4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * Shared mappings now work. 15.8.1995 Bruno.
51 * finished 'unifying' the page and buffer cache and SMP-threaded the
52 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * ->i_mmap_mutex (truncate_pagecache)
61 * ->private_lock (__free_pte->__set_page_dirty_buffers)
62 * ->swap_lock (exclusive_swap_page, others)
63 * ->mapping->tree_lock
66 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 * ->page_table_lock or pte_lock (various, mainly in memory.c)
71 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->lock_page (access_process_vm)
76 * ->i_mutex (generic_file_buffered_write)
77 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * sb_lock (fs/fs-writeback.c)
81 * ->mapping->tree_lock (__sync_single_inode)
84 * ->anon_vma.lock (vma_adjust)
87 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
89 * ->page_table_lock or pte_lock
90 * ->swap_lock (try_to_unmap_one)
91 * ->private_lock (try_to_unmap_one)
92 * ->tree_lock (try_to_unmap_one)
93 * ->zone.lru_lock (follow_page->mark_page_accessed)
94 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
95 * ->private_lock (page_remove_rmap->set_page_dirty)
96 * ->tree_lock (page_remove_rmap->set_page_dirty)
97 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
98 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
99 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
100 * ->inode->i_lock (zap_pte_range->set_page_dirty)
101 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 * ->tasklist_lock (memory_failure, collect_procs_ao)
108 * Delete a page from the page cache and free it. Caller has to make
109 * sure the page is locked and that nobody else uses it - or that usage
110 * is safe. The caller must hold the mapping's tree_lock.
112 void __delete_from_page_cache(struct page
*page
)
114 struct address_space
*mapping
= page
->mapping
;
117 * if we're uptodate, flush out into the cleancache, otherwise
118 * invalidate any existing cleancache entries. We can't leave
119 * stale data around in the cleancache once our page is gone
121 if (PageUptodate(page
) && PageMappedToDisk(page
))
122 cleancache_put_page(page
);
124 cleancache_invalidate_page(mapping
, page
);
126 radix_tree_delete(&mapping
->page_tree
, page
->index
);
127 page
->mapping
= NULL
;
128 /* Leave page->index set: truncation lookup relies upon it */
130 __dec_zone_page_state(page
, NR_FILE_PAGES
);
131 if (PageSwapBacked(page
))
132 __dec_zone_page_state(page
, NR_SHMEM
);
133 BUG_ON(page_mapped(page
));
136 * Some filesystems seem to re-dirty the page even after
137 * the VM has canceled the dirty bit (eg ext3 journaling).
139 * Fix it up by doing a final dirty accounting check after
140 * having removed the page entirely.
142 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
143 dec_zone_page_state(page
, NR_FILE_DIRTY
);
144 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
149 * delete_from_page_cache - delete page from page cache
150 * @page: the page which the kernel is trying to remove from page cache
152 * This must be called only on pages that have been verified to be in the page
153 * cache and locked. It will never put the page into the free list, the caller
154 * has a reference on the page.
156 void delete_from_page_cache(struct page
*page
)
158 struct address_space
*mapping
= page
->mapping
;
159 void (*freepage
)(struct page
*);
161 BUG_ON(!PageLocked(page
));
163 freepage
= mapping
->a_ops
->freepage
;
164 spin_lock_irq(&mapping
->tree_lock
);
165 __delete_from_page_cache(page
);
166 spin_unlock_irq(&mapping
->tree_lock
);
167 mem_cgroup_uncharge_cache_page(page
);
171 page_cache_release(page
);
173 EXPORT_SYMBOL(delete_from_page_cache
);
175 static int sleep_on_page(void *word
)
181 static int sleep_on_page_killable(void *word
)
184 return fatal_signal_pending(current
) ? -EINTR
: 0;
188 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
189 * @mapping: address space structure to write
190 * @start: offset in bytes where the range starts
191 * @end: offset in bytes where the range ends (inclusive)
192 * @sync_mode: enable synchronous operation
194 * Start writeback against all of a mapping's dirty pages that lie
195 * within the byte offsets <start, end> inclusive.
197 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
198 * opposed to a regular memory cleansing writeback. The difference between
199 * these two operations is that if a dirty page/buffer is encountered, it must
200 * be waited upon, and not just skipped over.
202 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
203 loff_t end
, int sync_mode
)
206 struct writeback_control wbc
= {
207 .sync_mode
= sync_mode
,
208 .nr_to_write
= LONG_MAX
,
209 .range_start
= start
,
213 if (!mapping_cap_writeback_dirty(mapping
))
216 ret
= do_writepages(mapping
, &wbc
);
220 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
223 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
226 int filemap_fdatawrite(struct address_space
*mapping
)
228 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
230 EXPORT_SYMBOL(filemap_fdatawrite
);
232 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
235 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
237 EXPORT_SYMBOL(filemap_fdatawrite_range
);
240 * filemap_flush - mostly a non-blocking flush
241 * @mapping: target address_space
243 * This is a mostly non-blocking flush. Not suitable for data-integrity
244 * purposes - I/O may not be started against all dirty pages.
246 int filemap_flush(struct address_space
*mapping
)
248 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
250 EXPORT_SYMBOL(filemap_flush
);
253 * filemap_fdatawait_range - wait for writeback to complete
254 * @mapping: address space structure to wait for
255 * @start_byte: offset in bytes where the range starts
256 * @end_byte: offset in bytes where the range ends (inclusive)
258 * Walk the list of under-writeback pages of the given address space
259 * in the given range and wait for all of them.
261 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
264 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
265 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
270 if (end_byte
< start_byte
)
273 pagevec_init(&pvec
, 0);
274 while ((index
<= end
) &&
275 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
276 PAGECACHE_TAG_WRITEBACK
,
277 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
280 for (i
= 0; i
< nr_pages
; i
++) {
281 struct page
*page
= pvec
.pages
[i
];
283 /* until radix tree lookup accepts end_index */
284 if (page
->index
> end
)
287 wait_on_page_writeback(page
);
288 if (TestClearPageError(page
))
291 pagevec_release(&pvec
);
295 /* Check for outstanding write errors */
296 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
298 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
303 EXPORT_SYMBOL(filemap_fdatawait_range
);
306 * filemap_fdatawait - wait for all under-writeback pages to complete
307 * @mapping: address space structure to wait for
309 * Walk the list of under-writeback pages of the given address space
310 * and wait for all of them.
312 int filemap_fdatawait(struct address_space
*mapping
)
314 loff_t i_size
= i_size_read(mapping
->host
);
319 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
321 EXPORT_SYMBOL(filemap_fdatawait
);
323 int filemap_write_and_wait(struct address_space
*mapping
)
327 if (mapping
->nrpages
) {
328 err
= filemap_fdatawrite(mapping
);
330 * Even if the above returned error, the pages may be
331 * written partially (e.g. -ENOSPC), so we wait for it.
332 * But the -EIO is special case, it may indicate the worst
333 * thing (e.g. bug) happened, so we avoid waiting for it.
336 int err2
= filemap_fdatawait(mapping
);
343 EXPORT_SYMBOL(filemap_write_and_wait
);
346 * filemap_write_and_wait_range - write out & wait on a file range
347 * @mapping: the address_space for the pages
348 * @lstart: offset in bytes where the range starts
349 * @lend: offset in bytes where the range ends (inclusive)
351 * Write out and wait upon file offsets lstart->lend, inclusive.
353 * Note that `lend' is inclusive (describes the last byte to be written) so
354 * that this function can be used to write to the very end-of-file (end = -1).
356 int filemap_write_and_wait_range(struct address_space
*mapping
,
357 loff_t lstart
, loff_t lend
)
361 if (mapping
->nrpages
) {
362 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
364 /* See comment of filemap_write_and_wait() */
366 int err2
= filemap_fdatawait_range(mapping
,
374 EXPORT_SYMBOL(filemap_write_and_wait_range
);
377 * replace_page_cache_page - replace a pagecache page with a new one
378 * @old: page to be replaced
379 * @new: page to replace with
380 * @gfp_mask: allocation mode
382 * This function replaces a page in the pagecache with a new one. On
383 * success it acquires the pagecache reference for the new page and
384 * drops it for the old page. Both the old and new pages must be
385 * locked. This function does not add the new page to the LRU, the
386 * caller must do that.
388 * The remove + add is atomic. The only way this function can fail is
389 * memory allocation failure.
391 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
395 VM_BUG_ON(!PageLocked(old
));
396 VM_BUG_ON(!PageLocked(new));
397 VM_BUG_ON(new->mapping
);
399 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
401 struct address_space
*mapping
= old
->mapping
;
402 void (*freepage
)(struct page
*);
404 pgoff_t offset
= old
->index
;
405 freepage
= mapping
->a_ops
->freepage
;
408 new->mapping
= mapping
;
411 spin_lock_irq(&mapping
->tree_lock
);
412 __delete_from_page_cache(old
);
413 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
416 __inc_zone_page_state(new, NR_FILE_PAGES
);
417 if (PageSwapBacked(new))
418 __inc_zone_page_state(new, NR_SHMEM
);
419 spin_unlock_irq(&mapping
->tree_lock
);
420 /* mem_cgroup codes must not be called under tree_lock */
421 mem_cgroup_replace_page_cache(old
, new);
422 radix_tree_preload_end();
425 page_cache_release(old
);
430 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
433 * add_to_page_cache_locked - add a locked page to the pagecache
435 * @mapping: the page's address_space
436 * @offset: page index
437 * @gfp_mask: page allocation mode
439 * This function is used to add a page to the pagecache. It must be locked.
440 * This function does not add the page to the LRU. The caller must do that.
442 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
443 pgoff_t offset
, gfp_t gfp_mask
)
447 VM_BUG_ON(!PageLocked(page
));
448 VM_BUG_ON(PageSwapBacked(page
));
450 error
= mem_cgroup_cache_charge(page
, current
->mm
,
451 gfp_mask
& GFP_RECLAIM_MASK
);
455 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
457 page_cache_get(page
);
458 page
->mapping
= mapping
;
459 page
->index
= offset
;
461 spin_lock_irq(&mapping
->tree_lock
);
462 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
463 if (likely(!error
)) {
465 __inc_zone_page_state(page
, NR_FILE_PAGES
);
466 spin_unlock_irq(&mapping
->tree_lock
);
468 page
->mapping
= NULL
;
469 /* Leave page->index set: truncation relies upon it */
470 spin_unlock_irq(&mapping
->tree_lock
);
471 mem_cgroup_uncharge_cache_page(page
);
472 page_cache_release(page
);
474 radix_tree_preload_end();
476 mem_cgroup_uncharge_cache_page(page
);
480 EXPORT_SYMBOL(add_to_page_cache_locked
);
482 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
483 pgoff_t offset
, gfp_t gfp_mask
)
487 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
489 lru_cache_add_file(page
);
492 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
495 struct page
*__page_cache_alloc(gfp_t gfp
)
500 if (cpuset_do_page_mem_spread()) {
501 unsigned int cpuset_mems_cookie
;
503 cpuset_mems_cookie
= get_mems_allowed();
504 n
= cpuset_mem_spread_node();
505 page
= alloc_pages_exact_node(n
, gfp
, 0);
506 } while (!put_mems_allowed(cpuset_mems_cookie
) && !page
);
510 return alloc_pages(gfp
, 0);
512 EXPORT_SYMBOL(__page_cache_alloc
);
516 * In order to wait for pages to become available there must be
517 * waitqueues associated with pages. By using a hash table of
518 * waitqueues where the bucket discipline is to maintain all
519 * waiters on the same queue and wake all when any of the pages
520 * become available, and for the woken contexts to check to be
521 * sure the appropriate page became available, this saves space
522 * at a cost of "thundering herd" phenomena during rare hash
525 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
527 const struct zone
*zone
= page_zone(page
);
529 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
532 static inline void wake_up_page(struct page
*page
, int bit
)
534 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
537 void wait_on_page_bit(struct page
*page
, int bit_nr
)
539 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
541 if (test_bit(bit_nr
, &page
->flags
))
542 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
543 TASK_UNINTERRUPTIBLE
);
545 EXPORT_SYMBOL(wait_on_page_bit
);
547 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
549 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
551 if (!test_bit(bit_nr
, &page
->flags
))
554 return __wait_on_bit(page_waitqueue(page
), &wait
,
555 sleep_on_page_killable
, TASK_KILLABLE
);
559 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
560 * @page: Page defining the wait queue of interest
561 * @waiter: Waiter to add to the queue
563 * Add an arbitrary @waiter to the wait queue for the nominated @page.
565 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
567 wait_queue_head_t
*q
= page_waitqueue(page
);
570 spin_lock_irqsave(&q
->lock
, flags
);
571 __add_wait_queue(q
, waiter
);
572 spin_unlock_irqrestore(&q
->lock
, flags
);
574 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
577 * unlock_page - unlock a locked page
580 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
581 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
582 * mechananism between PageLocked pages and PageWriteback pages is shared.
583 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
585 * The mb is necessary to enforce ordering between the clear_bit and the read
586 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
588 void unlock_page(struct page
*page
)
590 VM_BUG_ON(!PageLocked(page
));
591 clear_bit_unlock(PG_locked
, &page
->flags
);
592 smp_mb__after_clear_bit();
593 wake_up_page(page
, PG_locked
);
595 EXPORT_SYMBOL(unlock_page
);
598 * end_page_writeback - end writeback against a page
601 void end_page_writeback(struct page
*page
)
603 if (TestClearPageReclaim(page
))
604 rotate_reclaimable_page(page
);
606 if (!test_clear_page_writeback(page
))
609 smp_mb__after_clear_bit();
610 wake_up_page(page
, PG_writeback
);
612 EXPORT_SYMBOL(end_page_writeback
);
615 * __lock_page - get a lock on the page, assuming we need to sleep to get it
616 * @page: the page to lock
618 void __lock_page(struct page
*page
)
620 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
622 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
623 TASK_UNINTERRUPTIBLE
);
625 EXPORT_SYMBOL(__lock_page
);
627 int __lock_page_killable(struct page
*page
)
629 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
631 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
632 sleep_on_page_killable
, TASK_KILLABLE
);
634 EXPORT_SYMBOL_GPL(__lock_page_killable
);
636 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
639 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
641 * CAUTION! In this case, mmap_sem is not released
642 * even though return 0.
644 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
647 up_read(&mm
->mmap_sem
);
648 if (flags
& FAULT_FLAG_KILLABLE
)
649 wait_on_page_locked_killable(page
);
651 wait_on_page_locked(page
);
654 if (flags
& FAULT_FLAG_KILLABLE
) {
657 ret
= __lock_page_killable(page
);
659 up_read(&mm
->mmap_sem
);
669 * find_get_page - find and get a page reference
670 * @mapping: the address_space to search
671 * @offset: the page index
673 * Is there a pagecache struct page at the given (mapping, offset) tuple?
674 * If yes, increment its refcount and return it; if no, return NULL.
676 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
684 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
686 page
= radix_tree_deref_slot(pagep
);
689 if (radix_tree_exception(page
)) {
690 if (radix_tree_deref_retry(page
))
693 * Otherwise, shmem/tmpfs must be storing a swap entry
694 * here as an exceptional entry: so return it without
695 * attempting to raise page count.
699 if (!page_cache_get_speculative(page
))
703 * Has the page moved?
704 * This is part of the lockless pagecache protocol. See
705 * include/linux/pagemap.h for details.
707 if (unlikely(page
!= *pagep
)) {
708 page_cache_release(page
);
717 EXPORT_SYMBOL(find_get_page
);
720 * find_lock_page - locate, pin and lock a pagecache page
721 * @mapping: the address_space to search
722 * @offset: the page index
724 * Locates the desired pagecache page, locks it, increments its reference
725 * count and returns its address.
727 * Returns zero if the page was not present. find_lock_page() may sleep.
729 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
734 page
= find_get_page(mapping
, offset
);
735 if (page
&& !radix_tree_exception(page
)) {
737 /* Has the page been truncated? */
738 if (unlikely(page
->mapping
!= mapping
)) {
740 page_cache_release(page
);
743 VM_BUG_ON(page
->index
!= offset
);
747 EXPORT_SYMBOL(find_lock_page
);
750 * find_or_create_page - locate or add a pagecache page
751 * @mapping: the page's address_space
752 * @index: the page's index into the mapping
753 * @gfp_mask: page allocation mode
755 * Locates a page in the pagecache. If the page is not present, a new page
756 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
757 * LRU list. The returned page is locked and has its reference count
760 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
763 * find_or_create_page() returns the desired page's address, or zero on
766 struct page
*find_or_create_page(struct address_space
*mapping
,
767 pgoff_t index
, gfp_t gfp_mask
)
772 page
= find_lock_page(mapping
, index
);
774 page
= __page_cache_alloc(gfp_mask
);
778 * We want a regular kernel memory (not highmem or DMA etc)
779 * allocation for the radix tree nodes, but we need to honour
780 * the context-specific requirements the caller has asked for.
781 * GFP_RECLAIM_MASK collects those requirements.
783 err
= add_to_page_cache_lru(page
, mapping
, index
,
784 (gfp_mask
& GFP_RECLAIM_MASK
));
786 page_cache_release(page
);
794 EXPORT_SYMBOL(find_or_create_page
);
797 * find_get_pages - gang pagecache lookup
798 * @mapping: The address_space to search
799 * @start: The starting page index
800 * @nr_pages: The maximum number of pages
801 * @pages: Where the resulting pages are placed
803 * find_get_pages() will search for and return a group of up to
804 * @nr_pages pages in the mapping. The pages are placed at @pages.
805 * find_get_pages() takes a reference against the returned pages.
807 * The search returns a group of mapping-contiguous pages with ascending
808 * indexes. There may be holes in the indices due to not-present pages.
810 * find_get_pages() returns the number of pages which were found.
812 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
813 unsigned int nr_pages
, struct page
**pages
)
815 struct radix_tree_iter iter
;
819 if (unlikely(!nr_pages
))
824 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
827 page
= radix_tree_deref_slot(slot
);
831 if (radix_tree_exception(page
)) {
832 if (radix_tree_deref_retry(page
)) {
834 * Transient condition which can only trigger
835 * when entry at index 0 moves out of or back
836 * to root: none yet gotten, safe to restart.
842 * Otherwise, shmem/tmpfs must be storing a swap entry
843 * here as an exceptional entry: so skip over it -
844 * we only reach this from invalidate_mapping_pages().
849 if (!page_cache_get_speculative(page
))
852 /* Has the page moved? */
853 if (unlikely(page
!= *slot
)) {
854 page_cache_release(page
);
859 if (++ret
== nr_pages
)
868 * find_get_pages_contig - gang contiguous pagecache lookup
869 * @mapping: The address_space to search
870 * @index: The starting page index
871 * @nr_pages: The maximum number of pages
872 * @pages: Where the resulting pages are placed
874 * find_get_pages_contig() works exactly like find_get_pages(), except
875 * that the returned number of pages are guaranteed to be contiguous.
877 * find_get_pages_contig() returns the number of pages which were found.
879 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
880 unsigned int nr_pages
, struct page
**pages
)
882 struct radix_tree_iter iter
;
884 unsigned int ret
= 0;
886 if (unlikely(!nr_pages
))
891 radix_tree_for_each_contig(slot
, &mapping
->page_tree
, &iter
, index
) {
894 page
= radix_tree_deref_slot(slot
);
895 /* The hole, there no reason to continue */
899 if (radix_tree_exception(page
)) {
900 if (radix_tree_deref_retry(page
)) {
902 * Transient condition which can only trigger
903 * when entry at index 0 moves out of or back
904 * to root: none yet gotten, safe to restart.
909 * Otherwise, shmem/tmpfs must be storing a swap entry
910 * here as an exceptional entry: so stop looking for
916 if (!page_cache_get_speculative(page
))
919 /* Has the page moved? */
920 if (unlikely(page
!= *slot
)) {
921 page_cache_release(page
);
926 * must check mapping and index after taking the ref.
927 * otherwise we can get both false positives and false
928 * negatives, which is just confusing to the caller.
930 if (page
->mapping
== NULL
|| page
->index
!= iter
.index
) {
931 page_cache_release(page
);
936 if (++ret
== nr_pages
)
942 EXPORT_SYMBOL(find_get_pages_contig
);
945 * find_get_pages_tag - find and return pages that match @tag
946 * @mapping: the address_space to search
947 * @index: the starting page index
948 * @tag: the tag index
949 * @nr_pages: the maximum number of pages
950 * @pages: where the resulting pages are placed
952 * Like find_get_pages, except we only return pages which are tagged with
953 * @tag. We update @index to index the next page for the traversal.
955 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
956 int tag
, unsigned int nr_pages
, struct page
**pages
)
958 struct radix_tree_iter iter
;
962 if (unlikely(!nr_pages
))
967 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
968 &iter
, *index
, tag
) {
971 page
= radix_tree_deref_slot(slot
);
975 if (radix_tree_exception(page
)) {
976 if (radix_tree_deref_retry(page
)) {
978 * Transient condition which can only trigger
979 * when entry at index 0 moves out of or back
980 * to root: none yet gotten, safe to restart.
985 * This function is never used on a shmem/tmpfs
986 * mapping, so a swap entry won't be found here.
991 if (!page_cache_get_speculative(page
))
994 /* Has the page moved? */
995 if (unlikely(page
!= *slot
)) {
996 page_cache_release(page
);
1001 if (++ret
== nr_pages
)
1008 *index
= pages
[ret
- 1]->index
+ 1;
1012 EXPORT_SYMBOL(find_get_pages_tag
);
1015 * grab_cache_page_nowait - returns locked page at given index in given cache
1016 * @mapping: target address_space
1017 * @index: the page index
1019 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1020 * This is intended for speculative data generators, where the data can
1021 * be regenerated if the page couldn't be grabbed. This routine should
1022 * be safe to call while holding the lock for another page.
1024 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1025 * and deadlock against the caller's locked page.
1028 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
1030 struct page
*page
= find_get_page(mapping
, index
);
1033 if (trylock_page(page
))
1035 page_cache_release(page
);
1038 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
1039 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
1040 page_cache_release(page
);
1045 EXPORT_SYMBOL(grab_cache_page_nowait
);
1048 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1049 * a _large_ part of the i/o request. Imagine the worst scenario:
1051 * ---R__________________________________________B__________
1052 * ^ reading here ^ bad block(assume 4k)
1054 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1055 * => failing the whole request => read(R) => read(R+1) =>
1056 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1057 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1058 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1060 * It is going insane. Fix it by quickly scaling down the readahead size.
1062 static void shrink_readahead_size_eio(struct file
*filp
,
1063 struct file_ra_state
*ra
)
1069 * do_generic_file_read - generic file read routine
1070 * @filp: the file to read
1071 * @ppos: current file position
1072 * @desc: read_descriptor
1073 * @actor: read method
1075 * This is a generic file read routine, and uses the
1076 * mapping->a_ops->readpage() function for the actual low-level stuff.
1078 * This is really ugly. But the goto's actually try to clarify some
1079 * of the logic when it comes to error handling etc.
1081 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1082 read_descriptor_t
*desc
, read_actor_t actor
)
1084 struct address_space
*mapping
= filp
->f_mapping
;
1085 struct inode
*inode
= mapping
->host
;
1086 struct file_ra_state
*ra
= &filp
->f_ra
;
1090 unsigned long offset
; /* offset into pagecache page */
1091 unsigned int prev_offset
;
1094 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1095 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1096 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1097 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1098 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1104 unsigned long nr
, ret
;
1108 page
= find_get_page(mapping
, index
);
1110 page_cache_sync_readahead(mapping
,
1112 index
, last_index
- index
);
1113 page
= find_get_page(mapping
, index
);
1114 if (unlikely(page
== NULL
))
1115 goto no_cached_page
;
1117 if (PageReadahead(page
)) {
1118 page_cache_async_readahead(mapping
,
1120 index
, last_index
- index
);
1122 if (!PageUptodate(page
)) {
1123 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1124 !mapping
->a_ops
->is_partially_uptodate
)
1125 goto page_not_up_to_date
;
1126 if (!trylock_page(page
))
1127 goto page_not_up_to_date
;
1128 /* Did it get truncated before we got the lock? */
1130 goto page_not_up_to_date_locked
;
1131 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1133 goto page_not_up_to_date_locked
;
1138 * i_size must be checked after we know the page is Uptodate.
1140 * Checking i_size after the check allows us to calculate
1141 * the correct value for "nr", which means the zero-filled
1142 * part of the page is not copied back to userspace (unless
1143 * another truncate extends the file - this is desired though).
1146 isize
= i_size_read(inode
);
1147 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1148 if (unlikely(!isize
|| index
> end_index
)) {
1149 page_cache_release(page
);
1153 /* nr is the maximum number of bytes to copy from this page */
1154 nr
= PAGE_CACHE_SIZE
;
1155 if (index
== end_index
) {
1156 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1158 page_cache_release(page
);
1164 /* If users can be writing to this page using arbitrary
1165 * virtual addresses, take care about potential aliasing
1166 * before reading the page on the kernel side.
1168 if (mapping_writably_mapped(mapping
))
1169 flush_dcache_page(page
);
1172 * When a sequential read accesses a page several times,
1173 * only mark it as accessed the first time.
1175 if (prev_index
!= index
|| offset
!= prev_offset
)
1176 mark_page_accessed(page
);
1180 * Ok, we have the page, and it's up-to-date, so
1181 * now we can copy it to user space...
1183 * The actor routine returns how many bytes were actually used..
1184 * NOTE! This may not be the same as how much of a user buffer
1185 * we filled up (we may be padding etc), so we can only update
1186 * "pos" here (the actor routine has to update the user buffer
1187 * pointers and the remaining count).
1189 ret
= actor(desc
, page
, offset
, nr
);
1191 index
+= offset
>> PAGE_CACHE_SHIFT
;
1192 offset
&= ~PAGE_CACHE_MASK
;
1193 prev_offset
= offset
;
1195 page_cache_release(page
);
1196 if (ret
== nr
&& desc
->count
)
1200 page_not_up_to_date
:
1201 /* Get exclusive access to the page ... */
1202 error
= lock_page_killable(page
);
1203 if (unlikely(error
))
1204 goto readpage_error
;
1206 page_not_up_to_date_locked
:
1207 /* Did it get truncated before we got the lock? */
1208 if (!page
->mapping
) {
1210 page_cache_release(page
);
1214 /* Did somebody else fill it already? */
1215 if (PageUptodate(page
)) {
1222 * A previous I/O error may have been due to temporary
1223 * failures, eg. multipath errors.
1224 * PG_error will be set again if readpage fails.
1226 ClearPageError(page
);
1227 /* Start the actual read. The read will unlock the page. */
1228 error
= mapping
->a_ops
->readpage(filp
, page
);
1230 if (unlikely(error
)) {
1231 if (error
== AOP_TRUNCATED_PAGE
) {
1232 page_cache_release(page
);
1235 goto readpage_error
;
1238 if (!PageUptodate(page
)) {
1239 error
= lock_page_killable(page
);
1240 if (unlikely(error
))
1241 goto readpage_error
;
1242 if (!PageUptodate(page
)) {
1243 if (page
->mapping
== NULL
) {
1245 * invalidate_mapping_pages got it
1248 page_cache_release(page
);
1252 shrink_readahead_size_eio(filp
, ra
);
1254 goto readpage_error
;
1262 /* UHHUH! A synchronous read error occurred. Report it */
1263 desc
->error
= error
;
1264 page_cache_release(page
);
1269 * Ok, it wasn't cached, so we need to create a new
1272 page
= page_cache_alloc_cold(mapping
);
1274 desc
->error
= -ENOMEM
;
1277 error
= add_to_page_cache_lru(page
, mapping
,
1280 page_cache_release(page
);
1281 if (error
== -EEXIST
)
1283 desc
->error
= error
;
1290 ra
->prev_pos
= prev_index
;
1291 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1292 ra
->prev_pos
|= prev_offset
;
1294 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1295 file_accessed(filp
);
1298 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1299 unsigned long offset
, unsigned long size
)
1302 unsigned long left
, count
= desc
->count
;
1308 * Faults on the destination of a read are common, so do it before
1311 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1312 kaddr
= kmap_atomic(page
);
1313 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1314 kaddr
+ offset
, size
);
1315 kunmap_atomic(kaddr
);
1320 /* Do it the slow way */
1322 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1327 desc
->error
= -EFAULT
;
1330 desc
->count
= count
- size
;
1331 desc
->written
+= size
;
1332 desc
->arg
.buf
+= size
;
1337 * Performs necessary checks before doing a write
1338 * @iov: io vector request
1339 * @nr_segs: number of segments in the iovec
1340 * @count: number of bytes to write
1341 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1343 * Adjust number of segments and amount of bytes to write (nr_segs should be
1344 * properly initialized first). Returns appropriate error code that caller
1345 * should return or zero in case that write should be allowed.
1347 int generic_segment_checks(const struct iovec
*iov
,
1348 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1352 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1353 const struct iovec
*iv
= &iov
[seg
];
1356 * If any segment has a negative length, or the cumulative
1357 * length ever wraps negative then return -EINVAL.
1360 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1362 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1367 cnt
-= iv
->iov_len
; /* This segment is no good */
1373 EXPORT_SYMBOL(generic_segment_checks
);
1376 * generic_file_aio_read - generic filesystem read routine
1377 * @iocb: kernel I/O control block
1378 * @iov: io vector request
1379 * @nr_segs: number of segments in the iovec
1380 * @pos: current file position
1382 * This is the "read()" routine for all filesystems
1383 * that can use the page cache directly.
1386 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1387 unsigned long nr_segs
, loff_t pos
)
1389 struct file
*filp
= iocb
->ki_filp
;
1391 unsigned long seg
= 0;
1393 loff_t
*ppos
= &iocb
->ki_pos
;
1396 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1400 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1401 if (filp
->f_flags
& O_DIRECT
) {
1403 struct address_space
*mapping
;
1404 struct inode
*inode
;
1406 mapping
= filp
->f_mapping
;
1407 inode
= mapping
->host
;
1409 goto out
; /* skip atime */
1410 size
= i_size_read(inode
);
1412 retval
= filemap_write_and_wait_range(mapping
, pos
,
1413 pos
+ iov_length(iov
, nr_segs
) - 1);
1415 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1419 *ppos
= pos
+ retval
;
1424 * Btrfs can have a short DIO read if we encounter
1425 * compressed extents, so if there was an error, or if
1426 * we've already read everything we wanted to, or if
1427 * there was a short read because we hit EOF, go ahead
1428 * and return. Otherwise fallthrough to buffered io for
1429 * the rest of the read.
1431 if (retval
< 0 || !count
|| *ppos
>= size
) {
1432 file_accessed(filp
);
1439 for (seg
= 0; seg
< nr_segs
; seg
++) {
1440 read_descriptor_t desc
;
1444 * If we did a short DIO read we need to skip the section of the
1445 * iov that we've already read data into.
1448 if (count
> iov
[seg
].iov_len
) {
1449 count
-= iov
[seg
].iov_len
;
1457 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1458 desc
.count
= iov
[seg
].iov_len
- offset
;
1459 if (desc
.count
== 0)
1462 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1463 retval
+= desc
.written
;
1465 retval
= retval
?: desc
.error
;
1474 EXPORT_SYMBOL(generic_file_aio_read
);
1478 * page_cache_read - adds requested page to the page cache if not already there
1479 * @file: file to read
1480 * @offset: page index
1482 * This adds the requested page to the page cache if it isn't already there,
1483 * and schedules an I/O to read in its contents from disk.
1485 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1487 struct address_space
*mapping
= file
->f_mapping
;
1492 page
= page_cache_alloc_cold(mapping
);
1496 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1498 ret
= mapping
->a_ops
->readpage(file
, page
);
1499 else if (ret
== -EEXIST
)
1500 ret
= 0; /* losing race to add is OK */
1502 page_cache_release(page
);
1504 } while (ret
== AOP_TRUNCATED_PAGE
);
1509 #define MMAP_LOTSAMISS (100)
1512 * Synchronous readahead happens when we don't even find
1513 * a page in the page cache at all.
1515 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1516 struct file_ra_state
*ra
,
1520 unsigned long ra_pages
;
1521 struct address_space
*mapping
= file
->f_mapping
;
1523 /* If we don't want any read-ahead, don't bother */
1524 if (VM_RandomReadHint(vma
))
1529 if (VM_SequentialReadHint(vma
)) {
1530 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1535 /* Avoid banging the cache line if not needed */
1536 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1540 * Do we miss much more than hit in this file? If so,
1541 * stop bothering with read-ahead. It will only hurt.
1543 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1549 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1550 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1551 ra
->size
= ra_pages
;
1552 ra
->async_size
= ra_pages
/ 4;
1553 ra_submit(ra
, mapping
, file
);
1557 * Asynchronous readahead happens when we find the page and PG_readahead,
1558 * so we want to possibly extend the readahead further..
1560 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1561 struct file_ra_state
*ra
,
1566 struct address_space
*mapping
= file
->f_mapping
;
1568 /* If we don't want any read-ahead, don't bother */
1569 if (VM_RandomReadHint(vma
))
1571 if (ra
->mmap_miss
> 0)
1573 if (PageReadahead(page
))
1574 page_cache_async_readahead(mapping
, ra
, file
,
1575 page
, offset
, ra
->ra_pages
);
1579 * filemap_fault - read in file data for page fault handling
1580 * @vma: vma in which the fault was taken
1581 * @vmf: struct vm_fault containing details of the fault
1583 * filemap_fault() is invoked via the vma operations vector for a
1584 * mapped memory region to read in file data during a page fault.
1586 * The goto's are kind of ugly, but this streamlines the normal case of having
1587 * it in the page cache, and handles the special cases reasonably without
1588 * having a lot of duplicated code.
1590 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1593 struct file
*file
= vma
->vm_file
;
1594 struct address_space
*mapping
= file
->f_mapping
;
1595 struct file_ra_state
*ra
= &file
->f_ra
;
1596 struct inode
*inode
= mapping
->host
;
1597 pgoff_t offset
= vmf
->pgoff
;
1602 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1604 return VM_FAULT_SIGBUS
;
1607 * Do we have something in the page cache already?
1609 page
= find_get_page(mapping
, offset
);
1610 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
1612 * We found the page, so try async readahead before
1613 * waiting for the lock.
1615 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1617 /* No page in the page cache at all */
1618 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1619 count_vm_event(PGMAJFAULT
);
1620 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1621 ret
= VM_FAULT_MAJOR
;
1623 page
= find_get_page(mapping
, offset
);
1625 goto no_cached_page
;
1628 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1629 page_cache_release(page
);
1630 return ret
| VM_FAULT_RETRY
;
1633 /* Did it get truncated? */
1634 if (unlikely(page
->mapping
!= mapping
)) {
1639 VM_BUG_ON(page
->index
!= offset
);
1642 * We have a locked page in the page cache, now we need to check
1643 * that it's up-to-date. If not, it is going to be due to an error.
1645 if (unlikely(!PageUptodate(page
)))
1646 goto page_not_uptodate
;
1649 * Found the page and have a reference on it.
1650 * We must recheck i_size under page lock.
1652 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1653 if (unlikely(offset
>= size
)) {
1655 page_cache_release(page
);
1656 return VM_FAULT_SIGBUS
;
1660 return ret
| VM_FAULT_LOCKED
;
1664 * We're only likely to ever get here if MADV_RANDOM is in
1667 error
= page_cache_read(file
, offset
);
1670 * The page we want has now been added to the page cache.
1671 * In the unlikely event that someone removed it in the
1672 * meantime, we'll just come back here and read it again.
1678 * An error return from page_cache_read can result if the
1679 * system is low on memory, or a problem occurs while trying
1682 if (error
== -ENOMEM
)
1683 return VM_FAULT_OOM
;
1684 return VM_FAULT_SIGBUS
;
1688 * Umm, take care of errors if the page isn't up-to-date.
1689 * Try to re-read it _once_. We do this synchronously,
1690 * because there really aren't any performance issues here
1691 * and we need to check for errors.
1693 ClearPageError(page
);
1694 error
= mapping
->a_ops
->readpage(file
, page
);
1696 wait_on_page_locked(page
);
1697 if (!PageUptodate(page
))
1700 page_cache_release(page
);
1702 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1705 /* Things didn't work out. Return zero to tell the mm layer so. */
1706 shrink_readahead_size_eio(file
, ra
);
1707 return VM_FAULT_SIGBUS
;
1709 EXPORT_SYMBOL(filemap_fault
);
1711 int filemap_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1713 struct page
*page
= vmf
->page
;
1714 struct inode
*inode
= file_inode(vma
->vm_file
);
1715 int ret
= VM_FAULT_LOCKED
;
1717 sb_start_pagefault(inode
->i_sb
);
1718 file_update_time(vma
->vm_file
);
1720 if (page
->mapping
!= inode
->i_mapping
) {
1722 ret
= VM_FAULT_NOPAGE
;
1726 * We mark the page dirty already here so that when freeze is in
1727 * progress, we are guaranteed that writeback during freezing will
1728 * see the dirty page and writeprotect it again.
1730 set_page_dirty(page
);
1731 wait_for_stable_page(page
);
1733 sb_end_pagefault(inode
->i_sb
);
1736 EXPORT_SYMBOL(filemap_page_mkwrite
);
1738 const struct vm_operations_struct generic_file_vm_ops
= {
1739 .fault
= filemap_fault
,
1740 .page_mkwrite
= filemap_page_mkwrite
,
1741 .remap_pages
= generic_file_remap_pages
,
1744 /* This is used for a general mmap of a disk file */
1746 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1748 struct address_space
*mapping
= file
->f_mapping
;
1750 if (!mapping
->a_ops
->readpage
)
1752 file_accessed(file
);
1753 vma
->vm_ops
= &generic_file_vm_ops
;
1758 * This is for filesystems which do not implement ->writepage.
1760 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1762 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1764 return generic_file_mmap(file
, vma
);
1767 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1771 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1775 #endif /* CONFIG_MMU */
1777 EXPORT_SYMBOL(generic_file_mmap
);
1778 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1780 static struct page
*__read_cache_page(struct address_space
*mapping
,
1782 int (*filler
)(void *, struct page
*),
1789 page
= find_get_page(mapping
, index
);
1791 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1793 return ERR_PTR(-ENOMEM
);
1794 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
1795 if (unlikely(err
)) {
1796 page_cache_release(page
);
1799 /* Presumably ENOMEM for radix tree node */
1800 return ERR_PTR(err
);
1802 err
= filler(data
, page
);
1804 page_cache_release(page
);
1805 page
= ERR_PTR(err
);
1811 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1813 int (*filler
)(void *, struct page
*),
1822 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1825 if (PageUptodate(page
))
1829 if (!page
->mapping
) {
1831 page_cache_release(page
);
1834 if (PageUptodate(page
)) {
1838 err
= filler(data
, page
);
1840 page_cache_release(page
);
1841 return ERR_PTR(err
);
1844 mark_page_accessed(page
);
1849 * read_cache_page_async - read into page cache, fill it if needed
1850 * @mapping: the page's address_space
1851 * @index: the page index
1852 * @filler: function to perform the read
1853 * @data: first arg to filler(data, page) function, often left as NULL
1855 * Same as read_cache_page, but don't wait for page to become unlocked
1856 * after submitting it to the filler.
1858 * Read into the page cache. If a page already exists, and PageUptodate() is
1859 * not set, try to fill the page but don't wait for it to become unlocked.
1861 * If the page does not get brought uptodate, return -EIO.
1863 struct page
*read_cache_page_async(struct address_space
*mapping
,
1865 int (*filler
)(void *, struct page
*),
1868 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1870 EXPORT_SYMBOL(read_cache_page_async
);
1872 static struct page
*wait_on_page_read(struct page
*page
)
1874 if (!IS_ERR(page
)) {
1875 wait_on_page_locked(page
);
1876 if (!PageUptodate(page
)) {
1877 page_cache_release(page
);
1878 page
= ERR_PTR(-EIO
);
1885 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1886 * @mapping: the page's address_space
1887 * @index: the page index
1888 * @gfp: the page allocator flags to use if allocating
1890 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1891 * any new page allocations done using the specified allocation flags.
1893 * If the page does not get brought uptodate, return -EIO.
1895 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1899 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1901 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1903 EXPORT_SYMBOL(read_cache_page_gfp
);
1906 * read_cache_page - read into page cache, fill it if needed
1907 * @mapping: the page's address_space
1908 * @index: the page index
1909 * @filler: function to perform the read
1910 * @data: first arg to filler(data, page) function, often left as NULL
1912 * Read into the page cache. If a page already exists, and PageUptodate() is
1913 * not set, try to fill the page then wait for it to become unlocked.
1915 * If the page does not get brought uptodate, return -EIO.
1917 struct page
*read_cache_page(struct address_space
*mapping
,
1919 int (*filler
)(void *, struct page
*),
1922 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1924 EXPORT_SYMBOL(read_cache_page
);
1926 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1927 const struct iovec
*iov
, size_t base
, size_t bytes
)
1929 size_t copied
= 0, left
= 0;
1932 char __user
*buf
= iov
->iov_base
+ base
;
1933 int copy
= min(bytes
, iov
->iov_len
- base
);
1936 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1945 return copied
- left
;
1949 * Copy as much as we can into the page and return the number of bytes which
1950 * were successfully copied. If a fault is encountered then return the number of
1951 * bytes which were copied.
1953 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1954 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1959 BUG_ON(!in_atomic());
1960 kaddr
= kmap_atomic(page
);
1961 if (likely(i
->nr_segs
== 1)) {
1963 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1964 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1965 copied
= bytes
- left
;
1967 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1968 i
->iov
, i
->iov_offset
, bytes
);
1970 kunmap_atomic(kaddr
);
1974 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1977 * This has the same sideeffects and return value as
1978 * iov_iter_copy_from_user_atomic().
1979 * The difference is that it attempts to resolve faults.
1980 * Page must not be locked.
1982 size_t iov_iter_copy_from_user(struct page
*page
,
1983 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1989 if (likely(i
->nr_segs
== 1)) {
1991 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1992 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1993 copied
= bytes
- left
;
1995 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1996 i
->iov
, i
->iov_offset
, bytes
);
2001 EXPORT_SYMBOL(iov_iter_copy_from_user
);
2003 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
2005 BUG_ON(i
->count
< bytes
);
2007 if (likely(i
->nr_segs
== 1)) {
2008 i
->iov_offset
+= bytes
;
2011 const struct iovec
*iov
= i
->iov
;
2012 size_t base
= i
->iov_offset
;
2013 unsigned long nr_segs
= i
->nr_segs
;
2016 * The !iov->iov_len check ensures we skip over unlikely
2017 * zero-length segments (without overruning the iovec).
2019 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
2022 copy
= min(bytes
, iov
->iov_len
- base
);
2023 BUG_ON(!i
->count
|| i
->count
< copy
);
2027 if (iov
->iov_len
== base
) {
2034 i
->iov_offset
= base
;
2035 i
->nr_segs
= nr_segs
;
2038 EXPORT_SYMBOL(iov_iter_advance
);
2041 * Fault in the first iovec of the given iov_iter, to a maximum length
2042 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2043 * accessed (ie. because it is an invalid address).
2045 * writev-intensive code may want this to prefault several iovecs -- that
2046 * would be possible (callers must not rely on the fact that _only_ the
2047 * first iovec will be faulted with the current implementation).
2049 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2051 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2052 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2053 return fault_in_pages_readable(buf
, bytes
);
2055 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2058 * Return the count of just the current iov_iter segment.
2060 size_t iov_iter_single_seg_count(const struct iov_iter
*i
)
2062 const struct iovec
*iov
= i
->iov
;
2063 if (i
->nr_segs
== 1)
2066 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2068 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2071 * Performs necessary checks before doing a write
2073 * Can adjust writing position or amount of bytes to write.
2074 * Returns appropriate error code that caller should return or
2075 * zero in case that write should be allowed.
2077 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2079 struct inode
*inode
= file
->f_mapping
->host
;
2080 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2082 if (unlikely(*pos
< 0))
2086 /* FIXME: this is for backwards compatibility with 2.4 */
2087 if (file
->f_flags
& O_APPEND
)
2088 *pos
= i_size_read(inode
);
2090 if (limit
!= RLIM_INFINITY
) {
2091 if (*pos
>= limit
) {
2092 send_sig(SIGXFSZ
, current
, 0);
2095 if (*count
> limit
- (typeof(limit
))*pos
) {
2096 *count
= limit
- (typeof(limit
))*pos
;
2104 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2105 !(file
->f_flags
& O_LARGEFILE
))) {
2106 if (*pos
>= MAX_NON_LFS
) {
2109 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2110 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2115 * Are we about to exceed the fs block limit ?
2117 * If we have written data it becomes a short write. If we have
2118 * exceeded without writing data we send a signal and return EFBIG.
2119 * Linus frestrict idea will clean these up nicely..
2121 if (likely(!isblk
)) {
2122 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2123 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2126 /* zero-length writes at ->s_maxbytes are OK */
2129 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2130 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2134 if (bdev_read_only(I_BDEV(inode
)))
2136 isize
= i_size_read(inode
);
2137 if (*pos
>= isize
) {
2138 if (*count
|| *pos
> isize
)
2142 if (*pos
+ *count
> isize
)
2143 *count
= isize
- *pos
;
2150 EXPORT_SYMBOL(generic_write_checks
);
2152 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2153 loff_t pos
, unsigned len
, unsigned flags
,
2154 struct page
**pagep
, void **fsdata
)
2156 const struct address_space_operations
*aops
= mapping
->a_ops
;
2158 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2161 EXPORT_SYMBOL(pagecache_write_begin
);
2163 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2164 loff_t pos
, unsigned len
, unsigned copied
,
2165 struct page
*page
, void *fsdata
)
2167 const struct address_space_operations
*aops
= mapping
->a_ops
;
2169 mark_page_accessed(page
);
2170 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2172 EXPORT_SYMBOL(pagecache_write_end
);
2175 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2176 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2177 size_t count
, size_t ocount
)
2179 struct file
*file
= iocb
->ki_filp
;
2180 struct address_space
*mapping
= file
->f_mapping
;
2181 struct inode
*inode
= mapping
->host
;
2186 if (count
!= ocount
)
2187 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2189 write_len
= iov_length(iov
, *nr_segs
);
2190 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2192 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2197 * After a write we want buffered reads to be sure to go to disk to get
2198 * the new data. We invalidate clean cached page from the region we're
2199 * about to write. We do this *before* the write so that we can return
2200 * without clobbering -EIOCBQUEUED from ->direct_IO().
2202 if (mapping
->nrpages
) {
2203 written
= invalidate_inode_pages2_range(mapping
,
2204 pos
>> PAGE_CACHE_SHIFT
, end
);
2206 * If a page can not be invalidated, return 0 to fall back
2207 * to buffered write.
2210 if (written
== -EBUSY
)
2216 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2219 * Finally, try again to invalidate clean pages which might have been
2220 * cached by non-direct readahead, or faulted in by get_user_pages()
2221 * if the source of the write was an mmap'ed region of the file
2222 * we're writing. Either one is a pretty crazy thing to do,
2223 * so we don't support it 100%. If this invalidation
2224 * fails, tough, the write still worked...
2226 if (mapping
->nrpages
) {
2227 invalidate_inode_pages2_range(mapping
,
2228 pos
>> PAGE_CACHE_SHIFT
, end
);
2233 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2234 i_size_write(inode
, pos
);
2235 mark_inode_dirty(inode
);
2242 EXPORT_SYMBOL(generic_file_direct_write
);
2245 * Find or create a page at the given pagecache position. Return the locked
2246 * page. This function is specifically for buffered writes.
2248 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2249 pgoff_t index
, unsigned flags
)
2254 gfp_t gfp_notmask
= 0;
2256 gfp_mask
= mapping_gfp_mask(mapping
);
2257 if (mapping_cap_account_dirty(mapping
))
2258 gfp_mask
|= __GFP_WRITE
;
2259 if (flags
& AOP_FLAG_NOFS
)
2260 gfp_notmask
= __GFP_FS
;
2262 page
= find_lock_page(mapping
, index
);
2266 page
= __page_cache_alloc(gfp_mask
& ~gfp_notmask
);
2269 status
= add_to_page_cache_lru(page
, mapping
, index
,
2270 GFP_KERNEL
& ~gfp_notmask
);
2271 if (unlikely(status
)) {
2272 page_cache_release(page
);
2273 if (status
== -EEXIST
)
2278 wait_for_stable_page(page
);
2281 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2283 static ssize_t
generic_perform_write(struct file
*file
,
2284 struct iov_iter
*i
, loff_t pos
)
2286 struct address_space
*mapping
= file
->f_mapping
;
2287 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2289 ssize_t written
= 0;
2290 unsigned int flags
= 0;
2293 * Copies from kernel address space cannot fail (NFSD is a big user).
2295 if (segment_eq(get_fs(), KERNEL_DS
))
2296 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2300 unsigned long offset
; /* Offset into pagecache page */
2301 unsigned long bytes
; /* Bytes to write to page */
2302 size_t copied
; /* Bytes copied from user */
2305 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2306 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2311 * Bring in the user page that we will copy from _first_.
2312 * Otherwise there's a nasty deadlock on copying from the
2313 * same page as we're writing to, without it being marked
2316 * Not only is this an optimisation, but it is also required
2317 * to check that the address is actually valid, when atomic
2318 * usercopies are used, below.
2320 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2325 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2327 if (unlikely(status
))
2330 if (mapping_writably_mapped(mapping
))
2331 flush_dcache_page(page
);
2333 pagefault_disable();
2334 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2336 flush_dcache_page(page
);
2338 mark_page_accessed(page
);
2339 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2341 if (unlikely(status
< 0))
2347 iov_iter_advance(i
, copied
);
2348 if (unlikely(copied
== 0)) {
2350 * If we were unable to copy any data at all, we must
2351 * fall back to a single segment length write.
2353 * If we didn't fallback here, we could livelock
2354 * because not all segments in the iov can be copied at
2355 * once without a pagefault.
2357 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2358 iov_iter_single_seg_count(i
));
2364 balance_dirty_pages_ratelimited(mapping
);
2365 if (fatal_signal_pending(current
)) {
2369 } while (iov_iter_count(i
));
2371 return written
? written
: status
;
2375 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2376 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2377 size_t count
, ssize_t written
)
2379 struct file
*file
= iocb
->ki_filp
;
2383 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2384 status
= generic_perform_write(file
, &i
, pos
);
2386 if (likely(status
>= 0)) {
2388 *ppos
= pos
+ status
;
2391 return written
? written
: status
;
2393 EXPORT_SYMBOL(generic_file_buffered_write
);
2396 * __generic_file_aio_write - write data to a file
2397 * @iocb: IO state structure (file, offset, etc.)
2398 * @iov: vector with data to write
2399 * @nr_segs: number of segments in the vector
2400 * @ppos: position where to write
2402 * This function does all the work needed for actually writing data to a
2403 * file. It does all basic checks, removes SUID from the file, updates
2404 * modification times and calls proper subroutines depending on whether we
2405 * do direct IO or a standard buffered write.
2407 * It expects i_mutex to be grabbed unless we work on a block device or similar
2408 * object which does not need locking at all.
2410 * This function does *not* take care of syncing data in case of O_SYNC write.
2411 * A caller has to handle it. This is mainly due to the fact that we want to
2412 * avoid syncing under i_mutex.
2414 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2415 unsigned long nr_segs
, loff_t
*ppos
)
2417 struct file
*file
= iocb
->ki_filp
;
2418 struct address_space
* mapping
= file
->f_mapping
;
2419 size_t ocount
; /* original count */
2420 size_t count
; /* after file limit checks */
2421 struct inode
*inode
= mapping
->host
;
2427 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2434 /* We can write back this queue in page reclaim */
2435 current
->backing_dev_info
= mapping
->backing_dev_info
;
2438 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2445 err
= file_remove_suid(file
);
2449 err
= file_update_time(file
);
2453 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2454 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2456 ssize_t written_buffered
;
2458 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2459 ppos
, count
, ocount
);
2460 if (written
< 0 || written
== count
)
2463 * direct-io write to a hole: fall through to buffered I/O
2464 * for completing the rest of the request.
2468 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2469 nr_segs
, pos
, ppos
, count
,
2472 * If generic_file_buffered_write() retuned a synchronous error
2473 * then we want to return the number of bytes which were
2474 * direct-written, or the error code if that was zero. Note
2475 * that this differs from normal direct-io semantics, which
2476 * will return -EFOO even if some bytes were written.
2478 if (written_buffered
< 0) {
2479 err
= written_buffered
;
2484 * We need to ensure that the page cache pages are written to
2485 * disk and invalidated to preserve the expected O_DIRECT
2488 endbyte
= pos
+ written_buffered
- written
- 1;
2489 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2491 written
= written_buffered
;
2492 invalidate_mapping_pages(mapping
,
2493 pos
>> PAGE_CACHE_SHIFT
,
2494 endbyte
>> PAGE_CACHE_SHIFT
);
2497 * We don't know how much we wrote, so just return
2498 * the number of bytes which were direct-written
2502 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2503 pos
, ppos
, count
, written
);
2506 current
->backing_dev_info
= NULL
;
2507 return written
? written
: err
;
2509 EXPORT_SYMBOL(__generic_file_aio_write
);
2512 * generic_file_aio_write - write data to a file
2513 * @iocb: IO state structure
2514 * @iov: vector with data to write
2515 * @nr_segs: number of segments in the vector
2516 * @pos: position in file where to write
2518 * This is a wrapper around __generic_file_aio_write() to be used by most
2519 * filesystems. It takes care of syncing the file in case of O_SYNC file
2520 * and acquires i_mutex as needed.
2522 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2523 unsigned long nr_segs
, loff_t pos
)
2525 struct file
*file
= iocb
->ki_filp
;
2526 struct inode
*inode
= file
->f_mapping
->host
;
2529 BUG_ON(iocb
->ki_pos
!= pos
);
2531 sb_start_write(inode
->i_sb
);
2532 mutex_lock(&inode
->i_mutex
);
2533 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2534 mutex_unlock(&inode
->i_mutex
);
2536 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2539 err
= generic_write_sync(file
, pos
, ret
);
2540 if (err
< 0 && ret
> 0)
2543 sb_end_write(inode
->i_sb
);
2546 EXPORT_SYMBOL(generic_file_aio_write
);
2549 * try_to_release_page() - release old fs-specific metadata on a page
2551 * @page: the page which the kernel is trying to free
2552 * @gfp_mask: memory allocation flags (and I/O mode)
2554 * The address_space is to try to release any data against the page
2555 * (presumably at page->private). If the release was successful, return `1'.
2556 * Otherwise return zero.
2558 * This may also be called if PG_fscache is set on a page, indicating that the
2559 * page is known to the local caching routines.
2561 * The @gfp_mask argument specifies whether I/O may be performed to release
2562 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2565 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2567 struct address_space
* const mapping
= page
->mapping
;
2569 BUG_ON(!PageLocked(page
));
2570 if (PageWriteback(page
))
2573 if (mapping
&& mapping
->a_ops
->releasepage
)
2574 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2575 return try_to_free_buffers(page
);
2578 EXPORT_SYMBOL(try_to_release_page
);