",
2419 &saddr, ntohs(uh->source),
2420 ulen, skb->len,
2421 &daddr, ntohs(uh->dest));
2422 goto drop;
2424 csum_error:
2426 * RFC1122: OK. Discards the bad packet silently (as far as
2427 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2429 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2430 proto == IPPROTO_UDPLITE ? "Lite" : "",
2431 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2432 ulen);
2433 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2434 drop:
2435 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2436 kfree_skb(skb);
2437 return 0;
2440 /* We can only early demux multicast if there is a single matching socket.
2441 * If more than one socket found returns NULL
2443 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2444 __be16 loc_port, __be32 loc_addr,
2445 __be16 rmt_port, __be32 rmt_addr,
2446 int dif, int sdif)
2448 struct sock *sk, *result;
2449 unsigned short hnum = ntohs(loc_port);
2450 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2451 struct udp_hslot *hslot = &udp_table.hash[slot];
2453 /* Do not bother scanning a too big list */
2454 if (hslot->count > 10)
2455 return NULL;
2457 result = NULL;
2458 sk_for_each_rcu(sk, &hslot->head) {
2459 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2460 rmt_port, rmt_addr, dif, sdif, hnum)) {
2461 if (result)
2462 return NULL;
2463 result = sk;
2467 return result;
2470 /* For unicast we should only early demux connected sockets or we can
2471 * break forwarding setups. The chains here can be long so only check
2472 * if the first socket is an exact match and if not move on.
2474 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2475 __be16 loc_port, __be32 loc_addr,
2476 __be16 rmt_port, __be32 rmt_addr,
2477 int dif, int sdif)
2479 unsigned short hnum = ntohs(loc_port);
2480 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2481 unsigned int slot2 = hash2 & udp_table.mask;
2482 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2483 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2484 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2485 struct sock *sk;
2487 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2488 if (INET_MATCH(sk, net, acookie, rmt_addr,
2489 loc_addr, ports, dif, sdif))
2490 return sk;
2491 /* Only check first socket in chain */
2492 break;
2494 return NULL;
2497 int udp_v4_early_demux(struct sk_buff *skb)
2499 struct net *net = dev_net(skb->dev);
2500 struct in_device *in_dev = NULL;
2501 const struct iphdr *iph;
2502 const struct udphdr *uh;
2503 struct sock *sk = NULL;
2504 struct dst_entry *dst;
2505 int dif = skb->dev->ifindex;
2506 int sdif = inet_sdif(skb);
2507 int ours;
2509 /* validate the packet */
2510 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2511 return 0;
2513 iph = ip_hdr(skb);
2514 uh = udp_hdr(skb);
2516 if (skb->pkt_type == PACKET_MULTICAST) {
2517 in_dev = __in_dev_get_rcu(skb->dev);
2519 if (!in_dev)
2520 return 0;
2522 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2523 iph->protocol);
2524 if (!ours)
2525 return 0;
2527 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2528 uh->source, iph->saddr,
2529 dif, sdif);
2530 } else if (skb->pkt_type == PACKET_HOST) {
2531 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2532 uh->source, iph->saddr, dif, sdif);
2535 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2536 return 0;
2538 skb->sk = sk;
2539 skb->destructor = sock_efree;
2540 dst = READ_ONCE(sk->sk_rx_dst);
2542 if (dst)
2543 dst = dst_check(dst, 0);
2544 if (dst) {
2545 u32 itag = 0;
2547 /* set noref for now.
2548 * any place which wants to hold dst has to call
2549 * dst_hold_safe()
2551 skb_dst_set_noref(skb, dst);
2553 /* for unconnected multicast sockets we need to validate
2554 * the source on each packet
2556 if (!inet_sk(sk)->inet_daddr && in_dev)
2557 return ip_mc_validate_source(skb, iph->daddr,
2558 iph->saddr, iph->tos,
2559 skb->dev, in_dev, &itag);
2561 return 0;
2564 int udp_rcv(struct sk_buff *skb)
2566 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2569 void udp_destroy_sock(struct sock *sk)
2571 struct udp_sock *up = udp_sk(sk);
2572 bool slow = lock_sock_fast(sk);
2573 udp_flush_pending_frames(sk);
2574 unlock_sock_fast(sk, slow);
2575 if (static_branch_unlikely(&udp_encap_needed_key)) {
2576 if (up->encap_type) {
2577 void (*encap_destroy)(struct sock *sk);
2578 encap_destroy = READ_ONCE(up->encap_destroy);
2579 if (encap_destroy)
2580 encap_destroy(sk);
2582 if (up->encap_enabled)
2583 static_branch_dec(&udp_encap_needed_key);
2588 * Socket option code for UDP
2590 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2591 sockptr_t optval, unsigned int optlen,
2592 int (*push_pending_frames)(struct sock *))
2594 struct udp_sock *up = udp_sk(sk);
2595 int val, valbool;
2596 int err = 0;
2597 int is_udplite = IS_UDPLITE(sk);
2599 if (optlen < sizeof(int))
2600 return -EINVAL;
2602 if (copy_from_sockptr(&val, optval, sizeof(val)))
2603 return -EFAULT;
2605 valbool = val ? 1 : 0;
2607 switch (optname) {
2608 case UDP_CORK:
2609 if (val != 0) {
2610 up->corkflag = 1;
2611 } else {
2612 up->corkflag = 0;
2613 lock_sock(sk);
2614 push_pending_frames(sk);
2615 release_sock(sk);
2617 break;
2619 case UDP_ENCAP:
2620 switch (val) {
2621 case 0:
2622 #ifdef CONFIG_XFRM
2623 case UDP_ENCAP_ESPINUDP:
2624 case UDP_ENCAP_ESPINUDP_NON_IKE:
2625 #if IS_ENABLED(CONFIG_IPV6)
2626 if (sk->sk_family == AF_INET6)
2627 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2628 else
2629 #endif
2630 up->encap_rcv = xfrm4_udp_encap_rcv;
2631 #endif
2632 fallthrough;
2633 case UDP_ENCAP_L2TPINUDP:
2634 up->encap_type = val;
2635 lock_sock(sk);
2636 udp_tunnel_encap_enable(sk->sk_socket);
2637 release_sock(sk);
2638 break;
2639 default:
2640 err = -ENOPROTOOPT;
2641 break;
2643 break;
2645 case UDP_NO_CHECK6_TX:
2646 up->no_check6_tx = valbool;
2647 break;
2649 case UDP_NO_CHECK6_RX:
2650 up->no_check6_rx = valbool;
2651 break;
2653 case UDP_SEGMENT:
2654 if (val < 0 || val > USHRT_MAX)
2655 return -EINVAL;
2656 up->gso_size = val;
2657 break;
2659 case UDP_GRO:
2660 lock_sock(sk);
2661 if (valbool)
2662 udp_tunnel_encap_enable(sk->sk_socket);
2663 up->gro_enabled = valbool;
2664 release_sock(sk);
2665 break;
2668 * UDP-Lite's partial checksum coverage (RFC 3828).
2670 /* The sender sets actual checksum coverage length via this option.
2671 * The case coverage > packet length is handled by send module. */
2672 case UDPLITE_SEND_CSCOV:
2673 if (!is_udplite) /* Disable the option on UDP sockets */
2674 return -ENOPROTOOPT;
2675 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2676 val = 8;
2677 else if (val > USHRT_MAX)
2678 val = USHRT_MAX;
2679 up->pcslen = val;
2680 up->pcflag |= UDPLITE_SEND_CC;
2681 break;
2683 /* The receiver specifies a minimum checksum coverage value. To make
2684 * sense, this should be set to at least 8 (as done below). If zero is
2685 * used, this again means full checksum coverage. */
2686 case UDPLITE_RECV_CSCOV:
2687 if (!is_udplite) /* Disable the option on UDP sockets */
2688 return -ENOPROTOOPT;
2689 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2690 val = 8;
2691 else if (val > USHRT_MAX)
2692 val = USHRT_MAX;
2693 up->pcrlen = val;
2694 up->pcflag |= UDPLITE_RECV_CC;
2695 break;
2697 default:
2698 err = -ENOPROTOOPT;
2699 break;
2702 return err;
2704 EXPORT_SYMBOL(udp_lib_setsockopt);
2706 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2707 unsigned int optlen)
2709 if (level == SOL_UDP || level == SOL_UDPLITE)
2710 return udp_lib_setsockopt(sk, level, optname,
2711 optval, optlen,
2712 udp_push_pending_frames);
2713 return ip_setsockopt(sk, level, optname, optval, optlen);
2716 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2717 char __user *optval, int __user *optlen)
2719 struct udp_sock *up = udp_sk(sk);
2720 int val, len;
2722 if (get_user(len, optlen))
2723 return -EFAULT;
2725 len = min_t(unsigned int, len, sizeof(int));
2727 if (len < 0)
2728 return -EINVAL;
2730 switch (optname) {
2731 case UDP_CORK:
2732 val = up->corkflag;
2733 break;
2735 case UDP_ENCAP:
2736 val = up->encap_type;
2737 break;
2739 case UDP_NO_CHECK6_TX:
2740 val = up->no_check6_tx;
2741 break;
2743 case UDP_NO_CHECK6_RX:
2744 val = up->no_check6_rx;
2745 break;
2747 case UDP_SEGMENT:
2748 val = up->gso_size;
2749 break;
2751 /* The following two cannot be changed on UDP sockets, the return is
2752 * always 0 (which corresponds to the full checksum coverage of UDP). */
2753 case UDPLITE_SEND_CSCOV:
2754 val = up->pcslen;
2755 break;
2757 case UDPLITE_RECV_CSCOV:
2758 val = up->pcrlen;
2759 break;
2761 default:
2762 return -ENOPROTOOPT;
2765 if (put_user(len, optlen))
2766 return -EFAULT;
2767 if (copy_to_user(optval, &val, len))
2768 return -EFAULT;
2769 return 0;
2771 EXPORT_SYMBOL(udp_lib_getsockopt);
2773 int udp_getsockopt(struct sock *sk, int level, int optname,
2774 char __user *optval, int __user *optlen)
2776 if (level == SOL_UDP || level == SOL_UDPLITE)
2777 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2778 return ip_getsockopt(sk, level, optname, optval, optlen);
2782 * udp_poll - wait for a UDP event.
2783 * @file: - file struct
2784 * @sock: - socket
2785 * @wait: - poll table
2787 * This is same as datagram poll, except for the special case of
2788 * blocking sockets. If application is using a blocking fd
2789 * and a packet with checksum error is in the queue;
2790 * then it could get return from select indicating data available
2791 * but then block when reading it. Add special case code
2792 * to work around these arguably broken applications.
2794 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2796 __poll_t mask = datagram_poll(file, sock, wait);
2797 struct sock *sk = sock->sk;
2799 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2800 mask |= EPOLLIN | EPOLLRDNORM;
2802 /* Check for false positives due to checksum errors */
2803 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2804 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2805 mask &= ~(EPOLLIN | EPOLLRDNORM);
2807 return mask;
2810 EXPORT_SYMBOL(udp_poll);
2812 int udp_abort(struct sock *sk, int err)
2814 lock_sock(sk);
2816 sk->sk_err = err;
2817 sk->sk_error_report(sk);
2818 __udp_disconnect(sk, 0);
2820 release_sock(sk);
2822 return 0;
2824 EXPORT_SYMBOL_GPL(udp_abort);
2826 struct proto udp_prot = {
2827 .name = "UDP",
2828 .owner = THIS_MODULE,
2829 .close = udp_lib_close,
2830 .pre_connect = udp_pre_connect,
2831 .connect = ip4_datagram_connect,
2832 .disconnect = udp_disconnect,
2833 .ioctl = udp_ioctl,
2834 .init = udp_init_sock,
2835 .destroy = udp_destroy_sock,
2836 .setsockopt = udp_setsockopt,
2837 .getsockopt = udp_getsockopt,
2838 .sendmsg = udp_sendmsg,
2839 .recvmsg = udp_recvmsg,
2840 .sendpage = udp_sendpage,
2841 .release_cb = ip4_datagram_release_cb,
2842 .hash = udp_lib_hash,
2843 .unhash = udp_lib_unhash,
2844 .rehash = udp_v4_rehash,
2845 .get_port = udp_v4_get_port,
2846 .memory_allocated = &udp_memory_allocated,
2847 .sysctl_mem = sysctl_udp_mem,
2848 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2849 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2850 .obj_size = sizeof(struct udp_sock),
2851 .h.udp_table = &udp_table,
2852 .diag_destroy = udp_abort,
2854 EXPORT_SYMBOL(udp_prot);
2856 /* ------------------------------------------------------------------------ */
2857 #ifdef CONFIG_PROC_FS
2859 static struct sock *udp_get_first(struct seq_file *seq, int start)
2861 struct sock *sk;
2862 struct udp_seq_afinfo *afinfo;
2863 struct udp_iter_state *state = seq->private;
2864 struct net *net = seq_file_net(seq);
2866 if (state->bpf_seq_afinfo)
2867 afinfo = state->bpf_seq_afinfo;
2868 else
2869 afinfo = PDE_DATA(file_inode(seq->file));
2871 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2872 ++state->bucket) {
2873 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2875 if (hlist_empty(&hslot->head))
2876 continue;
2878 spin_lock_bh(&hslot->lock);
2879 sk_for_each(sk, &hslot->head) {
2880 if (!net_eq(sock_net(sk), net))
2881 continue;
2882 if (afinfo->family == AF_UNSPEC ||
2883 sk->sk_family == afinfo->family)
2884 goto found;
2886 spin_unlock_bh(&hslot->lock);
2888 sk = NULL;
2889 found:
2890 return sk;
2893 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2895 struct udp_seq_afinfo *afinfo;
2896 struct udp_iter_state *state = seq->private;
2897 struct net *net = seq_file_net(seq);
2899 if (state->bpf_seq_afinfo)
2900 afinfo = state->bpf_seq_afinfo;
2901 else
2902 afinfo = PDE_DATA(file_inode(seq->file));
2904 do {
2905 sk = sk_next(sk);
2906 } while (sk && (!net_eq(sock_net(sk), net) ||
2907 (afinfo->family != AF_UNSPEC &&
2908 sk->sk_family != afinfo->family)));
2910 if (!sk) {
2911 if (state->bucket <= afinfo->udp_table->mask)
2912 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2913 return udp_get_first(seq, state->bucket + 1);
2915 return sk;
2918 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2920 struct sock *sk = udp_get_first(seq, 0);
2922 if (sk)
2923 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2924 --pos;
2925 return pos ? NULL : sk;
2928 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2930 struct udp_iter_state *state = seq->private;
2931 state->bucket = MAX_UDP_PORTS;
2933 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2935 EXPORT_SYMBOL(udp_seq_start);
2937 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2939 struct sock *sk;
2941 if (v == SEQ_START_TOKEN)
2942 sk = udp_get_idx(seq, 0);
2943 else
2944 sk = udp_get_next(seq, v);
2946 ++*pos;
2947 return sk;
2949 EXPORT_SYMBOL(udp_seq_next);
2951 void udp_seq_stop(struct seq_file *seq, void *v)
2953 struct udp_seq_afinfo *afinfo;
2954 struct udp_iter_state *state = seq->private;
2956 if (state->bpf_seq_afinfo)
2957 afinfo = state->bpf_seq_afinfo;
2958 else
2959 afinfo = PDE_DATA(file_inode(seq->file));
2961 if (state->bucket <= afinfo->udp_table->mask)
2962 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2964 EXPORT_SYMBOL(udp_seq_stop);
2966 /* ------------------------------------------------------------------------ */
2967 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2968 int bucket)
2970 struct inet_sock *inet = inet_sk(sp);
2971 __be32 dest = inet->inet_daddr;
2972 __be32 src = inet->inet_rcv_saddr;
2973 __u16 destp = ntohs(inet->inet_dport);
2974 __u16 srcp = ntohs(inet->inet_sport);
2976 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2977 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2978 bucket, src, srcp, dest, destp, sp->sk_state,
2979 sk_wmem_alloc_get(sp),
2980 udp_rqueue_get(sp),
2981 0, 0L, 0,
2982 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2983 0, sock_i_ino(sp),
2984 refcount_read(&sp->sk_refcnt), sp,
2985 atomic_read(&sp->sk_drops));
2988 int udp4_seq_show(struct seq_file *seq, void *v)
2990 seq_setwidth(seq, 127);
2991 if (v == SEQ_START_TOKEN)
2992 seq_puts(seq, " sl local_address rem_address st tx_queue "
2993 "rx_queue tr tm->when retrnsmt uid timeout "
2994 "inode ref pointer drops");
2995 else {
2996 struct udp_iter_state *state = seq->private;
2998 udp4_format_sock(v, seq, state->bucket);
3000 seq_pad(seq, '\n');
3001 return 0;
3004 #ifdef CONFIG_BPF_SYSCALL
3005 struct bpf_iter__udp {
3006 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3007 __bpf_md_ptr(struct udp_sock *, udp_sk);
3008 uid_t uid __aligned(8);
3009 int bucket __aligned(8);
3012 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3013 struct udp_sock *udp_sk, uid_t uid, int bucket)
3015 struct bpf_iter__udp ctx;
3017 meta->seq_num--; /* skip SEQ_START_TOKEN */
3018 ctx.meta = meta;
3019 ctx.udp_sk = udp_sk;
3020 ctx.uid = uid;
3021 ctx.bucket = bucket;
3022 return bpf_iter_run_prog(prog, &ctx);
3025 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3027 struct udp_iter_state *state = seq->private;
3028 struct bpf_iter_meta meta;
3029 struct bpf_prog *prog;
3030 struct sock *sk = v;
3031 uid_t uid;
3033 if (v == SEQ_START_TOKEN)
3034 return 0;
3036 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3037 meta.seq = seq;
3038 prog = bpf_iter_get_info(&meta, false);
3039 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3042 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3044 struct bpf_iter_meta meta;
3045 struct bpf_prog *prog;
3047 if (!v) {
3048 meta.seq = seq;
3049 prog = bpf_iter_get_info(&meta, true);
3050 if (prog)
3051 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3054 udp_seq_stop(seq, v);
3057 static const struct seq_operations bpf_iter_udp_seq_ops = {
3058 .start = udp_seq_start,
3059 .next = udp_seq_next,
3060 .stop = bpf_iter_udp_seq_stop,
3061 .show = bpf_iter_udp_seq_show,
3063 #endif
3065 const struct seq_operations udp_seq_ops = {
3066 .start = udp_seq_start,
3067 .next = udp_seq_next,
3068 .stop = udp_seq_stop,
3069 .show = udp4_seq_show,
3071 EXPORT_SYMBOL(udp_seq_ops);
3073 static struct udp_seq_afinfo udp4_seq_afinfo = {
3074 .family = AF_INET,
3075 .udp_table = &udp_table,
3078 static int __net_init udp4_proc_init_net(struct net *net)
3080 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3081 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3082 return -ENOMEM;
3083 return 0;
3086 static void __net_exit udp4_proc_exit_net(struct net *net)
3088 remove_proc_entry("udp", net->proc_net);
3091 static struct pernet_operations udp4_net_ops = {
3092 .init = udp4_proc_init_net,
3093 .exit = udp4_proc_exit_net,
3096 int __init udp4_proc_init(void)
3098 return register_pernet_subsys(&udp4_net_ops);
3101 void udp4_proc_exit(void)
3103 unregister_pernet_subsys(&udp4_net_ops);
3105 #endif /* CONFIG_PROC_FS */
3107 static __initdata unsigned long uhash_entries;
3108 static int __init set_uhash_entries(char *str)
3110 ssize_t ret;
3112 if (!str)
3113 return 0;
3115 ret = kstrtoul(str, 0, &uhash_entries);
3116 if (ret)
3117 return 0;
3119 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3120 uhash_entries = UDP_HTABLE_SIZE_MIN;
3121 return 1;
3123 __setup("uhash_entries=", set_uhash_entries);
3125 void __init udp_table_init(struct udp_table *table, const char *name)
3127 unsigned int i;
3129 table->hash = alloc_large_system_hash(name,
3130 2 * sizeof(struct udp_hslot),
3131 uhash_entries,
3132 21, /* one slot per 2 MB */
3134 &table->log,
3135 &table->mask,
3136 UDP_HTABLE_SIZE_MIN,
3137 64 * 1024);
3139 table->hash2 = table->hash + (table->mask + 1);
3140 for (i = 0; i <= table->mask; i++) {
3141 INIT_HLIST_HEAD(&table->hash[i].head);
3142 table->hash[i].count = 0;
3143 spin_lock_init(&table->hash[i].lock);
3145 for (i = 0; i <= table->mask; i++) {
3146 INIT_HLIST_HEAD(&table->hash2[i].head);
3147 table->hash2[i].count = 0;
3148 spin_lock_init(&table->hash2[i].lock);
3152 u32 udp_flow_hashrnd(void)
3154 static u32 hashrnd __read_mostly;
3156 net_get_random_once(&hashrnd, sizeof(hashrnd));
3158 return hashrnd;
3160 EXPORT_SYMBOL(udp_flow_hashrnd);
3162 static void __udp_sysctl_init(struct net *net)
3164 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3165 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3167 #ifdef CONFIG_NET_L3_MASTER_DEV
3168 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3169 #endif
3172 static int __net_init udp_sysctl_init(struct net *net)
3174 __udp_sysctl_init(net);
3175 return 0;
3178 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3179 .init = udp_sysctl_init,
3182 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3183 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3184 struct udp_sock *udp_sk, uid_t uid, int bucket)
3186 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3188 struct udp_iter_state *st = priv_data;
3189 struct udp_seq_afinfo *afinfo;
3190 int ret;
3192 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3193 if (!afinfo)
3194 return -ENOMEM;
3196 afinfo->family = AF_UNSPEC;
3197 afinfo->udp_table = &udp_table;
3198 st->bpf_seq_afinfo = afinfo;
3199 ret = bpf_iter_init_seq_net(priv_data, aux);
3200 if (ret)
3201 kfree(afinfo);
3202 return ret;
3205 static void bpf_iter_fini_udp(void *priv_data)
3207 struct udp_iter_state *st = priv_data;
3209 kfree(st->bpf_seq_afinfo);
3210 bpf_iter_fini_seq_net(priv_data);
3213 static const struct bpf_iter_seq_info udp_seq_info = {
3214 .seq_ops = &bpf_iter_udp_seq_ops,
3215 .init_seq_private = bpf_iter_init_udp,
3216 .fini_seq_private = bpf_iter_fini_udp,
3217 .seq_priv_size = sizeof(struct udp_iter_state),
3220 static struct bpf_iter_reg udp_reg_info = {
3221 .target = "udp",
3222 .ctx_arg_info_size = 1,
3223 .ctx_arg_info = {
3224 { offsetof(struct bpf_iter__udp, udp_sk),
3225 PTR_TO_BTF_ID_OR_NULL },
3227 .seq_info = &udp_seq_info,
3230 static void __init bpf_iter_register(void)
3232 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3233 if (bpf_iter_reg_target(&udp_reg_info))
3234 pr_warn("Warning: could not register bpf iterator udp\n");
3236 #endif
3238 void __init udp_init(void)
3240 unsigned long limit;
3241 unsigned int i;
3243 udp_table_init(&udp_table, "UDP");
3244 limit = nr_free_buffer_pages() / 8;
3245 limit = max(limit, 128UL);
3246 sysctl_udp_mem[0] = limit / 4 * 3;
3247 sysctl_udp_mem[1] = limit;
3248 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3250 __udp_sysctl_init(&init_net);
3252 /* 16 spinlocks per cpu */
3253 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3254 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3255 GFP_KERNEL);
3256 if (!udp_busylocks)
3257 panic("UDP: failed to alloc udp_busylocks\n");
3258 for (i = 0; i < (1U << udp_busylocks_log); i++)
3259 spin_lock_init(udp_busylocks + i);
3261 if (register_pernet_subsys(&udp_sysctl_ops))
3262 panic("UDP: failed to init sysctl parameters.\n");
3264 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3265 bpf_iter_register();
3266 #endif