1 // SPDX-License-Identifier: GPL-2.0
3 * Wireless utility functions
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
27 struct ieee80211_rate
*
28 ieee80211_get_response_rate(struct ieee80211_supported_band
*sband
,
29 u32 basic_rates
, int bitrate
)
31 struct ieee80211_rate
*result
= &sband
->bitrates
[0];
34 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
35 if (!(basic_rates
& BIT(i
)))
37 if (sband
->bitrates
[i
].bitrate
> bitrate
)
39 result
= &sband
->bitrates
[i
];
44 EXPORT_SYMBOL(ieee80211_get_response_rate
);
46 u32
ieee80211_mandatory_rates(struct ieee80211_supported_band
*sband
,
47 enum nl80211_bss_scan_width scan_width
)
49 struct ieee80211_rate
*bitrates
;
50 u32 mandatory_rates
= 0;
51 enum ieee80211_rate_flags mandatory_flag
;
57 if (sband
->band
== NL80211_BAND_2GHZ
) {
58 if (scan_width
== NL80211_BSS_CHAN_WIDTH_5
||
59 scan_width
== NL80211_BSS_CHAN_WIDTH_10
)
60 mandatory_flag
= IEEE80211_RATE_MANDATORY_G
;
62 mandatory_flag
= IEEE80211_RATE_MANDATORY_B
;
64 mandatory_flag
= IEEE80211_RATE_MANDATORY_A
;
67 bitrates
= sband
->bitrates
;
68 for (i
= 0; i
< sband
->n_bitrates
; i
++)
69 if (bitrates
[i
].flags
& mandatory_flag
)
70 mandatory_rates
|= BIT(i
);
71 return mandatory_rates
;
73 EXPORT_SYMBOL(ieee80211_mandatory_rates
);
75 u32
ieee80211_channel_to_freq_khz(int chan
, enum nl80211_band band
)
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
80 return 0; /* not supported */
82 case NL80211_BAND_2GHZ
:
84 return MHZ_TO_KHZ(2484);
86 return MHZ_TO_KHZ(2407 + chan
* 5);
88 case NL80211_BAND_5GHZ
:
89 if (chan
>= 182 && chan
<= 196)
90 return MHZ_TO_KHZ(4000 + chan
* 5);
92 return MHZ_TO_KHZ(5000 + chan
* 5);
94 case NL80211_BAND_6GHZ
:
95 /* see 802.11ax D6.1 27.3.23.2 */
97 return MHZ_TO_KHZ(5935);
99 return MHZ_TO_KHZ(5950 + chan
* 5);
101 case NL80211_BAND_60GHZ
:
103 return MHZ_TO_KHZ(56160 + chan
* 2160);
105 case NL80211_BAND_S1GHZ
:
106 return 902000 + chan
* 500;
110 return 0; /* not supported */
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz
);
114 enum nl80211_chan_width
115 ieee80211_s1g_channel_width(const struct ieee80211_channel
*chan
)
117 if (WARN_ON(!chan
|| chan
->band
!= NL80211_BAND_S1GHZ
))
118 return NL80211_CHAN_WIDTH_20_NOHT
;
120 /*S1G defines a single allowed channel width per channel.
121 * Extract that width here.
123 if (chan
->flags
& IEEE80211_CHAN_1MHZ
)
124 return NL80211_CHAN_WIDTH_1
;
125 else if (chan
->flags
& IEEE80211_CHAN_2MHZ
)
126 return NL80211_CHAN_WIDTH_2
;
127 else if (chan
->flags
& IEEE80211_CHAN_4MHZ
)
128 return NL80211_CHAN_WIDTH_4
;
129 else if (chan
->flags
& IEEE80211_CHAN_8MHZ
)
130 return NL80211_CHAN_WIDTH_8
;
131 else if (chan
->flags
& IEEE80211_CHAN_16MHZ
)
132 return NL80211_CHAN_WIDTH_16
;
134 pr_err("unknown channel width for channel at %dKHz?\n",
135 ieee80211_channel_to_khz(chan
));
137 return NL80211_CHAN_WIDTH_1
;
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width
);
141 int ieee80211_freq_khz_to_channel(u32 freq
)
143 /* TODO: just handle MHz for now */
144 freq
= KHZ_TO_MHZ(freq
);
146 /* see 802.11 17.3.8.3.2 and Annex J */
149 else if (freq
< 2484)
150 return (freq
- 2407) / 5;
151 else if (freq
>= 4910 && freq
<= 4980)
152 return (freq
- 4000) / 5;
153 else if (freq
< 5925)
154 return (freq
- 5000) / 5;
155 else if (freq
== 5935)
157 else if (freq
<= 45000) /* DMG band lower limit */
158 /* see 802.11ax D6.1 27.3.22.2 */
159 return (freq
- 5950) / 5;
160 else if (freq
>= 58320 && freq
<= 70200)
161 return (freq
- 56160) / 2160;
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel
);
167 struct ieee80211_channel
*ieee80211_get_channel_khz(struct wiphy
*wiphy
,
170 enum nl80211_band band
;
171 struct ieee80211_supported_band
*sband
;
174 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
175 sband
= wiphy
->bands
[band
];
180 for (i
= 0; i
< sband
->n_channels
; i
++) {
181 struct ieee80211_channel
*chan
= &sband
->channels
[i
];
183 if (ieee80211_channel_to_khz(chan
) == freq
)
190 EXPORT_SYMBOL(ieee80211_get_channel_khz
);
192 static void set_mandatory_flags_band(struct ieee80211_supported_band
*sband
)
196 switch (sband
->band
) {
197 case NL80211_BAND_5GHZ
:
198 case NL80211_BAND_6GHZ
:
200 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
201 if (sband
->bitrates
[i
].bitrate
== 60 ||
202 sband
->bitrates
[i
].bitrate
== 120 ||
203 sband
->bitrates
[i
].bitrate
== 240) {
204 sband
->bitrates
[i
].flags
|=
205 IEEE80211_RATE_MANDATORY_A
;
211 case NL80211_BAND_2GHZ
:
213 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
214 switch (sband
->bitrates
[i
].bitrate
) {
219 sband
->bitrates
[i
].flags
|=
220 IEEE80211_RATE_MANDATORY_B
|
221 IEEE80211_RATE_MANDATORY_G
;
227 sband
->bitrates
[i
].flags
|=
228 IEEE80211_RATE_MANDATORY_G
;
232 sband
->bitrates
[i
].flags
|=
233 IEEE80211_RATE_ERP_G
;
237 WARN_ON(want
!= 0 && want
!= 3);
239 case NL80211_BAND_60GHZ
:
240 /* check for mandatory HT MCS 1..4 */
241 WARN_ON(!sband
->ht_cap
.ht_supported
);
242 WARN_ON((sband
->ht_cap
.mcs
.rx_mask
[0] & 0x1e) != 0x1e);
244 case NL80211_BAND_S1GHZ
:
245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 WARN_ON((sband
->s1g_cap
.nss_mcs
[0] & 0x3) == 0x3);
250 case NUM_NL80211_BANDS
:
257 void ieee80211_set_bitrate_flags(struct wiphy
*wiphy
)
259 enum nl80211_band band
;
261 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
262 if (wiphy
->bands
[band
])
263 set_mandatory_flags_band(wiphy
->bands
[band
]);
266 bool cfg80211_supported_cipher_suite(struct wiphy
*wiphy
, u32 cipher
)
269 for (i
= 0; i
< wiphy
->n_cipher_suites
; i
++)
270 if (cipher
== wiphy
->cipher_suites
[i
])
276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device
*rdev
)
278 struct wiphy
*wiphy
= &rdev
->wiphy
;
281 for (i
= 0; i
< wiphy
->n_cipher_suites
; i
++) {
282 switch (wiphy
->cipher_suites
[i
]) {
283 case WLAN_CIPHER_SUITE_AES_CMAC
:
284 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
285 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
286 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device
*rdev
,
295 int key_idx
, bool pairwise
)
301 else if (wiphy_ext_feature_isset(&rdev
->wiphy
,
302 NL80211_EXT_FEATURE_BEACON_PROTECTION
) ||
303 wiphy_ext_feature_isset(&rdev
->wiphy
,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT
))
306 else if (cfg80211_igtk_cipher_supported(rdev
))
311 if (key_idx
< 0 || key_idx
> max_key_idx
)
317 int cfg80211_validate_key_settings(struct cfg80211_registered_device
*rdev
,
318 struct key_params
*params
, int key_idx
,
319 bool pairwise
, const u8
*mac_addr
)
321 if (!cfg80211_valid_key_idx(rdev
, key_idx
, pairwise
))
324 if (!pairwise
&& mac_addr
&& !(rdev
->wiphy
.flags
& WIPHY_FLAG_IBSS_RSN
))
327 if (pairwise
&& !mac_addr
)
330 switch (params
->cipher
) {
331 case WLAN_CIPHER_SUITE_TKIP
:
332 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
333 if ((pairwise
&& key_idx
) ||
334 params
->mode
!= NL80211_KEY_RX_TX
)
337 case WLAN_CIPHER_SUITE_CCMP
:
338 case WLAN_CIPHER_SUITE_CCMP_256
:
339 case WLAN_CIPHER_SUITE_GCMP
:
340 case WLAN_CIPHER_SUITE_GCMP_256
:
341 /* IEEE802.11-2016 allows only 0 and - when supporting
342 * Extended Key ID - 1 as index for pairwise keys.
343 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344 * the driver supports Extended Key ID.
345 * @NL80211_KEY_SET_TX can't be set when installing and
348 if ((params
->mode
== NL80211_KEY_NO_TX
&& !pairwise
) ||
349 params
->mode
== NL80211_KEY_SET_TX
)
351 if (wiphy_ext_feature_isset(&rdev
->wiphy
,
352 NL80211_EXT_FEATURE_EXT_KEY_ID
)) {
353 if (pairwise
&& (key_idx
< 0 || key_idx
> 1))
355 } else if (pairwise
&& key_idx
) {
359 case WLAN_CIPHER_SUITE_AES_CMAC
:
360 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
361 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
362 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
363 /* Disallow BIP (group-only) cipher as pairwise cipher */
369 case WLAN_CIPHER_SUITE_WEP40
:
370 case WLAN_CIPHER_SUITE_WEP104
:
378 switch (params
->cipher
) {
379 case WLAN_CIPHER_SUITE_WEP40
:
380 if (params
->key_len
!= WLAN_KEY_LEN_WEP40
)
383 case WLAN_CIPHER_SUITE_TKIP
:
384 if (params
->key_len
!= WLAN_KEY_LEN_TKIP
)
387 case WLAN_CIPHER_SUITE_CCMP
:
388 if (params
->key_len
!= WLAN_KEY_LEN_CCMP
)
391 case WLAN_CIPHER_SUITE_CCMP_256
:
392 if (params
->key_len
!= WLAN_KEY_LEN_CCMP_256
)
395 case WLAN_CIPHER_SUITE_GCMP
:
396 if (params
->key_len
!= WLAN_KEY_LEN_GCMP
)
399 case WLAN_CIPHER_SUITE_GCMP_256
:
400 if (params
->key_len
!= WLAN_KEY_LEN_GCMP_256
)
403 case WLAN_CIPHER_SUITE_WEP104
:
404 if (params
->key_len
!= WLAN_KEY_LEN_WEP104
)
407 case WLAN_CIPHER_SUITE_AES_CMAC
:
408 if (params
->key_len
!= WLAN_KEY_LEN_AES_CMAC
)
411 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
412 if (params
->key_len
!= WLAN_KEY_LEN_BIP_CMAC_256
)
415 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
416 if (params
->key_len
!= WLAN_KEY_LEN_BIP_GMAC_128
)
419 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
420 if (params
->key_len
!= WLAN_KEY_LEN_BIP_GMAC_256
)
425 * We don't know anything about this algorithm,
426 * allow using it -- but the driver must check
427 * all parameters! We still check below whether
428 * or not the driver supports this algorithm,
435 switch (params
->cipher
) {
436 case WLAN_CIPHER_SUITE_WEP40
:
437 case WLAN_CIPHER_SUITE_WEP104
:
438 /* These ciphers do not use key sequence */
440 case WLAN_CIPHER_SUITE_TKIP
:
441 case WLAN_CIPHER_SUITE_CCMP
:
442 case WLAN_CIPHER_SUITE_CCMP_256
:
443 case WLAN_CIPHER_SUITE_GCMP
:
444 case WLAN_CIPHER_SUITE_GCMP_256
:
445 case WLAN_CIPHER_SUITE_AES_CMAC
:
446 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
447 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
448 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
449 if (params
->seq_len
!= 6)
455 if (!cfg80211_supported_cipher_suite(&rdev
->wiphy
, params
->cipher
))
461 unsigned int __attribute_const__
ieee80211_hdrlen(__le16 fc
)
463 unsigned int hdrlen
= 24;
465 if (ieee80211_is_ext(fc
)) {
470 if (ieee80211_is_data(fc
)) {
471 if (ieee80211_has_a4(fc
))
473 if (ieee80211_is_data_qos(fc
)) {
474 hdrlen
+= IEEE80211_QOS_CTL_LEN
;
475 if (ieee80211_has_order(fc
))
476 hdrlen
+= IEEE80211_HT_CTL_LEN
;
481 if (ieee80211_is_mgmt(fc
)) {
482 if (ieee80211_has_order(fc
))
483 hdrlen
+= IEEE80211_HT_CTL_LEN
;
487 if (ieee80211_is_ctl(fc
)) {
489 * ACK and CTS are 10 bytes, all others 16. To see how
490 * to get this condition consider
491 * subtype mask: 0b0000000011110000 (0x00F0)
492 * ACK subtype: 0b0000000011010000 (0x00D0)
493 * CTS subtype: 0b0000000011000000 (0x00C0)
494 * bits that matter: ^^^ (0x00E0)
495 * value of those: 0b0000000011000000 (0x00C0)
497 if ((fc
& cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
505 EXPORT_SYMBOL(ieee80211_hdrlen
);
507 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff
*skb
)
509 const struct ieee80211_hdr
*hdr
=
510 (const struct ieee80211_hdr
*)skb
->data
;
513 if (unlikely(skb
->len
< 10))
515 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
516 if (unlikely(hdrlen
> skb
->len
))
520 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb
);
522 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags
)
524 int ae
= flags
& MESH_FLAGS_AE
;
525 /* 802.11-2012, 8.2.4.7.3 */
530 case MESH_FLAGS_AE_A4
:
532 case MESH_FLAGS_AE_A5_A6
:
537 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr
*meshhdr
)
539 return __ieee80211_get_mesh_hdrlen(meshhdr
->flags
);
541 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen
);
543 int ieee80211_data_to_8023_exthdr(struct sk_buff
*skb
, struct ethhdr
*ehdr
,
544 const u8
*addr
, enum nl80211_iftype iftype
,
547 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
549 u8 hdr
[ETH_ALEN
] __aligned(2);
556 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
559 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
) + data_offset
;
560 if (skb
->len
< hdrlen
+ 8)
563 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
565 * IEEE 802.11 address fields:
566 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
567 * 0 0 DA SA BSSID n/a
568 * 0 1 DA BSSID SA n/a
569 * 1 0 BSSID SA DA n/a
572 memcpy(tmp
.h_dest
, ieee80211_get_DA(hdr
), ETH_ALEN
);
573 memcpy(tmp
.h_source
, ieee80211_get_SA(hdr
), ETH_ALEN
);
575 if (iftype
== NL80211_IFTYPE_MESH_POINT
)
576 skb_copy_bits(skb
, hdrlen
, &mesh_flags
, 1);
578 mesh_flags
&= MESH_FLAGS_AE
;
580 switch (hdr
->frame_control
&
581 cpu_to_le16(IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
)) {
582 case cpu_to_le16(IEEE80211_FCTL_TODS
):
583 if (unlikely(iftype
!= NL80211_IFTYPE_AP
&&
584 iftype
!= NL80211_IFTYPE_AP_VLAN
&&
585 iftype
!= NL80211_IFTYPE_P2P_GO
))
588 case cpu_to_le16(IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
):
589 if (unlikely(iftype
!= NL80211_IFTYPE_MESH_POINT
&&
590 iftype
!= NL80211_IFTYPE_AP_VLAN
&&
591 iftype
!= NL80211_IFTYPE_STATION
))
593 if (iftype
== NL80211_IFTYPE_MESH_POINT
) {
594 if (mesh_flags
== MESH_FLAGS_AE_A4
)
596 if (mesh_flags
== MESH_FLAGS_AE_A5_A6
) {
597 skb_copy_bits(skb
, hdrlen
+
598 offsetof(struct ieee80211s_hdr
, eaddr1
),
599 tmp
.h_dest
, 2 * ETH_ALEN
);
601 hdrlen
+= __ieee80211_get_mesh_hdrlen(mesh_flags
);
604 case cpu_to_le16(IEEE80211_FCTL_FROMDS
):
605 if ((iftype
!= NL80211_IFTYPE_STATION
&&
606 iftype
!= NL80211_IFTYPE_P2P_CLIENT
&&
607 iftype
!= NL80211_IFTYPE_MESH_POINT
) ||
608 (is_multicast_ether_addr(tmp
.h_dest
) &&
609 ether_addr_equal(tmp
.h_source
, addr
)))
611 if (iftype
== NL80211_IFTYPE_MESH_POINT
) {
612 if (mesh_flags
== MESH_FLAGS_AE_A5_A6
)
614 if (mesh_flags
== MESH_FLAGS_AE_A4
)
615 skb_copy_bits(skb
, hdrlen
+
616 offsetof(struct ieee80211s_hdr
, eaddr1
),
617 tmp
.h_source
, ETH_ALEN
);
618 hdrlen
+= __ieee80211_get_mesh_hdrlen(mesh_flags
);
622 if (iftype
!= NL80211_IFTYPE_ADHOC
&&
623 iftype
!= NL80211_IFTYPE_STATION
&&
624 iftype
!= NL80211_IFTYPE_OCB
)
629 skb_copy_bits(skb
, hdrlen
, &payload
, sizeof(payload
));
630 tmp
.h_proto
= payload
.proto
;
632 if (likely((ether_addr_equal(payload
.hdr
, rfc1042_header
) &&
633 tmp
.h_proto
!= htons(ETH_P_AARP
) &&
634 tmp
.h_proto
!= htons(ETH_P_IPX
)) ||
635 ether_addr_equal(payload
.hdr
, bridge_tunnel_header
)))
636 /* remove RFC1042 or Bridge-Tunnel encapsulation and
637 * replace EtherType */
638 hdrlen
+= ETH_ALEN
+ 2;
640 tmp
.h_proto
= htons(skb
->len
- hdrlen
);
642 pskb_pull(skb
, hdrlen
);
645 ehdr
= skb_push(skb
, sizeof(struct ethhdr
));
646 memcpy(ehdr
, &tmp
, sizeof(tmp
));
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr
);
653 __frame_add_frag(struct sk_buff
*skb
, struct page
*page
,
654 void *ptr
, int len
, int size
)
656 struct skb_shared_info
*sh
= skb_shinfo(skb
);
660 page_offset
= ptr
- page_address(page
);
661 skb_add_rx_frag(skb
, sh
->nr_frags
, page
, page_offset
, len
, size
);
665 __ieee80211_amsdu_copy_frag(struct sk_buff
*skb
, struct sk_buff
*frame
,
668 struct skb_shared_info
*sh
= skb_shinfo(skb
);
669 const skb_frag_t
*frag
= &sh
->frags
[0];
670 struct page
*frag_page
;
672 int frag_len
, frag_size
;
673 int head_size
= skb
->len
- skb
->data_len
;
676 frag_page
= virt_to_head_page(skb
->head
);
677 frag_ptr
= skb
->data
;
678 frag_size
= head_size
;
680 while (offset
>= frag_size
) {
682 frag_page
= skb_frag_page(frag
);
683 frag_ptr
= skb_frag_address(frag
);
684 frag_size
= skb_frag_size(frag
);
689 frag_len
= frag_size
- offset
;
691 cur_len
= min(len
, frag_len
);
693 __frame_add_frag(frame
, frag_page
, frag_ptr
, cur_len
, frag_size
);
697 frag_len
= skb_frag_size(frag
);
698 cur_len
= min(len
, frag_len
);
699 __frame_add_frag(frame
, skb_frag_page(frag
),
700 skb_frag_address(frag
), cur_len
, frag_len
);
706 static struct sk_buff
*
707 __ieee80211_amsdu_copy(struct sk_buff
*skb
, unsigned int hlen
,
708 int offset
, int len
, bool reuse_frag
)
710 struct sk_buff
*frame
;
713 if (skb
->len
- offset
< len
)
717 * When reusing framents, copy some data to the head to simplify
718 * ethernet header handling and speed up protocol header processing
719 * in the stack later.
722 cur_len
= min_t(int, len
, 32);
725 * Allocate and reserve two bytes more for payload
726 * alignment since sizeof(struct ethhdr) is 14.
728 frame
= dev_alloc_skb(hlen
+ sizeof(struct ethhdr
) + 2 + cur_len
);
732 skb_reserve(frame
, hlen
+ sizeof(struct ethhdr
) + 2);
733 skb_copy_bits(skb
, offset
, skb_put(frame
, cur_len
), cur_len
);
740 __ieee80211_amsdu_copy_frag(skb
, frame
, offset
, len
);
745 void ieee80211_amsdu_to_8023s(struct sk_buff
*skb
, struct sk_buff_head
*list
,
746 const u8
*addr
, enum nl80211_iftype iftype
,
747 const unsigned int extra_headroom
,
748 const u8
*check_da
, const u8
*check_sa
)
750 unsigned int hlen
= ALIGN(extra_headroom
, 4);
751 struct sk_buff
*frame
= NULL
;
754 int offset
= 0, remaining
;
756 bool reuse_frag
= skb
->head_frag
&& !skb_has_frag_list(skb
);
757 bool reuse_skb
= false;
761 unsigned int subframe_len
;
765 skb_copy_bits(skb
, offset
, ð
, sizeof(eth
));
766 len
= ntohs(eth
.h_proto
);
767 subframe_len
= sizeof(struct ethhdr
) + len
;
768 padding
= (4 - subframe_len
) & 0x3;
770 /* the last MSDU has no padding */
771 remaining
= skb
->len
- offset
;
772 if (subframe_len
> remaining
)
775 offset
+= sizeof(struct ethhdr
);
776 last
= remaining
<= subframe_len
+ padding
;
778 /* FIXME: should we really accept multicast DA? */
779 if ((check_da
&& !is_multicast_ether_addr(eth
.h_dest
) &&
780 !ether_addr_equal(check_da
, eth
.h_dest
)) ||
781 (check_sa
&& !ether_addr_equal(check_sa
, eth
.h_source
))) {
782 offset
+= len
+ padding
;
786 /* reuse skb for the last subframe */
787 if (!skb_is_nonlinear(skb
) && !reuse_frag
&& last
) {
788 skb_pull(skb
, offset
);
792 frame
= __ieee80211_amsdu_copy(skb
, hlen
, offset
, len
,
797 offset
+= len
+ padding
;
800 skb_reset_network_header(frame
);
801 frame
->dev
= skb
->dev
;
802 frame
->priority
= skb
->priority
;
804 payload
= frame
->data
;
805 ethertype
= (payload
[6] << 8) | payload
[7];
806 if (likely((ether_addr_equal(payload
, rfc1042_header
) &&
807 ethertype
!= ETH_P_AARP
&& ethertype
!= ETH_P_IPX
) ||
808 ether_addr_equal(payload
, bridge_tunnel_header
))) {
809 eth
.h_proto
= htons(ethertype
);
810 skb_pull(frame
, ETH_ALEN
+ 2);
813 memcpy(skb_push(frame
, sizeof(eth
)), ð
, sizeof(eth
));
814 __skb_queue_tail(list
, frame
);
823 __skb_queue_purge(list
);
826 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s
);
828 /* Given a data frame determine the 802.1p/1d tag to use. */
829 unsigned int cfg80211_classify8021d(struct sk_buff
*skb
,
830 struct cfg80211_qos_map
*qos_map
)
833 unsigned char vlan_priority
;
836 /* skb->priority values from 256->263 are magic values to
837 * directly indicate a specific 802.1d priority. This is used
838 * to allow 802.1d priority to be passed directly in from VLAN
841 if (skb
->priority
>= 256 && skb
->priority
<= 263) {
842 ret
= skb
->priority
- 256;
846 if (skb_vlan_tag_present(skb
)) {
847 vlan_priority
= (skb_vlan_tag_get(skb
) & VLAN_PRIO_MASK
)
849 if (vlan_priority
> 0) {
855 switch (skb
->protocol
) {
856 case htons(ETH_P_IP
):
857 dscp
= ipv4_get_dsfield(ip_hdr(skb
)) & 0xfc;
859 case htons(ETH_P_IPV6
):
860 dscp
= ipv6_get_dsfield(ipv6_hdr(skb
)) & 0xfc;
862 case htons(ETH_P_MPLS_UC
):
863 case htons(ETH_P_MPLS_MC
): {
864 struct mpls_label mpls_tmp
, *mpls
;
866 mpls
= skb_header_pointer(skb
, sizeof(struct ethhdr
),
867 sizeof(*mpls
), &mpls_tmp
);
871 ret
= (ntohl(mpls
->entry
) & MPLS_LS_TC_MASK
)
875 case htons(ETH_P_80221
):
876 /* 802.21 is always network control traffic */
883 unsigned int i
, tmp_dscp
= dscp
>> 2;
885 for (i
= 0; i
< qos_map
->num_des
; i
++) {
886 if (tmp_dscp
== qos_map
->dscp_exception
[i
].dscp
) {
887 ret
= qos_map
->dscp_exception
[i
].up
;
892 for (i
= 0; i
< 8; i
++) {
893 if (tmp_dscp
>= qos_map
->up
[i
].low
&&
894 tmp_dscp
<= qos_map
->up
[i
].high
) {
903 return array_index_nospec(ret
, IEEE80211_NUM_TIDS
);
905 EXPORT_SYMBOL(cfg80211_classify8021d
);
907 const struct element
*ieee80211_bss_get_elem(struct cfg80211_bss
*bss
, u8 id
)
909 const struct cfg80211_bss_ies
*ies
;
911 ies
= rcu_dereference(bss
->ies
);
915 return cfg80211_find_elem(id
, ies
->data
, ies
->len
);
917 EXPORT_SYMBOL(ieee80211_bss_get_elem
);
919 void cfg80211_upload_connect_keys(struct wireless_dev
*wdev
)
921 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wdev
->wiphy
);
922 struct net_device
*dev
= wdev
->netdev
;
925 if (!wdev
->connect_keys
)
928 for (i
= 0; i
< CFG80211_MAX_WEP_KEYS
; i
++) {
929 if (!wdev
->connect_keys
->params
[i
].cipher
)
931 if (rdev_add_key(rdev
, dev
, i
, false, NULL
,
932 &wdev
->connect_keys
->params
[i
])) {
933 netdev_err(dev
, "failed to set key %d\n", i
);
936 if (wdev
->connect_keys
->def
== i
&&
937 rdev_set_default_key(rdev
, dev
, i
, true, true)) {
938 netdev_err(dev
, "failed to set defkey %d\n", i
);
943 kfree_sensitive(wdev
->connect_keys
);
944 wdev
->connect_keys
= NULL
;
947 void cfg80211_process_wdev_events(struct wireless_dev
*wdev
)
949 struct cfg80211_event
*ev
;
952 spin_lock_irqsave(&wdev
->event_lock
, flags
);
953 while (!list_empty(&wdev
->event_list
)) {
954 ev
= list_first_entry(&wdev
->event_list
,
955 struct cfg80211_event
, list
);
957 spin_unlock_irqrestore(&wdev
->event_lock
, flags
);
961 case EVENT_CONNECT_RESULT
:
962 __cfg80211_connect_result(
965 ev
->cr
.status
== WLAN_STATUS_SUCCESS
);
968 __cfg80211_roamed(wdev
, &ev
->rm
);
970 case EVENT_DISCONNECTED
:
971 __cfg80211_disconnected(wdev
->netdev
,
972 ev
->dc
.ie
, ev
->dc
.ie_len
,
974 !ev
->dc
.locally_generated
);
976 case EVENT_IBSS_JOINED
:
977 __cfg80211_ibss_joined(wdev
->netdev
, ev
->ij
.bssid
,
981 __cfg80211_leave(wiphy_to_rdev(wdev
->wiphy
), wdev
);
983 case EVENT_PORT_AUTHORIZED
:
984 __cfg80211_port_authorized(wdev
, ev
->pa
.bssid
);
991 spin_lock_irqsave(&wdev
->event_lock
, flags
);
993 spin_unlock_irqrestore(&wdev
->event_lock
, flags
);
996 void cfg80211_process_rdev_events(struct cfg80211_registered_device
*rdev
)
998 struct wireless_dev
*wdev
;
1002 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
1003 cfg80211_process_wdev_events(wdev
);
1006 int cfg80211_change_iface(struct cfg80211_registered_device
*rdev
,
1007 struct net_device
*dev
, enum nl80211_iftype ntype
,
1008 struct vif_params
*params
)
1011 enum nl80211_iftype otype
= dev
->ieee80211_ptr
->iftype
;
1015 /* don't support changing VLANs, you just re-create them */
1016 if (otype
== NL80211_IFTYPE_AP_VLAN
)
1019 /* cannot change into P2P device or NAN */
1020 if (ntype
== NL80211_IFTYPE_P2P_DEVICE
||
1021 ntype
== NL80211_IFTYPE_NAN
)
1024 if (!rdev
->ops
->change_virtual_intf
||
1025 !(rdev
->wiphy
.interface_modes
& (1 << ntype
)))
1028 /* if it's part of a bridge, reject changing type to station/ibss */
1029 if (netif_is_bridge_port(dev
) &&
1030 (ntype
== NL80211_IFTYPE_ADHOC
||
1031 ntype
== NL80211_IFTYPE_STATION
||
1032 ntype
== NL80211_IFTYPE_P2P_CLIENT
))
1035 if (ntype
!= otype
) {
1036 dev
->ieee80211_ptr
->use_4addr
= false;
1037 dev
->ieee80211_ptr
->mesh_id_up_len
= 0;
1038 wdev_lock(dev
->ieee80211_ptr
);
1039 rdev_set_qos_map(rdev
, dev
, NULL
);
1040 wdev_unlock(dev
->ieee80211_ptr
);
1043 case NL80211_IFTYPE_AP
:
1044 cfg80211_stop_ap(rdev
, dev
, true);
1046 case NL80211_IFTYPE_ADHOC
:
1047 cfg80211_leave_ibss(rdev
, dev
, false);
1049 case NL80211_IFTYPE_STATION
:
1050 case NL80211_IFTYPE_P2P_CLIENT
:
1051 wdev_lock(dev
->ieee80211_ptr
);
1052 cfg80211_disconnect(rdev
, dev
,
1053 WLAN_REASON_DEAUTH_LEAVING
, true);
1054 wdev_unlock(dev
->ieee80211_ptr
);
1056 case NL80211_IFTYPE_MESH_POINT
:
1057 /* mesh should be handled? */
1063 cfg80211_process_rdev_events(rdev
);
1064 cfg80211_mlme_purge_registrations(dev
->ieee80211_ptr
);
1067 err
= rdev_change_virtual_intf(rdev
, dev
, ntype
, params
);
1069 WARN_ON(!err
&& dev
->ieee80211_ptr
->iftype
!= ntype
);
1071 if (!err
&& params
&& params
->use_4addr
!= -1)
1072 dev
->ieee80211_ptr
->use_4addr
= params
->use_4addr
;
1075 dev
->priv_flags
&= ~IFF_DONT_BRIDGE
;
1077 case NL80211_IFTYPE_STATION
:
1078 if (dev
->ieee80211_ptr
->use_4addr
)
1081 case NL80211_IFTYPE_OCB
:
1082 case NL80211_IFTYPE_P2P_CLIENT
:
1083 case NL80211_IFTYPE_ADHOC
:
1084 dev
->priv_flags
|= IFF_DONT_BRIDGE
;
1086 case NL80211_IFTYPE_P2P_GO
:
1087 case NL80211_IFTYPE_AP
:
1088 case NL80211_IFTYPE_AP_VLAN
:
1089 case NL80211_IFTYPE_MESH_POINT
:
1092 case NL80211_IFTYPE_MONITOR
:
1093 /* monitor can't bridge anyway */
1095 case NL80211_IFTYPE_UNSPECIFIED
:
1096 case NUM_NL80211_IFTYPES
:
1099 case NL80211_IFTYPE_P2P_DEVICE
:
1100 case NL80211_IFTYPE_WDS
:
1101 case NL80211_IFTYPE_NAN
:
1107 if (!err
&& ntype
!= otype
&& netif_running(dev
)) {
1108 cfg80211_update_iface_num(rdev
, ntype
, 1);
1109 cfg80211_update_iface_num(rdev
, otype
, -1);
1115 static u32
cfg80211_calculate_bitrate_ht(struct rate_info
*rate
)
1117 int modulation
, streams
, bitrate
;
1119 /* the formula below does only work for MCS values smaller than 32 */
1120 if (WARN_ON_ONCE(rate
->mcs
>= 32))
1123 modulation
= rate
->mcs
& 7;
1124 streams
= (rate
->mcs
>> 3) + 1;
1126 bitrate
= (rate
->bw
== RATE_INFO_BW_40
) ? 13500000 : 6500000;
1129 bitrate
*= (modulation
+ 1);
1130 else if (modulation
== 4)
1131 bitrate
*= (modulation
+ 2);
1133 bitrate
*= (modulation
+ 3);
1137 if (rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
)
1138 bitrate
= (bitrate
/ 9) * 10;
1140 /* do NOT round down here */
1141 return (bitrate
+ 50000) / 100000;
1144 static u32
cfg80211_calculate_bitrate_dmg(struct rate_info
*rate
)
1146 static const u32 __mcs2bitrate
[] = {
1154 [5] = 12512, /* 1251.25 mbps */
1164 [14] = 8662, /* 866.25 mbps */
1174 [24] = 67568, /* 6756.75 mbps */
1185 if (WARN_ON_ONCE(rate
->mcs
>= ARRAY_SIZE(__mcs2bitrate
)))
1188 return __mcs2bitrate
[rate
->mcs
];
1191 static u32
cfg80211_calculate_bitrate_edmg(struct rate_info
*rate
)
1193 static const u32 __mcs2bitrate
[] = {
1201 [5] = 12512, /* 1251.25 mbps */
1219 if (WARN_ON_ONCE(rate
->mcs
>= ARRAY_SIZE(__mcs2bitrate
)))
1222 return __mcs2bitrate
[rate
->mcs
] * rate
->n_bonded_ch
;
1225 static u32
cfg80211_calculate_bitrate_vht(struct rate_info
*rate
)
1227 static const u32 base
[4][10] = {
1237 /* not in the spec, but some devices use this: */
1281 case RATE_INFO_BW_160
:
1284 case RATE_INFO_BW_80
:
1287 case RATE_INFO_BW_40
:
1290 case RATE_INFO_BW_5
:
1291 case RATE_INFO_BW_10
:
1294 case RATE_INFO_BW_20
:
1298 bitrate
= base
[idx
][rate
->mcs
];
1299 bitrate
*= rate
->nss
;
1301 if (rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
)
1302 bitrate
= (bitrate
/ 9) * 10;
1304 /* do NOT round down here */
1305 return (bitrate
+ 50000) / 100000;
1307 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1308 rate
->bw
, rate
->mcs
, rate
->nss
);
1312 static u32
cfg80211_calculate_bitrate_he(struct rate_info
*rate
)
1315 u32 mcs_divisors
[14] = {
1316 102399, /* 16.666666... */
1317 51201, /* 8.333333... */
1318 34134, /* 5.555555... */
1319 25599, /* 4.166666... */
1320 17067, /* 2.777777... */
1321 12801, /* 2.083333... */
1322 11769, /* 1.851851... */
1323 10239, /* 1.666666... */
1324 8532, /* 1.388888... */
1325 7680, /* 1.250000... */
1326 6828, /* 1.111111... */
1327 6144, /* 1.000000... */
1328 5690, /* 0.926106... */
1329 5120, /* 0.833333... */
1331 u32 rates_160M
[3] = { 960777777, 907400000, 816666666 };
1332 u32 rates_969
[3] = { 480388888, 453700000, 408333333 };
1333 u32 rates_484
[3] = { 229411111, 216666666, 195000000 };
1334 u32 rates_242
[3] = { 114711111, 108333333, 97500000 };
1335 u32 rates_106
[3] = { 40000000, 37777777, 34000000 };
1336 u32 rates_52
[3] = { 18820000, 17777777, 16000000 };
1337 u32 rates_26
[3] = { 9411111, 8888888, 8000000 };
1341 if (WARN_ON_ONCE(rate
->mcs
> 13))
1344 if (WARN_ON_ONCE(rate
->he_gi
> NL80211_RATE_INFO_HE_GI_3_2
))
1346 if (WARN_ON_ONCE(rate
->he_ru_alloc
>
1347 NL80211_RATE_INFO_HE_RU_ALLOC_2x996
))
1349 if (WARN_ON_ONCE(rate
->nss
< 1 || rate
->nss
> 8))
1352 if (rate
->bw
== RATE_INFO_BW_160
)
1353 result
= rates_160M
[rate
->he_gi
];
1354 else if (rate
->bw
== RATE_INFO_BW_80
||
1355 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1356 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_996
))
1357 result
= rates_969
[rate
->he_gi
];
1358 else if (rate
->bw
== RATE_INFO_BW_40
||
1359 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1360 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_484
))
1361 result
= rates_484
[rate
->he_gi
];
1362 else if (rate
->bw
== RATE_INFO_BW_20
||
1363 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1364 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_242
))
1365 result
= rates_242
[rate
->he_gi
];
1366 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1367 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_106
)
1368 result
= rates_106
[rate
->he_gi
];
1369 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1370 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_52
)
1371 result
= rates_52
[rate
->he_gi
];
1372 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1373 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_26
)
1374 result
= rates_26
[rate
->he_gi
];
1376 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1377 rate
->bw
, rate
->he_ru_alloc
);
1381 /* now scale to the appropriate MCS */
1384 do_div(tmp
, mcs_divisors
[rate
->mcs
]);
1387 /* and take NSS, DCM into account */
1388 result
= (result
* rate
->nss
) / 8;
1392 return result
/ 10000;
1395 u32
cfg80211_calculate_bitrate(struct rate_info
*rate
)
1397 if (rate
->flags
& RATE_INFO_FLAGS_MCS
)
1398 return cfg80211_calculate_bitrate_ht(rate
);
1399 if (rate
->flags
& RATE_INFO_FLAGS_DMG
)
1400 return cfg80211_calculate_bitrate_dmg(rate
);
1401 if (rate
->flags
& RATE_INFO_FLAGS_EDMG
)
1402 return cfg80211_calculate_bitrate_edmg(rate
);
1403 if (rate
->flags
& RATE_INFO_FLAGS_VHT_MCS
)
1404 return cfg80211_calculate_bitrate_vht(rate
);
1405 if (rate
->flags
& RATE_INFO_FLAGS_HE_MCS
)
1406 return cfg80211_calculate_bitrate_he(rate
);
1408 return rate
->legacy
;
1410 EXPORT_SYMBOL(cfg80211_calculate_bitrate
);
1412 int cfg80211_get_p2p_attr(const u8
*ies
, unsigned int len
,
1413 enum ieee80211_p2p_attr_id attr
,
1414 u8
*buf
, unsigned int bufsize
)
1417 u16 attr_remaining
= 0;
1418 bool desired_attr
= false;
1419 u16 desired_len
= 0;
1422 unsigned int iedatalen
;
1429 if (iedatalen
+ 2 > len
)
1432 if (ies
[0] != WLAN_EID_VENDOR_SPECIFIC
)
1440 /* check WFA OUI, P2P subtype */
1441 if (iedata
[0] != 0x50 || iedata
[1] != 0x6f ||
1442 iedata
[2] != 0x9a || iedata
[3] != 0x09)
1448 /* check attribute continuation into this IE */
1449 copy
= min_t(unsigned int, attr_remaining
, iedatalen
);
1450 if (copy
&& desired_attr
) {
1451 desired_len
+= copy
;
1453 memcpy(out
, iedata
, min(bufsize
, copy
));
1454 out
+= min(bufsize
, copy
);
1455 bufsize
-= min(bufsize
, copy
);
1459 if (copy
== attr_remaining
)
1463 attr_remaining
-= copy
;
1470 while (iedatalen
> 0) {
1473 /* P2P attribute ID & size must fit */
1476 desired_attr
= iedata
[0] == attr
;
1477 attr_len
= get_unaligned_le16(iedata
+ 1);
1481 copy
= min_t(unsigned int, attr_len
, iedatalen
);
1484 desired_len
+= copy
;
1486 memcpy(out
, iedata
, min(bufsize
, copy
));
1487 out
+= min(bufsize
, copy
);
1488 bufsize
-= min(bufsize
, copy
);
1491 if (copy
== attr_len
)
1497 attr_remaining
= attr_len
- copy
;
1505 if (attr_remaining
&& desired_attr
)
1510 EXPORT_SYMBOL(cfg80211_get_p2p_attr
);
1512 static bool ieee80211_id_in_list(const u8
*ids
, int n_ids
, u8 id
, bool id_ext
)
1516 /* Make sure array values are legal */
1517 if (WARN_ON(ids
[n_ids
- 1] == WLAN_EID_EXTENSION
))
1522 if (ids
[i
] == WLAN_EID_EXTENSION
) {
1523 if (id_ext
&& (ids
[i
+ 1] == id
))
1530 if (ids
[i
] == id
&& !id_ext
)
1538 static size_t skip_ie(const u8
*ies
, size_t ielen
, size_t pos
)
1540 /* we assume a validly formed IEs buffer */
1541 u8 len
= ies
[pos
+ 1];
1545 /* the IE itself must have 255 bytes for fragments to follow */
1549 while (pos
< ielen
&& ies
[pos
] == WLAN_EID_FRAGMENT
) {
1557 size_t ieee80211_ie_split_ric(const u8
*ies
, size_t ielen
,
1558 const u8
*ids
, int n_ids
,
1559 const u8
*after_ric
, int n_after_ric
,
1562 size_t pos
= offset
;
1564 while (pos
< ielen
) {
1567 if (ies
[pos
] == WLAN_EID_EXTENSION
)
1569 if ((pos
+ ext
) >= ielen
)
1572 if (!ieee80211_id_in_list(ids
, n_ids
, ies
[pos
+ ext
],
1573 ies
[pos
] == WLAN_EID_EXTENSION
))
1576 if (ies
[pos
] == WLAN_EID_RIC_DATA
&& n_after_ric
) {
1577 pos
= skip_ie(ies
, ielen
, pos
);
1579 while (pos
< ielen
) {
1580 if (ies
[pos
] == WLAN_EID_EXTENSION
)
1585 if ((pos
+ ext
) >= ielen
)
1588 if (!ieee80211_id_in_list(after_ric
,
1592 pos
= skip_ie(ies
, ielen
, pos
);
1597 pos
= skip_ie(ies
, ielen
, pos
);
1603 EXPORT_SYMBOL(ieee80211_ie_split_ric
);
1605 bool ieee80211_operating_class_to_band(u8 operating_class
,
1606 enum nl80211_band
*band
)
1608 switch (operating_class
) {
1612 *band
= NL80211_BAND_5GHZ
;
1615 *band
= NL80211_BAND_6GHZ
;
1621 *band
= NL80211_BAND_2GHZ
;
1624 *band
= NL80211_BAND_60GHZ
;
1630 EXPORT_SYMBOL(ieee80211_operating_class_to_band
);
1632 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def
*chandef
,
1636 u32 freq
= chandef
->center_freq1
;
1638 if (freq
>= 2412 && freq
<= 2472) {
1639 if (chandef
->width
> NL80211_CHAN_WIDTH_40
)
1642 /* 2.407 GHz, channels 1..13 */
1643 if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1644 if (freq
> chandef
->chan
->center_freq
)
1645 *op_class
= 83; /* HT40+ */
1647 *op_class
= 84; /* HT40- */
1656 /* channel 14 is only for IEEE 802.11b */
1657 if (chandef
->width
!= NL80211_CHAN_WIDTH_20_NOHT
)
1660 *op_class
= 82; /* channel 14 */
1664 switch (chandef
->width
) {
1665 case NL80211_CHAN_WIDTH_80
:
1668 case NL80211_CHAN_WIDTH_160
:
1671 case NL80211_CHAN_WIDTH_80P80
:
1674 case NL80211_CHAN_WIDTH_10
:
1675 case NL80211_CHAN_WIDTH_5
:
1676 return false; /* unsupported for now */
1682 /* 5 GHz, channels 36..48 */
1683 if (freq
>= 5180 && freq
<= 5240) {
1685 *op_class
= vht_opclass
;
1686 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1687 if (freq
> chandef
->chan
->center_freq
)
1698 /* 5 GHz, channels 52..64 */
1699 if (freq
>= 5260 && freq
<= 5320) {
1701 *op_class
= vht_opclass
;
1702 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1703 if (freq
> chandef
->chan
->center_freq
)
1714 /* 5 GHz, channels 100..144 */
1715 if (freq
>= 5500 && freq
<= 5720) {
1717 *op_class
= vht_opclass
;
1718 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1719 if (freq
> chandef
->chan
->center_freq
)
1730 /* 5 GHz, channels 149..169 */
1731 if (freq
>= 5745 && freq
<= 5845) {
1733 *op_class
= vht_opclass
;
1734 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1735 if (freq
> chandef
->chan
->center_freq
)
1739 } else if (freq
<= 5805) {
1748 /* 56.16 GHz, channel 1..4 */
1749 if (freq
>= 56160 + 2160 * 1 && freq
<= 56160 + 2160 * 6) {
1750 if (chandef
->width
>= NL80211_CHAN_WIDTH_40
)
1757 /* not supported yet */
1760 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class
);
1762 static void cfg80211_calculate_bi_data(struct wiphy
*wiphy
, u32 new_beacon_int
,
1763 u32
*beacon_int_gcd
,
1764 bool *beacon_int_different
)
1766 struct wireless_dev
*wdev
;
1768 *beacon_int_gcd
= 0;
1769 *beacon_int_different
= false;
1771 list_for_each_entry(wdev
, &wiphy
->wdev_list
, list
) {
1772 if (!wdev
->beacon_interval
)
1775 if (!*beacon_int_gcd
) {
1776 *beacon_int_gcd
= wdev
->beacon_interval
;
1780 if (wdev
->beacon_interval
== *beacon_int_gcd
)
1783 *beacon_int_different
= true;
1784 *beacon_int_gcd
= gcd(*beacon_int_gcd
, wdev
->beacon_interval
);
1787 if (new_beacon_int
&& *beacon_int_gcd
!= new_beacon_int
) {
1788 if (*beacon_int_gcd
)
1789 *beacon_int_different
= true;
1790 *beacon_int_gcd
= gcd(*beacon_int_gcd
, new_beacon_int
);
1794 int cfg80211_validate_beacon_int(struct cfg80211_registered_device
*rdev
,
1795 enum nl80211_iftype iftype
, u32 beacon_int
)
1798 * This is just a basic pre-condition check; if interface combinations
1799 * are possible the driver must already be checking those with a call
1800 * to cfg80211_check_combinations(), in which case we'll validate more
1801 * through the cfg80211_calculate_bi_data() call and code in
1802 * cfg80211_iter_combinations().
1805 if (beacon_int
< 10 || beacon_int
> 10000)
1811 int cfg80211_iter_combinations(struct wiphy
*wiphy
,
1812 struct iface_combination_params
*params
,
1813 void (*iter
)(const struct ieee80211_iface_combination
*c
,
1817 const struct ieee80211_regdomain
*regdom
;
1818 enum nl80211_dfs_regions region
= 0;
1820 int num_interfaces
= 0;
1821 u32 used_iftypes
= 0;
1823 bool beacon_int_different
;
1826 * This is a bit strange, since the iteration used to rely only on
1827 * the data given by the driver, but here it now relies on context,
1828 * in form of the currently operating interfaces.
1829 * This is OK for all current users, and saves us from having to
1830 * push the GCD calculations into all the drivers.
1831 * In the future, this should probably rely more on data that's in
1832 * cfg80211 already - the only thing not would appear to be any new
1833 * interfaces (while being brought up) and channel/radar data.
1835 cfg80211_calculate_bi_data(wiphy
, params
->new_beacon_int
,
1836 &beacon_int_gcd
, &beacon_int_different
);
1838 if (params
->radar_detect
) {
1840 regdom
= rcu_dereference(cfg80211_regdomain
);
1842 region
= regdom
->dfs_region
;
1846 for (iftype
= 0; iftype
< NUM_NL80211_IFTYPES
; iftype
++) {
1847 num_interfaces
+= params
->iftype_num
[iftype
];
1848 if (params
->iftype_num
[iftype
] > 0 &&
1849 !cfg80211_iftype_allowed(wiphy
, iftype
, 0, 1))
1850 used_iftypes
|= BIT(iftype
);
1853 for (i
= 0; i
< wiphy
->n_iface_combinations
; i
++) {
1854 const struct ieee80211_iface_combination
*c
;
1855 struct ieee80211_iface_limit
*limits
;
1856 u32 all_iftypes
= 0;
1858 c
= &wiphy
->iface_combinations
[i
];
1860 if (num_interfaces
> c
->max_interfaces
)
1862 if (params
->num_different_channels
> c
->num_different_channels
)
1865 limits
= kmemdup(c
->limits
, sizeof(limits
[0]) * c
->n_limits
,
1870 for (iftype
= 0; iftype
< NUM_NL80211_IFTYPES
; iftype
++) {
1871 if (cfg80211_iftype_allowed(wiphy
, iftype
, 0, 1))
1873 for (j
= 0; j
< c
->n_limits
; j
++) {
1874 all_iftypes
|= limits
[j
].types
;
1875 if (!(limits
[j
].types
& BIT(iftype
)))
1877 if (limits
[j
].max
< params
->iftype_num
[iftype
])
1879 limits
[j
].max
-= params
->iftype_num
[iftype
];
1883 if (params
->radar_detect
!=
1884 (c
->radar_detect_widths
& params
->radar_detect
))
1887 if (params
->radar_detect
&& c
->radar_detect_regions
&&
1888 !(c
->radar_detect_regions
& BIT(region
)))
1891 /* Finally check that all iftypes that we're currently
1892 * using are actually part of this combination. If they
1893 * aren't then we can't use this combination and have
1894 * to continue to the next.
1896 if ((all_iftypes
& used_iftypes
) != used_iftypes
)
1899 if (beacon_int_gcd
) {
1900 if (c
->beacon_int_min_gcd
&&
1901 beacon_int_gcd
< c
->beacon_int_min_gcd
)
1903 if (!c
->beacon_int_min_gcd
&& beacon_int_different
)
1907 /* This combination covered all interface types and
1908 * supported the requested numbers, so we're good.
1918 EXPORT_SYMBOL(cfg80211_iter_combinations
);
1921 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination
*c
,
1928 int cfg80211_check_combinations(struct wiphy
*wiphy
,
1929 struct iface_combination_params
*params
)
1933 err
= cfg80211_iter_combinations(wiphy
, params
,
1934 cfg80211_iter_sum_ifcombs
, &num
);
1942 EXPORT_SYMBOL(cfg80211_check_combinations
);
1944 int ieee80211_get_ratemask(struct ieee80211_supported_band
*sband
,
1945 const u8
*rates
, unsigned int n_rates
,
1953 if (n_rates
== 0 || n_rates
> NL80211_MAX_SUPP_RATES
)
1958 for (i
= 0; i
< n_rates
; i
++) {
1959 int rate
= (rates
[i
] & 0x7f) * 5;
1962 for (j
= 0; j
< sband
->n_bitrates
; j
++) {
1963 if (sband
->bitrates
[j
].bitrate
== rate
) {
1974 * mask must have at least one bit set here since we
1975 * didn't accept a 0-length rates array nor allowed
1976 * entries in the array that didn't exist
1982 unsigned int ieee80211_get_num_supported_channels(struct wiphy
*wiphy
)
1984 enum nl80211_band band
;
1985 unsigned int n_channels
= 0;
1987 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
1988 if (wiphy
->bands
[band
])
1989 n_channels
+= wiphy
->bands
[band
]->n_channels
;
1993 EXPORT_SYMBOL(ieee80211_get_num_supported_channels
);
1995 int cfg80211_get_station(struct net_device
*dev
, const u8
*mac_addr
,
1996 struct station_info
*sinfo
)
1998 struct cfg80211_registered_device
*rdev
;
1999 struct wireless_dev
*wdev
;
2001 wdev
= dev
->ieee80211_ptr
;
2005 rdev
= wiphy_to_rdev(wdev
->wiphy
);
2006 if (!rdev
->ops
->get_station
)
2009 memset(sinfo
, 0, sizeof(*sinfo
));
2011 return rdev_get_station(rdev
, dev
, mac_addr
, sinfo
);
2013 EXPORT_SYMBOL(cfg80211_get_station
);
2015 void cfg80211_free_nan_func(struct cfg80211_nan_func
*f
)
2022 kfree(f
->serv_spec_info
);
2025 for (i
= 0; i
< f
->num_rx_filters
; i
++)
2026 kfree(f
->rx_filters
[i
].filter
);
2028 for (i
= 0; i
< f
->num_tx_filters
; i
++)
2029 kfree(f
->tx_filters
[i
].filter
);
2031 kfree(f
->rx_filters
);
2032 kfree(f
->tx_filters
);
2035 EXPORT_SYMBOL(cfg80211_free_nan_func
);
2037 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range
*freq_range
,
2038 u32 center_freq_khz
, u32 bw_khz
)
2040 u32 start_freq_khz
, end_freq_khz
;
2042 start_freq_khz
= center_freq_khz
- (bw_khz
/ 2);
2043 end_freq_khz
= center_freq_khz
+ (bw_khz
/ 2);
2045 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
2046 end_freq_khz
<= freq_range
->end_freq_khz
)
2052 int cfg80211_sinfo_alloc_tid_stats(struct station_info
*sinfo
, gfp_t gfp
)
2054 sinfo
->pertid
= kcalloc(IEEE80211_NUM_TIDS
+ 1,
2055 sizeof(*(sinfo
->pertid
)),
2062 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats
);
2064 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2065 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2066 const unsigned char rfc1042_header
[] __aligned(2) =
2067 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2068 EXPORT_SYMBOL(rfc1042_header
);
2070 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2071 const unsigned char bridge_tunnel_header
[] __aligned(2) =
2072 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2073 EXPORT_SYMBOL(bridge_tunnel_header
);
2075 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2076 struct iapp_layer2_update
{
2077 u8 da
[ETH_ALEN
]; /* broadcast */
2078 u8 sa
[ETH_ALEN
]; /* STA addr */
2086 void cfg80211_send_layer2_update(struct net_device
*dev
, const u8
*addr
)
2088 struct iapp_layer2_update
*msg
;
2089 struct sk_buff
*skb
;
2091 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2094 skb
= dev_alloc_skb(sizeof(*msg
));
2097 msg
= skb_put(skb
, sizeof(*msg
));
2099 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2100 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2102 eth_broadcast_addr(msg
->da
);
2103 ether_addr_copy(msg
->sa
, addr
);
2104 msg
->len
= htons(6);
2106 msg
->ssap
= 0x01; /* NULL LSAP, CR Bit: Response */
2107 msg
->control
= 0xaf; /* XID response lsb.1111F101.
2108 * F=0 (no poll command; unsolicited frame) */
2109 msg
->xid_info
[0] = 0x81; /* XID format identifier */
2110 msg
->xid_info
[1] = 1; /* LLC types/classes: Type 1 LLC */
2111 msg
->xid_info
[2] = 0; /* XID sender's receive window size (RW) */
2114 skb
->protocol
= eth_type_trans(skb
, dev
);
2115 memset(skb
->cb
, 0, sizeof(skb
->cb
));
2118 EXPORT_SYMBOL(cfg80211_send_layer2_update
);
2120 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap
*cap
,
2121 enum ieee80211_vht_chanwidth bw
,
2122 int mcs
, bool ext_nss_bw_capable
,
2123 unsigned int max_vht_nss
)
2125 u16 map
= le16_to_cpu(cap
->supp_mcs
.rx_mcs_map
);
2128 int i
, mcs_encoding
;
2133 if (WARN_ON(mcs
> 9 || max_vht_nss
> 8))
2143 /* find max_vht_nss for the given MCS */
2144 for (i
= 7; i
>= 0; i
--) {
2145 int supp
= (map
>> (2 * i
)) & 3;
2150 if (supp
>= mcs_encoding
) {
2151 max_vht_nss
= i
+ 1;
2157 if (!(cap
->supp_mcs
.tx_mcs_map
&
2158 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE
)))
2161 ext_nss_bw
= le32_get_bits(cap
->vht_cap_info
,
2162 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK
);
2163 supp_width
= le32_get_bits(cap
->vht_cap_info
,
2164 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK
);
2166 /* if not capable, treat ext_nss_bw as 0 */
2167 if (!ext_nss_bw_capable
)
2170 /* This is invalid */
2171 if (supp_width
== 3)
2174 /* This is an invalid combination so pretend nothing is supported */
2175 if (supp_width
== 2 && (ext_nss_bw
== 1 || ext_nss_bw
== 2))
2179 * Cover all the special cases according to IEEE 802.11-2016
2180 * Table 9-250. All other cases are either factor of 1 or not
2184 case IEEE80211_VHT_CHANWIDTH_USE_HT
:
2185 case IEEE80211_VHT_CHANWIDTH_80MHZ
:
2186 if ((supp_width
== 1 || supp_width
== 2) &&
2188 return 2 * max_vht_nss
;
2190 case IEEE80211_VHT_CHANWIDTH_160MHZ
:
2191 if (supp_width
== 0 &&
2192 (ext_nss_bw
== 1 || ext_nss_bw
== 2))
2193 return max_vht_nss
/ 2;
2194 if (supp_width
== 0 &&
2196 return (3 * max_vht_nss
) / 4;
2197 if (supp_width
== 1 &&
2199 return 2 * max_vht_nss
;
2201 case IEEE80211_VHT_CHANWIDTH_80P80MHZ
:
2202 if (supp_width
== 0 && ext_nss_bw
== 1)
2203 return 0; /* not possible */
2204 if (supp_width
== 0 &&
2206 return max_vht_nss
/ 2;
2207 if (supp_width
== 0 &&
2209 return (3 * max_vht_nss
) / 4;
2210 if (supp_width
== 1 &&
2212 return 0; /* not possible */
2213 if (supp_width
== 1 &&
2215 return max_vht_nss
/ 2;
2216 if (supp_width
== 1 &&
2218 return (3 * max_vht_nss
) / 4;
2222 /* not covered or invalid combination received */
2225 EXPORT_SYMBOL(ieee80211_get_vht_max_nss
);
2227 bool cfg80211_iftype_allowed(struct wiphy
*wiphy
, enum nl80211_iftype iftype
,
2228 bool is_4addr
, u8 check_swif
)
2231 bool is_vlan
= iftype
== NL80211_IFTYPE_AP_VLAN
;
2233 switch (check_swif
) {
2235 if (is_vlan
&& is_4addr
)
2236 return wiphy
->flags
& WIPHY_FLAG_4ADDR_AP
;
2237 return wiphy
->interface_modes
& BIT(iftype
);
2239 if (!(wiphy
->software_iftypes
& BIT(iftype
)) && is_vlan
)
2240 return wiphy
->flags
& WIPHY_FLAG_4ADDR_AP
;
2241 return wiphy
->software_iftypes
& BIT(iftype
);
2248 EXPORT_SYMBOL(cfg80211_iftype_allowed
);