iwlwifi: use rmb/wmb to protect indirect mmio operation
[linux/fpc-iii.git] / drivers / net / macmace.c
blob274e99bb63ac28857b568e339a46088065ecf6e2
1 /*
2 * Driver for the Macintosh 68K onboard MACE controller with PSC
3 * driven DMA. The MACE driver code is derived from mace.c. The
4 * Mac68k theory of operation is courtesy of the MacBSD wizards.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Copyright (C) 1996 Paul Mackerras.
12 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
16 * Copyright (C) 2007 Finn Thain
18 * Converted to DMA API, converted to unified driver model,
19 * sync'd some routines with mace.c and fixed various bugs.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/crc32.h>
30 #include <linux/bitrev.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/platform_device.h>
33 #include <asm/io.h>
34 #include <asm/irq.h>
35 #include <asm/macintosh.h>
36 #include <asm/macints.h>
37 #include <asm/mac_psc.h>
38 #include <asm/page.h>
39 #include "mace.h"
41 static char mac_mace_string[] = "macmace";
42 static struct platform_device *mac_mace_device;
44 #define N_TX_BUFF_ORDER 0
45 #define N_TX_RING (1 << N_TX_BUFF_ORDER)
46 #define N_RX_BUFF_ORDER 3
47 #define N_RX_RING (1 << N_RX_BUFF_ORDER)
49 #define TX_TIMEOUT HZ
51 #define MACE_BUFF_SIZE 0x800
53 /* Chip rev needs workaround on HW & multicast addr change */
54 #define BROKEN_ADDRCHG_REV 0x0941
56 /* The MACE is simply wired down on a Mac68K box */
58 #define MACE_BASE (void *)(0x50F1C000)
59 #define MACE_PROM (void *)(0x50F08001)
61 struct mace_data {
62 volatile struct mace *mace;
63 unsigned char *tx_ring;
64 dma_addr_t tx_ring_phys;
65 unsigned char *rx_ring;
66 dma_addr_t rx_ring_phys;
67 int dma_intr;
68 int rx_slot, rx_tail;
69 int tx_slot, tx_sloti, tx_count;
70 int chipid;
71 struct device *device;
74 struct mace_frame {
75 u8 rcvcnt;
76 u8 pad1;
77 u8 rcvsts;
78 u8 pad2;
79 u8 rntpc;
80 u8 pad3;
81 u8 rcvcc;
82 u8 pad4;
83 u32 pad5;
84 u32 pad6;
85 u8 data[1];
86 /* And frame continues.. */
89 #define PRIV_BYTES sizeof(struct mace_data)
91 static int mace_open(struct net_device *dev);
92 static int mace_close(struct net_device *dev);
93 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
94 static void mace_set_multicast(struct net_device *dev);
95 static int mace_set_address(struct net_device *dev, void *addr);
96 static void mace_reset(struct net_device *dev);
97 static irqreturn_t mace_interrupt(int irq, void *dev_id);
98 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
99 static void mace_tx_timeout(struct net_device *dev);
100 static void __mace_set_address(struct net_device *dev, void *addr);
103 * Load a receive DMA channel with a base address and ring length
106 static void mace_load_rxdma_base(struct net_device *dev, int set)
108 struct mace_data *mp = netdev_priv(dev);
110 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
111 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
112 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
113 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
114 mp->rx_tail = 0;
118 * Reset the receive DMA subsystem
121 static void mace_rxdma_reset(struct net_device *dev)
123 struct mace_data *mp = netdev_priv(dev);
124 volatile struct mace *mace = mp->mace;
125 u8 maccc = mace->maccc;
127 mace->maccc = maccc & ~ENRCV;
129 psc_write_word(PSC_ENETRD_CTL, 0x8800);
130 mace_load_rxdma_base(dev, 0x00);
131 psc_write_word(PSC_ENETRD_CTL, 0x0400);
133 psc_write_word(PSC_ENETRD_CTL, 0x8800);
134 mace_load_rxdma_base(dev, 0x10);
135 psc_write_word(PSC_ENETRD_CTL, 0x0400);
137 mace->maccc = maccc;
138 mp->rx_slot = 0;
140 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
141 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
145 * Reset the transmit DMA subsystem
148 static void mace_txdma_reset(struct net_device *dev)
150 struct mace_data *mp = netdev_priv(dev);
151 volatile struct mace *mace = mp->mace;
152 u8 maccc;
154 psc_write_word(PSC_ENETWR_CTL, 0x8800);
156 maccc = mace->maccc;
157 mace->maccc = maccc & ~ENXMT;
159 mp->tx_slot = mp->tx_sloti = 0;
160 mp->tx_count = N_TX_RING;
162 psc_write_word(PSC_ENETWR_CTL, 0x0400);
163 mace->maccc = maccc;
167 * Disable DMA
170 static void mace_dma_off(struct net_device *dev)
172 psc_write_word(PSC_ENETRD_CTL, 0x8800);
173 psc_write_word(PSC_ENETRD_CTL, 0x1000);
174 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
175 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
177 psc_write_word(PSC_ENETWR_CTL, 0x8800);
178 psc_write_word(PSC_ENETWR_CTL, 0x1000);
179 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
180 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
184 * Not really much of a probe. The hardware table tells us if this
185 * model of Macintrash has a MACE (AV macintoshes)
188 static int __devinit mace_probe(struct platform_device *pdev)
190 int j;
191 struct mace_data *mp;
192 unsigned char *addr;
193 struct net_device *dev;
194 unsigned char checksum = 0;
195 static int found = 0;
196 int err;
198 if (found || macintosh_config->ether_type != MAC_ETHER_MACE)
199 return -ENODEV;
201 found = 1; /* prevent 'finding' one on every device probe */
203 dev = alloc_etherdev(PRIV_BYTES);
204 if (!dev)
205 return -ENOMEM;
207 mp = netdev_priv(dev);
209 mp->device = &pdev->dev;
210 SET_NETDEV_DEV(dev, &pdev->dev);
212 dev->base_addr = (u32)MACE_BASE;
213 mp->mace = (volatile struct mace *) MACE_BASE;
215 dev->irq = IRQ_MAC_MACE;
216 mp->dma_intr = IRQ_MAC_MACE_DMA;
218 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
221 * The PROM contains 8 bytes which total 0xFF when XOR'd
222 * together. Due to the usual peculiar apple brain damage
223 * the bytes are spaced out in a strange boundary and the
224 * bits are reversed.
227 addr = (void *)MACE_PROM;
229 for (j = 0; j < 6; ++j) {
230 u8 v = bitrev8(addr[j<<4]);
231 checksum ^= v;
232 dev->dev_addr[j] = v;
234 for (; j < 8; ++j) {
235 checksum ^= bitrev8(addr[j<<4]);
238 if (checksum != 0xFF) {
239 free_netdev(dev);
240 return -ENODEV;
243 dev->open = mace_open;
244 dev->stop = mace_close;
245 dev->hard_start_xmit = mace_xmit_start;
246 dev->tx_timeout = mace_tx_timeout;
247 dev->watchdog_timeo = TX_TIMEOUT;
248 dev->set_multicast_list = mace_set_multicast;
249 dev->set_mac_address = mace_set_address;
251 printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
252 dev->name, dev->dev_addr);
254 err = register_netdev(dev);
255 if (!err)
256 return 0;
258 free_netdev(dev);
259 return err;
263 * Reset the chip.
266 static void mace_reset(struct net_device *dev)
268 struct mace_data *mp = netdev_priv(dev);
269 volatile struct mace *mb = mp->mace;
270 int i;
272 /* soft-reset the chip */
273 i = 200;
274 while (--i) {
275 mb->biucc = SWRST;
276 if (mb->biucc & SWRST) {
277 udelay(10);
278 continue;
280 break;
282 if (!i) {
283 printk(KERN_ERR "macmace: cannot reset chip!\n");
284 return;
287 mb->maccc = 0; /* turn off tx, rx */
288 mb->imr = 0xFF; /* disable all intrs for now */
289 i = mb->ir;
291 mb->biucc = XMTSP_64;
292 mb->utr = RTRD;
293 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
295 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
296 mb->rcvfc = 0;
298 /* load up the hardware address */
299 __mace_set_address(dev, dev->dev_addr);
301 /* clear the multicast filter */
302 if (mp->chipid == BROKEN_ADDRCHG_REV)
303 mb->iac = LOGADDR;
304 else {
305 mb->iac = ADDRCHG | LOGADDR;
306 while ((mb->iac & ADDRCHG) != 0)
309 for (i = 0; i < 8; ++i)
310 mb->ladrf = 0;
312 /* done changing address */
313 if (mp->chipid != BROKEN_ADDRCHG_REV)
314 mb->iac = 0;
316 mb->plscc = PORTSEL_AUI;
320 * Load the address on a mace controller.
323 static void __mace_set_address(struct net_device *dev, void *addr)
325 struct mace_data *mp = netdev_priv(dev);
326 volatile struct mace *mb = mp->mace;
327 unsigned char *p = addr;
328 int i;
330 /* load up the hardware address */
331 if (mp->chipid == BROKEN_ADDRCHG_REV)
332 mb->iac = PHYADDR;
333 else {
334 mb->iac = ADDRCHG | PHYADDR;
335 while ((mb->iac & ADDRCHG) != 0)
338 for (i = 0; i < 6; ++i)
339 mb->padr = dev->dev_addr[i] = p[i];
340 if (mp->chipid != BROKEN_ADDRCHG_REV)
341 mb->iac = 0;
344 static int mace_set_address(struct net_device *dev, void *addr)
346 struct mace_data *mp = netdev_priv(dev);
347 volatile struct mace *mb = mp->mace;
348 unsigned long flags;
349 u8 maccc;
351 local_irq_save(flags);
353 maccc = mb->maccc;
355 __mace_set_address(dev, addr);
357 mb->maccc = maccc;
359 local_irq_restore(flags);
361 return 0;
365 * Open the Macintosh MACE. Most of this is playing with the DMA
366 * engine. The ethernet chip is quite friendly.
369 static int mace_open(struct net_device *dev)
371 struct mace_data *mp = netdev_priv(dev);
372 volatile struct mace *mb = mp->mace;
374 /* reset the chip */
375 mace_reset(dev);
377 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
378 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
379 return -EAGAIN;
381 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
382 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
383 free_irq(dev->irq, dev);
384 return -EAGAIN;
387 /* Allocate the DMA ring buffers */
389 mp->tx_ring = dma_alloc_coherent(mp->device,
390 N_TX_RING * MACE_BUFF_SIZE,
391 &mp->tx_ring_phys, GFP_KERNEL);
392 if (mp->tx_ring == NULL) {
393 printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name);
394 goto out1;
397 mp->rx_ring = dma_alloc_coherent(mp->device,
398 N_RX_RING * MACE_BUFF_SIZE,
399 &mp->rx_ring_phys, GFP_KERNEL);
400 if (mp->rx_ring == NULL) {
401 printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name);
402 goto out2;
405 mace_dma_off(dev);
407 /* Not sure what these do */
409 psc_write_word(PSC_ENETWR_CTL, 0x9000);
410 psc_write_word(PSC_ENETRD_CTL, 0x9000);
411 psc_write_word(PSC_ENETWR_CTL, 0x0400);
412 psc_write_word(PSC_ENETRD_CTL, 0x0400);
414 mace_rxdma_reset(dev);
415 mace_txdma_reset(dev);
417 /* turn it on! */
418 mb->maccc = ENXMT | ENRCV;
419 /* enable all interrupts except receive interrupts */
420 mb->imr = RCVINT;
421 return 0;
423 out2:
424 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
425 mp->tx_ring, mp->tx_ring_phys);
426 out1:
427 free_irq(dev->irq, dev);
428 free_irq(mp->dma_intr, dev);
429 return -ENOMEM;
433 * Shut down the mace and its interrupt channel
436 static int mace_close(struct net_device *dev)
438 struct mace_data *mp = netdev_priv(dev);
439 volatile struct mace *mb = mp->mace;
441 mb->maccc = 0; /* disable rx and tx */
442 mb->imr = 0xFF; /* disable all irqs */
443 mace_dma_off(dev); /* disable rx and tx dma */
445 return 0;
449 * Transmit a frame
452 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
454 struct mace_data *mp = netdev_priv(dev);
455 unsigned long flags;
457 /* Stop the queue since there's only the one buffer */
459 local_irq_save(flags);
460 netif_stop_queue(dev);
461 if (!mp->tx_count) {
462 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
463 local_irq_restore(flags);
464 return NETDEV_TX_BUSY;
466 mp->tx_count--;
467 local_irq_restore(flags);
469 dev->stats.tx_packets++;
470 dev->stats.tx_bytes += skb->len;
472 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
473 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
475 /* load the Tx DMA and fire it off */
477 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
478 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
479 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
481 mp->tx_slot ^= 0x10;
483 dev_kfree_skb(skb);
485 dev->trans_start = jiffies;
486 return NETDEV_TX_OK;
489 static void mace_set_multicast(struct net_device *dev)
491 struct mace_data *mp = netdev_priv(dev);
492 volatile struct mace *mb = mp->mace;
493 int i, j;
494 u32 crc;
495 u8 maccc;
496 unsigned long flags;
498 local_irq_save(flags);
499 maccc = mb->maccc;
500 mb->maccc &= ~PROM;
502 if (dev->flags & IFF_PROMISC) {
503 mb->maccc |= PROM;
504 } else {
505 unsigned char multicast_filter[8];
506 struct dev_mc_list *dmi = dev->mc_list;
508 if (dev->flags & IFF_ALLMULTI) {
509 for (i = 0; i < 8; i++) {
510 multicast_filter[i] = 0xFF;
512 } else {
513 for (i = 0; i < 8; i++)
514 multicast_filter[i] = 0;
515 for (i = 0; i < dev->mc_count; i++) {
516 crc = ether_crc_le(6, dmi->dmi_addr);
517 j = crc >> 26; /* bit number in multicast_filter */
518 multicast_filter[j >> 3] |= 1 << (j & 7);
519 dmi = dmi->next;
523 if (mp->chipid == BROKEN_ADDRCHG_REV)
524 mb->iac = LOGADDR;
525 else {
526 mb->iac = ADDRCHG | LOGADDR;
527 while ((mb->iac & ADDRCHG) != 0)
530 for (i = 0; i < 8; ++i)
531 mb->ladrf = multicast_filter[i];
532 if (mp->chipid != BROKEN_ADDRCHG_REV)
533 mb->iac = 0;
536 mb->maccc = maccc;
537 local_irq_restore(flags);
540 static void mace_handle_misc_intrs(struct net_device *dev, int intr)
542 struct mace_data *mp = netdev_priv(dev);
543 volatile struct mace *mb = mp->mace;
544 static int mace_babbles, mace_jabbers;
546 if (intr & MPCO)
547 dev->stats.rx_missed_errors += 256;
548 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
549 if (intr & RNTPCO)
550 dev->stats.rx_length_errors += 256;
551 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
552 if (intr & CERR)
553 ++dev->stats.tx_heartbeat_errors;
554 if (intr & BABBLE)
555 if (mace_babbles++ < 4)
556 printk(KERN_DEBUG "macmace: babbling transmitter\n");
557 if (intr & JABBER)
558 if (mace_jabbers++ < 4)
559 printk(KERN_DEBUG "macmace: jabbering transceiver\n");
562 static irqreturn_t mace_interrupt(int irq, void *dev_id)
564 struct net_device *dev = (struct net_device *) dev_id;
565 struct mace_data *mp = netdev_priv(dev);
566 volatile struct mace *mb = mp->mace;
567 int intr, fs;
568 unsigned long flags;
570 /* don't want the dma interrupt handler to fire */
571 local_irq_save(flags);
573 intr = mb->ir; /* read interrupt register */
574 mace_handle_misc_intrs(dev, intr);
576 if (intr & XMTINT) {
577 fs = mb->xmtfs;
578 if ((fs & XMTSV) == 0) {
579 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
580 mace_reset(dev);
582 * XXX mace likes to hang the machine after a xmtfs error.
583 * This is hard to reproduce, reseting *may* help
586 /* dma should have finished */
587 if (!mp->tx_count) {
588 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
590 /* Update stats */
591 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
592 ++dev->stats.tx_errors;
593 if (fs & LCAR)
594 ++dev->stats.tx_carrier_errors;
595 else if (fs & (UFLO|LCOL|RTRY)) {
596 ++dev->stats.tx_aborted_errors;
597 if (mb->xmtfs & UFLO) {
598 printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
599 dev->stats.tx_fifo_errors++;
600 mace_txdma_reset(dev);
606 if (mp->tx_count)
607 netif_wake_queue(dev);
609 local_irq_restore(flags);
611 return IRQ_HANDLED;
614 static void mace_tx_timeout(struct net_device *dev)
616 struct mace_data *mp = netdev_priv(dev);
617 volatile struct mace *mb = mp->mace;
618 unsigned long flags;
620 local_irq_save(flags);
622 /* turn off both tx and rx and reset the chip */
623 mb->maccc = 0;
624 printk(KERN_ERR "macmace: transmit timeout - resetting\n");
625 mace_txdma_reset(dev);
626 mace_reset(dev);
628 /* restart rx dma */
629 mace_rxdma_reset(dev);
631 mp->tx_count = N_TX_RING;
632 netif_wake_queue(dev);
634 /* turn it on! */
635 mb->maccc = ENXMT | ENRCV;
636 /* enable all interrupts except receive interrupts */
637 mb->imr = RCVINT;
639 local_irq_restore(flags);
643 * Handle a newly arrived frame
646 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
648 struct sk_buff *skb;
649 unsigned int frame_status = mf->rcvsts;
651 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
652 dev->stats.rx_errors++;
653 if (frame_status & RS_OFLO) {
654 printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
655 dev->stats.rx_fifo_errors++;
657 if (frame_status & RS_CLSN)
658 dev->stats.collisions++;
659 if (frame_status & RS_FRAMERR)
660 dev->stats.rx_frame_errors++;
661 if (frame_status & RS_FCSERR)
662 dev->stats.rx_crc_errors++;
663 } else {
664 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
666 skb = dev_alloc_skb(frame_length + 2);
667 if (!skb) {
668 dev->stats.rx_dropped++;
669 return;
671 skb_reserve(skb, 2);
672 memcpy(skb_put(skb, frame_length), mf->data, frame_length);
674 skb->protocol = eth_type_trans(skb, dev);
675 netif_rx(skb);
676 dev->stats.rx_packets++;
677 dev->stats.rx_bytes += frame_length;
682 * The PSC has passed us a DMA interrupt event.
685 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
687 struct net_device *dev = (struct net_device *) dev_id;
688 struct mace_data *mp = netdev_priv(dev);
689 int left, head;
690 u16 status;
691 u32 baka;
693 /* Not sure what this does */
695 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
696 if (!(baka & 0x60000000)) return IRQ_NONE;
699 * Process the read queue
702 status = psc_read_word(PSC_ENETRD_CTL);
704 if (status & 0x2000) {
705 mace_rxdma_reset(dev);
706 } else if (status & 0x0100) {
707 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
709 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
710 head = N_RX_RING - left;
712 /* Loop through the ring buffer and process new packages */
714 while (mp->rx_tail < head) {
715 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
716 + (mp->rx_tail * MACE_BUFF_SIZE)));
717 mp->rx_tail++;
720 /* If we're out of buffers in this ring then switch to */
721 /* the other set, otherwise just reactivate this one. */
723 if (!left) {
724 mace_load_rxdma_base(dev, mp->rx_slot);
725 mp->rx_slot ^= 0x10;
726 } else {
727 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
732 * Process the write queue
735 status = psc_read_word(PSC_ENETWR_CTL);
737 if (status & 0x2000) {
738 mace_txdma_reset(dev);
739 } else if (status & 0x0100) {
740 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
741 mp->tx_sloti ^= 0x10;
742 mp->tx_count++;
744 return IRQ_HANDLED;
747 MODULE_LICENSE("GPL");
748 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
750 static int __devexit mac_mace_device_remove (struct platform_device *pdev)
752 struct net_device *dev = platform_get_drvdata(pdev);
753 struct mace_data *mp = netdev_priv(dev);
755 unregister_netdev(dev);
757 free_irq(dev->irq, dev);
758 free_irq(IRQ_MAC_MACE_DMA, dev);
760 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
761 mp->rx_ring, mp->rx_ring_phys);
762 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
763 mp->tx_ring, mp->tx_ring_phys);
765 free_netdev(dev);
767 return 0;
770 static struct platform_driver mac_mace_driver = {
771 .probe = mace_probe,
772 .remove = __devexit_p(mac_mace_device_remove),
773 .driver = {
774 .name = mac_mace_string,
778 static int __init mac_mace_init_module(void)
780 int err;
782 if (!MACH_IS_MAC)
783 return -ENODEV;
785 if ((err = platform_driver_register(&mac_mace_driver))) {
786 printk(KERN_ERR "Driver registration failed\n");
787 return err;
790 mac_mace_device = platform_device_alloc(mac_mace_string, 0);
791 if (!mac_mace_device)
792 goto out_unregister;
794 if (platform_device_add(mac_mace_device)) {
795 platform_device_put(mac_mace_device);
796 mac_mace_device = NULL;
799 return 0;
801 out_unregister:
802 platform_driver_unregister(&mac_mace_driver);
804 return -ENOMEM;
807 static void __exit mac_mace_cleanup_module(void)
809 platform_driver_unregister(&mac_mace_driver);
811 if (mac_mace_device) {
812 platform_device_unregister(mac_mace_device);
813 mac_mace_device = NULL;
817 module_init(mac_mace_init_module);
818 module_exit(mac_mace_cleanup_module);