io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / net / sched / sch_taprio.c
blobc74817ec9964b7eb744f972cca0777111a78f0f2
1 // SPDX-License-Identifier: GPL-2.0
3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler
5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
7 */
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
23 #include <net/pkt_cls.h>
24 #include <net/sch_generic.h>
25 #include <net/sock.h>
26 #include <net/tcp.h>
28 static LIST_HEAD(taprio_list);
29 static DEFINE_SPINLOCK(taprio_list_lock);
31 #define TAPRIO_ALL_GATES_OPEN -1
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
37 struct sched_entry {
38 struct list_head list;
40 /* The instant that this entry "closes" and the next one
41 * should open, the qdisc will make some effort so that no
42 * packet leaves after this time.
44 ktime_t close_time;
45 ktime_t next_txtime;
46 atomic_t budget;
47 int index;
48 u32 gate_mask;
49 u32 interval;
50 u8 command;
53 struct sched_gate_list {
54 struct rcu_head rcu;
55 struct list_head entries;
56 size_t num_entries;
57 ktime_t cycle_close_time;
58 s64 cycle_time;
59 s64 cycle_time_extension;
60 s64 base_time;
63 struct taprio_sched {
64 struct Qdisc **qdiscs;
65 struct Qdisc *root;
66 u32 flags;
67 enum tk_offsets tk_offset;
68 int clockid;
69 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70 * speeds it's sub-nanoseconds per byte
73 /* Protects the update side of the RCU protected current_entry */
74 spinlock_t current_entry_lock;
75 struct sched_entry __rcu *current_entry;
76 struct sched_gate_list __rcu *oper_sched;
77 struct sched_gate_list __rcu *admin_sched;
78 struct hrtimer advance_timer;
79 struct list_head taprio_list;
80 struct sk_buff *(*dequeue)(struct Qdisc *sch);
81 struct sk_buff *(*peek)(struct Qdisc *sch);
82 u32 txtime_delay;
85 struct __tc_taprio_qopt_offload {
86 refcount_t users;
87 struct tc_taprio_qopt_offload offload;
90 static ktime_t sched_base_time(const struct sched_gate_list *sched)
92 if (!sched)
93 return KTIME_MAX;
95 return ns_to_ktime(sched->base_time);
98 static ktime_t taprio_get_time(struct taprio_sched *q)
100 ktime_t mono = ktime_get();
102 switch (q->tk_offset) {
103 case TK_OFFS_MAX:
104 return mono;
105 default:
106 return ktime_mono_to_any(mono, q->tk_offset);
109 return KTIME_MAX;
112 static void taprio_free_sched_cb(struct rcu_head *head)
114 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
115 struct sched_entry *entry, *n;
117 if (!sched)
118 return;
120 list_for_each_entry_safe(entry, n, &sched->entries, list) {
121 list_del(&entry->list);
122 kfree(entry);
125 kfree(sched);
128 static void switch_schedules(struct taprio_sched *q,
129 struct sched_gate_list **admin,
130 struct sched_gate_list **oper)
132 rcu_assign_pointer(q->oper_sched, *admin);
133 rcu_assign_pointer(q->admin_sched, NULL);
135 if (*oper)
136 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
138 *oper = *admin;
139 *admin = NULL;
142 /* Get how much time has been already elapsed in the current cycle. */
143 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
145 ktime_t time_since_sched_start;
146 s32 time_elapsed;
148 time_since_sched_start = ktime_sub(time, sched->base_time);
149 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
151 return time_elapsed;
154 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
155 struct sched_gate_list *admin,
156 struct sched_entry *entry,
157 ktime_t intv_start)
159 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
160 ktime_t intv_end, cycle_ext_end, cycle_end;
162 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
163 intv_end = ktime_add_ns(intv_start, entry->interval);
164 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
166 if (ktime_before(intv_end, cycle_end))
167 return intv_end;
168 else if (admin && admin != sched &&
169 ktime_after(admin->base_time, cycle_end) &&
170 ktime_before(admin->base_time, cycle_ext_end))
171 return admin->base_time;
172 else
173 return cycle_end;
176 static int length_to_duration(struct taprio_sched *q, int len)
178 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
181 /* Returns the entry corresponding to next available interval. If
182 * validate_interval is set, it only validates whether the timestamp occurs
183 * when the gate corresponding to the skb's traffic class is open.
185 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
186 struct Qdisc *sch,
187 struct sched_gate_list *sched,
188 struct sched_gate_list *admin,
189 ktime_t time,
190 ktime_t *interval_start,
191 ktime_t *interval_end,
192 bool validate_interval)
194 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
195 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
196 struct sched_entry *entry = NULL, *entry_found = NULL;
197 struct taprio_sched *q = qdisc_priv(sch);
198 struct net_device *dev = qdisc_dev(sch);
199 bool entry_available = false;
200 s32 cycle_elapsed;
201 int tc, n;
203 tc = netdev_get_prio_tc_map(dev, skb->priority);
204 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
206 *interval_start = 0;
207 *interval_end = 0;
209 if (!sched)
210 return NULL;
212 cycle = sched->cycle_time;
213 cycle_elapsed = get_cycle_time_elapsed(sched, time);
214 curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
215 cycle_end = ktime_add_ns(curr_intv_end, cycle);
217 list_for_each_entry(entry, &sched->entries, list) {
218 curr_intv_start = curr_intv_end;
219 curr_intv_end = get_interval_end_time(sched, admin, entry,
220 curr_intv_start);
222 if (ktime_after(curr_intv_start, cycle_end))
223 break;
225 if (!(entry->gate_mask & BIT(tc)) ||
226 packet_transmit_time > entry->interval)
227 continue;
229 txtime = entry->next_txtime;
231 if (ktime_before(txtime, time) || validate_interval) {
232 transmit_end_time = ktime_add_ns(time, packet_transmit_time);
233 if ((ktime_before(curr_intv_start, time) &&
234 ktime_before(transmit_end_time, curr_intv_end)) ||
235 (ktime_after(curr_intv_start, time) && !validate_interval)) {
236 entry_found = entry;
237 *interval_start = curr_intv_start;
238 *interval_end = curr_intv_end;
239 break;
240 } else if (!entry_available && !validate_interval) {
241 /* Here, we are just trying to find out the
242 * first available interval in the next cycle.
244 entry_available = 1;
245 entry_found = entry;
246 *interval_start = ktime_add_ns(curr_intv_start, cycle);
247 *interval_end = ktime_add_ns(curr_intv_end, cycle);
249 } else if (ktime_before(txtime, earliest_txtime) &&
250 !entry_available) {
251 earliest_txtime = txtime;
252 entry_found = entry;
253 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
254 *interval_start = ktime_add(curr_intv_start, n * cycle);
255 *interval_end = ktime_add(curr_intv_end, n * cycle);
259 return entry_found;
262 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
264 struct taprio_sched *q = qdisc_priv(sch);
265 struct sched_gate_list *sched, *admin;
266 ktime_t interval_start, interval_end;
267 struct sched_entry *entry;
269 rcu_read_lock();
270 sched = rcu_dereference(q->oper_sched);
271 admin = rcu_dereference(q->admin_sched);
273 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
274 &interval_start, &interval_end, true);
275 rcu_read_unlock();
277 return entry;
280 static bool taprio_flags_valid(u32 flags)
282 /* Make sure no other flag bits are set. */
283 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
284 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
285 return false;
286 /* txtime-assist and full offload are mutually exclusive */
287 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
288 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
289 return false;
290 return true;
293 /* This returns the tstamp value set by TCP in terms of the set clock. */
294 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
296 unsigned int offset = skb_network_offset(skb);
297 const struct ipv6hdr *ipv6h;
298 const struct iphdr *iph;
299 struct ipv6hdr _ipv6h;
301 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
302 if (!ipv6h)
303 return 0;
305 if (ipv6h->version == 4) {
306 iph = (struct iphdr *)ipv6h;
307 offset += iph->ihl * 4;
309 /* special-case 6in4 tunnelling, as that is a common way to get
310 * v6 connectivity in the home
312 if (iph->protocol == IPPROTO_IPV6) {
313 ipv6h = skb_header_pointer(skb, offset,
314 sizeof(_ipv6h), &_ipv6h);
316 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
317 return 0;
318 } else if (iph->protocol != IPPROTO_TCP) {
319 return 0;
321 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
322 return 0;
325 return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
328 /* There are a few scenarios where we will have to modify the txtime from
329 * what is read from next_txtime in sched_entry. They are:
330 * 1. If txtime is in the past,
331 * a. The gate for the traffic class is currently open and packet can be
332 * transmitted before it closes, schedule the packet right away.
333 * b. If the gate corresponding to the traffic class is going to open later
334 * in the cycle, set the txtime of packet to the interval start.
335 * 2. If txtime is in the future, there are packets corresponding to the
336 * current traffic class waiting to be transmitted. So, the following
337 * possibilities exist:
338 * a. We can transmit the packet before the window containing the txtime
339 * closes.
340 * b. The window might close before the transmission can be completed
341 * successfully. So, schedule the packet in the next open window.
343 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
345 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
346 struct taprio_sched *q = qdisc_priv(sch);
347 struct sched_gate_list *sched, *admin;
348 ktime_t minimum_time, now, txtime;
349 int len, packet_transmit_time;
350 struct sched_entry *entry;
351 bool sched_changed;
353 now = taprio_get_time(q);
354 minimum_time = ktime_add_ns(now, q->txtime_delay);
356 tcp_tstamp = get_tcp_tstamp(q, skb);
357 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
359 rcu_read_lock();
360 admin = rcu_dereference(q->admin_sched);
361 sched = rcu_dereference(q->oper_sched);
362 if (admin && ktime_after(minimum_time, admin->base_time))
363 switch_schedules(q, &admin, &sched);
365 /* Until the schedule starts, all the queues are open */
366 if (!sched || ktime_before(minimum_time, sched->base_time)) {
367 txtime = minimum_time;
368 goto done;
371 len = qdisc_pkt_len(skb);
372 packet_transmit_time = length_to_duration(q, len);
374 do {
375 sched_changed = 0;
377 entry = find_entry_to_transmit(skb, sch, sched, admin,
378 minimum_time,
379 &interval_start, &interval_end,
380 false);
381 if (!entry) {
382 txtime = 0;
383 goto done;
386 txtime = entry->next_txtime;
387 txtime = max_t(ktime_t, txtime, minimum_time);
388 txtime = max_t(ktime_t, txtime, interval_start);
390 if (admin && admin != sched &&
391 ktime_after(txtime, admin->base_time)) {
392 sched = admin;
393 sched_changed = 1;
394 continue;
397 transmit_end_time = ktime_add(txtime, packet_transmit_time);
398 minimum_time = transmit_end_time;
400 /* Update the txtime of current entry to the next time it's
401 * interval starts.
403 if (ktime_after(transmit_end_time, interval_end))
404 entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
405 } while (sched_changed || ktime_after(transmit_end_time, interval_end));
407 entry->next_txtime = transmit_end_time;
409 done:
410 rcu_read_unlock();
411 return txtime;
414 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
415 struct sk_buff **to_free)
417 struct taprio_sched *q = qdisc_priv(sch);
418 struct Qdisc *child;
419 int queue;
421 queue = skb_get_queue_mapping(skb);
423 child = q->qdiscs[queue];
424 if (unlikely(!child))
425 return qdisc_drop(skb, sch, to_free);
427 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
428 if (!is_valid_interval(skb, sch))
429 return qdisc_drop(skb, sch, to_free);
430 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
431 skb->tstamp = get_packet_txtime(skb, sch);
432 if (!skb->tstamp)
433 return qdisc_drop(skb, sch, to_free);
436 qdisc_qstats_backlog_inc(sch, skb);
437 sch->q.qlen++;
439 return qdisc_enqueue(skb, child, to_free);
442 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
444 struct taprio_sched *q = qdisc_priv(sch);
445 struct net_device *dev = qdisc_dev(sch);
446 struct sched_entry *entry;
447 struct sk_buff *skb;
448 u32 gate_mask;
449 int i;
451 rcu_read_lock();
452 entry = rcu_dereference(q->current_entry);
453 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
454 rcu_read_unlock();
456 if (!gate_mask)
457 return NULL;
459 for (i = 0; i < dev->num_tx_queues; i++) {
460 struct Qdisc *child = q->qdiscs[i];
461 int prio;
462 u8 tc;
464 if (unlikely(!child))
465 continue;
467 skb = child->ops->peek(child);
468 if (!skb)
469 continue;
471 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
472 return skb;
474 prio = skb->priority;
475 tc = netdev_get_prio_tc_map(dev, prio);
477 if (!(gate_mask & BIT(tc)))
478 continue;
480 return skb;
483 return NULL;
486 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
488 struct taprio_sched *q = qdisc_priv(sch);
489 struct net_device *dev = qdisc_dev(sch);
490 struct sk_buff *skb;
491 int i;
493 for (i = 0; i < dev->num_tx_queues; i++) {
494 struct Qdisc *child = q->qdiscs[i];
496 if (unlikely(!child))
497 continue;
499 skb = child->ops->peek(child);
500 if (!skb)
501 continue;
503 return skb;
506 return NULL;
509 static struct sk_buff *taprio_peek(struct Qdisc *sch)
511 struct taprio_sched *q = qdisc_priv(sch);
513 return q->peek(sch);
516 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
518 atomic_set(&entry->budget,
519 div64_u64((u64)entry->interval * 1000,
520 atomic64_read(&q->picos_per_byte)));
523 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
525 struct taprio_sched *q = qdisc_priv(sch);
526 struct net_device *dev = qdisc_dev(sch);
527 struct sk_buff *skb = NULL;
528 struct sched_entry *entry;
529 u32 gate_mask;
530 int i;
532 rcu_read_lock();
533 entry = rcu_dereference(q->current_entry);
534 /* if there's no entry, it means that the schedule didn't
535 * start yet, so force all gates to be open, this is in
536 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
537 * "AdminGateSates"
539 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
541 if (!gate_mask)
542 goto done;
544 for (i = 0; i < dev->num_tx_queues; i++) {
545 struct Qdisc *child = q->qdiscs[i];
546 ktime_t guard;
547 int prio;
548 int len;
549 u8 tc;
551 if (unlikely(!child))
552 continue;
554 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
555 skb = child->ops->dequeue(child);
556 if (!skb)
557 continue;
558 goto skb_found;
561 skb = child->ops->peek(child);
562 if (!skb)
563 continue;
565 prio = skb->priority;
566 tc = netdev_get_prio_tc_map(dev, prio);
568 if (!(gate_mask & BIT(tc))) {
569 skb = NULL;
570 continue;
573 len = qdisc_pkt_len(skb);
574 guard = ktime_add_ns(taprio_get_time(q),
575 length_to_duration(q, len));
577 /* In the case that there's no gate entry, there's no
578 * guard band ...
580 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
581 ktime_after(guard, entry->close_time)) {
582 skb = NULL;
583 continue;
586 /* ... and no budget. */
587 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
588 atomic_sub_return(len, &entry->budget) < 0) {
589 skb = NULL;
590 continue;
593 skb = child->ops->dequeue(child);
594 if (unlikely(!skb))
595 goto done;
597 skb_found:
598 qdisc_bstats_update(sch, skb);
599 qdisc_qstats_backlog_dec(sch, skb);
600 sch->q.qlen--;
602 goto done;
605 done:
606 rcu_read_unlock();
608 return skb;
611 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
613 struct taprio_sched *q = qdisc_priv(sch);
614 struct net_device *dev = qdisc_dev(sch);
615 struct sk_buff *skb;
616 int i;
618 for (i = 0; i < dev->num_tx_queues; i++) {
619 struct Qdisc *child = q->qdiscs[i];
621 if (unlikely(!child))
622 continue;
624 skb = child->ops->dequeue(child);
625 if (unlikely(!skb))
626 continue;
628 qdisc_bstats_update(sch, skb);
629 qdisc_qstats_backlog_dec(sch, skb);
630 sch->q.qlen--;
632 return skb;
635 return NULL;
638 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
640 struct taprio_sched *q = qdisc_priv(sch);
642 return q->dequeue(sch);
645 static bool should_restart_cycle(const struct sched_gate_list *oper,
646 const struct sched_entry *entry)
648 if (list_is_last(&entry->list, &oper->entries))
649 return true;
651 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
652 return true;
654 return false;
657 static bool should_change_schedules(const struct sched_gate_list *admin,
658 const struct sched_gate_list *oper,
659 ktime_t close_time)
661 ktime_t next_base_time, extension_time;
663 if (!admin)
664 return false;
666 next_base_time = sched_base_time(admin);
668 /* This is the simple case, the close_time would fall after
669 * the next schedule base_time.
671 if (ktime_compare(next_base_time, close_time) <= 0)
672 return true;
674 /* This is the cycle_time_extension case, if the close_time
675 * plus the amount that can be extended would fall after the
676 * next schedule base_time, we can extend the current schedule
677 * for that amount.
679 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
681 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
682 * how precisely the extension should be made. So after
683 * conformance testing, this logic may change.
685 if (ktime_compare(next_base_time, extension_time) <= 0)
686 return true;
688 return false;
691 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
693 struct taprio_sched *q = container_of(timer, struct taprio_sched,
694 advance_timer);
695 struct sched_gate_list *oper, *admin;
696 struct sched_entry *entry, *next;
697 struct Qdisc *sch = q->root;
698 ktime_t close_time;
700 spin_lock(&q->current_entry_lock);
701 entry = rcu_dereference_protected(q->current_entry,
702 lockdep_is_held(&q->current_entry_lock));
703 oper = rcu_dereference_protected(q->oper_sched,
704 lockdep_is_held(&q->current_entry_lock));
705 admin = rcu_dereference_protected(q->admin_sched,
706 lockdep_is_held(&q->current_entry_lock));
708 if (!oper)
709 switch_schedules(q, &admin, &oper);
711 /* This can happen in two cases: 1. this is the very first run
712 * of this function (i.e. we weren't running any schedule
713 * previously); 2. The previous schedule just ended. The first
714 * entry of all schedules are pre-calculated during the
715 * schedule initialization.
717 if (unlikely(!entry || entry->close_time == oper->base_time)) {
718 next = list_first_entry(&oper->entries, struct sched_entry,
719 list);
720 close_time = next->close_time;
721 goto first_run;
724 if (should_restart_cycle(oper, entry)) {
725 next = list_first_entry(&oper->entries, struct sched_entry,
726 list);
727 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
728 oper->cycle_time);
729 } else {
730 next = list_next_entry(entry, list);
733 close_time = ktime_add_ns(entry->close_time, next->interval);
734 close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
736 if (should_change_schedules(admin, oper, close_time)) {
737 /* Set things so the next time this runs, the new
738 * schedule runs.
740 close_time = sched_base_time(admin);
741 switch_schedules(q, &admin, &oper);
744 next->close_time = close_time;
745 taprio_set_budget(q, next);
747 first_run:
748 rcu_assign_pointer(q->current_entry, next);
749 spin_unlock(&q->current_entry_lock);
751 hrtimer_set_expires(&q->advance_timer, close_time);
753 rcu_read_lock();
754 __netif_schedule(sch);
755 rcu_read_unlock();
757 return HRTIMER_RESTART;
760 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
761 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
762 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
763 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
764 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
767 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
768 [TCA_TAPRIO_ATTR_PRIOMAP] = {
769 .len = sizeof(struct tc_mqprio_qopt)
771 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
772 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
773 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
774 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
775 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 },
776 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
777 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 },
778 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 },
781 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
782 struct sched_entry *entry,
783 struct netlink_ext_ack *extack)
785 int min_duration = length_to_duration(q, ETH_ZLEN);
786 u32 interval = 0;
788 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
789 entry->command = nla_get_u8(
790 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
792 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
793 entry->gate_mask = nla_get_u32(
794 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
796 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
797 interval = nla_get_u32(
798 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
800 /* The interval should allow at least the minimum ethernet
801 * frame to go out.
803 if (interval < min_duration) {
804 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
805 return -EINVAL;
808 entry->interval = interval;
810 return 0;
813 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
814 struct sched_entry *entry, int index,
815 struct netlink_ext_ack *extack)
817 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
818 int err;
820 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
821 entry_policy, NULL);
822 if (err < 0) {
823 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
824 return -EINVAL;
827 entry->index = index;
829 return fill_sched_entry(q, tb, entry, extack);
832 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
833 struct sched_gate_list *sched,
834 struct netlink_ext_ack *extack)
836 struct nlattr *n;
837 int err, rem;
838 int i = 0;
840 if (!list)
841 return -EINVAL;
843 nla_for_each_nested(n, list, rem) {
844 struct sched_entry *entry;
846 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
847 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
848 continue;
851 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
852 if (!entry) {
853 NL_SET_ERR_MSG(extack, "Not enough memory for entry");
854 return -ENOMEM;
857 err = parse_sched_entry(q, n, entry, i, extack);
858 if (err < 0) {
859 kfree(entry);
860 return err;
863 list_add_tail(&entry->list, &sched->entries);
864 i++;
867 sched->num_entries = i;
869 return i;
872 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
873 struct sched_gate_list *new,
874 struct netlink_ext_ack *extack)
876 int err = 0;
878 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
879 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
880 return -ENOTSUPP;
883 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
884 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
886 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
887 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
889 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
890 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
892 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
893 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
894 new, extack);
895 if (err < 0)
896 return err;
898 if (!new->cycle_time) {
899 struct sched_entry *entry;
900 ktime_t cycle = 0;
902 list_for_each_entry(entry, &new->entries, list)
903 cycle = ktime_add_ns(cycle, entry->interval);
904 new->cycle_time = cycle;
907 return 0;
910 static int taprio_parse_mqprio_opt(struct net_device *dev,
911 struct tc_mqprio_qopt *qopt,
912 struct netlink_ext_ack *extack,
913 u32 taprio_flags)
915 int i, j;
917 if (!qopt && !dev->num_tc) {
918 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
919 return -EINVAL;
922 /* If num_tc is already set, it means that the user already
923 * configured the mqprio part
925 if (dev->num_tc)
926 return 0;
928 /* Verify num_tc is not out of max range */
929 if (qopt->num_tc > TC_MAX_QUEUE) {
930 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
931 return -EINVAL;
934 /* taprio imposes that traffic classes map 1:n to tx queues */
935 if (qopt->num_tc > dev->num_tx_queues) {
936 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
937 return -EINVAL;
940 /* Verify priority mapping uses valid tcs */
941 for (i = 0; i <= TC_BITMASK; i++) {
942 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
943 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
944 return -EINVAL;
948 for (i = 0; i < qopt->num_tc; i++) {
949 unsigned int last = qopt->offset[i] + qopt->count[i];
951 /* Verify the queue count is in tx range being equal to the
952 * real_num_tx_queues indicates the last queue is in use.
954 if (qopt->offset[i] >= dev->num_tx_queues ||
955 !qopt->count[i] ||
956 last > dev->real_num_tx_queues) {
957 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
958 return -EINVAL;
961 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
962 continue;
964 /* Verify that the offset and counts do not overlap */
965 for (j = i + 1; j < qopt->num_tc; j++) {
966 if (last > qopt->offset[j]) {
967 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
968 return -EINVAL;
973 return 0;
976 static int taprio_get_start_time(struct Qdisc *sch,
977 struct sched_gate_list *sched,
978 ktime_t *start)
980 struct taprio_sched *q = qdisc_priv(sch);
981 ktime_t now, base, cycle;
982 s64 n;
984 base = sched_base_time(sched);
985 now = taprio_get_time(q);
987 if (ktime_after(base, now)) {
988 *start = base;
989 return 0;
992 cycle = sched->cycle_time;
994 /* The qdisc is expected to have at least one sched_entry. Moreover,
995 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
996 * something went really wrong. In that case, we should warn about this
997 * inconsistent state and return error.
999 if (WARN_ON(!cycle))
1000 return -EFAULT;
1002 /* Schedule the start time for the beginning of the next
1003 * cycle.
1005 n = div64_s64(ktime_sub_ns(now, base), cycle);
1006 *start = ktime_add_ns(base, (n + 1) * cycle);
1007 return 0;
1010 static void setup_first_close_time(struct taprio_sched *q,
1011 struct sched_gate_list *sched, ktime_t base)
1013 struct sched_entry *first;
1014 ktime_t cycle;
1016 first = list_first_entry(&sched->entries,
1017 struct sched_entry, list);
1019 cycle = sched->cycle_time;
1021 /* FIXME: find a better place to do this */
1022 sched->cycle_close_time = ktime_add_ns(base, cycle);
1024 first->close_time = ktime_add_ns(base, first->interval);
1025 taprio_set_budget(q, first);
1026 rcu_assign_pointer(q->current_entry, NULL);
1029 static void taprio_start_sched(struct Qdisc *sch,
1030 ktime_t start, struct sched_gate_list *new)
1032 struct taprio_sched *q = qdisc_priv(sch);
1033 ktime_t expires;
1035 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1036 return;
1038 expires = hrtimer_get_expires(&q->advance_timer);
1039 if (expires == 0)
1040 expires = KTIME_MAX;
1042 /* If the new schedule starts before the next expiration, we
1043 * reprogram it to the earliest one, so we change the admin
1044 * schedule to the operational one at the right time.
1046 start = min_t(ktime_t, start, expires);
1048 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1051 static void taprio_set_picos_per_byte(struct net_device *dev,
1052 struct taprio_sched *q)
1054 struct ethtool_link_ksettings ecmd;
1055 int speed = SPEED_10;
1056 int picos_per_byte;
1057 int err;
1059 err = __ethtool_get_link_ksettings(dev, &ecmd);
1060 if (err < 0)
1061 goto skip;
1063 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1064 speed = ecmd.base.speed;
1066 skip:
1067 picos_per_byte = (USEC_PER_SEC * 8) / speed;
1069 atomic64_set(&q->picos_per_byte, picos_per_byte);
1070 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1071 dev->name, (long long)atomic64_read(&q->picos_per_byte),
1072 ecmd.base.speed);
1075 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1076 void *ptr)
1078 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1079 struct net_device *qdev;
1080 struct taprio_sched *q;
1081 bool found = false;
1083 ASSERT_RTNL();
1085 if (event != NETDEV_UP && event != NETDEV_CHANGE)
1086 return NOTIFY_DONE;
1088 spin_lock(&taprio_list_lock);
1089 list_for_each_entry(q, &taprio_list, taprio_list) {
1090 qdev = qdisc_dev(q->root);
1091 if (qdev == dev) {
1092 found = true;
1093 break;
1096 spin_unlock(&taprio_list_lock);
1098 if (found)
1099 taprio_set_picos_per_byte(dev, q);
1101 return NOTIFY_DONE;
1104 static void setup_txtime(struct taprio_sched *q,
1105 struct sched_gate_list *sched, ktime_t base)
1107 struct sched_entry *entry;
1108 u32 interval = 0;
1110 list_for_each_entry(entry, &sched->entries, list) {
1111 entry->next_txtime = ktime_add_ns(base, interval);
1112 interval += entry->interval;
1116 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1118 struct __tc_taprio_qopt_offload *__offload;
1120 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1121 GFP_KERNEL);
1122 if (!__offload)
1123 return NULL;
1125 refcount_set(&__offload->users, 1);
1127 return &__offload->offload;
1130 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1131 *offload)
1133 struct __tc_taprio_qopt_offload *__offload;
1135 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1136 offload);
1138 refcount_inc(&__offload->users);
1140 return offload;
1142 EXPORT_SYMBOL_GPL(taprio_offload_get);
1144 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1146 struct __tc_taprio_qopt_offload *__offload;
1148 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1149 offload);
1151 if (!refcount_dec_and_test(&__offload->users))
1152 return;
1154 kfree(__offload);
1156 EXPORT_SYMBOL_GPL(taprio_offload_free);
1158 /* The function will only serve to keep the pointers to the "oper" and "admin"
1159 * schedules valid in relation to their base times, so when calling dump() the
1160 * users looks at the right schedules.
1161 * When using full offload, the admin configuration is promoted to oper at the
1162 * base_time in the PHC time domain. But because the system time is not
1163 * necessarily in sync with that, we can't just trigger a hrtimer to call
1164 * switch_schedules at the right hardware time.
1165 * At the moment we call this by hand right away from taprio, but in the future
1166 * it will be useful to create a mechanism for drivers to notify taprio of the
1167 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1168 * This is left as TODO.
1170 static void taprio_offload_config_changed(struct taprio_sched *q)
1172 struct sched_gate_list *oper, *admin;
1174 spin_lock(&q->current_entry_lock);
1176 oper = rcu_dereference_protected(q->oper_sched,
1177 lockdep_is_held(&q->current_entry_lock));
1178 admin = rcu_dereference_protected(q->admin_sched,
1179 lockdep_is_held(&q->current_entry_lock));
1181 switch_schedules(q, &admin, &oper);
1183 spin_unlock(&q->current_entry_lock);
1186 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1188 u32 i, queue_mask = 0;
1190 for (i = 0; i < dev->num_tc; i++) {
1191 u32 offset, count;
1193 if (!(tc_mask & BIT(i)))
1194 continue;
1196 offset = dev->tc_to_txq[i].offset;
1197 count = dev->tc_to_txq[i].count;
1199 queue_mask |= GENMASK(offset + count - 1, offset);
1202 return queue_mask;
1205 static void taprio_sched_to_offload(struct net_device *dev,
1206 struct sched_gate_list *sched,
1207 struct tc_taprio_qopt_offload *offload)
1209 struct sched_entry *entry;
1210 int i = 0;
1212 offload->base_time = sched->base_time;
1213 offload->cycle_time = sched->cycle_time;
1214 offload->cycle_time_extension = sched->cycle_time_extension;
1216 list_for_each_entry(entry, &sched->entries, list) {
1217 struct tc_taprio_sched_entry *e = &offload->entries[i];
1219 e->command = entry->command;
1220 e->interval = entry->interval;
1221 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1223 i++;
1226 offload->num_entries = i;
1229 static int taprio_enable_offload(struct net_device *dev,
1230 struct taprio_sched *q,
1231 struct sched_gate_list *sched,
1232 struct netlink_ext_ack *extack)
1234 const struct net_device_ops *ops = dev->netdev_ops;
1235 struct tc_taprio_qopt_offload *offload;
1236 int err = 0;
1238 if (!ops->ndo_setup_tc) {
1239 NL_SET_ERR_MSG(extack,
1240 "Device does not support taprio offload");
1241 return -EOPNOTSUPP;
1244 offload = taprio_offload_alloc(sched->num_entries);
1245 if (!offload) {
1246 NL_SET_ERR_MSG(extack,
1247 "Not enough memory for enabling offload mode");
1248 return -ENOMEM;
1250 offload->enable = 1;
1251 taprio_sched_to_offload(dev, sched, offload);
1253 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1254 if (err < 0) {
1255 NL_SET_ERR_MSG(extack,
1256 "Device failed to setup taprio offload");
1257 goto done;
1260 done:
1261 taprio_offload_free(offload);
1263 return err;
1266 static int taprio_disable_offload(struct net_device *dev,
1267 struct taprio_sched *q,
1268 struct netlink_ext_ack *extack)
1270 const struct net_device_ops *ops = dev->netdev_ops;
1271 struct tc_taprio_qopt_offload *offload;
1272 int err;
1274 if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1275 return 0;
1277 if (!ops->ndo_setup_tc)
1278 return -EOPNOTSUPP;
1280 offload = taprio_offload_alloc(0);
1281 if (!offload) {
1282 NL_SET_ERR_MSG(extack,
1283 "Not enough memory to disable offload mode");
1284 return -ENOMEM;
1286 offload->enable = 0;
1288 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1289 if (err < 0) {
1290 NL_SET_ERR_MSG(extack,
1291 "Device failed to disable offload");
1292 goto out;
1295 out:
1296 taprio_offload_free(offload);
1298 return err;
1301 /* If full offload is enabled, the only possible clockid is the net device's
1302 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1303 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1304 * in sync with the specified clockid via a user space daemon such as phc2sys.
1305 * For both software taprio and txtime-assist, the clockid is used for the
1306 * hrtimer that advances the schedule and hence mandatory.
1308 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1309 struct netlink_ext_ack *extack)
1311 struct taprio_sched *q = qdisc_priv(sch);
1312 struct net_device *dev = qdisc_dev(sch);
1313 int err = -EINVAL;
1315 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1316 const struct ethtool_ops *ops = dev->ethtool_ops;
1317 struct ethtool_ts_info info = {
1318 .cmd = ETHTOOL_GET_TS_INFO,
1319 .phc_index = -1,
1322 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1323 NL_SET_ERR_MSG(extack,
1324 "The 'clockid' cannot be specified for full offload");
1325 goto out;
1328 if (ops && ops->get_ts_info)
1329 err = ops->get_ts_info(dev, &info);
1331 if (err || info.phc_index < 0) {
1332 NL_SET_ERR_MSG(extack,
1333 "Device does not have a PTP clock");
1334 err = -ENOTSUPP;
1335 goto out;
1337 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1338 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1340 /* We only support static clockids and we don't allow
1341 * for it to be modified after the first init.
1343 if (clockid < 0 ||
1344 (q->clockid != -1 && q->clockid != clockid)) {
1345 NL_SET_ERR_MSG(extack,
1346 "Changing the 'clockid' of a running schedule is not supported");
1347 err = -ENOTSUPP;
1348 goto out;
1351 switch (clockid) {
1352 case CLOCK_REALTIME:
1353 q->tk_offset = TK_OFFS_REAL;
1354 break;
1355 case CLOCK_MONOTONIC:
1356 q->tk_offset = TK_OFFS_MAX;
1357 break;
1358 case CLOCK_BOOTTIME:
1359 q->tk_offset = TK_OFFS_BOOT;
1360 break;
1361 case CLOCK_TAI:
1362 q->tk_offset = TK_OFFS_TAI;
1363 break;
1364 default:
1365 NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1366 err = -EINVAL;
1367 goto out;
1370 q->clockid = clockid;
1371 } else {
1372 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1373 goto out;
1376 /* Everything went ok, return success. */
1377 err = 0;
1379 out:
1380 return err;
1383 static int taprio_mqprio_cmp(const struct net_device *dev,
1384 const struct tc_mqprio_qopt *mqprio)
1386 int i;
1388 if (!mqprio || mqprio->num_tc != dev->num_tc)
1389 return -1;
1391 for (i = 0; i < mqprio->num_tc; i++)
1392 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1393 dev->tc_to_txq[i].offset != mqprio->offset[i])
1394 return -1;
1396 for (i = 0; i <= TC_BITMASK; i++)
1397 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1398 return -1;
1400 return 0;
1403 /* The semantics of the 'flags' argument in relation to 'change()'
1404 * requests, are interpreted following two rules (which are applied in
1405 * this order): (1) an omitted 'flags' argument is interpreted as
1406 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1407 * changed.
1409 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1410 struct netlink_ext_ack *extack)
1412 u32 new = 0;
1414 if (attr)
1415 new = nla_get_u32(attr);
1417 if (old != TAPRIO_FLAGS_INVALID && old != new) {
1418 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1419 return -EOPNOTSUPP;
1422 if (!taprio_flags_valid(new)) {
1423 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1424 return -EINVAL;
1427 return new;
1430 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1431 struct netlink_ext_ack *extack)
1433 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1434 struct sched_gate_list *oper, *admin, *new_admin;
1435 struct taprio_sched *q = qdisc_priv(sch);
1436 struct net_device *dev = qdisc_dev(sch);
1437 struct tc_mqprio_qopt *mqprio = NULL;
1438 unsigned long flags;
1439 ktime_t start;
1440 int i, err;
1442 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1443 taprio_policy, extack);
1444 if (err < 0)
1445 return err;
1447 if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1448 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1450 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1451 q->flags, extack);
1452 if (err < 0)
1453 return err;
1455 q->flags = err;
1457 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1458 if (err < 0)
1459 return err;
1461 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1462 if (!new_admin) {
1463 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1464 return -ENOMEM;
1466 INIT_LIST_HEAD(&new_admin->entries);
1468 rcu_read_lock();
1469 oper = rcu_dereference(q->oper_sched);
1470 admin = rcu_dereference(q->admin_sched);
1471 rcu_read_unlock();
1473 /* no changes - no new mqprio settings */
1474 if (!taprio_mqprio_cmp(dev, mqprio))
1475 mqprio = NULL;
1477 if (mqprio && (oper || admin)) {
1478 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1479 err = -ENOTSUPP;
1480 goto free_sched;
1483 err = parse_taprio_schedule(q, tb, new_admin, extack);
1484 if (err < 0)
1485 goto free_sched;
1487 if (new_admin->num_entries == 0) {
1488 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1489 err = -EINVAL;
1490 goto free_sched;
1493 err = taprio_parse_clockid(sch, tb, extack);
1494 if (err < 0)
1495 goto free_sched;
1497 taprio_set_picos_per_byte(dev, q);
1499 if (mqprio) {
1500 netdev_set_num_tc(dev, mqprio->num_tc);
1501 for (i = 0; i < mqprio->num_tc; i++)
1502 netdev_set_tc_queue(dev, i,
1503 mqprio->count[i],
1504 mqprio->offset[i]);
1506 /* Always use supplied priority mappings */
1507 for (i = 0; i <= TC_BITMASK; i++)
1508 netdev_set_prio_tc_map(dev, i,
1509 mqprio->prio_tc_map[i]);
1512 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1513 err = taprio_enable_offload(dev, q, new_admin, extack);
1514 else
1515 err = taprio_disable_offload(dev, q, extack);
1516 if (err)
1517 goto free_sched;
1519 /* Protects against enqueue()/dequeue() */
1520 spin_lock_bh(qdisc_lock(sch));
1522 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1523 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1524 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1525 err = -EINVAL;
1526 goto unlock;
1529 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1532 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1533 !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1534 !hrtimer_active(&q->advance_timer)) {
1535 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1536 q->advance_timer.function = advance_sched;
1539 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1540 q->dequeue = taprio_dequeue_offload;
1541 q->peek = taprio_peek_offload;
1542 } else {
1543 /* Be sure to always keep the function pointers
1544 * in a consistent state.
1546 q->dequeue = taprio_dequeue_soft;
1547 q->peek = taprio_peek_soft;
1550 err = taprio_get_start_time(sch, new_admin, &start);
1551 if (err < 0) {
1552 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1553 goto unlock;
1556 setup_txtime(q, new_admin, start);
1558 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1559 if (!oper) {
1560 rcu_assign_pointer(q->oper_sched, new_admin);
1561 err = 0;
1562 new_admin = NULL;
1563 goto unlock;
1566 rcu_assign_pointer(q->admin_sched, new_admin);
1567 if (admin)
1568 call_rcu(&admin->rcu, taprio_free_sched_cb);
1569 } else {
1570 setup_first_close_time(q, new_admin, start);
1572 /* Protects against advance_sched() */
1573 spin_lock_irqsave(&q->current_entry_lock, flags);
1575 taprio_start_sched(sch, start, new_admin);
1577 rcu_assign_pointer(q->admin_sched, new_admin);
1578 if (admin)
1579 call_rcu(&admin->rcu, taprio_free_sched_cb);
1581 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1583 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1584 taprio_offload_config_changed(q);
1587 new_admin = NULL;
1588 err = 0;
1590 unlock:
1591 spin_unlock_bh(qdisc_lock(sch));
1593 free_sched:
1594 if (new_admin)
1595 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1597 return err;
1600 static void taprio_reset(struct Qdisc *sch)
1602 struct taprio_sched *q = qdisc_priv(sch);
1603 struct net_device *dev = qdisc_dev(sch);
1604 int i;
1606 hrtimer_cancel(&q->advance_timer);
1607 if (q->qdiscs) {
1608 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1609 qdisc_reset(q->qdiscs[i]);
1611 sch->qstats.backlog = 0;
1612 sch->q.qlen = 0;
1615 static void taprio_destroy(struct Qdisc *sch)
1617 struct taprio_sched *q = qdisc_priv(sch);
1618 struct net_device *dev = qdisc_dev(sch);
1619 unsigned int i;
1621 spin_lock(&taprio_list_lock);
1622 list_del(&q->taprio_list);
1623 spin_unlock(&taprio_list_lock);
1626 taprio_disable_offload(dev, q, NULL);
1628 if (q->qdiscs) {
1629 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1630 qdisc_put(q->qdiscs[i]);
1632 kfree(q->qdiscs);
1634 q->qdiscs = NULL;
1636 netdev_reset_tc(dev);
1638 if (q->oper_sched)
1639 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1641 if (q->admin_sched)
1642 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1645 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1646 struct netlink_ext_ack *extack)
1648 struct taprio_sched *q = qdisc_priv(sch);
1649 struct net_device *dev = qdisc_dev(sch);
1650 int i;
1652 spin_lock_init(&q->current_entry_lock);
1654 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1655 q->advance_timer.function = advance_sched;
1657 q->dequeue = taprio_dequeue_soft;
1658 q->peek = taprio_peek_soft;
1660 q->root = sch;
1662 /* We only support static clockids. Use an invalid value as default
1663 * and get the valid one on taprio_change().
1665 q->clockid = -1;
1666 q->flags = TAPRIO_FLAGS_INVALID;
1668 spin_lock(&taprio_list_lock);
1669 list_add(&q->taprio_list, &taprio_list);
1670 spin_unlock(&taprio_list_lock);
1672 if (sch->parent != TC_H_ROOT)
1673 return -EOPNOTSUPP;
1675 if (!netif_is_multiqueue(dev))
1676 return -EOPNOTSUPP;
1678 /* pre-allocate qdisc, attachment can't fail */
1679 q->qdiscs = kcalloc(dev->num_tx_queues,
1680 sizeof(q->qdiscs[0]),
1681 GFP_KERNEL);
1683 if (!q->qdiscs)
1684 return -ENOMEM;
1686 if (!opt)
1687 return -EINVAL;
1689 for (i = 0; i < dev->num_tx_queues; i++) {
1690 struct netdev_queue *dev_queue;
1691 struct Qdisc *qdisc;
1693 dev_queue = netdev_get_tx_queue(dev, i);
1694 qdisc = qdisc_create_dflt(dev_queue,
1695 &pfifo_qdisc_ops,
1696 TC_H_MAKE(TC_H_MAJ(sch->handle),
1697 TC_H_MIN(i + 1)),
1698 extack);
1699 if (!qdisc)
1700 return -ENOMEM;
1702 if (i < dev->real_num_tx_queues)
1703 qdisc_hash_add(qdisc, false);
1705 q->qdiscs[i] = qdisc;
1708 return taprio_change(sch, opt, extack);
1711 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1712 unsigned long cl)
1714 struct net_device *dev = qdisc_dev(sch);
1715 unsigned long ntx = cl - 1;
1717 if (ntx >= dev->num_tx_queues)
1718 return NULL;
1720 return netdev_get_tx_queue(dev, ntx);
1723 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1724 struct Qdisc *new, struct Qdisc **old,
1725 struct netlink_ext_ack *extack)
1727 struct taprio_sched *q = qdisc_priv(sch);
1728 struct net_device *dev = qdisc_dev(sch);
1729 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1731 if (!dev_queue)
1732 return -EINVAL;
1734 if (dev->flags & IFF_UP)
1735 dev_deactivate(dev);
1737 *old = q->qdiscs[cl - 1];
1738 q->qdiscs[cl - 1] = new;
1740 if (new)
1741 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1743 if (dev->flags & IFF_UP)
1744 dev_activate(dev);
1746 return 0;
1749 static int dump_entry(struct sk_buff *msg,
1750 const struct sched_entry *entry)
1752 struct nlattr *item;
1754 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1755 if (!item)
1756 return -ENOSPC;
1758 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1759 goto nla_put_failure;
1761 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1762 goto nla_put_failure;
1764 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1765 entry->gate_mask))
1766 goto nla_put_failure;
1768 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1769 entry->interval))
1770 goto nla_put_failure;
1772 return nla_nest_end(msg, item);
1774 nla_put_failure:
1775 nla_nest_cancel(msg, item);
1776 return -1;
1779 static int dump_schedule(struct sk_buff *msg,
1780 const struct sched_gate_list *root)
1782 struct nlattr *entry_list;
1783 struct sched_entry *entry;
1785 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1786 root->base_time, TCA_TAPRIO_PAD))
1787 return -1;
1789 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1790 root->cycle_time, TCA_TAPRIO_PAD))
1791 return -1;
1793 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1794 root->cycle_time_extension, TCA_TAPRIO_PAD))
1795 return -1;
1797 entry_list = nla_nest_start_noflag(msg,
1798 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1799 if (!entry_list)
1800 goto error_nest;
1802 list_for_each_entry(entry, &root->entries, list) {
1803 if (dump_entry(msg, entry) < 0)
1804 goto error_nest;
1807 nla_nest_end(msg, entry_list);
1808 return 0;
1810 error_nest:
1811 nla_nest_cancel(msg, entry_list);
1812 return -1;
1815 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1817 struct taprio_sched *q = qdisc_priv(sch);
1818 struct net_device *dev = qdisc_dev(sch);
1819 struct sched_gate_list *oper, *admin;
1820 struct tc_mqprio_qopt opt = { 0 };
1821 struct nlattr *nest, *sched_nest;
1822 unsigned int i;
1824 rcu_read_lock();
1825 oper = rcu_dereference(q->oper_sched);
1826 admin = rcu_dereference(q->admin_sched);
1828 opt.num_tc = netdev_get_num_tc(dev);
1829 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1831 for (i = 0; i < netdev_get_num_tc(dev); i++) {
1832 opt.count[i] = dev->tc_to_txq[i].count;
1833 opt.offset[i] = dev->tc_to_txq[i].offset;
1836 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1837 if (!nest)
1838 goto start_error;
1840 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1841 goto options_error;
1843 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1844 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1845 goto options_error;
1847 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1848 goto options_error;
1850 if (q->txtime_delay &&
1851 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1852 goto options_error;
1854 if (oper && dump_schedule(skb, oper))
1855 goto options_error;
1857 if (!admin)
1858 goto done;
1860 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1861 if (!sched_nest)
1862 goto options_error;
1864 if (dump_schedule(skb, admin))
1865 goto admin_error;
1867 nla_nest_end(skb, sched_nest);
1869 done:
1870 rcu_read_unlock();
1872 return nla_nest_end(skb, nest);
1874 admin_error:
1875 nla_nest_cancel(skb, sched_nest);
1877 options_error:
1878 nla_nest_cancel(skb, nest);
1880 start_error:
1881 rcu_read_unlock();
1882 return -ENOSPC;
1885 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1887 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1889 if (!dev_queue)
1890 return NULL;
1892 return dev_queue->qdisc_sleeping;
1895 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1897 unsigned int ntx = TC_H_MIN(classid);
1899 if (!taprio_queue_get(sch, ntx))
1900 return 0;
1901 return ntx;
1904 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1905 struct sk_buff *skb, struct tcmsg *tcm)
1907 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1909 tcm->tcm_parent = TC_H_ROOT;
1910 tcm->tcm_handle |= TC_H_MIN(cl);
1911 tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1913 return 0;
1916 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1917 struct gnet_dump *d)
1918 __releases(d->lock)
1919 __acquires(d->lock)
1921 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1923 sch = dev_queue->qdisc_sleeping;
1924 if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1925 qdisc_qstats_copy(d, sch) < 0)
1926 return -1;
1927 return 0;
1930 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1932 struct net_device *dev = qdisc_dev(sch);
1933 unsigned long ntx;
1935 if (arg->stop)
1936 return;
1938 arg->count = arg->skip;
1939 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1940 if (arg->fn(sch, ntx + 1, arg) < 0) {
1941 arg->stop = 1;
1942 break;
1944 arg->count++;
1948 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1949 struct tcmsg *tcm)
1951 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1954 static const struct Qdisc_class_ops taprio_class_ops = {
1955 .graft = taprio_graft,
1956 .leaf = taprio_leaf,
1957 .find = taprio_find,
1958 .walk = taprio_walk,
1959 .dump = taprio_dump_class,
1960 .dump_stats = taprio_dump_class_stats,
1961 .select_queue = taprio_select_queue,
1964 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1965 .cl_ops = &taprio_class_ops,
1966 .id = "taprio",
1967 .priv_size = sizeof(struct taprio_sched),
1968 .init = taprio_init,
1969 .change = taprio_change,
1970 .destroy = taprio_destroy,
1971 .reset = taprio_reset,
1972 .peek = taprio_peek,
1973 .dequeue = taprio_dequeue,
1974 .enqueue = taprio_enqueue,
1975 .dump = taprio_dump,
1976 .owner = THIS_MODULE,
1979 static struct notifier_block taprio_device_notifier = {
1980 .notifier_call = taprio_dev_notifier,
1983 static int __init taprio_module_init(void)
1985 int err = register_netdevice_notifier(&taprio_device_notifier);
1987 if (err)
1988 return err;
1990 return register_qdisc(&taprio_qdisc_ops);
1993 static void __exit taprio_module_exit(void)
1995 unregister_qdisc(&taprio_qdisc_ops);
1996 unregister_netdevice_notifier(&taprio_device_notifier);
1999 module_init(taprio_module_init);
2000 module_exit(taprio_module_exit);
2001 MODULE_LICENSE("GPL");