2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. This method will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
81 #include <linux/platform_device.h>
83 #include <linux/tcp.h>
84 #include <linux/udp.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
97 #include "gianfar_mii.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name
[] = "Gianfar Ethernet";
104 const char gfar_driver_version
[] = "1.3";
106 static int gfar_enet_open(struct net_device
*dev
);
107 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
108 static void gfar_reset_task(struct work_struct
*work
);
109 static void gfar_timeout(struct net_device
*dev
);
110 static int gfar_close(struct net_device
*dev
);
111 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
112 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
113 struct sk_buff
*skb
);
114 static int gfar_set_mac_address(struct net_device
*dev
);
115 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
116 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
117 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
118 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
119 static void adjust_link(struct net_device
*dev
);
120 static void init_registers(struct net_device
*dev
);
121 static int init_phy(struct net_device
*dev
);
122 static int gfar_probe(struct platform_device
*pdev
);
123 static int gfar_remove(struct platform_device
*pdev
);
124 static void free_skb_resources(struct gfar_private
*priv
);
125 static void gfar_set_multi(struct net_device
*dev
);
126 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
127 static void gfar_configure_serdes(struct net_device
*dev
);
128 static int gfar_poll(struct napi_struct
*napi
, int budget
);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device
*dev
);
132 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
133 static int gfar_clean_tx_ring(struct net_device
*dev
);
134 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
135 static void gfar_vlan_rx_register(struct net_device
*netdev
,
136 struct vlan_group
*grp
);
137 void gfar_halt(struct net_device
*dev
);
138 static void gfar_halt_nodisable(struct net_device
*dev
);
139 void gfar_start(struct net_device
*dev
);
140 static void gfar_clear_exact_match(struct net_device
*dev
);
141 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
143 extern const struct ethtool_ops gfar_ethtool_ops
;
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
149 /* Returns 1 if incoming frames use an FCB */
150 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
152 return (priv
->vlan_enable
|| priv
->rx_csum_enable
);
155 /* Set up the ethernet device structure, private data,
156 * and anything else we need before we start */
157 static int gfar_probe(struct platform_device
*pdev
)
160 struct net_device
*dev
= NULL
;
161 struct gfar_private
*priv
= NULL
;
162 struct gianfar_platform_data
*einfo
;
166 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
169 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
175 /* Create an ethernet device instance */
176 dev
= alloc_etherdev(sizeof (*priv
));
181 priv
= netdev_priv(dev
);
184 /* Set the info in the priv to the current info */
187 /* fill out IRQ fields */
188 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
189 irq
= platform_get_irq_byname(pdev
, "tx");
192 priv
->interruptTransmit
= irq
;
194 irq
= platform_get_irq_byname(pdev
, "rx");
197 priv
->interruptReceive
= irq
;
199 irq
= platform_get_irq_byname(pdev
, "error");
202 priv
->interruptError
= irq
;
204 irq
= platform_get_irq(pdev
, 0);
207 priv
->interruptTransmit
= irq
;
210 /* get a pointer to the register memory */
211 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
212 priv
->regs
= ioremap(r
->start
, sizeof (struct gfar
));
214 if (NULL
== priv
->regs
) {
219 spin_lock_init(&priv
->txlock
);
220 spin_lock_init(&priv
->rxlock
);
221 spin_lock_init(&priv
->bflock
);
222 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
224 platform_set_drvdata(pdev
, dev
);
226 /* Stop the DMA engine now, in case it was running before */
227 /* (The firmware could have used it, and left it running). */
228 /* To do this, we write Graceful Receive Stop and Graceful */
229 /* Transmit Stop, and then wait until the corresponding bits */
230 /* in IEVENT indicate the stops have completed. */
231 tempval
= gfar_read(&priv
->regs
->dmactrl
);
232 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
233 gfar_write(&priv
->regs
->dmactrl
, tempval
);
235 tempval
= gfar_read(&priv
->regs
->dmactrl
);
236 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
237 gfar_write(&priv
->regs
->dmactrl
, tempval
);
239 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
242 /* Reset MAC layer */
243 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
245 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
246 gfar_write(&priv
->regs
->maccfg1
, tempval
);
248 /* Initialize MACCFG2. */
249 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
251 /* Initialize ECNTRL */
252 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
254 /* Copy the station address into the dev structure, */
255 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
257 /* Set the dev->base_addr to the gfar reg region */
258 dev
->base_addr
= (unsigned long) (priv
->regs
);
260 SET_NETDEV_DEV(dev
, &pdev
->dev
);
262 /* Fill in the dev structure */
263 dev
->open
= gfar_enet_open
;
264 dev
->hard_start_xmit
= gfar_start_xmit
;
265 dev
->tx_timeout
= gfar_timeout
;
266 dev
->watchdog_timeo
= TX_TIMEOUT
;
267 netif_napi_add(dev
, &priv
->napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
268 #ifdef CONFIG_NET_POLL_CONTROLLER
269 dev
->poll_controller
= gfar_netpoll
;
271 dev
->stop
= gfar_close
;
272 dev
->change_mtu
= gfar_change_mtu
;
274 dev
->set_multicast_list
= gfar_set_multi
;
276 dev
->ethtool_ops
= &gfar_ethtool_ops
;
278 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
279 priv
->rx_csum_enable
= 1;
280 dev
->features
|= NETIF_F_IP_CSUM
;
282 priv
->rx_csum_enable
= 0;
286 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
287 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
289 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
291 priv
->vlan_enable
= 1;
294 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
295 priv
->extended_hash
= 1;
296 priv
->hash_width
= 9;
298 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
299 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
300 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
301 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
302 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
303 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
304 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
305 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
306 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
307 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
308 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
309 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
310 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
311 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
312 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
313 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
316 priv
->extended_hash
= 0;
317 priv
->hash_width
= 8;
319 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
320 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
321 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
322 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
323 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
324 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
325 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
326 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
329 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
330 priv
->padding
= DEFAULT_PADDING
;
334 if (dev
->features
& NETIF_F_IP_CSUM
)
335 dev
->hard_header_len
+= GMAC_FCB_LEN
;
337 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
338 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
339 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
341 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
342 priv
->txcount
= DEFAULT_TXCOUNT
;
343 priv
->txtime
= DEFAULT_TXTIME
;
344 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
345 priv
->rxcount
= DEFAULT_RXCOUNT
;
346 priv
->rxtime
= DEFAULT_RXTIME
;
348 /* Enable most messages by default */
349 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
351 /* Carrier starts down, phylib will bring it up */
352 netif_carrier_off(dev
);
354 err
= register_netdev(dev
);
357 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
362 /* Create all the sysfs files */
363 gfar_init_sysfs(dev
);
365 /* Print out the device info */
366 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
368 /* Even more device info helps when determining which kernel */
369 /* provided which set of benchmarks. */
370 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
371 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
372 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
383 static int gfar_remove(struct platform_device
*pdev
)
385 struct net_device
*dev
= platform_get_drvdata(pdev
);
386 struct gfar_private
*priv
= netdev_priv(dev
);
388 platform_set_drvdata(pdev
, NULL
);
397 static int gfar_suspend(struct platform_device
*pdev
, pm_message_t state
)
399 struct net_device
*dev
= platform_get_drvdata(pdev
);
400 struct gfar_private
*priv
= netdev_priv(dev
);
404 int magic_packet
= priv
->wol_en
&&
405 (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
407 netif_device_detach(dev
);
409 if (netif_running(dev
)) {
410 spin_lock_irqsave(&priv
->txlock
, flags
);
411 spin_lock(&priv
->rxlock
);
413 gfar_halt_nodisable(dev
);
415 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
416 tempval
= gfar_read(&priv
->regs
->maccfg1
);
418 tempval
&= ~MACCFG1_TX_EN
;
421 tempval
&= ~MACCFG1_RX_EN
;
423 gfar_write(&priv
->regs
->maccfg1
, tempval
);
425 spin_unlock(&priv
->rxlock
);
426 spin_unlock_irqrestore(&priv
->txlock
, flags
);
428 napi_disable(&priv
->napi
);
431 /* Enable interrupt on Magic Packet */
432 gfar_write(&priv
->regs
->imask
, IMASK_MAG
);
434 /* Enable Magic Packet mode */
435 tempval
= gfar_read(&priv
->regs
->maccfg2
);
436 tempval
|= MACCFG2_MPEN
;
437 gfar_write(&priv
->regs
->maccfg2
, tempval
);
439 phy_stop(priv
->phydev
);
446 static int gfar_resume(struct platform_device
*pdev
)
448 struct net_device
*dev
= platform_get_drvdata(pdev
);
449 struct gfar_private
*priv
= netdev_priv(dev
);
452 int magic_packet
= priv
->wol_en
&&
453 (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
455 if (!netif_running(dev
)) {
456 netif_device_attach(dev
);
460 if (!magic_packet
&& priv
->phydev
)
461 phy_start(priv
->phydev
);
463 /* Disable Magic Packet mode, in case something
467 spin_lock_irqsave(&priv
->txlock
, flags
);
468 spin_lock(&priv
->rxlock
);
470 tempval
= gfar_read(&priv
->regs
->maccfg2
);
471 tempval
&= ~MACCFG2_MPEN
;
472 gfar_write(&priv
->regs
->maccfg2
, tempval
);
476 spin_unlock(&priv
->rxlock
);
477 spin_unlock_irqrestore(&priv
->txlock
, flags
);
479 netif_device_attach(dev
);
481 napi_enable(&priv
->napi
);
486 #define gfar_suspend NULL
487 #define gfar_resume NULL
490 /* Reads the controller's registers to determine what interface
491 * connects it to the PHY.
493 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
495 struct gfar_private
*priv
= netdev_priv(dev
);
496 u32 ecntrl
= gfar_read(&priv
->regs
->ecntrl
);
498 if (ecntrl
& ECNTRL_SGMII_MODE
)
499 return PHY_INTERFACE_MODE_SGMII
;
501 if (ecntrl
& ECNTRL_TBI_MODE
) {
502 if (ecntrl
& ECNTRL_REDUCED_MODE
)
503 return PHY_INTERFACE_MODE_RTBI
;
505 return PHY_INTERFACE_MODE_TBI
;
508 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
509 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
510 return PHY_INTERFACE_MODE_RMII
;
512 phy_interface_t interface
= priv
->einfo
->interface
;
515 * This isn't autodetected right now, so it must
516 * be set by the device tree or platform code.
518 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
519 return PHY_INTERFACE_MODE_RGMII_ID
;
521 return PHY_INTERFACE_MODE_RGMII
;
525 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
526 return PHY_INTERFACE_MODE_GMII
;
528 return PHY_INTERFACE_MODE_MII
;
532 /* Initializes driver's PHY state, and attaches to the PHY.
533 * Returns 0 on success.
535 static int init_phy(struct net_device
*dev
)
537 struct gfar_private
*priv
= netdev_priv(dev
);
538 uint gigabit_support
=
539 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
540 SUPPORTED_1000baseT_Full
: 0;
541 struct phy_device
*phydev
;
542 char phy_id
[BUS_ID_SIZE
];
543 phy_interface_t interface
;
547 priv
->oldduplex
= -1;
549 snprintf(phy_id
, sizeof(phy_id
), PHY_ID_FMT
, priv
->einfo
->bus_id
, priv
->einfo
->phy_id
);
551 interface
= gfar_get_interface(dev
);
553 phydev
= phy_connect(dev
, phy_id
, &adjust_link
, 0, interface
);
555 if (interface
== PHY_INTERFACE_MODE_SGMII
)
556 gfar_configure_serdes(dev
);
558 if (IS_ERR(phydev
)) {
559 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
560 return PTR_ERR(phydev
);
563 /* Remove any features not supported by the controller */
564 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
565 phydev
->advertising
= phydev
->supported
;
567 priv
->phydev
= phydev
;
573 * Initialize TBI PHY interface for communicating with the
574 * SERDES lynx PHY on the chip. We communicate with this PHY
575 * through the MDIO bus on each controller, treating it as a
576 * "normal" PHY at the address found in the TBIPA register. We assume
577 * that the TBIPA register is valid. Either the MDIO bus code will set
578 * it to a value that doesn't conflict with other PHYs on the bus, or the
579 * value doesn't matter, as there are no other PHYs on the bus.
581 static void gfar_configure_serdes(struct net_device
*dev
)
583 struct gfar_private
*priv
= netdev_priv(dev
);
584 struct gfar_mii __iomem
*regs
=
585 (void __iomem
*)&priv
->regs
->gfar_mii_regs
;
586 int tbipa
= gfar_read(&priv
->regs
->tbipa
);
587 struct mii_bus
*bus
= gfar_get_miibus(priv
);
590 mutex_lock(&bus
->mdio_lock
);
592 /* If the link is already up, we must already be ok, and don't need to
593 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
594 * everything for us? Resetting it takes the link down and requires
595 * several seconds for it to come back.
597 if (gfar_local_mdio_read(regs
, tbipa
, MII_BMSR
) & BMSR_LSTATUS
)
600 /* Single clk mode, mii mode off(for serdes communication) */
601 gfar_local_mdio_write(regs
, tbipa
, MII_TBICON
, TBICON_CLK_SELECT
);
603 gfar_local_mdio_write(regs
, tbipa
, MII_ADVERTISE
,
604 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
605 ADVERTISE_1000XPSE_ASYM
);
607 gfar_local_mdio_write(regs
, tbipa
, MII_BMCR
, BMCR_ANENABLE
|
608 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
612 mutex_unlock(&bus
->mdio_lock
);
615 static void init_registers(struct net_device
*dev
)
617 struct gfar_private
*priv
= netdev_priv(dev
);
620 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
622 /* Initialize IMASK */
623 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
625 /* Init hash registers to zero */
626 gfar_write(&priv
->regs
->igaddr0
, 0);
627 gfar_write(&priv
->regs
->igaddr1
, 0);
628 gfar_write(&priv
->regs
->igaddr2
, 0);
629 gfar_write(&priv
->regs
->igaddr3
, 0);
630 gfar_write(&priv
->regs
->igaddr4
, 0);
631 gfar_write(&priv
->regs
->igaddr5
, 0);
632 gfar_write(&priv
->regs
->igaddr6
, 0);
633 gfar_write(&priv
->regs
->igaddr7
, 0);
635 gfar_write(&priv
->regs
->gaddr0
, 0);
636 gfar_write(&priv
->regs
->gaddr1
, 0);
637 gfar_write(&priv
->regs
->gaddr2
, 0);
638 gfar_write(&priv
->regs
->gaddr3
, 0);
639 gfar_write(&priv
->regs
->gaddr4
, 0);
640 gfar_write(&priv
->regs
->gaddr5
, 0);
641 gfar_write(&priv
->regs
->gaddr6
, 0);
642 gfar_write(&priv
->regs
->gaddr7
, 0);
644 /* Zero out the rmon mib registers if it has them */
645 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
646 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
648 /* Mask off the CAM interrupts */
649 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
650 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
653 /* Initialize the max receive buffer length */
654 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
656 /* Initialize the Minimum Frame Length Register */
657 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
661 /* Halt the receive and transmit queues */
662 static void gfar_halt_nodisable(struct net_device
*dev
)
664 struct gfar_private
*priv
= netdev_priv(dev
);
665 struct gfar __iomem
*regs
= priv
->regs
;
668 /* Mask all interrupts */
669 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
671 /* Clear all interrupts */
672 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
674 /* Stop the DMA, and wait for it to stop */
675 tempval
= gfar_read(&priv
->regs
->dmactrl
);
676 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
677 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
678 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
679 gfar_write(&priv
->regs
->dmactrl
, tempval
);
681 while (!(gfar_read(&priv
->regs
->ievent
) &
682 (IEVENT_GRSC
| IEVENT_GTSC
)))
687 /* Halt the receive and transmit queues */
688 void gfar_halt(struct net_device
*dev
)
690 struct gfar_private
*priv
= netdev_priv(dev
);
691 struct gfar __iomem
*regs
= priv
->regs
;
694 gfar_halt_nodisable(dev
);
696 /* Disable Rx and Tx */
697 tempval
= gfar_read(®s
->maccfg1
);
698 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
699 gfar_write(®s
->maccfg1
, tempval
);
702 void stop_gfar(struct net_device
*dev
)
704 struct gfar_private
*priv
= netdev_priv(dev
);
705 struct gfar __iomem
*regs
= priv
->regs
;
708 phy_stop(priv
->phydev
);
711 spin_lock_irqsave(&priv
->txlock
, flags
);
712 spin_lock(&priv
->rxlock
);
716 spin_unlock(&priv
->rxlock
);
717 spin_unlock_irqrestore(&priv
->txlock
, flags
);
720 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
721 free_irq(priv
->interruptError
, dev
);
722 free_irq(priv
->interruptTransmit
, dev
);
723 free_irq(priv
->interruptReceive
, dev
);
725 free_irq(priv
->interruptTransmit
, dev
);
728 free_skb_resources(priv
);
730 dma_free_coherent(&dev
->dev
,
731 sizeof(struct txbd8
)*priv
->tx_ring_size
732 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
734 gfar_read(®s
->tbase0
));
737 /* If there are any tx skbs or rx skbs still around, free them.
738 * Then free tx_skbuff and rx_skbuff */
739 static void free_skb_resources(struct gfar_private
*priv
)
745 /* Go through all the buffer descriptors and free their data buffers */
746 txbdp
= priv
->tx_bd_base
;
748 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
750 if (priv
->tx_skbuff
[i
]) {
751 dma_unmap_single(&priv
->dev
->dev
, txbdp
->bufPtr
,
754 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
755 priv
->tx_skbuff
[i
] = NULL
;
761 kfree(priv
->tx_skbuff
);
763 rxbdp
= priv
->rx_bd_base
;
765 /* rx_skbuff is not guaranteed to be allocated, so only
766 * free it and its contents if it is allocated */
767 if(priv
->rx_skbuff
!= NULL
) {
768 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
769 if (priv
->rx_skbuff
[i
]) {
770 dma_unmap_single(&priv
->dev
->dev
, rxbdp
->bufPtr
,
771 priv
->rx_buffer_size
,
774 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
775 priv
->rx_skbuff
[i
] = NULL
;
785 kfree(priv
->rx_skbuff
);
789 void gfar_start(struct net_device
*dev
)
791 struct gfar_private
*priv
= netdev_priv(dev
);
792 struct gfar __iomem
*regs
= priv
->regs
;
795 /* Enable Rx and Tx in MACCFG1 */
796 tempval
= gfar_read(®s
->maccfg1
);
797 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
798 gfar_write(®s
->maccfg1
, tempval
);
800 /* Initialize DMACTRL to have WWR and WOP */
801 tempval
= gfar_read(&priv
->regs
->dmactrl
);
802 tempval
|= DMACTRL_INIT_SETTINGS
;
803 gfar_write(&priv
->regs
->dmactrl
, tempval
);
805 /* Make sure we aren't stopped */
806 tempval
= gfar_read(&priv
->regs
->dmactrl
);
807 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
808 gfar_write(&priv
->regs
->dmactrl
, tempval
);
810 /* Clear THLT/RHLT, so that the DMA starts polling now */
811 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
812 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
814 /* Unmask the interrupts we look for */
815 gfar_write(®s
->imask
, IMASK_DEFAULT
);
818 /* Bring the controller up and running */
819 int startup_gfar(struct net_device
*dev
)
826 struct gfar_private
*priv
= netdev_priv(dev
);
827 struct gfar __iomem
*regs
= priv
->regs
;
832 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
834 /* Allocate memory for the buffer descriptors */
835 vaddr
= (unsigned long) dma_alloc_coherent(&dev
->dev
,
836 sizeof (struct txbd8
) * priv
->tx_ring_size
+
837 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
841 if (netif_msg_ifup(priv
))
842 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
847 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
849 /* enet DMA only understands physical addresses */
850 gfar_write(®s
->tbase0
, addr
);
852 /* Start the rx descriptor ring where the tx ring leaves off */
853 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
854 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
855 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
856 gfar_write(®s
->rbase0
, addr
);
858 /* Setup the skbuff rings */
860 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
861 priv
->tx_ring_size
, GFP_KERNEL
);
863 if (NULL
== priv
->tx_skbuff
) {
864 if (netif_msg_ifup(priv
))
865 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
871 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
872 priv
->tx_skbuff
[i
] = NULL
;
875 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
876 priv
->rx_ring_size
, GFP_KERNEL
);
878 if (NULL
== priv
->rx_skbuff
) {
879 if (netif_msg_ifup(priv
))
880 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
886 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
887 priv
->rx_skbuff
[i
] = NULL
;
889 /* Initialize some variables in our dev structure */
890 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
891 priv
->cur_rx
= priv
->rx_bd_base
;
892 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
895 /* Initialize Transmit Descriptor Ring */
896 txbdp
= priv
->tx_bd_base
;
897 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
904 /* Set the last descriptor in the ring to indicate wrap */
906 txbdp
->status
|= TXBD_WRAP
;
908 rxbdp
= priv
->rx_bd_base
;
909 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
912 skb
= gfar_new_skb(dev
);
915 printk(KERN_ERR
"%s: Can't allocate RX buffers\n",
918 goto err_rxalloc_fail
;
921 priv
->rx_skbuff
[i
] = skb
;
923 gfar_new_rxbdp(dev
, rxbdp
, skb
);
928 /* Set the last descriptor in the ring to wrap */
930 rxbdp
->status
|= RXBD_WRAP
;
932 /* If the device has multiple interrupts, register for
933 * them. Otherwise, only register for the one */
934 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
935 /* Install our interrupt handlers for Error,
936 * Transmit, and Receive */
937 if (request_irq(priv
->interruptError
, gfar_error
,
938 0, "enet_error", dev
) < 0) {
939 if (netif_msg_intr(priv
))
940 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
941 dev
->name
, priv
->interruptError
);
947 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
948 0, "enet_tx", dev
) < 0) {
949 if (netif_msg_intr(priv
))
950 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
951 dev
->name
, priv
->interruptTransmit
);
958 if (request_irq(priv
->interruptReceive
, gfar_receive
,
959 0, "enet_rx", dev
) < 0) {
960 if (netif_msg_intr(priv
))
961 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
962 dev
->name
, priv
->interruptReceive
);
968 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
969 0, "gfar_interrupt", dev
) < 0) {
970 if (netif_msg_intr(priv
))
971 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
972 dev
->name
, priv
->interruptError
);
979 phy_start(priv
->phydev
);
981 /* Configure the coalescing support */
982 if (priv
->txcoalescing
)
983 gfar_write(®s
->txic
,
984 mk_ic_value(priv
->txcount
, priv
->txtime
));
986 gfar_write(®s
->txic
, 0);
988 if (priv
->rxcoalescing
)
989 gfar_write(®s
->rxic
,
990 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
992 gfar_write(®s
->rxic
, 0);
994 if (priv
->rx_csum_enable
)
995 rctrl
|= RCTRL_CHECKSUMMING
;
997 if (priv
->extended_hash
) {
998 rctrl
|= RCTRL_EXTHASH
;
1000 gfar_clear_exact_match(dev
);
1001 rctrl
|= RCTRL_EMEN
;
1004 if (priv
->vlan_enable
)
1005 rctrl
|= RCTRL_VLAN
;
1007 if (priv
->padding
) {
1008 rctrl
&= ~RCTRL_PAL_MASK
;
1009 rctrl
|= RCTRL_PADDING(priv
->padding
);
1012 /* Init rctrl based on our settings */
1013 gfar_write(&priv
->regs
->rctrl
, rctrl
);
1015 if (dev
->features
& NETIF_F_IP_CSUM
)
1016 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
1018 /* Set the extraction length and index */
1019 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
1020 ATTRELI_EI(priv
->rx_stash_index
);
1022 gfar_write(&priv
->regs
->attreli
, attrs
);
1024 /* Start with defaults, and add stashing or locking
1025 * depending on the approprate variables */
1026 attrs
= ATTR_INIT_SETTINGS
;
1028 if (priv
->bd_stash_en
)
1029 attrs
|= ATTR_BDSTASH
;
1031 if (priv
->rx_stash_size
!= 0)
1032 attrs
|= ATTR_BUFSTASH
;
1034 gfar_write(&priv
->regs
->attr
, attrs
);
1036 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
1037 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
1038 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
1040 /* Start the controller */
1046 free_irq(priv
->interruptTransmit
, dev
);
1048 free_irq(priv
->interruptError
, dev
);
1052 free_skb_resources(priv
);
1054 dma_free_coherent(&dev
->dev
,
1055 sizeof(struct txbd8
)*priv
->tx_ring_size
1056 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
1058 gfar_read(®s
->tbase0
));
1063 /* Called when something needs to use the ethernet device */
1064 /* Returns 0 for success. */
1065 static int gfar_enet_open(struct net_device
*dev
)
1067 struct gfar_private
*priv
= netdev_priv(dev
);
1070 napi_enable(&priv
->napi
);
1072 /* Initialize a bunch of registers */
1073 init_registers(dev
);
1075 gfar_set_mac_address(dev
);
1077 err
= init_phy(dev
);
1080 napi_disable(&priv
->napi
);
1084 err
= startup_gfar(dev
);
1086 napi_disable(&priv
->napi
);
1090 netif_start_queue(dev
);
1095 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
1097 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
1099 memset(fcb
, 0, GMAC_FCB_LEN
);
1104 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1108 /* If we're here, it's a IP packet with a TCP or UDP
1109 * payload. We set it to checksum, using a pseudo-header
1112 flags
= TXFCB_DEFAULT
;
1114 /* Tell the controller what the protocol is */
1115 /* And provide the already calculated phcs */
1116 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1118 fcb
->phcs
= udp_hdr(skb
)->check
;
1120 fcb
->phcs
= tcp_hdr(skb
)->check
;
1122 /* l3os is the distance between the start of the
1123 * frame (skb->data) and the start of the IP hdr.
1124 * l4os is the distance between the start of the
1125 * l3 hdr and the l4 hdr */
1126 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1127 fcb
->l4os
= skb_network_header_len(skb
);
1132 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1134 fcb
->flags
|= TXFCB_VLN
;
1135 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1138 /* This is called by the kernel when a frame is ready for transmission. */
1139 /* It is pointed to by the dev->hard_start_xmit function pointer */
1140 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1142 struct gfar_private
*priv
= netdev_priv(dev
);
1143 struct txfcb
*fcb
= NULL
;
1144 struct txbd8
*txbdp
;
1146 unsigned long flags
;
1148 /* Update transmit stats */
1149 dev
->stats
.tx_bytes
+= skb
->len
;
1152 spin_lock_irqsave(&priv
->txlock
, flags
);
1154 /* Point at the first free tx descriptor */
1155 txbdp
= priv
->cur_tx
;
1157 /* Clear all but the WRAP status flags */
1158 status
= txbdp
->status
& TXBD_WRAP
;
1160 /* Set up checksumming */
1161 if (likely((dev
->features
& NETIF_F_IP_CSUM
)
1162 && (CHECKSUM_PARTIAL
== skb
->ip_summed
))) {
1163 fcb
= gfar_add_fcb(skb
, txbdp
);
1165 gfar_tx_checksum(skb
, fcb
);
1168 if (priv
->vlan_enable
&&
1169 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
1170 if (unlikely(NULL
== fcb
)) {
1171 fcb
= gfar_add_fcb(skb
, txbdp
);
1175 gfar_tx_vlan(skb
, fcb
);
1178 /* Set buffer length and pointer */
1179 txbdp
->length
= skb
->len
;
1180 txbdp
->bufPtr
= dma_map_single(&dev
->dev
, skb
->data
,
1181 skb
->len
, DMA_TO_DEVICE
);
1183 /* Save the skb pointer so we can free it later */
1184 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1186 /* Update the current skb pointer (wrapping if this was the last) */
1188 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1190 /* Flag the BD as interrupt-causing */
1191 status
|= TXBD_INTERRUPT
;
1193 /* Flag the BD as ready to go, last in frame, and */
1194 /* in need of CRC */
1195 status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
1197 dev
->trans_start
= jiffies
;
1199 /* The powerpc-specific eieio() is used, as wmb() has too strong
1200 * semantics (it requires synchronization between cacheable and
1201 * uncacheable mappings, which eieio doesn't provide and which we
1202 * don't need), thus requiring a more expensive sync instruction. At
1203 * some point, the set of architecture-independent barrier functions
1204 * should be expanded to include weaker barriers.
1208 txbdp
->status
= status
;
1210 /* If this was the last BD in the ring, the next one */
1211 /* is at the beginning of the ring */
1212 if (txbdp
->status
& TXBD_WRAP
)
1213 txbdp
= priv
->tx_bd_base
;
1217 /* If the next BD still needs to be cleaned up, then the bds
1218 are full. We need to tell the kernel to stop sending us stuff. */
1219 if (txbdp
== priv
->dirty_tx
) {
1220 netif_stop_queue(dev
);
1222 dev
->stats
.tx_fifo_errors
++;
1225 /* Update the current txbd to the next one */
1226 priv
->cur_tx
= txbdp
;
1228 /* Tell the DMA to go go go */
1229 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1232 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1237 /* Stops the kernel queue, and halts the controller */
1238 static int gfar_close(struct net_device
*dev
)
1240 struct gfar_private
*priv
= netdev_priv(dev
);
1242 napi_disable(&priv
->napi
);
1244 cancel_work_sync(&priv
->reset_task
);
1247 /* Disconnect from the PHY */
1248 phy_disconnect(priv
->phydev
);
1249 priv
->phydev
= NULL
;
1251 netif_stop_queue(dev
);
1256 /* Changes the mac address if the controller is not running. */
1257 static int gfar_set_mac_address(struct net_device
*dev
)
1259 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1265 /* Enables and disables VLAN insertion/extraction */
1266 static void gfar_vlan_rx_register(struct net_device
*dev
,
1267 struct vlan_group
*grp
)
1269 struct gfar_private
*priv
= netdev_priv(dev
);
1270 unsigned long flags
;
1273 spin_lock_irqsave(&priv
->rxlock
, flags
);
1278 /* Enable VLAN tag insertion */
1279 tempval
= gfar_read(&priv
->regs
->tctrl
);
1280 tempval
|= TCTRL_VLINS
;
1282 gfar_write(&priv
->regs
->tctrl
, tempval
);
1284 /* Enable VLAN tag extraction */
1285 tempval
= gfar_read(&priv
->regs
->rctrl
);
1286 tempval
|= RCTRL_VLEX
;
1287 gfar_write(&priv
->regs
->rctrl
, tempval
);
1289 /* Disable VLAN tag insertion */
1290 tempval
= gfar_read(&priv
->regs
->tctrl
);
1291 tempval
&= ~TCTRL_VLINS
;
1292 gfar_write(&priv
->regs
->tctrl
, tempval
);
1294 /* Disable VLAN tag extraction */
1295 tempval
= gfar_read(&priv
->regs
->rctrl
);
1296 tempval
&= ~RCTRL_VLEX
;
1297 gfar_write(&priv
->regs
->rctrl
, tempval
);
1300 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1303 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1305 int tempsize
, tempval
;
1306 struct gfar_private
*priv
= netdev_priv(dev
);
1307 int oldsize
= priv
->rx_buffer_size
;
1308 int frame_size
= new_mtu
+ ETH_HLEN
;
1310 if (priv
->vlan_enable
)
1311 frame_size
+= VLAN_HLEN
;
1313 if (gfar_uses_fcb(priv
))
1314 frame_size
+= GMAC_FCB_LEN
;
1316 frame_size
+= priv
->padding
;
1318 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1319 if (netif_msg_drv(priv
))
1320 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1326 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1327 INCREMENTAL_BUFFER_SIZE
;
1329 /* Only stop and start the controller if it isn't already
1330 * stopped, and we changed something */
1331 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1334 priv
->rx_buffer_size
= tempsize
;
1338 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1339 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1341 /* If the mtu is larger than the max size for standard
1342 * ethernet frames (ie, a jumbo frame), then set maccfg2
1343 * to allow huge frames, and to check the length */
1344 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1346 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1347 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1349 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1351 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1353 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1359 /* gfar_reset_task gets scheduled when a packet has not been
1360 * transmitted after a set amount of time.
1361 * For now, assume that clearing out all the structures, and
1362 * starting over will fix the problem.
1364 static void gfar_reset_task(struct work_struct
*work
)
1366 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
1368 struct net_device
*dev
= priv
->dev
;
1370 if (dev
->flags
& IFF_UP
) {
1375 netif_tx_schedule_all(dev
);
1378 static void gfar_timeout(struct net_device
*dev
)
1380 struct gfar_private
*priv
= netdev_priv(dev
);
1382 dev
->stats
.tx_errors
++;
1383 schedule_work(&priv
->reset_task
);
1386 /* Interrupt Handler for Transmit complete */
1387 static int gfar_clean_tx_ring(struct net_device
*dev
)
1390 struct gfar_private
*priv
= netdev_priv(dev
);
1393 bdp
= priv
->dirty_tx
;
1394 while ((bdp
->status
& TXBD_READY
) == 0) {
1395 /* If dirty_tx and cur_tx are the same, then either the */
1396 /* ring is empty or full now (it could only be full in the beginning, */
1397 /* obviously). If it is empty, we are done. */
1398 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1403 /* Deferred means some collisions occurred during transmit, */
1404 /* but we eventually sent the packet. */
1405 if (bdp
->status
& TXBD_DEF
)
1406 dev
->stats
.collisions
++;
1408 /* Unmap the DMA memory */
1409 dma_unmap_single(&priv
->dev
->dev
, bdp
->bufPtr
,
1410 bdp
->length
, DMA_TO_DEVICE
);
1412 /* Free the sk buffer associated with this TxBD */
1413 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1415 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1417 (priv
->skb_dirtytx
+
1418 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1420 /* Clean BD length for empty detection */
1423 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1424 if (bdp
->status
& TXBD_WRAP
)
1425 bdp
= priv
->tx_bd_base
;
1429 /* Move dirty_tx to be the next bd */
1430 priv
->dirty_tx
= bdp
;
1432 /* We freed a buffer, so now we can restart transmission */
1433 if (netif_queue_stopped(dev
))
1434 netif_wake_queue(dev
);
1435 } /* while ((bdp->status & TXBD_READY) == 0) */
1437 dev
->stats
.tx_packets
+= howmany
;
1442 /* Interrupt Handler for Transmit complete */
1443 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
)
1445 struct net_device
*dev
= (struct net_device
*) dev_id
;
1446 struct gfar_private
*priv
= netdev_priv(dev
);
1449 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1452 spin_lock(&priv
->txlock
);
1454 gfar_clean_tx_ring(dev
);
1456 /* If we are coalescing the interrupts, reset the timer */
1457 /* Otherwise, clear it */
1458 if (likely(priv
->txcoalescing
)) {
1459 gfar_write(&priv
->regs
->txic
, 0);
1460 gfar_write(&priv
->regs
->txic
,
1461 mk_ic_value(priv
->txcount
, priv
->txtime
));
1464 spin_unlock(&priv
->txlock
);
1469 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
1470 struct sk_buff
*skb
)
1472 struct gfar_private
*priv
= netdev_priv(dev
);
1473 u32
* status_len
= (u32
*)bdp
;
1476 bdp
->bufPtr
= dma_map_single(&dev
->dev
, skb
->data
,
1477 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1479 flags
= RXBD_EMPTY
| RXBD_INTERRUPT
;
1481 if (bdp
== priv
->rx_bd_base
+ priv
->rx_ring_size
- 1)
1486 *status_len
= (u32
)flags
<< 16;
1490 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
1492 unsigned int alignamount
;
1493 struct gfar_private
*priv
= netdev_priv(dev
);
1494 struct sk_buff
*skb
= NULL
;
1496 /* We have to allocate the skb, so keep trying till we succeed */
1497 skb
= netdev_alloc_skb(dev
, priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1502 alignamount
= RXBUF_ALIGNMENT
-
1503 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1505 /* We need the data buffer to be aligned properly. We will reserve
1506 * as many bytes as needed to align the data properly
1508 skb_reserve(skb
, alignamount
);
1513 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
1515 struct gfar_private
*priv
= netdev_priv(dev
);
1516 struct net_device_stats
*stats
= &dev
->stats
;
1517 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1519 /* If the packet was truncated, none of the other errors
1521 if (status
& RXBD_TRUNCATED
) {
1522 stats
->rx_length_errors
++;
1528 /* Count the errors, if there were any */
1529 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1530 stats
->rx_length_errors
++;
1532 if (status
& RXBD_LARGE
)
1537 if (status
& RXBD_NONOCTET
) {
1538 stats
->rx_frame_errors
++;
1539 estats
->rx_nonoctet
++;
1541 if (status
& RXBD_CRCERR
) {
1542 estats
->rx_crcerr
++;
1543 stats
->rx_crc_errors
++;
1545 if (status
& RXBD_OVERRUN
) {
1546 estats
->rx_overrun
++;
1547 stats
->rx_crc_errors
++;
1551 irqreturn_t
gfar_receive(int irq
, void *dev_id
)
1553 struct net_device
*dev
= (struct net_device
*) dev_id
;
1554 struct gfar_private
*priv
= netdev_priv(dev
);
1558 /* Clear IEVENT, so interrupts aren't called again
1559 * because of the packets that have already arrived */
1560 gfar_write(&priv
->regs
->ievent
, IEVENT_RTX_MASK
);
1562 if (netif_rx_schedule_prep(dev
, &priv
->napi
)) {
1563 tempval
= gfar_read(&priv
->regs
->imask
);
1564 tempval
&= IMASK_RTX_DISABLED
;
1565 gfar_write(&priv
->regs
->imask
, tempval
);
1567 __netif_rx_schedule(dev
, &priv
->napi
);
1569 if (netif_msg_rx_err(priv
))
1570 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1571 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1572 gfar_read(&priv
->regs
->imask
));
1578 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1580 /* If valid headers were found, and valid sums
1581 * were verified, then we tell the kernel that no
1582 * checksumming is necessary. Otherwise, it is */
1583 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1584 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1586 skb
->ip_summed
= CHECKSUM_NONE
;
1590 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1592 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1594 /* Remove the FCB from the skb */
1595 skb_pull(skb
, GMAC_FCB_LEN
);
1600 /* gfar_process_frame() -- handle one incoming packet if skb
1602 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1605 struct gfar_private
*priv
= netdev_priv(dev
);
1606 struct rxfcb
*fcb
= NULL
;
1609 if (netif_msg_rx_err(priv
))
1610 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1611 dev
->stats
.rx_dropped
++;
1612 priv
->extra_stats
.rx_skbmissing
++;
1616 /* Prep the skb for the packet */
1617 skb_put(skb
, length
);
1619 /* Grab the FCB if there is one */
1620 if (gfar_uses_fcb(priv
))
1621 fcb
= gfar_get_fcb(skb
);
1623 /* Remove the padded bytes, if there are any */
1625 skb_pull(skb
, priv
->padding
);
1627 if (priv
->rx_csum_enable
)
1628 gfar_rx_checksum(skb
, fcb
);
1630 /* Tell the skb what kind of packet this is */
1631 skb
->protocol
= eth_type_trans(skb
, dev
);
1633 /* Send the packet up the stack */
1634 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
))) {
1635 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
,
1638 ret
= netif_receive_skb(skb
);
1640 if (NET_RX_DROP
== ret
)
1641 priv
->extra_stats
.kernel_dropped
++;
1647 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1648 * until the budget/quota has been reached. Returns the number
1651 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1654 struct sk_buff
*skb
;
1657 struct gfar_private
*priv
= netdev_priv(dev
);
1659 /* Get the first full descriptor */
1662 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1663 struct sk_buff
*newskb
;
1666 /* Add another skb for the future */
1667 newskb
= gfar_new_skb(dev
);
1669 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1671 dma_unmap_single(&priv
->dev
->dev
, bdp
->bufPtr
,
1672 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1674 /* We drop the frame if we failed to allocate a new buffer */
1675 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
1676 bdp
->status
& RXBD_ERR
)) {
1677 count_errors(bdp
->status
, dev
);
1679 if (unlikely(!newskb
))
1683 dev_kfree_skb_any(skb
);
1685 /* Increment the number of packets */
1686 dev
->stats
.rx_packets
++;
1689 /* Remove the FCS from the packet length */
1690 pkt_len
= bdp
->length
- 4;
1692 gfar_process_frame(dev
, skb
, pkt_len
);
1694 dev
->stats
.rx_bytes
+= pkt_len
;
1697 priv
->rx_skbuff
[priv
->skb_currx
] = newskb
;
1699 /* Setup the new bdp */
1700 gfar_new_rxbdp(dev
, bdp
, newskb
);
1702 /* Update to the next pointer */
1703 if (bdp
->status
& RXBD_WRAP
)
1704 bdp
= priv
->rx_bd_base
;
1708 /* update to point at the next skb */
1710 (priv
->skb_currx
+ 1) &
1711 RX_RING_MOD_MASK(priv
->rx_ring_size
);
1714 /* Update the current rxbd pointer to be the next one */
1720 static int gfar_poll(struct napi_struct
*napi
, int budget
)
1722 struct gfar_private
*priv
= container_of(napi
, struct gfar_private
, napi
);
1723 struct net_device
*dev
= priv
->dev
;
1725 unsigned long flags
;
1727 /* If we fail to get the lock, don't bother with the TX BDs */
1728 if (spin_trylock_irqsave(&priv
->txlock
, flags
)) {
1729 gfar_clean_tx_ring(dev
);
1730 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1733 howmany
= gfar_clean_rx_ring(dev
, budget
);
1735 if (howmany
< budget
) {
1736 netif_rx_complete(dev
, napi
);
1738 /* Clear the halt bit in RSTAT */
1739 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1741 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1743 /* If we are coalescing interrupts, update the timer */
1744 /* Otherwise, clear it */
1745 if (likely(priv
->rxcoalescing
)) {
1746 gfar_write(&priv
->regs
->rxic
, 0);
1747 gfar_write(&priv
->regs
->rxic
,
1748 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1755 #ifdef CONFIG_NET_POLL_CONTROLLER
1757 * Polling 'interrupt' - used by things like netconsole to send skbs
1758 * without having to re-enable interrupts. It's not called while
1759 * the interrupt routine is executing.
1761 static void gfar_netpoll(struct net_device
*dev
)
1763 struct gfar_private
*priv
= netdev_priv(dev
);
1765 /* If the device has multiple interrupts, run tx/rx */
1766 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1767 disable_irq(priv
->interruptTransmit
);
1768 disable_irq(priv
->interruptReceive
);
1769 disable_irq(priv
->interruptError
);
1770 gfar_interrupt(priv
->interruptTransmit
, dev
);
1771 enable_irq(priv
->interruptError
);
1772 enable_irq(priv
->interruptReceive
);
1773 enable_irq(priv
->interruptTransmit
);
1775 disable_irq(priv
->interruptTransmit
);
1776 gfar_interrupt(priv
->interruptTransmit
, dev
);
1777 enable_irq(priv
->interruptTransmit
);
1782 /* The interrupt handler for devices with one interrupt */
1783 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
)
1785 struct net_device
*dev
= dev_id
;
1786 struct gfar_private
*priv
= netdev_priv(dev
);
1788 /* Save ievent for future reference */
1789 u32 events
= gfar_read(&priv
->regs
->ievent
);
1791 /* Check for reception */
1792 if (events
& IEVENT_RX_MASK
)
1793 gfar_receive(irq
, dev_id
);
1795 /* Check for transmit completion */
1796 if (events
& IEVENT_TX_MASK
)
1797 gfar_transmit(irq
, dev_id
);
1799 /* Check for errors */
1800 if (events
& IEVENT_ERR_MASK
)
1801 gfar_error(irq
, dev_id
);
1806 /* Called every time the controller might need to be made
1807 * aware of new link state. The PHY code conveys this
1808 * information through variables in the phydev structure, and this
1809 * function converts those variables into the appropriate
1810 * register values, and can bring down the device if needed.
1812 static void adjust_link(struct net_device
*dev
)
1814 struct gfar_private
*priv
= netdev_priv(dev
);
1815 struct gfar __iomem
*regs
= priv
->regs
;
1816 unsigned long flags
;
1817 struct phy_device
*phydev
= priv
->phydev
;
1820 spin_lock_irqsave(&priv
->txlock
, flags
);
1822 u32 tempval
= gfar_read(®s
->maccfg2
);
1823 u32 ecntrl
= gfar_read(®s
->ecntrl
);
1825 /* Now we make sure that we can be in full duplex mode.
1826 * If not, we operate in half-duplex mode. */
1827 if (phydev
->duplex
!= priv
->oldduplex
) {
1829 if (!(phydev
->duplex
))
1830 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1832 tempval
|= MACCFG2_FULL_DUPLEX
;
1834 priv
->oldduplex
= phydev
->duplex
;
1837 if (phydev
->speed
!= priv
->oldspeed
) {
1839 switch (phydev
->speed
) {
1842 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1847 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1849 /* Reduced mode distinguishes
1850 * between 10 and 100 */
1851 if (phydev
->speed
== SPEED_100
)
1852 ecntrl
|= ECNTRL_R100
;
1854 ecntrl
&= ~(ECNTRL_R100
);
1857 if (netif_msg_link(priv
))
1859 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1860 dev
->name
, phydev
->speed
);
1864 priv
->oldspeed
= phydev
->speed
;
1867 gfar_write(®s
->maccfg2
, tempval
);
1868 gfar_write(®s
->ecntrl
, ecntrl
);
1870 if (!priv
->oldlink
) {
1874 } else if (priv
->oldlink
) {
1878 priv
->oldduplex
= -1;
1881 if (new_state
&& netif_msg_link(priv
))
1882 phy_print_status(phydev
);
1884 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1887 /* Update the hash table based on the current list of multicast
1888 * addresses we subscribe to. Also, change the promiscuity of
1889 * the device based on the flags (this function is called
1890 * whenever dev->flags is changed */
1891 static void gfar_set_multi(struct net_device
*dev
)
1893 struct dev_mc_list
*mc_ptr
;
1894 struct gfar_private
*priv
= netdev_priv(dev
);
1895 struct gfar __iomem
*regs
= priv
->regs
;
1898 if(dev
->flags
& IFF_PROMISC
) {
1899 /* Set RCTRL to PROM */
1900 tempval
= gfar_read(®s
->rctrl
);
1901 tempval
|= RCTRL_PROM
;
1902 gfar_write(®s
->rctrl
, tempval
);
1904 /* Set RCTRL to not PROM */
1905 tempval
= gfar_read(®s
->rctrl
);
1906 tempval
&= ~(RCTRL_PROM
);
1907 gfar_write(®s
->rctrl
, tempval
);
1910 if(dev
->flags
& IFF_ALLMULTI
) {
1911 /* Set the hash to rx all multicast frames */
1912 gfar_write(®s
->igaddr0
, 0xffffffff);
1913 gfar_write(®s
->igaddr1
, 0xffffffff);
1914 gfar_write(®s
->igaddr2
, 0xffffffff);
1915 gfar_write(®s
->igaddr3
, 0xffffffff);
1916 gfar_write(®s
->igaddr4
, 0xffffffff);
1917 gfar_write(®s
->igaddr5
, 0xffffffff);
1918 gfar_write(®s
->igaddr6
, 0xffffffff);
1919 gfar_write(®s
->igaddr7
, 0xffffffff);
1920 gfar_write(®s
->gaddr0
, 0xffffffff);
1921 gfar_write(®s
->gaddr1
, 0xffffffff);
1922 gfar_write(®s
->gaddr2
, 0xffffffff);
1923 gfar_write(®s
->gaddr3
, 0xffffffff);
1924 gfar_write(®s
->gaddr4
, 0xffffffff);
1925 gfar_write(®s
->gaddr5
, 0xffffffff);
1926 gfar_write(®s
->gaddr6
, 0xffffffff);
1927 gfar_write(®s
->gaddr7
, 0xffffffff);
1932 /* zero out the hash */
1933 gfar_write(®s
->igaddr0
, 0x0);
1934 gfar_write(®s
->igaddr1
, 0x0);
1935 gfar_write(®s
->igaddr2
, 0x0);
1936 gfar_write(®s
->igaddr3
, 0x0);
1937 gfar_write(®s
->igaddr4
, 0x0);
1938 gfar_write(®s
->igaddr5
, 0x0);
1939 gfar_write(®s
->igaddr6
, 0x0);
1940 gfar_write(®s
->igaddr7
, 0x0);
1941 gfar_write(®s
->gaddr0
, 0x0);
1942 gfar_write(®s
->gaddr1
, 0x0);
1943 gfar_write(®s
->gaddr2
, 0x0);
1944 gfar_write(®s
->gaddr3
, 0x0);
1945 gfar_write(®s
->gaddr4
, 0x0);
1946 gfar_write(®s
->gaddr5
, 0x0);
1947 gfar_write(®s
->gaddr6
, 0x0);
1948 gfar_write(®s
->gaddr7
, 0x0);
1950 /* If we have extended hash tables, we need to
1951 * clear the exact match registers to prepare for
1953 if (priv
->extended_hash
) {
1954 em_num
= GFAR_EM_NUM
+ 1;
1955 gfar_clear_exact_match(dev
);
1962 if(dev
->mc_count
== 0)
1965 /* Parse the list, and set the appropriate bits */
1966 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1968 gfar_set_mac_for_addr(dev
, idx
,
1972 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1980 /* Clears each of the exact match registers to zero, so they
1981 * don't interfere with normal reception */
1982 static void gfar_clear_exact_match(struct net_device
*dev
)
1985 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
1987 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
1988 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
1991 /* Set the appropriate hash bit for the given addr */
1992 /* The algorithm works like so:
1993 * 1) Take the Destination Address (ie the multicast address), and
1994 * do a CRC on it (little endian), and reverse the bits of the
1996 * 2) Use the 8 most significant bits as a hash into a 256-entry
1997 * table. The table is controlled through 8 32-bit registers:
1998 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1999 * gaddr7. This means that the 3 most significant bits in the
2000 * hash index which gaddr register to use, and the 5 other bits
2001 * indicate which bit (assuming an IBM numbering scheme, which
2002 * for PowerPC (tm) is usually the case) in the register holds
2004 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
2007 struct gfar_private
*priv
= netdev_priv(dev
);
2008 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
2009 int width
= priv
->hash_width
;
2010 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
2011 u8 whichreg
= result
>> (32 - width
+ 5);
2012 u32 value
= (1 << (31-whichbit
));
2014 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
2016 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
2022 /* There are multiple MAC Address register pairs on some controllers
2023 * This function sets the numth pair to a given address
2025 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
2027 struct gfar_private
*priv
= netdev_priv(dev
);
2029 char tmpbuf
[MAC_ADDR_LEN
];
2031 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
2035 /* Now copy it into the mac registers backwards, cuz */
2036 /* little endian is silly */
2037 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
2038 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
2040 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
2042 tempval
= *((u32
*) (tmpbuf
+ 4));
2044 gfar_write(macptr
+1, tempval
);
2047 /* GFAR error interrupt handler */
2048 static irqreturn_t
gfar_error(int irq
, void *dev_id
)
2050 struct net_device
*dev
= dev_id
;
2051 struct gfar_private
*priv
= netdev_priv(dev
);
2053 /* Save ievent for future reference */
2054 u32 events
= gfar_read(&priv
->regs
->ievent
);
2057 gfar_write(&priv
->regs
->ievent
, events
& IEVENT_ERR_MASK
);
2059 /* Magic Packet is not an error. */
2060 if ((priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
2061 (events
& IEVENT_MAG
))
2062 events
&= ~IEVENT_MAG
;
2065 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
2066 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2067 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
2069 /* Update the error counters */
2070 if (events
& IEVENT_TXE
) {
2071 dev
->stats
.tx_errors
++;
2073 if (events
& IEVENT_LC
)
2074 dev
->stats
.tx_window_errors
++;
2075 if (events
& IEVENT_CRL
)
2076 dev
->stats
.tx_aborted_errors
++;
2077 if (events
& IEVENT_XFUN
) {
2078 if (netif_msg_tx_err(priv
))
2079 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
2080 "packet dropped.\n", dev
->name
);
2081 dev
->stats
.tx_dropped
++;
2082 priv
->extra_stats
.tx_underrun
++;
2084 /* Reactivate the Tx Queues */
2085 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
2087 if (netif_msg_tx_err(priv
))
2088 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
2090 if (events
& IEVENT_BSY
) {
2091 dev
->stats
.rx_errors
++;
2092 priv
->extra_stats
.rx_bsy
++;
2094 gfar_receive(irq
, dev_id
);
2096 if (netif_msg_rx_err(priv
))
2097 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
2098 dev
->name
, gfar_read(&priv
->regs
->rstat
));
2100 if (events
& IEVENT_BABR
) {
2101 dev
->stats
.rx_errors
++;
2102 priv
->extra_stats
.rx_babr
++;
2104 if (netif_msg_rx_err(priv
))
2105 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
2107 if (events
& IEVENT_EBERR
) {
2108 priv
->extra_stats
.eberr
++;
2109 if (netif_msg_rx_err(priv
))
2110 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
2112 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
2113 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
2115 if (events
& IEVENT_BABT
) {
2116 priv
->extra_stats
.tx_babt
++;
2117 if (netif_msg_tx_err(priv
))
2118 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
2123 /* work with hotplug and coldplug */
2124 MODULE_ALIAS("platform:fsl-gianfar");
2126 /* Structure for a device driver */
2127 static struct platform_driver gfar_driver
= {
2128 .probe
= gfar_probe
,
2129 .remove
= gfar_remove
,
2130 .suspend
= gfar_suspend
,
2131 .resume
= gfar_resume
,
2133 .name
= "fsl-gianfar",
2134 .owner
= THIS_MODULE
,
2138 static int __init
gfar_init(void)
2140 int err
= gfar_mdio_init();
2145 err
= platform_driver_register(&gfar_driver
);
2153 static void __exit
gfar_exit(void)
2155 platform_driver_unregister(&gfar_driver
);
2159 module_init(gfar_init
);
2160 module_exit(gfar_exit
);