2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY
, /* metadata may not be changed */
204 PM_FAIL
, /* all I/O fails */
207 struct pool_features
{
210 bool zero_new_blocks
:1;
211 bool discard_enabled
:1;
212 bool discard_passdown
:1;
213 bool error_if_no_space
:1;
217 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
218 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
219 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
221 #define CELL_SORT_ARRAY_SIZE 8192
224 struct list_head list
;
225 struct dm_target
*ti
; /* Only set if a pool target is bound */
227 struct mapped_device
*pool_md
;
228 struct block_device
*md_dev
;
229 struct dm_pool_metadata
*pmd
;
231 dm_block_t low_water_blocks
;
232 uint32_t sectors_per_block
;
233 int sectors_per_block_shift
;
235 struct pool_features pf
;
236 bool low_water_triggered
:1; /* A dm event has been sent */
238 bool out_of_data_space
:1;
240 struct dm_bio_prison
*prison
;
241 struct dm_kcopyd_client
*copier
;
243 struct workqueue_struct
*wq
;
244 struct throttle throttle
;
245 struct work_struct worker
;
246 struct delayed_work waker
;
247 struct delayed_work no_space_timeout
;
249 unsigned long last_commit_jiffies
;
253 struct bio_list deferred_flush_bios
;
254 struct list_head prepared_mappings
;
255 struct list_head prepared_discards
;
256 struct list_head active_thins
;
258 struct dm_deferred_set
*shared_read_ds
;
259 struct dm_deferred_set
*all_io_ds
;
261 struct dm_thin_new_mapping
*next_mapping
;
262 mempool_t
*mapping_pool
;
264 process_bio_fn process_bio
;
265 process_bio_fn process_discard
;
267 process_cell_fn process_cell
;
268 process_cell_fn process_discard_cell
;
270 process_mapping_fn process_prepared_mapping
;
271 process_mapping_fn process_prepared_discard
;
273 struct dm_bio_prison_cell
**cell_sort_array
;
276 static enum pool_mode
get_pool_mode(struct pool
*pool
);
277 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
280 * Target context for a pool.
283 struct dm_target
*ti
;
285 struct dm_dev
*data_dev
;
286 struct dm_dev
*metadata_dev
;
287 struct dm_target_callbacks callbacks
;
289 dm_block_t low_water_blocks
;
290 struct pool_features requested_pf
; /* Features requested during table load */
291 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
295 * Target context for a thin.
298 struct list_head list
;
299 struct dm_dev
*pool_dev
;
300 struct dm_dev
*origin_dev
;
301 sector_t origin_size
;
305 struct dm_thin_device
*td
;
306 struct mapped_device
*thin_md
;
310 struct list_head deferred_cells
;
311 struct bio_list deferred_bio_list
;
312 struct bio_list retry_on_resume_list
;
313 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
316 * Ensures the thin is not destroyed until the worker has finished
317 * iterating the active_thins list.
320 struct completion can_destroy
;
323 /*----------------------------------------------------------------*/
326 * __blkdev_issue_discard_async - queue a discard with async completion
327 * @bdev: blockdev to issue discard for
328 * @sector: start sector
329 * @nr_sects: number of sectors to discard
330 * @gfp_mask: memory allocation flags (for bio_alloc)
331 * @flags: BLKDEV_IFL_* flags to control behaviour
332 * @parent_bio: parent discard bio that all sub discards get chained to
335 * Asynchronously issue a discard request for the sectors in question.
337 static int __blkdev_issue_discard_async(struct block_device
*bdev
, sector_t sector
,
338 sector_t nr_sects
, gfp_t gfp_mask
, unsigned long flags
,
339 struct bio
*parent_bio
)
341 struct request_queue
*q
= bdev_get_queue(bdev
);
342 int type
= REQ_WRITE
| REQ_DISCARD
;
348 if (!blk_queue_discard(q
))
351 if (flags
& BLKDEV_DISCARD_SECURE
) {
352 if (!blk_queue_secdiscard(q
))
358 * Required bio_put occurs in bio_endio thanks to bio_chain below
360 bio
= bio_alloc(gfp_mask
, 1);
364 bio_chain(bio
, parent_bio
);
366 bio
->bi_iter
.bi_sector
= sector
;
368 bio
->bi_iter
.bi_size
= nr_sects
<< 9;
370 submit_bio(type
, bio
);
375 static bool block_size_is_power_of_two(struct pool
*pool
)
377 return pool
->sectors_per_block_shift
>= 0;
380 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
382 return block_size_is_power_of_two(pool
) ?
383 (b
<< pool
->sectors_per_block_shift
) :
384 (b
* pool
->sectors_per_block
);
387 static int issue_discard(struct thin_c
*tc
, dm_block_t data_b
, dm_block_t data_e
,
388 struct bio
*parent_bio
)
390 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
391 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
393 return __blkdev_issue_discard_async(tc
->pool_dev
->bdev
, s
, len
,
394 GFP_NOWAIT
, 0, parent_bio
);
397 /*----------------------------------------------------------------*/
400 * wake_worker() is used when new work is queued and when pool_resume is
401 * ready to continue deferred IO processing.
403 static void wake_worker(struct pool
*pool
)
405 queue_work(pool
->wq
, &pool
->worker
);
408 /*----------------------------------------------------------------*/
410 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
411 struct dm_bio_prison_cell
**cell_result
)
414 struct dm_bio_prison_cell
*cell_prealloc
;
417 * Allocate a cell from the prison's mempool.
418 * This might block but it can't fail.
420 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
422 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
425 * We reused an old cell; we can get rid of
428 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
433 static void cell_release(struct pool
*pool
,
434 struct dm_bio_prison_cell
*cell
,
435 struct bio_list
*bios
)
437 dm_cell_release(pool
->prison
, cell
, bios
);
438 dm_bio_prison_free_cell(pool
->prison
, cell
);
441 static void cell_visit_release(struct pool
*pool
,
442 void (*fn
)(void *, struct dm_bio_prison_cell
*),
444 struct dm_bio_prison_cell
*cell
)
446 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
447 dm_bio_prison_free_cell(pool
->prison
, cell
);
450 static void cell_release_no_holder(struct pool
*pool
,
451 struct dm_bio_prison_cell
*cell
,
452 struct bio_list
*bios
)
454 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
455 dm_bio_prison_free_cell(pool
->prison
, cell
);
458 static void cell_error_with_code(struct pool
*pool
,
459 struct dm_bio_prison_cell
*cell
, int error_code
)
461 dm_cell_error(pool
->prison
, cell
, error_code
);
462 dm_bio_prison_free_cell(pool
->prison
, cell
);
465 static int get_pool_io_error_code(struct pool
*pool
)
467 return pool
->out_of_data_space
? -ENOSPC
: -EIO
;
470 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
472 int error
= get_pool_io_error_code(pool
);
474 cell_error_with_code(pool
, cell
, error
);
477 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
479 cell_error_with_code(pool
, cell
, 0);
482 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
484 cell_error_with_code(pool
, cell
, DM_ENDIO_REQUEUE
);
487 /*----------------------------------------------------------------*/
490 * A global list of pools that uses a struct mapped_device as a key.
492 static struct dm_thin_pool_table
{
494 struct list_head pools
;
495 } dm_thin_pool_table
;
497 static void pool_table_init(void)
499 mutex_init(&dm_thin_pool_table
.mutex
);
500 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
503 static void __pool_table_insert(struct pool
*pool
)
505 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
506 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
509 static void __pool_table_remove(struct pool
*pool
)
511 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
512 list_del(&pool
->list
);
515 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
517 struct pool
*pool
= NULL
, *tmp
;
519 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
521 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
522 if (tmp
->pool_md
== md
) {
531 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
533 struct pool
*pool
= NULL
, *tmp
;
535 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
537 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
538 if (tmp
->md_dev
== md_dev
) {
547 /*----------------------------------------------------------------*/
549 struct dm_thin_endio_hook
{
551 struct dm_deferred_entry
*shared_read_entry
;
552 struct dm_deferred_entry
*all_io_entry
;
553 struct dm_thin_new_mapping
*overwrite_mapping
;
554 struct rb_node rb_node
;
555 struct dm_bio_prison_cell
*cell
;
558 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
560 bio_list_merge(bios
, master
);
561 bio_list_init(master
);
564 static void error_bio_list(struct bio_list
*bios
, int error
)
568 while ((bio
= bio_list_pop(bios
))) {
569 bio
->bi_error
= error
;
574 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
, int error
)
576 struct bio_list bios
;
579 bio_list_init(&bios
);
581 spin_lock_irqsave(&tc
->lock
, flags
);
582 __merge_bio_list(&bios
, master
);
583 spin_unlock_irqrestore(&tc
->lock
, flags
);
585 error_bio_list(&bios
, error
);
588 static void requeue_deferred_cells(struct thin_c
*tc
)
590 struct pool
*pool
= tc
->pool
;
592 struct list_head cells
;
593 struct dm_bio_prison_cell
*cell
, *tmp
;
595 INIT_LIST_HEAD(&cells
);
597 spin_lock_irqsave(&tc
->lock
, flags
);
598 list_splice_init(&tc
->deferred_cells
, &cells
);
599 spin_unlock_irqrestore(&tc
->lock
, flags
);
601 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
602 cell_requeue(pool
, cell
);
605 static void requeue_io(struct thin_c
*tc
)
607 struct bio_list bios
;
610 bio_list_init(&bios
);
612 spin_lock_irqsave(&tc
->lock
, flags
);
613 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
614 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
615 spin_unlock_irqrestore(&tc
->lock
, flags
);
617 error_bio_list(&bios
, DM_ENDIO_REQUEUE
);
618 requeue_deferred_cells(tc
);
621 static void error_retry_list_with_code(struct pool
*pool
, int error
)
626 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
627 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
631 static void error_retry_list(struct pool
*pool
)
633 int error
= get_pool_io_error_code(pool
);
635 return error_retry_list_with_code(pool
, error
);
639 * This section of code contains the logic for processing a thin device's IO.
640 * Much of the code depends on pool object resources (lists, workqueues, etc)
641 * but most is exclusively called from the thin target rather than the thin-pool
645 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
647 struct pool
*pool
= tc
->pool
;
648 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
650 if (block_size_is_power_of_two(pool
))
651 block_nr
>>= pool
->sectors_per_block_shift
;
653 (void) sector_div(block_nr
, pool
->sectors_per_block
);
659 * Returns the _complete_ blocks that this bio covers.
661 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
662 dm_block_t
*begin
, dm_block_t
*end
)
664 struct pool
*pool
= tc
->pool
;
665 sector_t b
= bio
->bi_iter
.bi_sector
;
666 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
668 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
670 if (block_size_is_power_of_two(pool
)) {
671 b
>>= pool
->sectors_per_block_shift
;
672 e
>>= pool
->sectors_per_block_shift
;
674 (void) sector_div(b
, pool
->sectors_per_block
);
675 (void) sector_div(e
, pool
->sectors_per_block
);
679 /* Can happen if the bio is within a single block. */
686 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
688 struct pool
*pool
= tc
->pool
;
689 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
691 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
692 if (block_size_is_power_of_two(pool
))
693 bio
->bi_iter
.bi_sector
=
694 (block
<< pool
->sectors_per_block_shift
) |
695 (bi_sector
& (pool
->sectors_per_block
- 1));
697 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
698 sector_div(bi_sector
, pool
->sectors_per_block
);
701 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
703 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
706 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
708 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
709 dm_thin_changed_this_transaction(tc
->td
);
712 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
714 struct dm_thin_endio_hook
*h
;
716 if (bio
->bi_rw
& REQ_DISCARD
)
719 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
720 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
723 static void issue(struct thin_c
*tc
, struct bio
*bio
)
725 struct pool
*pool
= tc
->pool
;
728 if (!bio_triggers_commit(tc
, bio
)) {
729 generic_make_request(bio
);
734 * Complete bio with an error if earlier I/O caused changes to
735 * the metadata that can't be committed e.g, due to I/O errors
736 * on the metadata device.
738 if (dm_thin_aborted_changes(tc
->td
)) {
744 * Batch together any bios that trigger commits and then issue a
745 * single commit for them in process_deferred_bios().
747 spin_lock_irqsave(&pool
->lock
, flags
);
748 bio_list_add(&pool
->deferred_flush_bios
, bio
);
749 spin_unlock_irqrestore(&pool
->lock
, flags
);
752 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
754 remap_to_origin(tc
, bio
);
758 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
761 remap(tc
, bio
, block
);
765 /*----------------------------------------------------------------*/
768 * Bio endio functions.
770 struct dm_thin_new_mapping
{
771 struct list_head list
;
777 * Track quiescing, copying and zeroing preparation actions. When this
778 * counter hits zero the block is prepared and can be inserted into the
781 atomic_t prepare_actions
;
785 dm_block_t virt_begin
, virt_end
;
786 dm_block_t data_block
;
787 struct dm_bio_prison_cell
*cell
;
790 * If the bio covers the whole area of a block then we can avoid
791 * zeroing or copying. Instead this bio is hooked. The bio will
792 * still be in the cell, so care has to be taken to avoid issuing
796 bio_end_io_t
*saved_bi_end_io
;
799 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
801 struct pool
*pool
= m
->tc
->pool
;
803 if (atomic_dec_and_test(&m
->prepare_actions
)) {
804 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
809 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
812 struct pool
*pool
= m
->tc
->pool
;
814 spin_lock_irqsave(&pool
->lock
, flags
);
815 __complete_mapping_preparation(m
);
816 spin_unlock_irqrestore(&pool
->lock
, flags
);
819 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
821 struct dm_thin_new_mapping
*m
= context
;
823 m
->err
= read_err
|| write_err
? -EIO
: 0;
824 complete_mapping_preparation(m
);
827 static void overwrite_endio(struct bio
*bio
)
829 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
830 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
832 bio
->bi_end_io
= m
->saved_bi_end_io
;
834 m
->err
= bio
->bi_error
;
835 complete_mapping_preparation(m
);
838 /*----------------------------------------------------------------*/
845 * Prepared mapping jobs.
849 * This sends the bios in the cell, except the original holder, back
850 * to the deferred_bios list.
852 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
854 struct pool
*pool
= tc
->pool
;
857 spin_lock_irqsave(&tc
->lock
, flags
);
858 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
859 spin_unlock_irqrestore(&tc
->lock
, flags
);
864 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
868 struct bio_list defer_bios
;
869 struct bio_list issue_bios
;
872 static void __inc_remap_and_issue_cell(void *context
,
873 struct dm_bio_prison_cell
*cell
)
875 struct remap_info
*info
= context
;
878 while ((bio
= bio_list_pop(&cell
->bios
))) {
879 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
))
880 bio_list_add(&info
->defer_bios
, bio
);
882 inc_all_io_entry(info
->tc
->pool
, bio
);
885 * We can't issue the bios with the bio prison lock
886 * held, so we add them to a list to issue on
887 * return from this function.
889 bio_list_add(&info
->issue_bios
, bio
);
894 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
895 struct dm_bio_prison_cell
*cell
,
899 struct remap_info info
;
902 bio_list_init(&info
.defer_bios
);
903 bio_list_init(&info
.issue_bios
);
906 * We have to be careful to inc any bios we're about to issue
907 * before the cell is released, and avoid a race with new bios
908 * being added to the cell.
910 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
913 while ((bio
= bio_list_pop(&info
.defer_bios
)))
914 thin_defer_bio(tc
, bio
);
916 while ((bio
= bio_list_pop(&info
.issue_bios
)))
917 remap_and_issue(info
.tc
, bio
, block
);
920 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
922 cell_error(m
->tc
->pool
, m
->cell
);
924 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
927 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
929 struct thin_c
*tc
= m
->tc
;
930 struct pool
*pool
= tc
->pool
;
931 struct bio
*bio
= m
->bio
;
935 cell_error(pool
, m
->cell
);
940 * Commit the prepared block into the mapping btree.
941 * Any I/O for this block arriving after this point will get
942 * remapped to it directly.
944 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
946 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
947 cell_error(pool
, m
->cell
);
952 * Release any bios held while the block was being provisioned.
953 * If we are processing a write bio that completely covers the block,
954 * we already processed it so can ignore it now when processing
955 * the bios in the cell.
958 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
961 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
962 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
963 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
968 mempool_free(m
, pool
->mapping_pool
);
971 /*----------------------------------------------------------------*/
973 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
975 struct thin_c
*tc
= m
->tc
;
977 cell_defer_no_holder(tc
, m
->cell
);
978 mempool_free(m
, tc
->pool
->mapping_pool
);
981 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
983 bio_io_error(m
->bio
);
984 free_discard_mapping(m
);
987 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
990 free_discard_mapping(m
);
993 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
996 struct thin_c
*tc
= m
->tc
;
998 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
1000 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
1001 bio_io_error(m
->bio
);
1005 cell_defer_no_holder(tc
, m
->cell
);
1006 mempool_free(m
, tc
->pool
->mapping_pool
);
1009 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
)
1012 * We've already unmapped this range of blocks, but before we
1013 * passdown we have to check that these blocks are now unused.
1017 struct thin_c
*tc
= m
->tc
;
1018 struct pool
*pool
= tc
->pool
;
1019 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1022 /* find start of unmapped run */
1023 for (; b
< end
; b
++) {
1024 r
= dm_pool_block_is_used(pool
->pmd
, b
, &used
);
1035 /* find end of run */
1036 for (e
= b
+ 1; e
!= end
; e
++) {
1037 r
= dm_pool_block_is_used(pool
->pmd
, e
, &used
);
1045 r
= issue_discard(tc
, b
, e
, m
->bio
);
1055 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
1058 struct thin_c
*tc
= m
->tc
;
1059 struct pool
*pool
= tc
->pool
;
1061 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1063 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1065 else if (m
->maybe_shared
)
1066 r
= passdown_double_checking_shared_status(m
);
1068 r
= issue_discard(tc
, m
->data_block
, m
->data_block
+ (m
->virt_end
- m
->virt_begin
), m
->bio
);
1071 * Even if r is set, there could be sub discards in flight that we
1074 m
->bio
->bi_error
= r
;
1076 cell_defer_no_holder(tc
, m
->cell
);
1077 mempool_free(m
, pool
->mapping_pool
);
1080 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1081 process_mapping_fn
*fn
)
1083 unsigned long flags
;
1084 struct list_head maps
;
1085 struct dm_thin_new_mapping
*m
, *tmp
;
1087 INIT_LIST_HEAD(&maps
);
1088 spin_lock_irqsave(&pool
->lock
, flags
);
1089 list_splice_init(head
, &maps
);
1090 spin_unlock_irqrestore(&pool
->lock
, flags
);
1092 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1097 * Deferred bio jobs.
1099 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1101 return bio
->bi_iter
.bi_size
==
1102 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1105 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1107 return (bio_data_dir(bio
) == WRITE
) &&
1108 io_overlaps_block(pool
, bio
);
1111 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1114 *save
= bio
->bi_end_io
;
1115 bio
->bi_end_io
= fn
;
1118 static int ensure_next_mapping(struct pool
*pool
)
1120 if (pool
->next_mapping
)
1123 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
1125 return pool
->next_mapping
? 0 : -ENOMEM
;
1128 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1130 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1132 BUG_ON(!pool
->next_mapping
);
1134 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1135 INIT_LIST_HEAD(&m
->list
);
1138 pool
->next_mapping
= NULL
;
1143 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1144 sector_t begin
, sector_t end
)
1147 struct dm_io_region to
;
1149 to
.bdev
= tc
->pool_dev
->bdev
;
1151 to
.count
= end
- begin
;
1153 r
= dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1155 DMERR_LIMIT("dm_kcopyd_zero() failed");
1156 copy_complete(1, 1, m
);
1160 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1161 dm_block_t data_begin
,
1162 struct dm_thin_new_mapping
*m
)
1164 struct pool
*pool
= tc
->pool
;
1165 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1167 h
->overwrite_mapping
= m
;
1169 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1170 inc_all_io_entry(pool
, bio
);
1171 remap_and_issue(tc
, bio
, data_begin
);
1175 * A partial copy also needs to zero the uncopied region.
1177 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1178 struct dm_dev
*origin
, dm_block_t data_origin
,
1179 dm_block_t data_dest
,
1180 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1184 struct pool
*pool
= tc
->pool
;
1185 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1188 m
->virt_begin
= virt_block
;
1189 m
->virt_end
= virt_block
+ 1u;
1190 m
->data_block
= data_dest
;
1194 * quiesce action + copy action + an extra reference held for the
1195 * duration of this function (we may need to inc later for a
1198 atomic_set(&m
->prepare_actions
, 3);
1200 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1201 complete_mapping_preparation(m
); /* already quiesced */
1204 * IO to pool_dev remaps to the pool target's data_dev.
1206 * If the whole block of data is being overwritten, we can issue the
1207 * bio immediately. Otherwise we use kcopyd to clone the data first.
1209 if (io_overwrites_block(pool
, bio
))
1210 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1212 struct dm_io_region from
, to
;
1214 from
.bdev
= origin
->bdev
;
1215 from
.sector
= data_origin
* pool
->sectors_per_block
;
1218 to
.bdev
= tc
->pool_dev
->bdev
;
1219 to
.sector
= data_dest
* pool
->sectors_per_block
;
1222 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1223 0, copy_complete
, m
);
1225 DMERR_LIMIT("dm_kcopyd_copy() failed");
1226 copy_complete(1, 1, m
);
1229 * We allow the zero to be issued, to simplify the
1230 * error path. Otherwise we'd need to start
1231 * worrying about decrementing the prepare_actions
1237 * Do we need to zero a tail region?
1239 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1240 atomic_inc(&m
->prepare_actions
);
1242 data_dest
* pool
->sectors_per_block
+ len
,
1243 (data_dest
+ 1) * pool
->sectors_per_block
);
1247 complete_mapping_preparation(m
); /* drop our ref */
1250 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1251 dm_block_t data_origin
, dm_block_t data_dest
,
1252 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1254 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1255 data_origin
, data_dest
, cell
, bio
,
1256 tc
->pool
->sectors_per_block
);
1259 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1260 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1263 struct pool
*pool
= tc
->pool
;
1264 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1266 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1268 m
->virt_begin
= virt_block
;
1269 m
->virt_end
= virt_block
+ 1u;
1270 m
->data_block
= data_block
;
1274 * If the whole block of data is being overwritten or we are not
1275 * zeroing pre-existing data, we can issue the bio immediately.
1276 * Otherwise we use kcopyd to zero the data first.
1278 if (pool
->pf
.zero_new_blocks
) {
1279 if (io_overwrites_block(pool
, bio
))
1280 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1282 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1283 (data_block
+ 1) * pool
->sectors_per_block
);
1285 process_prepared_mapping(m
);
1288 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1289 dm_block_t data_dest
,
1290 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1292 struct pool
*pool
= tc
->pool
;
1293 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1294 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1296 if (virt_block_end
<= tc
->origin_size
)
1297 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1298 virt_block
, data_dest
, cell
, bio
,
1299 pool
->sectors_per_block
);
1301 else if (virt_block_begin
< tc
->origin_size
)
1302 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1303 virt_block
, data_dest
, cell
, bio
,
1304 tc
->origin_size
- virt_block_begin
);
1307 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1310 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1312 static void check_for_space(struct pool
*pool
)
1317 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1320 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1325 set_pool_mode(pool
, PM_WRITE
);
1329 * A non-zero return indicates read_only or fail_io mode.
1330 * Many callers don't care about the return value.
1332 static int commit(struct pool
*pool
)
1336 if (get_pool_mode(pool
) >= PM_READ_ONLY
)
1339 r
= dm_pool_commit_metadata(pool
->pmd
);
1341 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1343 check_for_space(pool
);
1348 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1350 unsigned long flags
;
1352 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1353 DMWARN("%s: reached low water mark for data device: sending event.",
1354 dm_device_name(pool
->pool_md
));
1355 spin_lock_irqsave(&pool
->lock
, flags
);
1356 pool
->low_water_triggered
= true;
1357 spin_unlock_irqrestore(&pool
->lock
, flags
);
1358 dm_table_event(pool
->ti
->table
);
1362 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1365 dm_block_t free_blocks
;
1366 struct pool
*pool
= tc
->pool
;
1368 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1371 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1373 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1377 check_low_water_mark(pool
, free_blocks
);
1381 * Try to commit to see if that will free up some
1388 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1390 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1395 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1400 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1402 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1410 * If we have run out of space, queue bios until the device is
1411 * resumed, presumably after having been reloaded with more space.
1413 static void retry_on_resume(struct bio
*bio
)
1415 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1416 struct thin_c
*tc
= h
->tc
;
1417 unsigned long flags
;
1419 spin_lock_irqsave(&tc
->lock
, flags
);
1420 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1421 spin_unlock_irqrestore(&tc
->lock
, flags
);
1424 static int should_error_unserviceable_bio(struct pool
*pool
)
1426 enum pool_mode m
= get_pool_mode(pool
);
1430 /* Shouldn't get here */
1431 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1434 case PM_OUT_OF_DATA_SPACE
:
1435 return pool
->pf
.error_if_no_space
? -ENOSPC
: 0;
1441 /* Shouldn't get here */
1442 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1447 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1449 int error
= should_error_unserviceable_bio(pool
);
1452 bio
->bi_error
= error
;
1455 retry_on_resume(bio
);
1458 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1461 struct bio_list bios
;
1464 error
= should_error_unserviceable_bio(pool
);
1466 cell_error_with_code(pool
, cell
, error
);
1470 bio_list_init(&bios
);
1471 cell_release(pool
, cell
, &bios
);
1473 while ((bio
= bio_list_pop(&bios
)))
1474 retry_on_resume(bio
);
1477 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1478 struct dm_bio_prison_cell
*virt_cell
)
1480 struct pool
*pool
= tc
->pool
;
1481 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1484 * We don't need to lock the data blocks, since there's no
1485 * passdown. We only lock data blocks for allocation and breaking sharing.
1488 m
->virt_begin
= virt_cell
->key
.block_begin
;
1489 m
->virt_end
= virt_cell
->key
.block_end
;
1490 m
->cell
= virt_cell
;
1491 m
->bio
= virt_cell
->holder
;
1493 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1494 pool
->process_prepared_discard(m
);
1498 * __bio_inc_remaining() is used to defer parent bios's end_io until
1499 * we _know_ all chained sub range discard bios have completed.
1501 static inline void __bio_inc_remaining(struct bio
*bio
)
1503 bio
->bi_flags
|= (1 << BIO_CHAIN
);
1504 smp_mb__before_atomic();
1505 atomic_inc(&bio
->__bi_remaining
);
1508 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1511 struct pool
*pool
= tc
->pool
;
1515 struct dm_cell_key data_key
;
1516 struct dm_bio_prison_cell
*data_cell
;
1517 struct dm_thin_new_mapping
*m
;
1518 dm_block_t virt_begin
, virt_end
, data_begin
;
1520 while (begin
!= end
) {
1521 r
= ensure_next_mapping(pool
);
1523 /* we did our best */
1526 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1527 &data_begin
, &maybe_shared
);
1530 * Silently fail, letting any mappings we've
1535 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1536 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1537 /* contention, we'll give up with this range */
1543 * IO may still be going to the destination block. We must
1544 * quiesce before we can do the removal.
1546 m
= get_next_mapping(pool
);
1548 m
->maybe_shared
= maybe_shared
;
1549 m
->virt_begin
= virt_begin
;
1550 m
->virt_end
= virt_end
;
1551 m
->data_block
= data_begin
;
1552 m
->cell
= data_cell
;
1556 * The parent bio must not complete before sub discard bios are
1557 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1559 * This per-mapping bi_remaining increment is paired with
1560 * the implicit decrement that occurs via bio_endio() in
1561 * process_prepared_discard_{passdown,no_passdown}.
1563 __bio_inc_remaining(bio
);
1564 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1565 pool
->process_prepared_discard(m
);
1571 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1573 struct bio
*bio
= virt_cell
->holder
;
1574 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1577 * The virt_cell will only get freed once the origin bio completes.
1578 * This means it will remain locked while all the individual
1579 * passdown bios are in flight.
1581 h
->cell
= virt_cell
;
1582 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1585 * We complete the bio now, knowing that the bi_remaining field
1586 * will prevent completion until the sub range discards have
1592 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1594 dm_block_t begin
, end
;
1595 struct dm_cell_key virt_key
;
1596 struct dm_bio_prison_cell
*virt_cell
;
1598 get_bio_block_range(tc
, bio
, &begin
, &end
);
1601 * The discard covers less than a block.
1607 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1608 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1610 * Potential starvation issue: We're relying on the
1611 * fs/application being well behaved, and not trying to
1612 * send IO to a region at the same time as discarding it.
1613 * If they do this persistently then it's possible this
1614 * cell will never be granted.
1618 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1621 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1622 struct dm_cell_key
*key
,
1623 struct dm_thin_lookup_result
*lookup_result
,
1624 struct dm_bio_prison_cell
*cell
)
1627 dm_block_t data_block
;
1628 struct pool
*pool
= tc
->pool
;
1630 r
= alloc_data_block(tc
, &data_block
);
1633 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1634 data_block
, cell
, bio
);
1638 retry_bios_on_resume(pool
, cell
);
1642 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1644 cell_error(pool
, cell
);
1649 static void __remap_and_issue_shared_cell(void *context
,
1650 struct dm_bio_prison_cell
*cell
)
1652 struct remap_info
*info
= context
;
1655 while ((bio
= bio_list_pop(&cell
->bios
))) {
1656 if ((bio_data_dir(bio
) == WRITE
) ||
1657 (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)))
1658 bio_list_add(&info
->defer_bios
, bio
);
1660 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));;
1662 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1663 inc_all_io_entry(info
->tc
->pool
, bio
);
1664 bio_list_add(&info
->issue_bios
, bio
);
1669 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1670 struct dm_bio_prison_cell
*cell
,
1674 struct remap_info info
;
1677 bio_list_init(&info
.defer_bios
);
1678 bio_list_init(&info
.issue_bios
);
1680 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1683 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1684 thin_defer_bio(tc
, bio
);
1686 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1687 remap_and_issue(tc
, bio
, block
);
1690 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1692 struct dm_thin_lookup_result
*lookup_result
,
1693 struct dm_bio_prison_cell
*virt_cell
)
1695 struct dm_bio_prison_cell
*data_cell
;
1696 struct pool
*pool
= tc
->pool
;
1697 struct dm_cell_key key
;
1700 * If cell is already occupied, then sharing is already in the process
1701 * of being broken so we have nothing further to do here.
1703 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1704 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1705 cell_defer_no_holder(tc
, virt_cell
);
1709 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1710 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1711 cell_defer_no_holder(tc
, virt_cell
);
1713 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1715 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1716 inc_all_io_entry(pool
, bio
);
1717 remap_and_issue(tc
, bio
, lookup_result
->block
);
1719 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1720 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1724 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1725 struct dm_bio_prison_cell
*cell
)
1728 dm_block_t data_block
;
1729 struct pool
*pool
= tc
->pool
;
1732 * Remap empty bios (flushes) immediately, without provisioning.
1734 if (!bio
->bi_iter
.bi_size
) {
1735 inc_all_io_entry(pool
, bio
);
1736 cell_defer_no_holder(tc
, cell
);
1738 remap_and_issue(tc
, bio
, 0);
1743 * Fill read bios with zeroes and complete them immediately.
1745 if (bio_data_dir(bio
) == READ
) {
1747 cell_defer_no_holder(tc
, cell
);
1752 r
= alloc_data_block(tc
, &data_block
);
1756 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1758 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1762 retry_bios_on_resume(pool
, cell
);
1766 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1768 cell_error(pool
, cell
);
1773 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1776 struct pool
*pool
= tc
->pool
;
1777 struct bio
*bio
= cell
->holder
;
1778 dm_block_t block
= get_bio_block(tc
, bio
);
1779 struct dm_thin_lookup_result lookup_result
;
1781 if (tc
->requeue_mode
) {
1782 cell_requeue(pool
, cell
);
1786 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1789 if (lookup_result
.shared
)
1790 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1792 inc_all_io_entry(pool
, bio
);
1793 remap_and_issue(tc
, bio
, lookup_result
.block
);
1794 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1799 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1800 inc_all_io_entry(pool
, bio
);
1801 cell_defer_no_holder(tc
, cell
);
1803 if (bio_end_sector(bio
) <= tc
->origin_size
)
1804 remap_to_origin_and_issue(tc
, bio
);
1806 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1808 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1809 remap_to_origin_and_issue(tc
, bio
);
1816 provision_block(tc
, bio
, block
, cell
);
1820 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1822 cell_defer_no_holder(tc
, cell
);
1828 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1830 struct pool
*pool
= tc
->pool
;
1831 dm_block_t block
= get_bio_block(tc
, bio
);
1832 struct dm_bio_prison_cell
*cell
;
1833 struct dm_cell_key key
;
1836 * If cell is already occupied, then the block is already
1837 * being provisioned so we have nothing further to do here.
1839 build_virtual_key(tc
->td
, block
, &key
);
1840 if (bio_detain(pool
, &key
, bio
, &cell
))
1843 process_cell(tc
, cell
);
1846 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
1847 struct dm_bio_prison_cell
*cell
)
1850 int rw
= bio_data_dir(bio
);
1851 dm_block_t block
= get_bio_block(tc
, bio
);
1852 struct dm_thin_lookup_result lookup_result
;
1854 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1857 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
1858 handle_unserviceable_bio(tc
->pool
, bio
);
1860 cell_defer_no_holder(tc
, cell
);
1862 inc_all_io_entry(tc
->pool
, bio
);
1863 remap_and_issue(tc
, bio
, lookup_result
.block
);
1865 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1871 cell_defer_no_holder(tc
, cell
);
1873 handle_unserviceable_bio(tc
->pool
, bio
);
1877 if (tc
->origin_dev
) {
1878 inc_all_io_entry(tc
->pool
, bio
);
1879 remap_to_origin_and_issue(tc
, bio
);
1888 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1891 cell_defer_no_holder(tc
, cell
);
1897 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1899 __process_bio_read_only(tc
, bio
, NULL
);
1902 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1904 __process_bio_read_only(tc
, cell
->holder
, cell
);
1907 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
1912 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1917 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1919 cell_success(tc
->pool
, cell
);
1922 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1924 cell_error(tc
->pool
, cell
);
1928 * FIXME: should we also commit due to size of transaction, measured in
1931 static int need_commit_due_to_time(struct pool
*pool
)
1933 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
1934 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
1937 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1938 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1940 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
1942 struct rb_node
**rbp
, *parent
;
1943 struct dm_thin_endio_hook
*pbd
;
1944 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
1946 rbp
= &tc
->sort_bio_list
.rb_node
;
1950 pbd
= thin_pbd(parent
);
1952 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
1953 rbp
= &(*rbp
)->rb_left
;
1955 rbp
= &(*rbp
)->rb_right
;
1958 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1959 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
1960 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
1963 static void __extract_sorted_bios(struct thin_c
*tc
)
1965 struct rb_node
*node
;
1966 struct dm_thin_endio_hook
*pbd
;
1969 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
1970 pbd
= thin_pbd(node
);
1971 bio
= thin_bio(pbd
);
1973 bio_list_add(&tc
->deferred_bio_list
, bio
);
1974 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
1977 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
1980 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
1983 struct bio_list bios
;
1985 bio_list_init(&bios
);
1986 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
1987 bio_list_init(&tc
->deferred_bio_list
);
1989 /* Sort deferred_bio_list using rb-tree */
1990 while ((bio
= bio_list_pop(&bios
)))
1991 __thin_bio_rb_add(tc
, bio
);
1994 * Transfer the sorted bios in sort_bio_list back to
1995 * deferred_bio_list to allow lockless submission of
1998 __extract_sorted_bios(tc
);
2001 static void process_thin_deferred_bios(struct thin_c
*tc
)
2003 struct pool
*pool
= tc
->pool
;
2004 unsigned long flags
;
2006 struct bio_list bios
;
2007 struct blk_plug plug
;
2010 if (tc
->requeue_mode
) {
2011 error_thin_bio_list(tc
, &tc
->deferred_bio_list
, DM_ENDIO_REQUEUE
);
2015 bio_list_init(&bios
);
2017 spin_lock_irqsave(&tc
->lock
, flags
);
2019 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2020 spin_unlock_irqrestore(&tc
->lock
, flags
);
2024 __sort_thin_deferred_bios(tc
);
2026 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2027 bio_list_init(&tc
->deferred_bio_list
);
2029 spin_unlock_irqrestore(&tc
->lock
, flags
);
2031 blk_start_plug(&plug
);
2032 while ((bio
= bio_list_pop(&bios
))) {
2034 * If we've got no free new_mapping structs, and processing
2035 * this bio might require one, we pause until there are some
2036 * prepared mappings to process.
2038 if (ensure_next_mapping(pool
)) {
2039 spin_lock_irqsave(&tc
->lock
, flags
);
2040 bio_list_add(&tc
->deferred_bio_list
, bio
);
2041 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2042 spin_unlock_irqrestore(&tc
->lock
, flags
);
2046 if (bio
->bi_rw
& REQ_DISCARD
)
2047 pool
->process_discard(tc
, bio
);
2049 pool
->process_bio(tc
, bio
);
2051 if ((count
++ & 127) == 0) {
2052 throttle_work_update(&pool
->throttle
);
2053 dm_pool_issue_prefetches(pool
->pmd
);
2056 blk_finish_plug(&plug
);
2059 static int cmp_cells(const void *lhs
, const void *rhs
)
2061 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2062 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2064 BUG_ON(!lhs_cell
->holder
);
2065 BUG_ON(!rhs_cell
->holder
);
2067 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2070 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2076 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2079 struct dm_bio_prison_cell
*cell
, *tmp
;
2081 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2082 if (count
>= CELL_SORT_ARRAY_SIZE
)
2085 pool
->cell_sort_array
[count
++] = cell
;
2086 list_del(&cell
->user_list
);
2089 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2094 static void process_thin_deferred_cells(struct thin_c
*tc
)
2096 struct pool
*pool
= tc
->pool
;
2097 unsigned long flags
;
2098 struct list_head cells
;
2099 struct dm_bio_prison_cell
*cell
;
2100 unsigned i
, j
, count
;
2102 INIT_LIST_HEAD(&cells
);
2104 spin_lock_irqsave(&tc
->lock
, flags
);
2105 list_splice_init(&tc
->deferred_cells
, &cells
);
2106 spin_unlock_irqrestore(&tc
->lock
, flags
);
2108 if (list_empty(&cells
))
2112 count
= sort_cells(tc
->pool
, &cells
);
2114 for (i
= 0; i
< count
; i
++) {
2115 cell
= pool
->cell_sort_array
[i
];
2116 BUG_ON(!cell
->holder
);
2119 * If we've got no free new_mapping structs, and processing
2120 * this bio might require one, we pause until there are some
2121 * prepared mappings to process.
2123 if (ensure_next_mapping(pool
)) {
2124 for (j
= i
; j
< count
; j
++)
2125 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2127 spin_lock_irqsave(&tc
->lock
, flags
);
2128 list_splice(&cells
, &tc
->deferred_cells
);
2129 spin_unlock_irqrestore(&tc
->lock
, flags
);
2133 if (cell
->holder
->bi_rw
& REQ_DISCARD
)
2134 pool
->process_discard_cell(tc
, cell
);
2136 pool
->process_cell(tc
, cell
);
2138 } while (!list_empty(&cells
));
2141 static void thin_get(struct thin_c
*tc
);
2142 static void thin_put(struct thin_c
*tc
);
2145 * We can't hold rcu_read_lock() around code that can block. So we
2146 * find a thin with the rcu lock held; bump a refcount; then drop
2149 static struct thin_c
*get_first_thin(struct pool
*pool
)
2151 struct thin_c
*tc
= NULL
;
2154 if (!list_empty(&pool
->active_thins
)) {
2155 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2163 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2165 struct thin_c
*old_tc
= tc
;
2168 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2180 static void process_deferred_bios(struct pool
*pool
)
2182 unsigned long flags
;
2184 struct bio_list bios
;
2187 tc
= get_first_thin(pool
);
2189 process_thin_deferred_cells(tc
);
2190 process_thin_deferred_bios(tc
);
2191 tc
= get_next_thin(pool
, tc
);
2195 * If there are any deferred flush bios, we must commit
2196 * the metadata before issuing them.
2198 bio_list_init(&bios
);
2199 spin_lock_irqsave(&pool
->lock
, flags
);
2200 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2201 bio_list_init(&pool
->deferred_flush_bios
);
2202 spin_unlock_irqrestore(&pool
->lock
, flags
);
2204 if (bio_list_empty(&bios
) &&
2205 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2209 while ((bio
= bio_list_pop(&bios
)))
2213 pool
->last_commit_jiffies
= jiffies
;
2215 while ((bio
= bio_list_pop(&bios
)))
2216 generic_make_request(bio
);
2219 static void do_worker(struct work_struct
*ws
)
2221 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2223 throttle_work_start(&pool
->throttle
);
2224 dm_pool_issue_prefetches(pool
->pmd
);
2225 throttle_work_update(&pool
->throttle
);
2226 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2227 throttle_work_update(&pool
->throttle
);
2228 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2229 throttle_work_update(&pool
->throttle
);
2230 process_deferred_bios(pool
);
2231 throttle_work_complete(&pool
->throttle
);
2235 * We want to commit periodically so that not too much
2236 * unwritten data builds up.
2238 static void do_waker(struct work_struct
*ws
)
2240 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2242 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2245 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
);
2248 * We're holding onto IO to allow userland time to react. After the
2249 * timeout either the pool will have been resized (and thus back in
2250 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2252 static void do_no_space_timeout(struct work_struct
*ws
)
2254 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2257 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2258 pool
->pf
.error_if_no_space
= true;
2259 notify_of_pool_mode_change_to_oods(pool
);
2260 error_retry_list_with_code(pool
, -ENOSPC
);
2264 /*----------------------------------------------------------------*/
2267 struct work_struct worker
;
2268 struct completion complete
;
2271 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2273 return container_of(ws
, struct pool_work
, worker
);
2276 static void pool_work_complete(struct pool_work
*pw
)
2278 complete(&pw
->complete
);
2281 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2282 void (*fn
)(struct work_struct
*))
2284 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2285 init_completion(&pw
->complete
);
2286 queue_work(pool
->wq
, &pw
->worker
);
2287 wait_for_completion(&pw
->complete
);
2290 /*----------------------------------------------------------------*/
2292 struct noflush_work
{
2293 struct pool_work pw
;
2297 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2299 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2302 static void do_noflush_start(struct work_struct
*ws
)
2304 struct noflush_work
*w
= to_noflush(ws
);
2305 w
->tc
->requeue_mode
= true;
2307 pool_work_complete(&w
->pw
);
2310 static void do_noflush_stop(struct work_struct
*ws
)
2312 struct noflush_work
*w
= to_noflush(ws
);
2313 w
->tc
->requeue_mode
= false;
2314 pool_work_complete(&w
->pw
);
2317 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2319 struct noflush_work w
;
2322 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2325 /*----------------------------------------------------------------*/
2327 static enum pool_mode
get_pool_mode(struct pool
*pool
)
2329 return pool
->pf
.mode
;
2332 static void notify_of_pool_mode_change(struct pool
*pool
, const char *new_mode
)
2334 dm_table_event(pool
->ti
->table
);
2335 DMINFO("%s: switching pool to %s mode",
2336 dm_device_name(pool
->pool_md
), new_mode
);
2339 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
)
2341 if (!pool
->pf
.error_if_no_space
)
2342 notify_of_pool_mode_change(pool
, "out-of-data-space (queue IO)");
2344 notify_of_pool_mode_change(pool
, "out-of-data-space (error IO)");
2347 static bool passdown_enabled(struct pool_c
*pt
)
2349 return pt
->adjusted_pf
.discard_passdown
;
2352 static void set_discard_callbacks(struct pool
*pool
)
2354 struct pool_c
*pt
= pool
->ti
->private;
2356 if (passdown_enabled(pt
)) {
2357 pool
->process_discard_cell
= process_discard_cell_passdown
;
2358 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
2360 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2361 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2365 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2367 struct pool_c
*pt
= pool
->ti
->private;
2368 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2369 enum pool_mode old_mode
= get_pool_mode(pool
);
2370 unsigned long no_space_timeout
= ACCESS_ONCE(no_space_timeout_secs
) * HZ
;
2373 * Never allow the pool to transition to PM_WRITE mode if user
2374 * intervention is required to verify metadata and data consistency.
2376 if (new_mode
== PM_WRITE
&& needs_check
) {
2377 DMERR("%s: unable to switch pool to write mode until repaired.",
2378 dm_device_name(pool
->pool_md
));
2379 if (old_mode
!= new_mode
)
2380 new_mode
= old_mode
;
2382 new_mode
= PM_READ_ONLY
;
2385 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2386 * not going to recover without a thin_repair. So we never let the
2387 * pool move out of the old mode.
2389 if (old_mode
== PM_FAIL
)
2390 new_mode
= old_mode
;
2394 if (old_mode
!= new_mode
)
2395 notify_of_pool_mode_change(pool
, "failure");
2396 dm_pool_metadata_read_only(pool
->pmd
);
2397 pool
->process_bio
= process_bio_fail
;
2398 pool
->process_discard
= process_bio_fail
;
2399 pool
->process_cell
= process_cell_fail
;
2400 pool
->process_discard_cell
= process_cell_fail
;
2401 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2402 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2404 error_retry_list(pool
);
2408 if (old_mode
!= new_mode
)
2409 notify_of_pool_mode_change(pool
, "read-only");
2410 dm_pool_metadata_read_only(pool
->pmd
);
2411 pool
->process_bio
= process_bio_read_only
;
2412 pool
->process_discard
= process_bio_success
;
2413 pool
->process_cell
= process_cell_read_only
;
2414 pool
->process_discard_cell
= process_cell_success
;
2415 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2416 pool
->process_prepared_discard
= process_prepared_discard_success
;
2418 error_retry_list(pool
);
2421 case PM_OUT_OF_DATA_SPACE
:
2423 * Ideally we'd never hit this state; the low water mark
2424 * would trigger userland to extend the pool before we
2425 * completely run out of data space. However, many small
2426 * IOs to unprovisioned space can consume data space at an
2427 * alarming rate. Adjust your low water mark if you're
2428 * frequently seeing this mode.
2430 if (old_mode
!= new_mode
)
2431 notify_of_pool_mode_change_to_oods(pool
);
2432 pool
->out_of_data_space
= true;
2433 pool
->process_bio
= process_bio_read_only
;
2434 pool
->process_discard
= process_discard_bio
;
2435 pool
->process_cell
= process_cell_read_only
;
2436 pool
->process_prepared_mapping
= process_prepared_mapping
;
2437 set_discard_callbacks(pool
);
2439 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2440 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2444 if (old_mode
!= new_mode
)
2445 notify_of_pool_mode_change(pool
, "write");
2446 pool
->out_of_data_space
= false;
2447 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2448 dm_pool_metadata_read_write(pool
->pmd
);
2449 pool
->process_bio
= process_bio
;
2450 pool
->process_discard
= process_discard_bio
;
2451 pool
->process_cell
= process_cell
;
2452 pool
->process_prepared_mapping
= process_prepared_mapping
;
2453 set_discard_callbacks(pool
);
2457 pool
->pf
.mode
= new_mode
;
2459 * The pool mode may have changed, sync it so bind_control_target()
2460 * doesn't cause an unexpected mode transition on resume.
2462 pt
->adjusted_pf
.mode
= new_mode
;
2465 static void abort_transaction(struct pool
*pool
)
2467 const char *dev_name
= dm_device_name(pool
->pool_md
);
2469 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2470 if (dm_pool_abort_metadata(pool
->pmd
)) {
2471 DMERR("%s: failed to abort metadata transaction", dev_name
);
2472 set_pool_mode(pool
, PM_FAIL
);
2475 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2476 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2477 set_pool_mode(pool
, PM_FAIL
);
2481 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2483 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2484 dm_device_name(pool
->pool_md
), op
, r
);
2486 abort_transaction(pool
);
2487 set_pool_mode(pool
, PM_READ_ONLY
);
2490 /*----------------------------------------------------------------*/
2493 * Mapping functions.
2497 * Called only while mapping a thin bio to hand it over to the workqueue.
2499 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2501 unsigned long flags
;
2502 struct pool
*pool
= tc
->pool
;
2504 spin_lock_irqsave(&tc
->lock
, flags
);
2505 bio_list_add(&tc
->deferred_bio_list
, bio
);
2506 spin_unlock_irqrestore(&tc
->lock
, flags
);
2511 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2513 struct pool
*pool
= tc
->pool
;
2515 throttle_lock(&pool
->throttle
);
2516 thin_defer_bio(tc
, bio
);
2517 throttle_unlock(&pool
->throttle
);
2520 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2522 unsigned long flags
;
2523 struct pool
*pool
= tc
->pool
;
2525 throttle_lock(&pool
->throttle
);
2526 spin_lock_irqsave(&tc
->lock
, flags
);
2527 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2528 spin_unlock_irqrestore(&tc
->lock
, flags
);
2529 throttle_unlock(&pool
->throttle
);
2534 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2536 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2539 h
->shared_read_entry
= NULL
;
2540 h
->all_io_entry
= NULL
;
2541 h
->overwrite_mapping
= NULL
;
2546 * Non-blocking function called from the thin target's map function.
2548 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2551 struct thin_c
*tc
= ti
->private;
2552 dm_block_t block
= get_bio_block(tc
, bio
);
2553 struct dm_thin_device
*td
= tc
->td
;
2554 struct dm_thin_lookup_result result
;
2555 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2556 struct dm_cell_key key
;
2558 thin_hook_bio(tc
, bio
);
2560 if (tc
->requeue_mode
) {
2561 bio
->bi_error
= DM_ENDIO_REQUEUE
;
2563 return DM_MAPIO_SUBMITTED
;
2566 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2568 return DM_MAPIO_SUBMITTED
;
2571 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
2572 thin_defer_bio_with_throttle(tc
, bio
);
2573 return DM_MAPIO_SUBMITTED
;
2577 * We must hold the virtual cell before doing the lookup, otherwise
2578 * there's a race with discard.
2580 build_virtual_key(tc
->td
, block
, &key
);
2581 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2582 return DM_MAPIO_SUBMITTED
;
2584 r
= dm_thin_find_block(td
, block
, 0, &result
);
2587 * Note that we defer readahead too.
2591 if (unlikely(result
.shared
)) {
2593 * We have a race condition here between the
2594 * result.shared value returned by the lookup and
2595 * snapshot creation, which may cause new
2598 * To avoid this always quiesce the origin before
2599 * taking the snap. You want to do this anyway to
2600 * ensure a consistent application view
2603 * More distant ancestors are irrelevant. The
2604 * shared flag will be set in their case.
2606 thin_defer_cell(tc
, virt_cell
);
2607 return DM_MAPIO_SUBMITTED
;
2610 build_data_key(tc
->td
, result
.block
, &key
);
2611 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2612 cell_defer_no_holder(tc
, virt_cell
);
2613 return DM_MAPIO_SUBMITTED
;
2616 inc_all_io_entry(tc
->pool
, bio
);
2617 cell_defer_no_holder(tc
, data_cell
);
2618 cell_defer_no_holder(tc
, virt_cell
);
2620 remap(tc
, bio
, result
.block
);
2621 return DM_MAPIO_REMAPPED
;
2625 thin_defer_cell(tc
, virt_cell
);
2626 return DM_MAPIO_SUBMITTED
;
2630 * Must always call bio_io_error on failure.
2631 * dm_thin_find_block can fail with -EINVAL if the
2632 * pool is switched to fail-io mode.
2635 cell_defer_no_holder(tc
, virt_cell
);
2636 return DM_MAPIO_SUBMITTED
;
2640 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2642 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2643 struct request_queue
*q
;
2645 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2648 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2649 return bdi_congested(&q
->backing_dev_info
, bdi_bits
);
2652 static void requeue_bios(struct pool
*pool
)
2654 unsigned long flags
;
2658 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2659 spin_lock_irqsave(&tc
->lock
, flags
);
2660 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2661 bio_list_init(&tc
->retry_on_resume_list
);
2662 spin_unlock_irqrestore(&tc
->lock
, flags
);
2667 /*----------------------------------------------------------------
2668 * Binding of control targets to a pool object
2669 *--------------------------------------------------------------*/
2670 static bool data_dev_supports_discard(struct pool_c
*pt
)
2672 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2674 return q
&& blk_queue_discard(q
);
2677 static bool is_factor(sector_t block_size
, uint32_t n
)
2679 return !sector_div(block_size
, n
);
2683 * If discard_passdown was enabled verify that the data device
2684 * supports discards. Disable discard_passdown if not.
2686 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2688 struct pool
*pool
= pt
->pool
;
2689 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2690 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2691 const char *reason
= NULL
;
2692 char buf
[BDEVNAME_SIZE
];
2694 if (!pt
->adjusted_pf
.discard_passdown
)
2697 if (!data_dev_supports_discard(pt
))
2698 reason
= "discard unsupported";
2700 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2701 reason
= "max discard sectors smaller than a block";
2704 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2705 pt
->adjusted_pf
.discard_passdown
= false;
2709 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2711 struct pool_c
*pt
= ti
->private;
2714 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2716 enum pool_mode old_mode
= get_pool_mode(pool
);
2717 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2720 * Don't change the pool's mode until set_pool_mode() below.
2721 * Otherwise the pool's process_* function pointers may
2722 * not match the desired pool mode.
2724 pt
->adjusted_pf
.mode
= old_mode
;
2727 pool
->pf
= pt
->adjusted_pf
;
2728 pool
->low_water_blocks
= pt
->low_water_blocks
;
2730 set_pool_mode(pool
, new_mode
);
2735 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2741 /*----------------------------------------------------------------
2743 *--------------------------------------------------------------*/
2744 /* Initialize pool features. */
2745 static void pool_features_init(struct pool_features
*pf
)
2747 pf
->mode
= PM_WRITE
;
2748 pf
->zero_new_blocks
= true;
2749 pf
->discard_enabled
= true;
2750 pf
->discard_passdown
= true;
2751 pf
->error_if_no_space
= false;
2754 static void __pool_destroy(struct pool
*pool
)
2756 __pool_table_remove(pool
);
2758 vfree(pool
->cell_sort_array
);
2759 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2760 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2762 dm_bio_prison_destroy(pool
->prison
);
2763 dm_kcopyd_client_destroy(pool
->copier
);
2766 destroy_workqueue(pool
->wq
);
2768 if (pool
->next_mapping
)
2769 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
2770 mempool_destroy(pool
->mapping_pool
);
2771 dm_deferred_set_destroy(pool
->shared_read_ds
);
2772 dm_deferred_set_destroy(pool
->all_io_ds
);
2776 static struct kmem_cache
*_new_mapping_cache
;
2778 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2779 struct block_device
*metadata_dev
,
2780 unsigned long block_size
,
2781 int read_only
, char **error
)
2786 struct dm_pool_metadata
*pmd
;
2787 bool format_device
= read_only
? false : true;
2789 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2791 *error
= "Error creating metadata object";
2792 return (struct pool
*)pmd
;
2795 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
2797 *error
= "Error allocating memory for pool";
2798 err_p
= ERR_PTR(-ENOMEM
);
2803 pool
->sectors_per_block
= block_size
;
2804 if (block_size
& (block_size
- 1))
2805 pool
->sectors_per_block_shift
= -1;
2807 pool
->sectors_per_block_shift
= __ffs(block_size
);
2808 pool
->low_water_blocks
= 0;
2809 pool_features_init(&pool
->pf
);
2810 pool
->prison
= dm_bio_prison_create();
2811 if (!pool
->prison
) {
2812 *error
= "Error creating pool's bio prison";
2813 err_p
= ERR_PTR(-ENOMEM
);
2817 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2818 if (IS_ERR(pool
->copier
)) {
2819 r
= PTR_ERR(pool
->copier
);
2820 *error
= "Error creating pool's kcopyd client";
2822 goto bad_kcopyd_client
;
2826 * Create singlethreaded workqueue that will service all devices
2827 * that use this metadata.
2829 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2831 *error
= "Error creating pool's workqueue";
2832 err_p
= ERR_PTR(-ENOMEM
);
2836 throttle_init(&pool
->throttle
);
2837 INIT_WORK(&pool
->worker
, do_worker
);
2838 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2839 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2840 spin_lock_init(&pool
->lock
);
2841 bio_list_init(&pool
->deferred_flush_bios
);
2842 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2843 INIT_LIST_HEAD(&pool
->prepared_discards
);
2844 INIT_LIST_HEAD(&pool
->active_thins
);
2845 pool
->low_water_triggered
= false;
2846 pool
->suspended
= true;
2847 pool
->out_of_data_space
= false;
2849 pool
->shared_read_ds
= dm_deferred_set_create();
2850 if (!pool
->shared_read_ds
) {
2851 *error
= "Error creating pool's shared read deferred set";
2852 err_p
= ERR_PTR(-ENOMEM
);
2853 goto bad_shared_read_ds
;
2856 pool
->all_io_ds
= dm_deferred_set_create();
2857 if (!pool
->all_io_ds
) {
2858 *error
= "Error creating pool's all io deferred set";
2859 err_p
= ERR_PTR(-ENOMEM
);
2863 pool
->next_mapping
= NULL
;
2864 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
2865 _new_mapping_cache
);
2866 if (!pool
->mapping_pool
) {
2867 *error
= "Error creating pool's mapping mempool";
2868 err_p
= ERR_PTR(-ENOMEM
);
2869 goto bad_mapping_pool
;
2872 pool
->cell_sort_array
= vmalloc(sizeof(*pool
->cell_sort_array
) * CELL_SORT_ARRAY_SIZE
);
2873 if (!pool
->cell_sort_array
) {
2874 *error
= "Error allocating cell sort array";
2875 err_p
= ERR_PTR(-ENOMEM
);
2876 goto bad_sort_array
;
2879 pool
->ref_count
= 1;
2880 pool
->last_commit_jiffies
= jiffies
;
2881 pool
->pool_md
= pool_md
;
2882 pool
->md_dev
= metadata_dev
;
2883 __pool_table_insert(pool
);
2888 mempool_destroy(pool
->mapping_pool
);
2890 dm_deferred_set_destroy(pool
->all_io_ds
);
2892 dm_deferred_set_destroy(pool
->shared_read_ds
);
2894 destroy_workqueue(pool
->wq
);
2896 dm_kcopyd_client_destroy(pool
->copier
);
2898 dm_bio_prison_destroy(pool
->prison
);
2902 if (dm_pool_metadata_close(pmd
))
2903 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2908 static void __pool_inc(struct pool
*pool
)
2910 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2914 static void __pool_dec(struct pool
*pool
)
2916 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2917 BUG_ON(!pool
->ref_count
);
2918 if (!--pool
->ref_count
)
2919 __pool_destroy(pool
);
2922 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
2923 struct block_device
*metadata_dev
,
2924 unsigned long block_size
, int read_only
,
2925 char **error
, int *created
)
2927 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
2930 if (pool
->pool_md
!= pool_md
) {
2931 *error
= "metadata device already in use by a pool";
2932 return ERR_PTR(-EBUSY
);
2937 pool
= __pool_table_lookup(pool_md
);
2939 if (pool
->md_dev
!= metadata_dev
) {
2940 *error
= "different pool cannot replace a pool";
2941 return ERR_PTR(-EINVAL
);
2946 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
2954 /*----------------------------------------------------------------
2955 * Pool target methods
2956 *--------------------------------------------------------------*/
2957 static void pool_dtr(struct dm_target
*ti
)
2959 struct pool_c
*pt
= ti
->private;
2961 mutex_lock(&dm_thin_pool_table
.mutex
);
2963 unbind_control_target(pt
->pool
, ti
);
2964 __pool_dec(pt
->pool
);
2965 dm_put_device(ti
, pt
->metadata_dev
);
2966 dm_put_device(ti
, pt
->data_dev
);
2969 mutex_unlock(&dm_thin_pool_table
.mutex
);
2972 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
2973 struct dm_target
*ti
)
2977 const char *arg_name
;
2979 static struct dm_arg _args
[] = {
2980 {0, 4, "Invalid number of pool feature arguments"},
2984 * No feature arguments supplied.
2989 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
2993 while (argc
&& !r
) {
2994 arg_name
= dm_shift_arg(as
);
2997 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
2998 pf
->zero_new_blocks
= false;
3000 else if (!strcasecmp(arg_name
, "ignore_discard"))
3001 pf
->discard_enabled
= false;
3003 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
3004 pf
->discard_passdown
= false;
3006 else if (!strcasecmp(arg_name
, "read_only"))
3007 pf
->mode
= PM_READ_ONLY
;
3009 else if (!strcasecmp(arg_name
, "error_if_no_space"))
3010 pf
->error_if_no_space
= true;
3013 ti
->error
= "Unrecognised pool feature requested";
3022 static void metadata_low_callback(void *context
)
3024 struct pool
*pool
= context
;
3026 DMWARN("%s: reached low water mark for metadata device: sending event.",
3027 dm_device_name(pool
->pool_md
));
3029 dm_table_event(pool
->ti
->table
);
3032 static sector_t
get_dev_size(struct block_device
*bdev
)
3034 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3037 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3039 sector_t metadata_dev_size
= get_dev_size(bdev
);
3040 char buffer
[BDEVNAME_SIZE
];
3042 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3043 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3044 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3047 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3049 sector_t metadata_dev_size
= get_dev_size(bdev
);
3051 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3052 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3054 return metadata_dev_size
;
3057 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3059 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3061 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3063 return metadata_dev_size
;
3067 * When a metadata threshold is crossed a dm event is triggered, and
3068 * userland should respond by growing the metadata device. We could let
3069 * userland set the threshold, like we do with the data threshold, but I'm
3070 * not sure they know enough to do this well.
3072 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3075 * 4M is ample for all ops with the possible exception of thin
3076 * device deletion which is harmless if it fails (just retry the
3077 * delete after you've grown the device).
3079 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3080 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3084 * thin-pool <metadata dev> <data dev>
3085 * <data block size (sectors)>
3086 * <low water mark (blocks)>
3087 * [<#feature args> [<arg>]*]
3089 * Optional feature arguments are:
3090 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3091 * ignore_discard: disable discard
3092 * no_discard_passdown: don't pass discards down to the data device
3093 * read_only: Don't allow any changes to be made to the pool metadata.
3094 * error_if_no_space: error IOs, instead of queueing, if no space.
3096 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3098 int r
, pool_created
= 0;
3101 struct pool_features pf
;
3102 struct dm_arg_set as
;
3103 struct dm_dev
*data_dev
;
3104 unsigned long block_size
;
3105 dm_block_t low_water_blocks
;
3106 struct dm_dev
*metadata_dev
;
3107 fmode_t metadata_mode
;
3110 * FIXME Remove validation from scope of lock.
3112 mutex_lock(&dm_thin_pool_table
.mutex
);
3115 ti
->error
= "Invalid argument count";
3124 * Set default pool features.
3126 pool_features_init(&pf
);
3128 dm_consume_args(&as
, 4);
3129 r
= parse_pool_features(&as
, &pf
, ti
);
3133 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3134 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3136 ti
->error
= "Error opening metadata block device";
3139 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3141 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3143 ti
->error
= "Error getting data device";
3147 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3148 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3149 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3150 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3151 ti
->error
= "Invalid block size";
3156 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3157 ti
->error
= "Invalid low water mark";
3162 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3168 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
3169 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3176 * 'pool_created' reflects whether this is the first table load.
3177 * Top level discard support is not allowed to be changed after
3178 * initial load. This would require a pool reload to trigger thin
3181 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3182 ti
->error
= "Discard support cannot be disabled once enabled";
3184 goto out_flags_changed
;
3189 pt
->metadata_dev
= metadata_dev
;
3190 pt
->data_dev
= data_dev
;
3191 pt
->low_water_blocks
= low_water_blocks
;
3192 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3193 ti
->num_flush_bios
= 1;
3196 * Only need to enable discards if the pool should pass
3197 * them down to the data device. The thin device's discard
3198 * processing will cause mappings to be removed from the btree.
3200 ti
->discard_zeroes_data_unsupported
= true;
3201 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3202 ti
->num_discard_bios
= 1;
3205 * Setting 'discards_supported' circumvents the normal
3206 * stacking of discard limits (this keeps the pool and
3207 * thin devices' discard limits consistent).
3209 ti
->discards_supported
= true;
3213 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3214 calc_metadata_threshold(pt
),
3215 metadata_low_callback
,
3218 goto out_flags_changed
;
3220 pt
->callbacks
.congested_fn
= pool_is_congested
;
3221 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
3223 mutex_unlock(&dm_thin_pool_table
.mutex
);
3232 dm_put_device(ti
, data_dev
);
3234 dm_put_device(ti
, metadata_dev
);
3236 mutex_unlock(&dm_thin_pool_table
.mutex
);
3241 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3244 struct pool_c
*pt
= ti
->private;
3245 struct pool
*pool
= pt
->pool
;
3246 unsigned long flags
;
3249 * As this is a singleton target, ti->begin is always zero.
3251 spin_lock_irqsave(&pool
->lock
, flags
);
3252 bio
->bi_bdev
= pt
->data_dev
->bdev
;
3253 r
= DM_MAPIO_REMAPPED
;
3254 spin_unlock_irqrestore(&pool
->lock
, flags
);
3259 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3262 struct pool_c
*pt
= ti
->private;
3263 struct pool
*pool
= pt
->pool
;
3264 sector_t data_size
= ti
->len
;
3265 dm_block_t sb_data_size
;
3267 *need_commit
= false;
3269 (void) sector_div(data_size
, pool
->sectors_per_block
);
3271 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3273 DMERR("%s: failed to retrieve data device size",
3274 dm_device_name(pool
->pool_md
));
3278 if (data_size
< sb_data_size
) {
3279 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3280 dm_device_name(pool
->pool_md
),
3281 (unsigned long long)data_size
, sb_data_size
);
3284 } else if (data_size
> sb_data_size
) {
3285 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3286 DMERR("%s: unable to grow the data device until repaired.",
3287 dm_device_name(pool
->pool_md
));
3292 DMINFO("%s: growing the data device from %llu to %llu blocks",
3293 dm_device_name(pool
->pool_md
),
3294 sb_data_size
, (unsigned long long)data_size
);
3295 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3297 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3301 *need_commit
= true;
3307 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3310 struct pool_c
*pt
= ti
->private;
3311 struct pool
*pool
= pt
->pool
;
3312 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3314 *need_commit
= false;
3316 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3318 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3320 DMERR("%s: failed to retrieve metadata device size",
3321 dm_device_name(pool
->pool_md
));
3325 if (metadata_dev_size
< sb_metadata_dev_size
) {
3326 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3327 dm_device_name(pool
->pool_md
),
3328 metadata_dev_size
, sb_metadata_dev_size
);
3331 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3332 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3333 DMERR("%s: unable to grow the metadata device until repaired.",
3334 dm_device_name(pool
->pool_md
));
3338 warn_if_metadata_device_too_big(pool
->md_dev
);
3339 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3340 dm_device_name(pool
->pool_md
),
3341 sb_metadata_dev_size
, metadata_dev_size
);
3342 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3344 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3348 *need_commit
= true;
3355 * Retrieves the number of blocks of the data device from
3356 * the superblock and compares it to the actual device size,
3357 * thus resizing the data device in case it has grown.
3359 * This both copes with opening preallocated data devices in the ctr
3360 * being followed by a resume
3362 * calling the resume method individually after userspace has
3363 * grown the data device in reaction to a table event.
3365 static int pool_preresume(struct dm_target
*ti
)
3368 bool need_commit1
, need_commit2
;
3369 struct pool_c
*pt
= ti
->private;
3370 struct pool
*pool
= pt
->pool
;
3373 * Take control of the pool object.
3375 r
= bind_control_target(pool
, ti
);
3379 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3383 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3387 if (need_commit1
|| need_commit2
)
3388 (void) commit(pool
);
3393 static void pool_suspend_active_thins(struct pool
*pool
)
3397 /* Suspend all active thin devices */
3398 tc
= get_first_thin(pool
);
3400 dm_internal_suspend_noflush(tc
->thin_md
);
3401 tc
= get_next_thin(pool
, tc
);
3405 static void pool_resume_active_thins(struct pool
*pool
)
3409 /* Resume all active thin devices */
3410 tc
= get_first_thin(pool
);
3412 dm_internal_resume(tc
->thin_md
);
3413 tc
= get_next_thin(pool
, tc
);
3417 static void pool_resume(struct dm_target
*ti
)
3419 struct pool_c
*pt
= ti
->private;
3420 struct pool
*pool
= pt
->pool
;
3421 unsigned long flags
;
3424 * Must requeue active_thins' bios and then resume
3425 * active_thins _before_ clearing 'suspend' flag.
3428 pool_resume_active_thins(pool
);
3430 spin_lock_irqsave(&pool
->lock
, flags
);
3431 pool
->low_water_triggered
= false;
3432 pool
->suspended
= false;
3433 spin_unlock_irqrestore(&pool
->lock
, flags
);
3435 do_waker(&pool
->waker
.work
);
3438 static void pool_presuspend(struct dm_target
*ti
)
3440 struct pool_c
*pt
= ti
->private;
3441 struct pool
*pool
= pt
->pool
;
3442 unsigned long flags
;
3444 spin_lock_irqsave(&pool
->lock
, flags
);
3445 pool
->suspended
= true;
3446 spin_unlock_irqrestore(&pool
->lock
, flags
);
3448 pool_suspend_active_thins(pool
);
3451 static void pool_presuspend_undo(struct dm_target
*ti
)
3453 struct pool_c
*pt
= ti
->private;
3454 struct pool
*pool
= pt
->pool
;
3455 unsigned long flags
;
3457 pool_resume_active_thins(pool
);
3459 spin_lock_irqsave(&pool
->lock
, flags
);
3460 pool
->suspended
= false;
3461 spin_unlock_irqrestore(&pool
->lock
, flags
);
3464 static void pool_postsuspend(struct dm_target
*ti
)
3466 struct pool_c
*pt
= ti
->private;
3467 struct pool
*pool
= pt
->pool
;
3469 cancel_delayed_work_sync(&pool
->waker
);
3470 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3471 flush_workqueue(pool
->wq
);
3472 (void) commit(pool
);
3475 static int check_arg_count(unsigned argc
, unsigned args_required
)
3477 if (argc
!= args_required
) {
3478 DMWARN("Message received with %u arguments instead of %u.",
3479 argc
, args_required
);
3486 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3488 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3489 *dev_id
<= MAX_DEV_ID
)
3493 DMWARN("Message received with invalid device id: %s", arg
);
3498 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3503 r
= check_arg_count(argc
, 2);
3507 r
= read_dev_id(argv
[1], &dev_id
, 1);
3511 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3513 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3521 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3524 dm_thin_id origin_dev_id
;
3527 r
= check_arg_count(argc
, 3);
3531 r
= read_dev_id(argv
[1], &dev_id
, 1);
3535 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3539 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3541 DMWARN("Creation of new snapshot %s of device %s failed.",
3549 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3554 r
= check_arg_count(argc
, 2);
3558 r
= read_dev_id(argv
[1], &dev_id
, 1);
3562 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3564 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3569 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3571 dm_thin_id old_id
, new_id
;
3574 r
= check_arg_count(argc
, 3);
3578 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3579 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3583 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3584 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3588 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3590 DMWARN("Failed to change transaction id from %s to %s.",
3598 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3602 r
= check_arg_count(argc
, 1);
3606 (void) commit(pool
);
3608 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3610 DMWARN("reserve_metadata_snap message failed.");
3615 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3619 r
= check_arg_count(argc
, 1);
3623 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3625 DMWARN("release_metadata_snap message failed.");
3631 * Messages supported:
3632 * create_thin <dev_id>
3633 * create_snap <dev_id> <origin_id>
3635 * set_transaction_id <current_trans_id> <new_trans_id>
3636 * reserve_metadata_snap
3637 * release_metadata_snap
3639 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
3642 struct pool_c
*pt
= ti
->private;
3643 struct pool
*pool
= pt
->pool
;
3645 if (get_pool_mode(pool
) >= PM_READ_ONLY
) {
3646 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3647 dm_device_name(pool
->pool_md
));
3651 if (!strcasecmp(argv
[0], "create_thin"))
3652 r
= process_create_thin_mesg(argc
, argv
, pool
);
3654 else if (!strcasecmp(argv
[0], "create_snap"))
3655 r
= process_create_snap_mesg(argc
, argv
, pool
);
3657 else if (!strcasecmp(argv
[0], "delete"))
3658 r
= process_delete_mesg(argc
, argv
, pool
);
3660 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3661 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3663 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3664 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3666 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3667 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3670 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3673 (void) commit(pool
);
3678 static void emit_flags(struct pool_features
*pf
, char *result
,
3679 unsigned sz
, unsigned maxlen
)
3681 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3682 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3683 pf
->error_if_no_space
;
3684 DMEMIT("%u ", count
);
3686 if (!pf
->zero_new_blocks
)
3687 DMEMIT("skip_block_zeroing ");
3689 if (!pf
->discard_enabled
)
3690 DMEMIT("ignore_discard ");
3692 if (!pf
->discard_passdown
)
3693 DMEMIT("no_discard_passdown ");
3695 if (pf
->mode
== PM_READ_ONLY
)
3696 DMEMIT("read_only ");
3698 if (pf
->error_if_no_space
)
3699 DMEMIT("error_if_no_space ");
3704 * <transaction id> <used metadata sectors>/<total metadata sectors>
3705 * <used data sectors>/<total data sectors> <held metadata root>
3706 * <pool mode> <discard config> <no space config> <needs_check>
3708 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3709 unsigned status_flags
, char *result
, unsigned maxlen
)
3713 uint64_t transaction_id
;
3714 dm_block_t nr_free_blocks_data
;
3715 dm_block_t nr_free_blocks_metadata
;
3716 dm_block_t nr_blocks_data
;
3717 dm_block_t nr_blocks_metadata
;
3718 dm_block_t held_root
;
3719 char buf
[BDEVNAME_SIZE
];
3720 char buf2
[BDEVNAME_SIZE
];
3721 struct pool_c
*pt
= ti
->private;
3722 struct pool
*pool
= pt
->pool
;
3725 case STATUSTYPE_INFO
:
3726 if (get_pool_mode(pool
) == PM_FAIL
) {
3731 /* Commit to ensure statistics aren't out-of-date */
3732 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3733 (void) commit(pool
);
3735 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3737 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3738 dm_device_name(pool
->pool_md
), r
);
3742 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3744 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3745 dm_device_name(pool
->pool_md
), r
);
3749 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3751 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3752 dm_device_name(pool
->pool_md
), r
);
3756 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3758 DMERR("%s: dm_pool_get_free_block_count returned %d",
3759 dm_device_name(pool
->pool_md
), r
);
3763 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3765 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3766 dm_device_name(pool
->pool_md
), r
);
3770 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3772 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3773 dm_device_name(pool
->pool_md
), r
);
3777 DMEMIT("%llu %llu/%llu %llu/%llu ",
3778 (unsigned long long)transaction_id
,
3779 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3780 (unsigned long long)nr_blocks_metadata
,
3781 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3782 (unsigned long long)nr_blocks_data
);
3785 DMEMIT("%llu ", held_root
);
3789 if (pool
->pf
.mode
== PM_OUT_OF_DATA_SPACE
)
3790 DMEMIT("out_of_data_space ");
3791 else if (pool
->pf
.mode
== PM_READ_ONLY
)
3796 if (!pool
->pf
.discard_enabled
)
3797 DMEMIT("ignore_discard ");
3798 else if (pool
->pf
.discard_passdown
)
3799 DMEMIT("discard_passdown ");
3801 DMEMIT("no_discard_passdown ");
3803 if (pool
->pf
.error_if_no_space
)
3804 DMEMIT("error_if_no_space ");
3806 DMEMIT("queue_if_no_space ");
3808 if (dm_pool_metadata_needs_check(pool
->pmd
))
3809 DMEMIT("needs_check ");
3815 case STATUSTYPE_TABLE
:
3816 DMEMIT("%s %s %lu %llu ",
3817 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
3818 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
3819 (unsigned long)pool
->sectors_per_block
,
3820 (unsigned long long)pt
->low_water_blocks
);
3821 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
3830 static int pool_iterate_devices(struct dm_target
*ti
,
3831 iterate_devices_callout_fn fn
, void *data
)
3833 struct pool_c
*pt
= ti
->private;
3835 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
3838 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3840 struct pool_c
*pt
= ti
->private;
3841 struct pool
*pool
= pt
->pool
;
3842 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3845 * If max_sectors is smaller than pool->sectors_per_block adjust it
3846 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3847 * This is especially beneficial when the pool's data device is a RAID
3848 * device that has a full stripe width that matches pool->sectors_per_block
3849 * -- because even though partial RAID stripe-sized IOs will be issued to a
3850 * single RAID stripe; when aggregated they will end on a full RAID stripe
3851 * boundary.. which avoids additional partial RAID stripe writes cascading
3853 if (limits
->max_sectors
< pool
->sectors_per_block
) {
3854 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
3855 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
3856 limits
->max_sectors
--;
3857 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
3862 * If the system-determined stacked limits are compatible with the
3863 * pool's blocksize (io_opt is a factor) do not override them.
3865 if (io_opt_sectors
< pool
->sectors_per_block
||
3866 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
3867 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
3868 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
3870 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3871 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3875 * pt->adjusted_pf is a staging area for the actual features to use.
3876 * They get transferred to the live pool in bind_control_target()
3877 * called from pool_preresume().
3879 if (!pt
->adjusted_pf
.discard_enabled
) {
3881 * Must explicitly disallow stacking discard limits otherwise the
3882 * block layer will stack them if pool's data device has support.
3883 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3884 * user to see that, so make sure to set all discard limits to 0.
3886 limits
->discard_granularity
= 0;
3890 disable_passdown_if_not_supported(pt
);
3893 * The pool uses the same discard limits as the underlying data
3894 * device. DM core has already set this up.
3898 static struct target_type pool_target
= {
3899 .name
= "thin-pool",
3900 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
3901 DM_TARGET_IMMUTABLE
,
3902 .version
= {1, 18, 0},
3903 .module
= THIS_MODULE
,
3907 .presuspend
= pool_presuspend
,
3908 .presuspend_undo
= pool_presuspend_undo
,
3909 .postsuspend
= pool_postsuspend
,
3910 .preresume
= pool_preresume
,
3911 .resume
= pool_resume
,
3912 .message
= pool_message
,
3913 .status
= pool_status
,
3914 .iterate_devices
= pool_iterate_devices
,
3915 .io_hints
= pool_io_hints
,
3918 /*----------------------------------------------------------------
3919 * Thin target methods
3920 *--------------------------------------------------------------*/
3921 static void thin_get(struct thin_c
*tc
)
3923 atomic_inc(&tc
->refcount
);
3926 static void thin_put(struct thin_c
*tc
)
3928 if (atomic_dec_and_test(&tc
->refcount
))
3929 complete(&tc
->can_destroy
);
3932 static void thin_dtr(struct dm_target
*ti
)
3934 struct thin_c
*tc
= ti
->private;
3935 unsigned long flags
;
3937 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
3938 list_del_rcu(&tc
->list
);
3939 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
3943 wait_for_completion(&tc
->can_destroy
);
3945 mutex_lock(&dm_thin_pool_table
.mutex
);
3947 __pool_dec(tc
->pool
);
3948 dm_pool_close_thin_device(tc
->td
);
3949 dm_put_device(ti
, tc
->pool_dev
);
3951 dm_put_device(ti
, tc
->origin_dev
);
3954 mutex_unlock(&dm_thin_pool_table
.mutex
);
3958 * Thin target parameters:
3960 * <pool_dev> <dev_id> [origin_dev]
3962 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3963 * dev_id: the internal device identifier
3964 * origin_dev: a device external to the pool that should act as the origin
3966 * If the pool device has discards disabled, they get disabled for the thin
3969 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3973 struct dm_dev
*pool_dev
, *origin_dev
;
3974 struct mapped_device
*pool_md
;
3975 unsigned long flags
;
3977 mutex_lock(&dm_thin_pool_table
.mutex
);
3979 if (argc
!= 2 && argc
!= 3) {
3980 ti
->error
= "Invalid argument count";
3985 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
3987 ti
->error
= "Out of memory";
3991 tc
->thin_md
= dm_table_get_md(ti
->table
);
3992 spin_lock_init(&tc
->lock
);
3993 INIT_LIST_HEAD(&tc
->deferred_cells
);
3994 bio_list_init(&tc
->deferred_bio_list
);
3995 bio_list_init(&tc
->retry_on_resume_list
);
3996 tc
->sort_bio_list
= RB_ROOT
;
3999 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
4001 ti
->error
= "Error opening origin device";
4002 goto bad_origin_dev
;
4004 tc
->origin_dev
= origin_dev
;
4007 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
4009 ti
->error
= "Error opening pool device";
4012 tc
->pool_dev
= pool_dev
;
4014 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4015 ti
->error
= "Invalid device id";
4020 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4022 ti
->error
= "Couldn't get pool mapped device";
4027 tc
->pool
= __pool_table_lookup(pool_md
);
4029 ti
->error
= "Couldn't find pool object";
4031 goto bad_pool_lookup
;
4033 __pool_inc(tc
->pool
);
4035 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4036 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4041 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4043 ti
->error
= "Couldn't open thin internal device";
4047 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4051 ti
->num_flush_bios
= 1;
4052 ti
->flush_supported
= true;
4053 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4055 /* In case the pool supports discards, pass them on. */
4056 ti
->discard_zeroes_data_unsupported
= true;
4057 if (tc
->pool
->pf
.discard_enabled
) {
4058 ti
->discards_supported
= true;
4059 ti
->num_discard_bios
= 1;
4060 ti
->split_discard_bios
= false;
4063 mutex_unlock(&dm_thin_pool_table
.mutex
);
4065 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4066 if (tc
->pool
->suspended
) {
4067 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4068 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4069 ti
->error
= "Unable to activate thin device while pool is suspended";
4073 atomic_set(&tc
->refcount
, 1);
4074 init_completion(&tc
->can_destroy
);
4075 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4076 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4078 * This synchronize_rcu() call is needed here otherwise we risk a
4079 * wake_worker() call finding no bios to process (because the newly
4080 * added tc isn't yet visible). So this reduces latency since we
4081 * aren't then dependent on the periodic commit to wake_worker().
4090 dm_pool_close_thin_device(tc
->td
);
4092 __pool_dec(tc
->pool
);
4096 dm_put_device(ti
, tc
->pool_dev
);
4099 dm_put_device(ti
, tc
->origin_dev
);
4103 mutex_unlock(&dm_thin_pool_table
.mutex
);
4108 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4110 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4112 return thin_bio_map(ti
, bio
);
4115 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
, int err
)
4117 unsigned long flags
;
4118 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4119 struct list_head work
;
4120 struct dm_thin_new_mapping
*m
, *tmp
;
4121 struct pool
*pool
= h
->tc
->pool
;
4123 if (h
->shared_read_entry
) {
4124 INIT_LIST_HEAD(&work
);
4125 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4127 spin_lock_irqsave(&pool
->lock
, flags
);
4128 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4130 __complete_mapping_preparation(m
);
4132 spin_unlock_irqrestore(&pool
->lock
, flags
);
4135 if (h
->all_io_entry
) {
4136 INIT_LIST_HEAD(&work
);
4137 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4138 if (!list_empty(&work
)) {
4139 spin_lock_irqsave(&pool
->lock
, flags
);
4140 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4141 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4142 spin_unlock_irqrestore(&pool
->lock
, flags
);
4148 cell_defer_no_holder(h
->tc
, h
->cell
);
4153 static void thin_presuspend(struct dm_target
*ti
)
4155 struct thin_c
*tc
= ti
->private;
4157 if (dm_noflush_suspending(ti
))
4158 noflush_work(tc
, do_noflush_start
);
4161 static void thin_postsuspend(struct dm_target
*ti
)
4163 struct thin_c
*tc
= ti
->private;
4166 * The dm_noflush_suspending flag has been cleared by now, so
4167 * unfortunately we must always run this.
4169 noflush_work(tc
, do_noflush_stop
);
4172 static int thin_preresume(struct dm_target
*ti
)
4174 struct thin_c
*tc
= ti
->private;
4177 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4183 * <nr mapped sectors> <highest mapped sector>
4185 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4186 unsigned status_flags
, char *result
, unsigned maxlen
)
4190 dm_block_t mapped
, highest
;
4191 char buf
[BDEVNAME_SIZE
];
4192 struct thin_c
*tc
= ti
->private;
4194 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4203 case STATUSTYPE_INFO
:
4204 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4206 DMERR("dm_thin_get_mapped_count returned %d", r
);
4210 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4212 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4216 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4218 DMEMIT("%llu", ((highest
+ 1) *
4219 tc
->pool
->sectors_per_block
) - 1);
4224 case STATUSTYPE_TABLE
:
4226 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4227 (unsigned long) tc
->dev_id
);
4229 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4240 static int thin_iterate_devices(struct dm_target
*ti
,
4241 iterate_devices_callout_fn fn
, void *data
)
4244 struct thin_c
*tc
= ti
->private;
4245 struct pool
*pool
= tc
->pool
;
4248 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4249 * we follow a more convoluted path through to the pool's target.
4252 return 0; /* nothing is bound */
4254 blocks
= pool
->ti
->len
;
4255 (void) sector_div(blocks
, pool
->sectors_per_block
);
4257 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4262 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4264 struct thin_c
*tc
= ti
->private;
4265 struct pool
*pool
= tc
->pool
;
4267 if (!pool
->pf
.discard_enabled
)
4270 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4271 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4274 static struct target_type thin_target
= {
4276 .version
= {1, 18, 0},
4277 .module
= THIS_MODULE
,
4281 .end_io
= thin_endio
,
4282 .preresume
= thin_preresume
,
4283 .presuspend
= thin_presuspend
,
4284 .postsuspend
= thin_postsuspend
,
4285 .status
= thin_status
,
4286 .iterate_devices
= thin_iterate_devices
,
4287 .io_hints
= thin_io_hints
,
4290 /*----------------------------------------------------------------*/
4292 static int __init
dm_thin_init(void)
4298 r
= dm_register_target(&thin_target
);
4302 r
= dm_register_target(&pool_target
);
4304 goto bad_pool_target
;
4308 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4309 if (!_new_mapping_cache
)
4310 goto bad_new_mapping_cache
;
4314 bad_new_mapping_cache
:
4315 dm_unregister_target(&pool_target
);
4317 dm_unregister_target(&thin_target
);
4322 static void dm_thin_exit(void)
4324 dm_unregister_target(&thin_target
);
4325 dm_unregister_target(&pool_target
);
4327 kmem_cache_destroy(_new_mapping_cache
);
4330 module_init(dm_thin_init
);
4331 module_exit(dm_thin_exit
);
4333 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4334 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4336 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4337 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4338 MODULE_LICENSE("GPL");