io_uring: ensure finish_wait() is always called in __io_uring_task_cancel()
[linux/fpc-iii.git] / net / wireless / util.c
blobb4acc805114b646088849119f55f209845df59a1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
42 return result;
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
54 if (WARN_ON(!sband))
55 return 1;
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return MHZ_TO_KHZ(2484);
85 else if (chan < 14)
86 return MHZ_TO_KHZ(2407 + chan * 5);
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return MHZ_TO_KHZ(4000 + chan * 5);
91 else
92 return MHZ_TO_KHZ(5000 + chan * 5);
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D6.1 27.3.23.2 */
96 if (chan == 2)
97 return MHZ_TO_KHZ(5935);
98 if (chan <= 233)
99 return MHZ_TO_KHZ(5950 + chan * 5);
100 break;
101 case NL80211_BAND_60GHZ:
102 if (chan < 7)
103 return MHZ_TO_KHZ(56160 + chan * 2160);
104 break;
105 case NL80211_BAND_S1GHZ:
106 return 902000 + chan * 500;
107 default:
110 return 0; /* not supported */
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114 enum nl80211_chan_width
115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118 return NL80211_CHAN_WIDTH_20_NOHT;
120 /*S1G defines a single allowed channel width per channel.
121 * Extract that width here.
123 if (chan->flags & IEEE80211_CHAN_1MHZ)
124 return NL80211_CHAN_WIDTH_1;
125 else if (chan->flags & IEEE80211_CHAN_2MHZ)
126 return NL80211_CHAN_WIDTH_2;
127 else if (chan->flags & IEEE80211_CHAN_4MHZ)
128 return NL80211_CHAN_WIDTH_4;
129 else if (chan->flags & IEEE80211_CHAN_8MHZ)
130 return NL80211_CHAN_WIDTH_8;
131 else if (chan->flags & IEEE80211_CHAN_16MHZ)
132 return NL80211_CHAN_WIDTH_16;
134 pr_err("unknown channel width for channel at %dKHz?\n",
135 ieee80211_channel_to_khz(chan));
137 return NL80211_CHAN_WIDTH_1;
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141 int ieee80211_freq_khz_to_channel(u32 freq)
143 /* TODO: just handle MHz for now */
144 freq = KHZ_TO_MHZ(freq);
146 /* see 802.11 17.3.8.3.2 and Annex J */
147 if (freq == 2484)
148 return 14;
149 else if (freq < 2484)
150 return (freq - 2407) / 5;
151 else if (freq >= 4910 && freq <= 4980)
152 return (freq - 4000) / 5;
153 else if (freq < 5925)
154 return (freq - 5000) / 5;
155 else if (freq == 5935)
156 return 2;
157 else if (freq <= 45000) /* DMG band lower limit */
158 /* see 802.11ax D6.1 27.3.22.2 */
159 return (freq - 5950) / 5;
160 else if (freq >= 58320 && freq <= 70200)
161 return (freq - 56160) / 2160;
162 else
163 return 0;
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168 u32 freq)
170 enum nl80211_band band;
171 struct ieee80211_supported_band *sband;
172 int i;
174 for (band = 0; band < NUM_NL80211_BANDS; band++) {
175 sband = wiphy->bands[band];
177 if (!sband)
178 continue;
180 for (i = 0; i < sband->n_channels; i++) {
181 struct ieee80211_channel *chan = &sband->channels[i];
183 if (ieee80211_channel_to_khz(chan) == freq)
184 return chan;
188 return NULL;
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 int i, want;
196 switch (sband->band) {
197 case NL80211_BAND_5GHZ:
198 case NL80211_BAND_6GHZ:
199 want = 3;
200 for (i = 0; i < sband->n_bitrates; i++) {
201 if (sband->bitrates[i].bitrate == 60 ||
202 sband->bitrates[i].bitrate == 120 ||
203 sband->bitrates[i].bitrate == 240) {
204 sband->bitrates[i].flags |=
205 IEEE80211_RATE_MANDATORY_A;
206 want--;
209 WARN_ON(want);
210 break;
211 case NL80211_BAND_2GHZ:
212 want = 7;
213 for (i = 0; i < sband->n_bitrates; i++) {
214 switch (sband->bitrates[i].bitrate) {
215 case 10:
216 case 20:
217 case 55:
218 case 110:
219 sband->bitrates[i].flags |=
220 IEEE80211_RATE_MANDATORY_B |
221 IEEE80211_RATE_MANDATORY_G;
222 want--;
223 break;
224 case 60:
225 case 120:
226 case 240:
227 sband->bitrates[i].flags |=
228 IEEE80211_RATE_MANDATORY_G;
229 want--;
230 fallthrough;
231 default:
232 sband->bitrates[i].flags |=
233 IEEE80211_RATE_ERP_G;
234 break;
237 WARN_ON(want != 0 && want != 3);
238 break;
239 case NL80211_BAND_60GHZ:
240 /* check for mandatory HT MCS 1..4 */
241 WARN_ON(!sband->ht_cap.ht_supported);
242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243 break;
244 case NL80211_BAND_S1GHZ:
245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246 * mandatory is ok.
248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249 break;
250 case NUM_NL80211_BANDS:
251 default:
252 WARN_ON(1);
253 break;
257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
259 enum nl80211_band band;
261 for (band = 0; band < NUM_NL80211_BANDS; band++)
262 if (wiphy->bands[band])
263 set_mandatory_flags_band(wiphy->bands[band]);
266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
268 int i;
269 for (i = 0; i < wiphy->n_cipher_suites; i++)
270 if (cipher == wiphy->cipher_suites[i])
271 return true;
272 return false;
275 static bool
276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
278 struct wiphy *wiphy = &rdev->wiphy;
279 int i;
281 for (i = 0; i < wiphy->n_cipher_suites; i++) {
282 switch (wiphy->cipher_suites[i]) {
283 case WLAN_CIPHER_SUITE_AES_CMAC:
284 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287 return true;
291 return false;
294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295 int key_idx, bool pairwise)
297 int max_key_idx;
299 if (pairwise)
300 max_key_idx = 3;
301 else if (wiphy_ext_feature_isset(&rdev->wiphy,
302 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303 wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305 max_key_idx = 7;
306 else if (cfg80211_igtk_cipher_supported(rdev))
307 max_key_idx = 5;
308 else
309 max_key_idx = 3;
311 if (key_idx < 0 || key_idx > max_key_idx)
312 return false;
314 return true;
317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318 struct key_params *params, int key_idx,
319 bool pairwise, const u8 *mac_addr)
321 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322 return -EINVAL;
324 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325 return -EINVAL;
327 if (pairwise && !mac_addr)
328 return -EINVAL;
330 switch (params->cipher) {
331 case WLAN_CIPHER_SUITE_TKIP:
332 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
333 if ((pairwise && key_idx) ||
334 params->mode != NL80211_KEY_RX_TX)
335 return -EINVAL;
336 break;
337 case WLAN_CIPHER_SUITE_CCMP:
338 case WLAN_CIPHER_SUITE_CCMP_256:
339 case WLAN_CIPHER_SUITE_GCMP:
340 case WLAN_CIPHER_SUITE_GCMP_256:
341 /* IEEE802.11-2016 allows only 0 and - when supporting
342 * Extended Key ID - 1 as index for pairwise keys.
343 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344 * the driver supports Extended Key ID.
345 * @NL80211_KEY_SET_TX can't be set when installing and
346 * validating a key.
348 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349 params->mode == NL80211_KEY_SET_TX)
350 return -EINVAL;
351 if (wiphy_ext_feature_isset(&rdev->wiphy,
352 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353 if (pairwise && (key_idx < 0 || key_idx > 1))
354 return -EINVAL;
355 } else if (pairwise && key_idx) {
356 return -EINVAL;
358 break;
359 case WLAN_CIPHER_SUITE_AES_CMAC:
360 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363 /* Disallow BIP (group-only) cipher as pairwise cipher */
364 if (pairwise)
365 return -EINVAL;
366 if (key_idx < 4)
367 return -EINVAL;
368 break;
369 case WLAN_CIPHER_SUITE_WEP40:
370 case WLAN_CIPHER_SUITE_WEP104:
371 if (key_idx > 3)
372 return -EINVAL;
373 break;
374 default:
375 break;
378 switch (params->cipher) {
379 case WLAN_CIPHER_SUITE_WEP40:
380 if (params->key_len != WLAN_KEY_LEN_WEP40)
381 return -EINVAL;
382 break;
383 case WLAN_CIPHER_SUITE_TKIP:
384 if (params->key_len != WLAN_KEY_LEN_TKIP)
385 return -EINVAL;
386 break;
387 case WLAN_CIPHER_SUITE_CCMP:
388 if (params->key_len != WLAN_KEY_LEN_CCMP)
389 return -EINVAL;
390 break;
391 case WLAN_CIPHER_SUITE_CCMP_256:
392 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
393 return -EINVAL;
394 break;
395 case WLAN_CIPHER_SUITE_GCMP:
396 if (params->key_len != WLAN_KEY_LEN_GCMP)
397 return -EINVAL;
398 break;
399 case WLAN_CIPHER_SUITE_GCMP_256:
400 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
401 return -EINVAL;
402 break;
403 case WLAN_CIPHER_SUITE_WEP104:
404 if (params->key_len != WLAN_KEY_LEN_WEP104)
405 return -EINVAL;
406 break;
407 case WLAN_CIPHER_SUITE_AES_CMAC:
408 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
409 return -EINVAL;
410 break;
411 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
412 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
413 return -EINVAL;
414 break;
415 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
417 return -EINVAL;
418 break;
419 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
420 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
421 return -EINVAL;
422 break;
423 default:
425 * We don't know anything about this algorithm,
426 * allow using it -- but the driver must check
427 * all parameters! We still check below whether
428 * or not the driver supports this algorithm,
429 * of course.
431 break;
434 if (params->seq) {
435 switch (params->cipher) {
436 case WLAN_CIPHER_SUITE_WEP40:
437 case WLAN_CIPHER_SUITE_WEP104:
438 /* These ciphers do not use key sequence */
439 return -EINVAL;
440 case WLAN_CIPHER_SUITE_TKIP:
441 case WLAN_CIPHER_SUITE_CCMP:
442 case WLAN_CIPHER_SUITE_CCMP_256:
443 case WLAN_CIPHER_SUITE_GCMP:
444 case WLAN_CIPHER_SUITE_GCMP_256:
445 case WLAN_CIPHER_SUITE_AES_CMAC:
446 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
447 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
448 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
449 if (params->seq_len != 6)
450 return -EINVAL;
451 break;
455 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
456 return -EINVAL;
458 return 0;
461 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
463 unsigned int hdrlen = 24;
465 if (ieee80211_is_ext(fc)) {
466 hdrlen = 4;
467 goto out;
470 if (ieee80211_is_data(fc)) {
471 if (ieee80211_has_a4(fc))
472 hdrlen = 30;
473 if (ieee80211_is_data_qos(fc)) {
474 hdrlen += IEEE80211_QOS_CTL_LEN;
475 if (ieee80211_has_order(fc))
476 hdrlen += IEEE80211_HT_CTL_LEN;
478 goto out;
481 if (ieee80211_is_mgmt(fc)) {
482 if (ieee80211_has_order(fc))
483 hdrlen += IEEE80211_HT_CTL_LEN;
484 goto out;
487 if (ieee80211_is_ctl(fc)) {
489 * ACK and CTS are 10 bytes, all others 16. To see how
490 * to get this condition consider
491 * subtype mask: 0b0000000011110000 (0x00F0)
492 * ACK subtype: 0b0000000011010000 (0x00D0)
493 * CTS subtype: 0b0000000011000000 (0x00C0)
494 * bits that matter: ^^^ (0x00E0)
495 * value of those: 0b0000000011000000 (0x00C0)
497 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
498 hdrlen = 10;
499 else
500 hdrlen = 16;
502 out:
503 return hdrlen;
505 EXPORT_SYMBOL(ieee80211_hdrlen);
507 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
509 const struct ieee80211_hdr *hdr =
510 (const struct ieee80211_hdr *)skb->data;
511 unsigned int hdrlen;
513 if (unlikely(skb->len < 10))
514 return 0;
515 hdrlen = ieee80211_hdrlen(hdr->frame_control);
516 if (unlikely(hdrlen > skb->len))
517 return 0;
518 return hdrlen;
520 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
522 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
524 int ae = flags & MESH_FLAGS_AE;
525 /* 802.11-2012, 8.2.4.7.3 */
526 switch (ae) {
527 default:
528 case 0:
529 return 6;
530 case MESH_FLAGS_AE_A4:
531 return 12;
532 case MESH_FLAGS_AE_A5_A6:
533 return 18;
537 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
539 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
541 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
543 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
544 const u8 *addr, enum nl80211_iftype iftype,
545 u8 data_offset)
547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
548 struct {
549 u8 hdr[ETH_ALEN] __aligned(2);
550 __be16 proto;
551 } payload;
552 struct ethhdr tmp;
553 u16 hdrlen;
554 u8 mesh_flags = 0;
556 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
557 return -1;
559 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
560 if (skb->len < hdrlen + 8)
561 return -1;
563 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
564 * header
565 * IEEE 802.11 address fields:
566 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
567 * 0 0 DA SA BSSID n/a
568 * 0 1 DA BSSID SA n/a
569 * 1 0 BSSID SA DA n/a
570 * 1 1 RA TA DA SA
572 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
573 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
575 if (iftype == NL80211_IFTYPE_MESH_POINT)
576 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
578 mesh_flags &= MESH_FLAGS_AE;
580 switch (hdr->frame_control &
581 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
582 case cpu_to_le16(IEEE80211_FCTL_TODS):
583 if (unlikely(iftype != NL80211_IFTYPE_AP &&
584 iftype != NL80211_IFTYPE_AP_VLAN &&
585 iftype != NL80211_IFTYPE_P2P_GO))
586 return -1;
587 break;
588 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
589 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
590 iftype != NL80211_IFTYPE_AP_VLAN &&
591 iftype != NL80211_IFTYPE_STATION))
592 return -1;
593 if (iftype == NL80211_IFTYPE_MESH_POINT) {
594 if (mesh_flags == MESH_FLAGS_AE_A4)
595 return -1;
596 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597 skb_copy_bits(skb, hdrlen +
598 offsetof(struct ieee80211s_hdr, eaddr1),
599 tmp.h_dest, 2 * ETH_ALEN);
601 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
603 break;
604 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605 if ((iftype != NL80211_IFTYPE_STATION &&
606 iftype != NL80211_IFTYPE_P2P_CLIENT &&
607 iftype != NL80211_IFTYPE_MESH_POINT) ||
608 (is_multicast_ether_addr(tmp.h_dest) &&
609 ether_addr_equal(tmp.h_source, addr)))
610 return -1;
611 if (iftype == NL80211_IFTYPE_MESH_POINT) {
612 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613 return -1;
614 if (mesh_flags == MESH_FLAGS_AE_A4)
615 skb_copy_bits(skb, hdrlen +
616 offsetof(struct ieee80211s_hdr, eaddr1),
617 tmp.h_source, ETH_ALEN);
618 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
620 break;
621 case cpu_to_le16(0):
622 if (iftype != NL80211_IFTYPE_ADHOC &&
623 iftype != NL80211_IFTYPE_STATION &&
624 iftype != NL80211_IFTYPE_OCB)
625 return -1;
626 break;
629 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630 tmp.h_proto = payload.proto;
632 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
633 tmp.h_proto != htons(ETH_P_AARP) &&
634 tmp.h_proto != htons(ETH_P_IPX)) ||
635 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636 /* remove RFC1042 or Bridge-Tunnel encapsulation and
637 * replace EtherType */
638 hdrlen += ETH_ALEN + 2;
639 else
640 tmp.h_proto = htons(skb->len - hdrlen);
642 pskb_pull(skb, hdrlen);
644 if (!ehdr)
645 ehdr = skb_push(skb, sizeof(struct ethhdr));
646 memcpy(ehdr, &tmp, sizeof(tmp));
648 return 0;
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
652 static void
653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654 void *ptr, int len, int size)
656 struct skb_shared_info *sh = skb_shinfo(skb);
657 int page_offset;
659 get_page(page);
660 page_offset = ptr - page_address(page);
661 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
664 static void
665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666 int offset, int len)
668 struct skb_shared_info *sh = skb_shinfo(skb);
669 const skb_frag_t *frag = &sh->frags[0];
670 struct page *frag_page;
671 void *frag_ptr;
672 int frag_len, frag_size;
673 int head_size = skb->len - skb->data_len;
674 int cur_len;
676 frag_page = virt_to_head_page(skb->head);
677 frag_ptr = skb->data;
678 frag_size = head_size;
680 while (offset >= frag_size) {
681 offset -= frag_size;
682 frag_page = skb_frag_page(frag);
683 frag_ptr = skb_frag_address(frag);
684 frag_size = skb_frag_size(frag);
685 frag++;
688 frag_ptr += offset;
689 frag_len = frag_size - offset;
691 cur_len = min(len, frag_len);
693 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694 len -= cur_len;
696 while (len > 0) {
697 frag_len = skb_frag_size(frag);
698 cur_len = min(len, frag_len);
699 __frame_add_frag(frame, skb_frag_page(frag),
700 skb_frag_address(frag), cur_len, frag_len);
701 len -= cur_len;
702 frag++;
706 static struct sk_buff *
707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708 int offset, int len, bool reuse_frag)
710 struct sk_buff *frame;
711 int cur_len = len;
713 if (skb->len - offset < len)
714 return NULL;
717 * When reusing framents, copy some data to the head to simplify
718 * ethernet header handling and speed up protocol header processing
719 * in the stack later.
721 if (reuse_frag)
722 cur_len = min_t(int, len, 32);
725 * Allocate and reserve two bytes more for payload
726 * alignment since sizeof(struct ethhdr) is 14.
728 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729 if (!frame)
730 return NULL;
732 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
735 len -= cur_len;
736 if (!len)
737 return frame;
739 offset += cur_len;
740 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
742 return frame;
745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746 const u8 *addr, enum nl80211_iftype iftype,
747 const unsigned int extra_headroom,
748 const u8 *check_da, const u8 *check_sa)
750 unsigned int hlen = ALIGN(extra_headroom, 4);
751 struct sk_buff *frame = NULL;
752 u16 ethertype;
753 u8 *payload;
754 int offset = 0, remaining;
755 struct ethhdr eth;
756 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757 bool reuse_skb = false;
758 bool last = false;
760 while (!last) {
761 unsigned int subframe_len;
762 int len;
763 u8 padding;
765 skb_copy_bits(skb, offset, &eth, sizeof(eth));
766 len = ntohs(eth.h_proto);
767 subframe_len = sizeof(struct ethhdr) + len;
768 padding = (4 - subframe_len) & 0x3;
770 /* the last MSDU has no padding */
771 remaining = skb->len - offset;
772 if (subframe_len > remaining)
773 goto purge;
775 offset += sizeof(struct ethhdr);
776 last = remaining <= subframe_len + padding;
778 /* FIXME: should we really accept multicast DA? */
779 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
780 !ether_addr_equal(check_da, eth.h_dest)) ||
781 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
782 offset += len + padding;
783 continue;
786 /* reuse skb for the last subframe */
787 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
788 skb_pull(skb, offset);
789 frame = skb;
790 reuse_skb = true;
791 } else {
792 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
793 reuse_frag);
794 if (!frame)
795 goto purge;
797 offset += len + padding;
800 skb_reset_network_header(frame);
801 frame->dev = skb->dev;
802 frame->priority = skb->priority;
804 payload = frame->data;
805 ethertype = (payload[6] << 8) | payload[7];
806 if (likely((ether_addr_equal(payload, rfc1042_header) &&
807 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
808 ether_addr_equal(payload, bridge_tunnel_header))) {
809 eth.h_proto = htons(ethertype);
810 skb_pull(frame, ETH_ALEN + 2);
813 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
814 __skb_queue_tail(list, frame);
817 if (!reuse_skb)
818 dev_kfree_skb(skb);
820 return;
822 purge:
823 __skb_queue_purge(list);
824 dev_kfree_skb(skb);
826 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
828 /* Given a data frame determine the 802.1p/1d tag to use. */
829 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
830 struct cfg80211_qos_map *qos_map)
832 unsigned int dscp;
833 unsigned char vlan_priority;
834 unsigned int ret;
836 /* skb->priority values from 256->263 are magic values to
837 * directly indicate a specific 802.1d priority. This is used
838 * to allow 802.1d priority to be passed directly in from VLAN
839 * tags, etc.
841 if (skb->priority >= 256 && skb->priority <= 263) {
842 ret = skb->priority - 256;
843 goto out;
846 if (skb_vlan_tag_present(skb)) {
847 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
848 >> VLAN_PRIO_SHIFT;
849 if (vlan_priority > 0) {
850 ret = vlan_priority;
851 goto out;
855 switch (skb->protocol) {
856 case htons(ETH_P_IP):
857 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
858 break;
859 case htons(ETH_P_IPV6):
860 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
861 break;
862 case htons(ETH_P_MPLS_UC):
863 case htons(ETH_P_MPLS_MC): {
864 struct mpls_label mpls_tmp, *mpls;
866 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
867 sizeof(*mpls), &mpls_tmp);
868 if (!mpls)
869 return 0;
871 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
872 >> MPLS_LS_TC_SHIFT;
873 goto out;
875 case htons(ETH_P_80221):
876 /* 802.21 is always network control traffic */
877 return 7;
878 default:
879 return 0;
882 if (qos_map) {
883 unsigned int i, tmp_dscp = dscp >> 2;
885 for (i = 0; i < qos_map->num_des; i++) {
886 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
887 ret = qos_map->dscp_exception[i].up;
888 goto out;
892 for (i = 0; i < 8; i++) {
893 if (tmp_dscp >= qos_map->up[i].low &&
894 tmp_dscp <= qos_map->up[i].high) {
895 ret = i;
896 goto out;
901 ret = dscp >> 5;
902 out:
903 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
905 EXPORT_SYMBOL(cfg80211_classify8021d);
907 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
909 const struct cfg80211_bss_ies *ies;
911 ies = rcu_dereference(bss->ies);
912 if (!ies)
913 return NULL;
915 return cfg80211_find_elem(id, ies->data, ies->len);
917 EXPORT_SYMBOL(ieee80211_bss_get_elem);
919 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
921 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
922 struct net_device *dev = wdev->netdev;
923 int i;
925 if (!wdev->connect_keys)
926 return;
928 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
929 if (!wdev->connect_keys->params[i].cipher)
930 continue;
931 if (rdev_add_key(rdev, dev, i, false, NULL,
932 &wdev->connect_keys->params[i])) {
933 netdev_err(dev, "failed to set key %d\n", i);
934 continue;
936 if (wdev->connect_keys->def == i &&
937 rdev_set_default_key(rdev, dev, i, true, true)) {
938 netdev_err(dev, "failed to set defkey %d\n", i);
939 continue;
943 kfree_sensitive(wdev->connect_keys);
944 wdev->connect_keys = NULL;
947 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
949 struct cfg80211_event *ev;
950 unsigned long flags;
952 spin_lock_irqsave(&wdev->event_lock, flags);
953 while (!list_empty(&wdev->event_list)) {
954 ev = list_first_entry(&wdev->event_list,
955 struct cfg80211_event, list);
956 list_del(&ev->list);
957 spin_unlock_irqrestore(&wdev->event_lock, flags);
959 wdev_lock(wdev);
960 switch (ev->type) {
961 case EVENT_CONNECT_RESULT:
962 __cfg80211_connect_result(
963 wdev->netdev,
964 &ev->cr,
965 ev->cr.status == WLAN_STATUS_SUCCESS);
966 break;
967 case EVENT_ROAMED:
968 __cfg80211_roamed(wdev, &ev->rm);
969 break;
970 case EVENT_DISCONNECTED:
971 __cfg80211_disconnected(wdev->netdev,
972 ev->dc.ie, ev->dc.ie_len,
973 ev->dc.reason,
974 !ev->dc.locally_generated);
975 break;
976 case EVENT_IBSS_JOINED:
977 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
978 ev->ij.channel);
979 break;
980 case EVENT_STOPPED:
981 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
982 break;
983 case EVENT_PORT_AUTHORIZED:
984 __cfg80211_port_authorized(wdev, ev->pa.bssid);
985 break;
987 wdev_unlock(wdev);
989 kfree(ev);
991 spin_lock_irqsave(&wdev->event_lock, flags);
993 spin_unlock_irqrestore(&wdev->event_lock, flags);
996 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
998 struct wireless_dev *wdev;
1000 ASSERT_RTNL();
1002 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1003 cfg80211_process_wdev_events(wdev);
1006 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1007 struct net_device *dev, enum nl80211_iftype ntype,
1008 struct vif_params *params)
1010 int err;
1011 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1013 ASSERT_RTNL();
1015 /* don't support changing VLANs, you just re-create them */
1016 if (otype == NL80211_IFTYPE_AP_VLAN)
1017 return -EOPNOTSUPP;
1019 /* cannot change into P2P device or NAN */
1020 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1021 ntype == NL80211_IFTYPE_NAN)
1022 return -EOPNOTSUPP;
1024 if (!rdev->ops->change_virtual_intf ||
1025 !(rdev->wiphy.interface_modes & (1 << ntype)))
1026 return -EOPNOTSUPP;
1028 /* if it's part of a bridge, reject changing type to station/ibss */
1029 if (netif_is_bridge_port(dev) &&
1030 (ntype == NL80211_IFTYPE_ADHOC ||
1031 ntype == NL80211_IFTYPE_STATION ||
1032 ntype == NL80211_IFTYPE_P2P_CLIENT))
1033 return -EBUSY;
1035 if (ntype != otype) {
1036 dev->ieee80211_ptr->use_4addr = false;
1037 dev->ieee80211_ptr->mesh_id_up_len = 0;
1038 wdev_lock(dev->ieee80211_ptr);
1039 rdev_set_qos_map(rdev, dev, NULL);
1040 wdev_unlock(dev->ieee80211_ptr);
1042 switch (otype) {
1043 case NL80211_IFTYPE_AP:
1044 cfg80211_stop_ap(rdev, dev, true);
1045 break;
1046 case NL80211_IFTYPE_ADHOC:
1047 cfg80211_leave_ibss(rdev, dev, false);
1048 break;
1049 case NL80211_IFTYPE_STATION:
1050 case NL80211_IFTYPE_P2P_CLIENT:
1051 wdev_lock(dev->ieee80211_ptr);
1052 cfg80211_disconnect(rdev, dev,
1053 WLAN_REASON_DEAUTH_LEAVING, true);
1054 wdev_unlock(dev->ieee80211_ptr);
1055 break;
1056 case NL80211_IFTYPE_MESH_POINT:
1057 /* mesh should be handled? */
1058 break;
1059 default:
1060 break;
1063 cfg80211_process_rdev_events(rdev);
1064 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1067 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1069 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1071 if (!err && params && params->use_4addr != -1)
1072 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1074 if (!err) {
1075 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1076 switch (ntype) {
1077 case NL80211_IFTYPE_STATION:
1078 if (dev->ieee80211_ptr->use_4addr)
1079 break;
1080 fallthrough;
1081 case NL80211_IFTYPE_OCB:
1082 case NL80211_IFTYPE_P2P_CLIENT:
1083 case NL80211_IFTYPE_ADHOC:
1084 dev->priv_flags |= IFF_DONT_BRIDGE;
1085 break;
1086 case NL80211_IFTYPE_P2P_GO:
1087 case NL80211_IFTYPE_AP:
1088 case NL80211_IFTYPE_AP_VLAN:
1089 case NL80211_IFTYPE_MESH_POINT:
1090 /* bridging OK */
1091 break;
1092 case NL80211_IFTYPE_MONITOR:
1093 /* monitor can't bridge anyway */
1094 break;
1095 case NL80211_IFTYPE_UNSPECIFIED:
1096 case NUM_NL80211_IFTYPES:
1097 /* not happening */
1098 break;
1099 case NL80211_IFTYPE_P2P_DEVICE:
1100 case NL80211_IFTYPE_WDS:
1101 case NL80211_IFTYPE_NAN:
1102 WARN_ON(1);
1103 break;
1107 if (!err && ntype != otype && netif_running(dev)) {
1108 cfg80211_update_iface_num(rdev, ntype, 1);
1109 cfg80211_update_iface_num(rdev, otype, -1);
1112 return err;
1115 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1117 int modulation, streams, bitrate;
1119 /* the formula below does only work for MCS values smaller than 32 */
1120 if (WARN_ON_ONCE(rate->mcs >= 32))
1121 return 0;
1123 modulation = rate->mcs & 7;
1124 streams = (rate->mcs >> 3) + 1;
1126 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1128 if (modulation < 4)
1129 bitrate *= (modulation + 1);
1130 else if (modulation == 4)
1131 bitrate *= (modulation + 2);
1132 else
1133 bitrate *= (modulation + 3);
1135 bitrate *= streams;
1137 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1138 bitrate = (bitrate / 9) * 10;
1140 /* do NOT round down here */
1141 return (bitrate + 50000) / 100000;
1144 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1146 static const u32 __mcs2bitrate[] = {
1147 /* control PHY */
1148 [0] = 275,
1149 /* SC PHY */
1150 [1] = 3850,
1151 [2] = 7700,
1152 [3] = 9625,
1153 [4] = 11550,
1154 [5] = 12512, /* 1251.25 mbps */
1155 [6] = 15400,
1156 [7] = 19250,
1157 [8] = 23100,
1158 [9] = 25025,
1159 [10] = 30800,
1160 [11] = 38500,
1161 [12] = 46200,
1162 /* OFDM PHY */
1163 [13] = 6930,
1164 [14] = 8662, /* 866.25 mbps */
1165 [15] = 13860,
1166 [16] = 17325,
1167 [17] = 20790,
1168 [18] = 27720,
1169 [19] = 34650,
1170 [20] = 41580,
1171 [21] = 45045,
1172 [22] = 51975,
1173 [23] = 62370,
1174 [24] = 67568, /* 6756.75 mbps */
1175 /* LP-SC PHY */
1176 [25] = 6260,
1177 [26] = 8340,
1178 [27] = 11120,
1179 [28] = 12510,
1180 [29] = 16680,
1181 [30] = 22240,
1182 [31] = 25030,
1185 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1186 return 0;
1188 return __mcs2bitrate[rate->mcs];
1191 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1193 static const u32 __mcs2bitrate[] = {
1194 /* control PHY */
1195 [0] = 275,
1196 /* SC PHY */
1197 [1] = 3850,
1198 [2] = 7700,
1199 [3] = 9625,
1200 [4] = 11550,
1201 [5] = 12512, /* 1251.25 mbps */
1202 [6] = 13475,
1203 [7] = 15400,
1204 [8] = 19250,
1205 [9] = 23100,
1206 [10] = 25025,
1207 [11] = 26950,
1208 [12] = 30800,
1209 [13] = 38500,
1210 [14] = 46200,
1211 [15] = 50050,
1212 [16] = 53900,
1213 [17] = 57750,
1214 [18] = 69300,
1215 [19] = 75075,
1216 [20] = 80850,
1219 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1220 return 0;
1222 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1225 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1227 static const u32 base[4][10] = {
1228 { 6500000,
1229 13000000,
1230 19500000,
1231 26000000,
1232 39000000,
1233 52000000,
1234 58500000,
1235 65000000,
1236 78000000,
1237 /* not in the spec, but some devices use this: */
1238 86500000,
1240 { 13500000,
1241 27000000,
1242 40500000,
1243 54000000,
1244 81000000,
1245 108000000,
1246 121500000,
1247 135000000,
1248 162000000,
1249 180000000,
1251 { 29300000,
1252 58500000,
1253 87800000,
1254 117000000,
1255 175500000,
1256 234000000,
1257 263300000,
1258 292500000,
1259 351000000,
1260 390000000,
1262 { 58500000,
1263 117000000,
1264 175500000,
1265 234000000,
1266 351000000,
1267 468000000,
1268 526500000,
1269 585000000,
1270 702000000,
1271 780000000,
1274 u32 bitrate;
1275 int idx;
1277 if (rate->mcs > 9)
1278 goto warn;
1280 switch (rate->bw) {
1281 case RATE_INFO_BW_160:
1282 idx = 3;
1283 break;
1284 case RATE_INFO_BW_80:
1285 idx = 2;
1286 break;
1287 case RATE_INFO_BW_40:
1288 idx = 1;
1289 break;
1290 case RATE_INFO_BW_5:
1291 case RATE_INFO_BW_10:
1292 default:
1293 goto warn;
1294 case RATE_INFO_BW_20:
1295 idx = 0;
1298 bitrate = base[idx][rate->mcs];
1299 bitrate *= rate->nss;
1301 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1302 bitrate = (bitrate / 9) * 10;
1304 /* do NOT round down here */
1305 return (bitrate + 50000) / 100000;
1306 warn:
1307 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1308 rate->bw, rate->mcs, rate->nss);
1309 return 0;
1312 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1314 #define SCALE 6144
1315 u32 mcs_divisors[14] = {
1316 102399, /* 16.666666... */
1317 51201, /* 8.333333... */
1318 34134, /* 5.555555... */
1319 25599, /* 4.166666... */
1320 17067, /* 2.777777... */
1321 12801, /* 2.083333... */
1322 11769, /* 1.851851... */
1323 10239, /* 1.666666... */
1324 8532, /* 1.388888... */
1325 7680, /* 1.250000... */
1326 6828, /* 1.111111... */
1327 6144, /* 1.000000... */
1328 5690, /* 0.926106... */
1329 5120, /* 0.833333... */
1331 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1332 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1333 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1334 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1335 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1336 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1337 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1338 u64 tmp;
1339 u32 result;
1341 if (WARN_ON_ONCE(rate->mcs > 13))
1342 return 0;
1344 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1345 return 0;
1346 if (WARN_ON_ONCE(rate->he_ru_alloc >
1347 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1348 return 0;
1349 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1350 return 0;
1352 if (rate->bw == RATE_INFO_BW_160)
1353 result = rates_160M[rate->he_gi];
1354 else if (rate->bw == RATE_INFO_BW_80 ||
1355 (rate->bw == RATE_INFO_BW_HE_RU &&
1356 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1357 result = rates_969[rate->he_gi];
1358 else if (rate->bw == RATE_INFO_BW_40 ||
1359 (rate->bw == RATE_INFO_BW_HE_RU &&
1360 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1361 result = rates_484[rate->he_gi];
1362 else if (rate->bw == RATE_INFO_BW_20 ||
1363 (rate->bw == RATE_INFO_BW_HE_RU &&
1364 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1365 result = rates_242[rate->he_gi];
1366 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1367 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1368 result = rates_106[rate->he_gi];
1369 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1370 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1371 result = rates_52[rate->he_gi];
1372 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1373 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1374 result = rates_26[rate->he_gi];
1375 else {
1376 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1377 rate->bw, rate->he_ru_alloc);
1378 return 0;
1381 /* now scale to the appropriate MCS */
1382 tmp = result;
1383 tmp *= SCALE;
1384 do_div(tmp, mcs_divisors[rate->mcs]);
1385 result = tmp;
1387 /* and take NSS, DCM into account */
1388 result = (result * rate->nss) / 8;
1389 if (rate->he_dcm)
1390 result /= 2;
1392 return result / 10000;
1395 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1397 if (rate->flags & RATE_INFO_FLAGS_MCS)
1398 return cfg80211_calculate_bitrate_ht(rate);
1399 if (rate->flags & RATE_INFO_FLAGS_DMG)
1400 return cfg80211_calculate_bitrate_dmg(rate);
1401 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1402 return cfg80211_calculate_bitrate_edmg(rate);
1403 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1404 return cfg80211_calculate_bitrate_vht(rate);
1405 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1406 return cfg80211_calculate_bitrate_he(rate);
1408 return rate->legacy;
1410 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1412 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1413 enum ieee80211_p2p_attr_id attr,
1414 u8 *buf, unsigned int bufsize)
1416 u8 *out = buf;
1417 u16 attr_remaining = 0;
1418 bool desired_attr = false;
1419 u16 desired_len = 0;
1421 while (len > 0) {
1422 unsigned int iedatalen;
1423 unsigned int copy;
1424 const u8 *iedata;
1426 if (len < 2)
1427 return -EILSEQ;
1428 iedatalen = ies[1];
1429 if (iedatalen + 2 > len)
1430 return -EILSEQ;
1432 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1433 goto cont;
1435 if (iedatalen < 4)
1436 goto cont;
1438 iedata = ies + 2;
1440 /* check WFA OUI, P2P subtype */
1441 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1442 iedata[2] != 0x9a || iedata[3] != 0x09)
1443 goto cont;
1445 iedatalen -= 4;
1446 iedata += 4;
1448 /* check attribute continuation into this IE */
1449 copy = min_t(unsigned int, attr_remaining, iedatalen);
1450 if (copy && desired_attr) {
1451 desired_len += copy;
1452 if (out) {
1453 memcpy(out, iedata, min(bufsize, copy));
1454 out += min(bufsize, copy);
1455 bufsize -= min(bufsize, copy);
1459 if (copy == attr_remaining)
1460 return desired_len;
1463 attr_remaining -= copy;
1464 if (attr_remaining)
1465 goto cont;
1467 iedatalen -= copy;
1468 iedata += copy;
1470 while (iedatalen > 0) {
1471 u16 attr_len;
1473 /* P2P attribute ID & size must fit */
1474 if (iedatalen < 3)
1475 return -EILSEQ;
1476 desired_attr = iedata[0] == attr;
1477 attr_len = get_unaligned_le16(iedata + 1);
1478 iedatalen -= 3;
1479 iedata += 3;
1481 copy = min_t(unsigned int, attr_len, iedatalen);
1483 if (desired_attr) {
1484 desired_len += copy;
1485 if (out) {
1486 memcpy(out, iedata, min(bufsize, copy));
1487 out += min(bufsize, copy);
1488 bufsize -= min(bufsize, copy);
1491 if (copy == attr_len)
1492 return desired_len;
1495 iedata += copy;
1496 iedatalen -= copy;
1497 attr_remaining = attr_len - copy;
1500 cont:
1501 len -= ies[1] + 2;
1502 ies += ies[1] + 2;
1505 if (attr_remaining && desired_attr)
1506 return -EILSEQ;
1508 return -ENOENT;
1510 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1512 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1514 int i;
1516 /* Make sure array values are legal */
1517 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1518 return false;
1520 i = 0;
1521 while (i < n_ids) {
1522 if (ids[i] == WLAN_EID_EXTENSION) {
1523 if (id_ext && (ids[i + 1] == id))
1524 return true;
1526 i += 2;
1527 continue;
1530 if (ids[i] == id && !id_ext)
1531 return true;
1533 i++;
1535 return false;
1538 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1540 /* we assume a validly formed IEs buffer */
1541 u8 len = ies[pos + 1];
1543 pos += 2 + len;
1545 /* the IE itself must have 255 bytes for fragments to follow */
1546 if (len < 255)
1547 return pos;
1549 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1550 len = ies[pos + 1];
1551 pos += 2 + len;
1554 return pos;
1557 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1558 const u8 *ids, int n_ids,
1559 const u8 *after_ric, int n_after_ric,
1560 size_t offset)
1562 size_t pos = offset;
1564 while (pos < ielen) {
1565 u8 ext = 0;
1567 if (ies[pos] == WLAN_EID_EXTENSION)
1568 ext = 2;
1569 if ((pos + ext) >= ielen)
1570 break;
1572 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1573 ies[pos] == WLAN_EID_EXTENSION))
1574 break;
1576 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1577 pos = skip_ie(ies, ielen, pos);
1579 while (pos < ielen) {
1580 if (ies[pos] == WLAN_EID_EXTENSION)
1581 ext = 2;
1582 else
1583 ext = 0;
1585 if ((pos + ext) >= ielen)
1586 break;
1588 if (!ieee80211_id_in_list(after_ric,
1589 n_after_ric,
1590 ies[pos + ext],
1591 ext == 2))
1592 pos = skip_ie(ies, ielen, pos);
1593 else
1594 break;
1596 } else {
1597 pos = skip_ie(ies, ielen, pos);
1601 return pos;
1603 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1605 bool ieee80211_operating_class_to_band(u8 operating_class,
1606 enum nl80211_band *band)
1608 switch (operating_class) {
1609 case 112:
1610 case 115 ... 127:
1611 case 128 ... 130:
1612 *band = NL80211_BAND_5GHZ;
1613 return true;
1614 case 131 ... 135:
1615 *band = NL80211_BAND_6GHZ;
1616 return true;
1617 case 81:
1618 case 82:
1619 case 83:
1620 case 84:
1621 *band = NL80211_BAND_2GHZ;
1622 return true;
1623 case 180:
1624 *band = NL80211_BAND_60GHZ;
1625 return true;
1628 return false;
1630 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1632 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1633 u8 *op_class)
1635 u8 vht_opclass;
1636 u32 freq = chandef->center_freq1;
1638 if (freq >= 2412 && freq <= 2472) {
1639 if (chandef->width > NL80211_CHAN_WIDTH_40)
1640 return false;
1642 /* 2.407 GHz, channels 1..13 */
1643 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1644 if (freq > chandef->chan->center_freq)
1645 *op_class = 83; /* HT40+ */
1646 else
1647 *op_class = 84; /* HT40- */
1648 } else {
1649 *op_class = 81;
1652 return true;
1655 if (freq == 2484) {
1656 /* channel 14 is only for IEEE 802.11b */
1657 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1658 return false;
1660 *op_class = 82; /* channel 14 */
1661 return true;
1664 switch (chandef->width) {
1665 case NL80211_CHAN_WIDTH_80:
1666 vht_opclass = 128;
1667 break;
1668 case NL80211_CHAN_WIDTH_160:
1669 vht_opclass = 129;
1670 break;
1671 case NL80211_CHAN_WIDTH_80P80:
1672 vht_opclass = 130;
1673 break;
1674 case NL80211_CHAN_WIDTH_10:
1675 case NL80211_CHAN_WIDTH_5:
1676 return false; /* unsupported for now */
1677 default:
1678 vht_opclass = 0;
1679 break;
1682 /* 5 GHz, channels 36..48 */
1683 if (freq >= 5180 && freq <= 5240) {
1684 if (vht_opclass) {
1685 *op_class = vht_opclass;
1686 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1687 if (freq > chandef->chan->center_freq)
1688 *op_class = 116;
1689 else
1690 *op_class = 117;
1691 } else {
1692 *op_class = 115;
1695 return true;
1698 /* 5 GHz, channels 52..64 */
1699 if (freq >= 5260 && freq <= 5320) {
1700 if (vht_opclass) {
1701 *op_class = vht_opclass;
1702 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1703 if (freq > chandef->chan->center_freq)
1704 *op_class = 119;
1705 else
1706 *op_class = 120;
1707 } else {
1708 *op_class = 118;
1711 return true;
1714 /* 5 GHz, channels 100..144 */
1715 if (freq >= 5500 && freq <= 5720) {
1716 if (vht_opclass) {
1717 *op_class = vht_opclass;
1718 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1719 if (freq > chandef->chan->center_freq)
1720 *op_class = 122;
1721 else
1722 *op_class = 123;
1723 } else {
1724 *op_class = 121;
1727 return true;
1730 /* 5 GHz, channels 149..169 */
1731 if (freq >= 5745 && freq <= 5845) {
1732 if (vht_opclass) {
1733 *op_class = vht_opclass;
1734 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1735 if (freq > chandef->chan->center_freq)
1736 *op_class = 126;
1737 else
1738 *op_class = 127;
1739 } else if (freq <= 5805) {
1740 *op_class = 124;
1741 } else {
1742 *op_class = 125;
1745 return true;
1748 /* 56.16 GHz, channel 1..4 */
1749 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1750 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1751 return false;
1753 *op_class = 180;
1754 return true;
1757 /* not supported yet */
1758 return false;
1760 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1762 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1763 u32 *beacon_int_gcd,
1764 bool *beacon_int_different)
1766 struct wireless_dev *wdev;
1768 *beacon_int_gcd = 0;
1769 *beacon_int_different = false;
1771 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1772 if (!wdev->beacon_interval)
1773 continue;
1775 if (!*beacon_int_gcd) {
1776 *beacon_int_gcd = wdev->beacon_interval;
1777 continue;
1780 if (wdev->beacon_interval == *beacon_int_gcd)
1781 continue;
1783 *beacon_int_different = true;
1784 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1787 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1788 if (*beacon_int_gcd)
1789 *beacon_int_different = true;
1790 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1794 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1795 enum nl80211_iftype iftype, u32 beacon_int)
1798 * This is just a basic pre-condition check; if interface combinations
1799 * are possible the driver must already be checking those with a call
1800 * to cfg80211_check_combinations(), in which case we'll validate more
1801 * through the cfg80211_calculate_bi_data() call and code in
1802 * cfg80211_iter_combinations().
1805 if (beacon_int < 10 || beacon_int > 10000)
1806 return -EINVAL;
1808 return 0;
1811 int cfg80211_iter_combinations(struct wiphy *wiphy,
1812 struct iface_combination_params *params,
1813 void (*iter)(const struct ieee80211_iface_combination *c,
1814 void *data),
1815 void *data)
1817 const struct ieee80211_regdomain *regdom;
1818 enum nl80211_dfs_regions region = 0;
1819 int i, j, iftype;
1820 int num_interfaces = 0;
1821 u32 used_iftypes = 0;
1822 u32 beacon_int_gcd;
1823 bool beacon_int_different;
1826 * This is a bit strange, since the iteration used to rely only on
1827 * the data given by the driver, but here it now relies on context,
1828 * in form of the currently operating interfaces.
1829 * This is OK for all current users, and saves us from having to
1830 * push the GCD calculations into all the drivers.
1831 * In the future, this should probably rely more on data that's in
1832 * cfg80211 already - the only thing not would appear to be any new
1833 * interfaces (while being brought up) and channel/radar data.
1835 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1836 &beacon_int_gcd, &beacon_int_different);
1838 if (params->radar_detect) {
1839 rcu_read_lock();
1840 regdom = rcu_dereference(cfg80211_regdomain);
1841 if (regdom)
1842 region = regdom->dfs_region;
1843 rcu_read_unlock();
1846 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1847 num_interfaces += params->iftype_num[iftype];
1848 if (params->iftype_num[iftype] > 0 &&
1849 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1850 used_iftypes |= BIT(iftype);
1853 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1854 const struct ieee80211_iface_combination *c;
1855 struct ieee80211_iface_limit *limits;
1856 u32 all_iftypes = 0;
1858 c = &wiphy->iface_combinations[i];
1860 if (num_interfaces > c->max_interfaces)
1861 continue;
1862 if (params->num_different_channels > c->num_different_channels)
1863 continue;
1865 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1866 GFP_KERNEL);
1867 if (!limits)
1868 return -ENOMEM;
1870 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1871 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1872 continue;
1873 for (j = 0; j < c->n_limits; j++) {
1874 all_iftypes |= limits[j].types;
1875 if (!(limits[j].types & BIT(iftype)))
1876 continue;
1877 if (limits[j].max < params->iftype_num[iftype])
1878 goto cont;
1879 limits[j].max -= params->iftype_num[iftype];
1883 if (params->radar_detect !=
1884 (c->radar_detect_widths & params->radar_detect))
1885 goto cont;
1887 if (params->radar_detect && c->radar_detect_regions &&
1888 !(c->radar_detect_regions & BIT(region)))
1889 goto cont;
1891 /* Finally check that all iftypes that we're currently
1892 * using are actually part of this combination. If they
1893 * aren't then we can't use this combination and have
1894 * to continue to the next.
1896 if ((all_iftypes & used_iftypes) != used_iftypes)
1897 goto cont;
1899 if (beacon_int_gcd) {
1900 if (c->beacon_int_min_gcd &&
1901 beacon_int_gcd < c->beacon_int_min_gcd)
1902 goto cont;
1903 if (!c->beacon_int_min_gcd && beacon_int_different)
1904 goto cont;
1907 /* This combination covered all interface types and
1908 * supported the requested numbers, so we're good.
1911 (*iter)(c, data);
1912 cont:
1913 kfree(limits);
1916 return 0;
1918 EXPORT_SYMBOL(cfg80211_iter_combinations);
1920 static void
1921 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1922 void *data)
1924 int *num = data;
1925 (*num)++;
1928 int cfg80211_check_combinations(struct wiphy *wiphy,
1929 struct iface_combination_params *params)
1931 int err, num = 0;
1933 err = cfg80211_iter_combinations(wiphy, params,
1934 cfg80211_iter_sum_ifcombs, &num);
1935 if (err)
1936 return err;
1937 if (num == 0)
1938 return -EBUSY;
1940 return 0;
1942 EXPORT_SYMBOL(cfg80211_check_combinations);
1944 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1945 const u8 *rates, unsigned int n_rates,
1946 u32 *mask)
1948 int i, j;
1950 if (!sband)
1951 return -EINVAL;
1953 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1954 return -EINVAL;
1956 *mask = 0;
1958 for (i = 0; i < n_rates; i++) {
1959 int rate = (rates[i] & 0x7f) * 5;
1960 bool found = false;
1962 for (j = 0; j < sband->n_bitrates; j++) {
1963 if (sband->bitrates[j].bitrate == rate) {
1964 found = true;
1965 *mask |= BIT(j);
1966 break;
1969 if (!found)
1970 return -EINVAL;
1974 * mask must have at least one bit set here since we
1975 * didn't accept a 0-length rates array nor allowed
1976 * entries in the array that didn't exist
1979 return 0;
1982 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1984 enum nl80211_band band;
1985 unsigned int n_channels = 0;
1987 for (band = 0; band < NUM_NL80211_BANDS; band++)
1988 if (wiphy->bands[band])
1989 n_channels += wiphy->bands[band]->n_channels;
1991 return n_channels;
1993 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1995 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1996 struct station_info *sinfo)
1998 struct cfg80211_registered_device *rdev;
1999 struct wireless_dev *wdev;
2001 wdev = dev->ieee80211_ptr;
2002 if (!wdev)
2003 return -EOPNOTSUPP;
2005 rdev = wiphy_to_rdev(wdev->wiphy);
2006 if (!rdev->ops->get_station)
2007 return -EOPNOTSUPP;
2009 memset(sinfo, 0, sizeof(*sinfo));
2011 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2013 EXPORT_SYMBOL(cfg80211_get_station);
2015 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2017 int i;
2019 if (!f)
2020 return;
2022 kfree(f->serv_spec_info);
2023 kfree(f->srf_bf);
2024 kfree(f->srf_macs);
2025 for (i = 0; i < f->num_rx_filters; i++)
2026 kfree(f->rx_filters[i].filter);
2028 for (i = 0; i < f->num_tx_filters; i++)
2029 kfree(f->tx_filters[i].filter);
2031 kfree(f->rx_filters);
2032 kfree(f->tx_filters);
2033 kfree(f);
2035 EXPORT_SYMBOL(cfg80211_free_nan_func);
2037 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2038 u32 center_freq_khz, u32 bw_khz)
2040 u32 start_freq_khz, end_freq_khz;
2042 start_freq_khz = center_freq_khz - (bw_khz / 2);
2043 end_freq_khz = center_freq_khz + (bw_khz / 2);
2045 if (start_freq_khz >= freq_range->start_freq_khz &&
2046 end_freq_khz <= freq_range->end_freq_khz)
2047 return true;
2049 return false;
2052 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2054 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2055 sizeof(*(sinfo->pertid)),
2056 gfp);
2057 if (!sinfo->pertid)
2058 return -ENOMEM;
2060 return 0;
2062 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2064 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2065 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2066 const unsigned char rfc1042_header[] __aligned(2) =
2067 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2068 EXPORT_SYMBOL(rfc1042_header);
2070 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2071 const unsigned char bridge_tunnel_header[] __aligned(2) =
2072 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2073 EXPORT_SYMBOL(bridge_tunnel_header);
2075 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2076 struct iapp_layer2_update {
2077 u8 da[ETH_ALEN]; /* broadcast */
2078 u8 sa[ETH_ALEN]; /* STA addr */
2079 __be16 len; /* 6 */
2080 u8 dsap; /* 0 */
2081 u8 ssap; /* 0 */
2082 u8 control;
2083 u8 xid_info[3];
2084 } __packed;
2086 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2088 struct iapp_layer2_update *msg;
2089 struct sk_buff *skb;
2091 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2092 * bridge devices */
2094 skb = dev_alloc_skb(sizeof(*msg));
2095 if (!skb)
2096 return;
2097 msg = skb_put(skb, sizeof(*msg));
2099 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2100 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2102 eth_broadcast_addr(msg->da);
2103 ether_addr_copy(msg->sa, addr);
2104 msg->len = htons(6);
2105 msg->dsap = 0;
2106 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2107 msg->control = 0xaf; /* XID response lsb.1111F101.
2108 * F=0 (no poll command; unsolicited frame) */
2109 msg->xid_info[0] = 0x81; /* XID format identifier */
2110 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2111 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2113 skb->dev = dev;
2114 skb->protocol = eth_type_trans(skb, dev);
2115 memset(skb->cb, 0, sizeof(skb->cb));
2116 netif_rx_ni(skb);
2118 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2120 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2121 enum ieee80211_vht_chanwidth bw,
2122 int mcs, bool ext_nss_bw_capable,
2123 unsigned int max_vht_nss)
2125 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2126 int ext_nss_bw;
2127 int supp_width;
2128 int i, mcs_encoding;
2130 if (map == 0xffff)
2131 return 0;
2133 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2134 return 0;
2135 if (mcs <= 7)
2136 mcs_encoding = 0;
2137 else if (mcs == 8)
2138 mcs_encoding = 1;
2139 else
2140 mcs_encoding = 2;
2142 if (!max_vht_nss) {
2143 /* find max_vht_nss for the given MCS */
2144 for (i = 7; i >= 0; i--) {
2145 int supp = (map >> (2 * i)) & 3;
2147 if (supp == 3)
2148 continue;
2150 if (supp >= mcs_encoding) {
2151 max_vht_nss = i + 1;
2152 break;
2157 if (!(cap->supp_mcs.tx_mcs_map &
2158 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2159 return max_vht_nss;
2161 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2162 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2163 supp_width = le32_get_bits(cap->vht_cap_info,
2164 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2166 /* if not capable, treat ext_nss_bw as 0 */
2167 if (!ext_nss_bw_capable)
2168 ext_nss_bw = 0;
2170 /* This is invalid */
2171 if (supp_width == 3)
2172 return 0;
2174 /* This is an invalid combination so pretend nothing is supported */
2175 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2176 return 0;
2179 * Cover all the special cases according to IEEE 802.11-2016
2180 * Table 9-250. All other cases are either factor of 1 or not
2181 * valid/supported.
2183 switch (bw) {
2184 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2185 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2186 if ((supp_width == 1 || supp_width == 2) &&
2187 ext_nss_bw == 3)
2188 return 2 * max_vht_nss;
2189 break;
2190 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2191 if (supp_width == 0 &&
2192 (ext_nss_bw == 1 || ext_nss_bw == 2))
2193 return max_vht_nss / 2;
2194 if (supp_width == 0 &&
2195 ext_nss_bw == 3)
2196 return (3 * max_vht_nss) / 4;
2197 if (supp_width == 1 &&
2198 ext_nss_bw == 3)
2199 return 2 * max_vht_nss;
2200 break;
2201 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2202 if (supp_width == 0 && ext_nss_bw == 1)
2203 return 0; /* not possible */
2204 if (supp_width == 0 &&
2205 ext_nss_bw == 2)
2206 return max_vht_nss / 2;
2207 if (supp_width == 0 &&
2208 ext_nss_bw == 3)
2209 return (3 * max_vht_nss) / 4;
2210 if (supp_width == 1 &&
2211 ext_nss_bw == 0)
2212 return 0; /* not possible */
2213 if (supp_width == 1 &&
2214 ext_nss_bw == 1)
2215 return max_vht_nss / 2;
2216 if (supp_width == 1 &&
2217 ext_nss_bw == 2)
2218 return (3 * max_vht_nss) / 4;
2219 break;
2222 /* not covered or invalid combination received */
2223 return max_vht_nss;
2225 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2227 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2228 bool is_4addr, u8 check_swif)
2231 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2233 switch (check_swif) {
2234 case 0:
2235 if (is_vlan && is_4addr)
2236 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2237 return wiphy->interface_modes & BIT(iftype);
2238 case 1:
2239 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2240 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2241 return wiphy->software_iftypes & BIT(iftype);
2242 default:
2243 break;
2246 return false;
2248 EXPORT_SYMBOL(cfg80211_iftype_allowed);